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ABSTRACT OF THE DISSERTATION 
 

Using Single Cell Epigenomic Analysis to Reveal Mechanisms of Complex Disease: 
From the Heart to the Whole Human Body 

 
by 

 

James D. Hocker 

 

Doctor of Philosophy in Biomedical Sciences 

University of California San Diego, 2022 

Professor Bing Ren, Chair 
 

 

 

Complex diseases, and cardiovascular diseases such as coronary artery disease, atrial 

fibrillation, and heart failure, are leading causes of morbidity and mortality worldwide. These 

diseases arise from interactions between lifestyle factors, environmental influences, and 

multiple disease associated genes. Efforts to identify the driving genes underlying complex 

diseases have culminated in genome-wide association studies (GWAS), which measure 

associations between common human sequence variants and disease phenotypes in large 



xx 
 

population cohorts. To date, GWAS have identified tens of thousands of sequence variants 

associated with cardiovascular diseases and a spectrum of other complex diseases. However, 

the vast majority of these variants reside in the noncoding regions of the genome, and do not 

directly disrupt protein-coding sequences in genes. 

Cis-regulatory elements (CREs) are noncoding sequences that regulate the expression 

levels of neighboring genes in a cell type-specific fashion. Observations that disease associated 

variants from GWAS are enriched in CREs led to the hypothesis that a major mechanism by 

which these variants influence disease is by disrupting the regulation of gene expression in 

specific cell types. However, we still lack comprehensive maps of CREs, not only in the cell 

types of the human heart, but also in the majority of tissues in the human body. The absence of 

such maps has posed a key challenge to discovery of the cell types through which disease-

associated variants act and the interpretation of their detailed molecular mechanisms.  

These challenges, reviewed in Chapter 1, led me to ask the following questions which 

form the backbone of my thesis research: 1) how do individual human cell types utilize CREs 

to regulate gene expression, and 2) how do disease-associated noncoding sequence variants 

from GWAS influence cell type-specific gene regulation to cause disease? In this dissertation, 

I set out to address these questions in projects of progressively more expansive scope. 

First, in Chapter 2, I used single cell epigenomic and transcriptomic methods to define 

the regulation of gene expression by candidate CREs (cCREs) in nine cell types from the adult 

human heart. By localizing risk variants for cardiovascular diseases to these cCREs, I 

uncovered strong enrichments of variants associated with complex cardiovascular diseases in 

cCREs from individual cardiac cell types, such as atrial fibrillation (AF) variants in 

cardiomyocyte cCREs. Next, I examined the specific AF risk variants underlying these 
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enrichments, linked them to putative target genes, and tested their molecular mechanisms in 

human iPSC derived cardiomyocytes using luciferase reporter assays and CRISPR-Cas9 

mediated genome editing. Results from these experiments showed that a cardiomyocyte-

specific enhancer containing noncoding AF risk variants is necessary for KCNH2 expression 

and regulation of action potential repolarization in cardiomyocytes. 

Using this work as a foundation, in Chapter 3, I next applied single cell epigenomic 

methods to 30 different tissue types from across the entire adult human body. Integrating these 

datasets with corresponding data from 15 fetal tissue types revealed the cell type-specificity of 

over 1 million cCREs in 222 distinct human cell types. Moving beyond cardiovascular diseases 

and cardiac cell types, I next localized risk variants from the spectrum of complex human 

diseases and traits to body wide maps of cCREs in human cell types. This analysis resulted in 

thousands of significant enrichments of risk variants for complex diseases in cCREs of specific 

cell types. To link specific variants to putative molecular functions, I created a framework that 

incorporates statistical fine mapping, target gene linkage, and measurements of transcription 

factor binding site disruption to yield candidate molecular functions for hundreds of distinct 

noncoding risk variants. I lastly highlight examples of specific variants that may disrupt the 

activity of cell type-specific cCREs to contribute to complex diseases. 

Finally, in Chapter 4 I summarize future directions of this research. First, I outline 

technological developments that will greatly enhance the utility of these data and frameworks 

for interpreting the functions of complex disease risk variants. Second, I describe ongoing work 

to use the healthy tissue datasets I generated as a springboard for uncovering cell type-specific 

gene regulatory programs in diseased human tissues, with a focus on ischemic heart failure. 

 



1 
 

Chapter 1: Introduction 
 
1.1 Background 
 
1.1.1 Introduction to complex diseases and GWAS 

Complex diseases, and cardiovascular diseases such as coronary artery disease, atrial 

fibrillation, and heart failure, are leading causes of morbidity and mortality worldwide. The vast 

majority of human diseases are complex, meaning that they result from a combination of external 

and genetic influences (Craig, 2008). While lifestyle and environmental factors are critical 

contributors to disease and remain major targets of medical intervention (Arena et al., 2015), the 

interactions between numerous disease-associated genes play an important role in defining 

complex disease susceptibility, and mechanistic knowledge of these genes and interactions could 

lead to new treatments for complex diseases.  

In contrast to monogenetic disorders, complex diseases arise from the interaction of 

multiple genes not only with one another but also with environmental factors. Historically, this 

complexity hindered the identification of target genes via traditional linkage studies of disease 

heritability within families (Bush and Moore, 2012; Cui et al., 2010). In the mid 2000’s, the 

sequencing of the human genome and advances in microarray technology enabled novel strategies 

to detect sequence variants associated with complex human diseases. Specifically, the strategy of 

searching the whole genome for common single nucleotide polymorphisms (SNPs) that segregated 

with complex diseases and traits in large cohorts emerged as promising a method to identify 

disease associated genes and genomic regions (Wellcome Trust Case Control, 2007). Since then, 

these genome wide association studies (GWAS) have identified tens of thousands of unique 

sequence variants associated with cardiovascular diseases and a spectrum of other complex 

diseases and non-disease traits (Loos, 2020; Tam et al., 2019) – each of which could provide novel 
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insights into the biological mechanisms underlying complex diseases and traits. However, the vast 

majority of these variants reside in the noncoding regions of the genome, and do not directly 

disrupt protein-coding sequences in genes, posing a major challenge to interpretation of the 

mechanisms through which they may lead to disease (Claussnitzer et al., 2020). 

 

1.1.2 Regulation of gene expression by cis-regulatory elements 

Only around 1% of nucleotides in the human genome directly encode for proteins (Venter 

et al., 2001). However, much of the remaining noncoding sequences are active in controlling which 

genes are turned on, when they are turned on, and in which tissues and cell types. They do so in 

part through the action of cis-regulatory elements (CREs), which are noncoding regulatory 

sequences that dictate the expression patterns of target genes by recruiting sequence specific 

transcription factors (TFs) (Shlyueva et al., 2014). Upon binding of TFs, CREs frequently adopt 

conformational changes such that they are more accessible to endonucleases or transposases, 

enabling genome-wide discovery of CREs by combining assays incorporating these enzymes with 

high throughput sequencing (Buenrostro et al., 2013; John et al., 2013; Klemm et al., 2019). For 

example, assay for transposase accessible chromatin with sequencing (ATAC-seq) identifies 

cCREs by subjecting nuclear chromatin in its native context to the activity of a mutated, 

hyperactive transposase. At each genomic region this transposase is not sterically hindered from 

binding, it cleaves DNA and installs next generation sequencing adapters. The hyperactive 

transposase is unable to reach closed heterochromatin regions, and instead cuts and tags 

“accessible” or “open” chromatin regions. Purification of adapter-tagged DNA fragments from 

open chromatin regions followed by PCR amplification, sequencing, and alignment of the resulting 
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reads permits identification of open chromatin regions genome wide, each of which represents a 

candidate cis-regulatory element (cCRE). 

Prior efforts to map cCREs in the human genome using conventional methods such as 

ATAC-seq, DNase-seq, and histone modification ChIP-seq have, in large part, used heterogeneous 

bulk tissues as input materials to produce population average measurements. However, human 

tissues are composed of diverse cell types, each with a unique complement of active CREs. As a 

result, the current catalogs of candidate regulatory sequences in the human genome (Andersson et 

al., 2014; Meuleman et al., 2020; Moore et al., 2020; Roadmap Epigenomics et al., 2015; Shen et 

al., 2012) still lack information about the cell type-specific activities of most elements.  

 

1.1.3 Challenges in interpreting disease-associated variants 

Initial observations that disease associated variants from GWAS were enriched inside of 

cCREs from human tissues and cell lines (Ernst et al., 2011; Maurano et al., 2012; Roadmap 

Epigenomics et al., 2015) led to the hypothesis that an important mechanism by which they 

influence disease is by disrupting TF binding sites within CREs, or otherwise disturbing the ability 

of CREs to regulate the expression of disease-associated genes. Further, the enrichment of complex 

disease and trait associated variants within human cCREs was shown to be highly tissue specific. 

Risk variants associated with specific phenotypes – such as cardiovascular electrophysiologic traits 

– were preferentially enriched in cCREs derived from related tissues - such as cardiac tissues 

(Maurano et al., 2012). 

However, several major factors have limited our ability to interpret the molecular functions 

of trait and disease associated variants. Firstly, almost all GWAS have depended upon targeted 

genotyping of specific and pre-selected SNPs using microarrays (Uffelmann et al., 2021). These 
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pre-selected “index” or “lead” SNPs are likely to be inherited together with dozens of variants in 

neighboring genomic regions in a phenomenon known as linkage disequilibrium (LD) (Slatkin, 

2008). Thus, the exact sequence variant responsible for the association at a given locus, referred 

to as the causal variant, is often not the SNP that has been directly genotyped and must be 

distinguished from other variants in LD (Broekema et al., 2020). Secondly, the vast majority of 

variants associated with complex diseases reside in noncoding regions of the genome, obscuring 

the target genes through which they may act (Claussnitzer et al., 2020). Thirdly, current catalogs 

of regulatory sequences in the human genome have focused on bulk tissues and lack cell type 

resolution (Andersson et al., 2014; Meuleman et al., 2020; Moore et al., 2020; Roadmap 

Epigenomics et al., 2015; Shen et al., 2012). 

Innovative approaches have been developed to distinguish causal variants from local 

variants in linkage disequilibrium (LD) using fine mapping (Schaid et al., 2018; Wakefield, 2009) 

and to link variants to target genes using co-accessibility of open chromatin regions in single-cells 

(Pliner et al., 2018) or three-dimensional chromosomal contact-based linkage scores (Nasser et al., 

2021). While these advances have made important strides toward the prioritization of causal 

variants and the prediction of their target genes respectively, we still lack comprehensive cell-type-

resolved maps of cCREs from most primary tissues of the adult human body. 

 

1.1.4 Advances in single cell genomics 

Single-cell omics technologies, enabled by droplet-based, combinatorial barcoding or other 

approaches, have now enabled the profiling of transcriptome, epigenome, and chromatin 

organization from heterogenous tissues at single-cell resolution (Grosselin et al., 2019; Klein et 

al., 2015; Lake et al., 2018; Luo et al., 2017a; Macosko et al., 2015; Preissl et al., 2018). In 



5 
 

particular, combinatorial cellular barcoding-based assays such as single cell combinatorial-

indexing assay for transposase accessible chromatin with sequencing (sci-ATAC-seq; also known 

as single nucleus ATAC-seq or snATAC-seq) (Cusanovich et al., 2015) have permitted the 

identification of cCREs in single nuclei from frozen, biobanked tissues without the need for 

physical purification of individual cell types (Preissl et al., 2018) . The resulting data can be used 

to deconvolute cell types from mixed cell populations and to dissect cell type-specific 

transcriptomic and epigenomic states in primary tissues. While sci-ATAC-seq and other single cell 

assays have been applied to mammalian tissues including murine biosamples (Cusanovich et al., 

2018; Lareau et al., 2019; Li et al., 2021; Preissl et al., 2018; Sinnamon et al., 2019), human fetal 

tissues (Domcke et al., 2020; Trevino et al., 2021), and a few individual adult human organ systems 

(Chiou et al., 2021; Corces et al., 2020; Hocker et al., 2021; Wang et al., 2020), we still lack 

comprehensive cell-type-resolved maps of cCREs from most primary tissues of the adult human 

body.  

 

1.2 Outline of the dissertation 

To profile the activity of gene regulatory elements in diverse cell types and tissues in the 

human body and discover the specific mechanisms of noncoding sequence variants associated with 

complex diseases, I applied single cell epigenomic methods to a broad survey of human tissues 

with a focus on the human heart, and used these maps to interpret and test the functions of 

noncoding variants. First, in Chapter 2, I used single cell epigenomic and transcriptomic methods 

to define the regulation of gene expression by candidate CREs (cCREs) in nine cell types from the 

adult human heart. By localizing risk variants for cardiovascular diseases to these cCREs, I 

uncovered strong enrichments of disease associated variants in cCREs from individual cardiac cell 
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types, such as atrial fibrillation (AF) variants in cardiomyocyte cCREs. Next, I examined the 

specific AF risk variants underlying these enrichments, linked them to putative target genes, and 

tested their molecular mechanisms in human iPSC derived cardiomyocytes using luciferase 

reporter assays and CRISPR-Cas9 mediated genome editing. These studies revealed two of AF 

variants affecting a cardiomyocyte-specific cCRE controlling KCNH2 expression and action 

potential repolarization. 

Using this work as a foundation, in Chapter 3, I next applied single cell epigenomic 

methods to 30 different tissue types from across the entire adult human body. Integrating these 

datasets with corresponding data from 15 fetal tissue types revealed the cell type-specificity of 

over 1 million cCREs in 222 distinct human cell types. Moving beyond cardiovascular diseases 

and cardiac cell types, I next localized risk variants from the spectrum of complex human diseases 

and traits to body wide maps of cCREs in human cell types. This analysis resulted in thousands of 

significant enrichments of risk variants for complex diseases in cCREs of specific cell types. To 

link specific variants to putative molecular functions, I created a framework that incorporates 

statistical fine mapping, target gene linkage, and measurements of transcription factor binding site 

disruption to yield candidate molecular functions for hundreds of distinct noncoding risk variants. 

I lastly highlight examples of specific variants that may disrupt the activity of cell type-specific 

cCREs to contribute to complex diseases. 

Finally, in Chapter 4 I summarize future directions of this research. First, I outline 

additional developments that will greatly enhance the utility of these data and frameworks for 

interpreting the functions of complex disease risk variants. Second, I describe ongoing work to use 

the healthy tissue datasets I generated as a foundation for uncovering cell type-specific gene 

regulatory programs in diseased human tissues, with a focus on ischemic heart failure.  
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Chapter 2: Cardiac cell type-specific gene regulatory programs and disease risk association 

 
2.1 Abstract 

Misregulated gene expression in human hearts can result in cardiovascular diseases that 

are leading causes of morbidity and mortality worldwide. However, the limited information on the 

genomic location of candidate cis-regulatory elements (cCREs) such as enhancers and promoters 

in distinct cardiac cell types has restricted the understanding of these diseases. Here, we defined 

>287,000 cCREs in the four chambers of the human heart at single-cell resolution, which revealed 

cCREs and candidate transcription factors associated with cardiac cell types in a region-dependent 

manner and during heart failure. We further discovered cardiovascular disease-associated genetic 

variants enriched within these cCREs including 38 candidate causal atrial fibrillation variants 

localized to cardiomyocyte cCREs. Additional functional studies revealed that two of these 

variants affect a cCRE controlling KCNH2/HERG expression and action potential repolarization. 

Overall, this comprehensive atlas of human cardiac cCREs provides the foundation for 

illuminating cell type-specific gene regulation in human hearts during health and disease. 

 

2.2 Introduction 

Disruption of gene regulation is an important contributor to cardiovascular disease, the 

leading cause of morbidity and mortality worldwide (WHO, 2017). Cis-regulatory elements such 

as enhancers and promoters are crucial for regulating gene expression (Consortium, 2012a; 

Consortium et al., 2020; Roadmap Epigenomics et al., 2015; Thurman et al., 2012). Mutations in 

transcription factors and chromatin regulators can result in heart disease (Smemo et al., 2012; Zaidi 

and Brueckner, 2017), and genetic variants associated with risk of cardiovascular disease are 

enriched within annotated candidate cis-regulatory elements (cCREs) in the human genome 
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(Maurano et al., 2012). However, a major barrier to understanding the genetic and molecular basis 

of cardiovascular diseases is the paucity of maps and tools to interrogate gene regulatory programs 

in the distinct cell types of the human heart. Recent single cell/nucleus RNA-seq (Cui et al., 2019; 

Litvinukova et al., 2020; Tucker et al., 2020) and spatial transcriptomic (Asp et al., 2019) studies 

have revealed gene expression patterns in distinct cardiac cell types across developmental and 

adulthood stages in the human heart, including some which display gene expression patterns that 

are cardiac chamber/region-specific (Litvinukova et al., 2020; Tucker et al., 2020). However, the 

transcriptional regulatory programs responsible for cell type-specific and chamber-specific gene 

expression, and their potential links to non-coding risk variants for cardiovascular diseases and 

traits, remain to be fully defined.  

Candidate cis-regulatory elements (cCREs) have been annotated in the human genome with 

the use of ChIP-seq, DNase-Seq, ATAC-seq, GRO-seq, etc. in a broad spectrum of human tissues 

including in bulk heart tissues and in purified cardiomyocytes (Consortium, 2012a; Consortium et 

al., 2020; Dickel et al., 2016; Gilsbach et al., 2018; May et al., 2011; Roadmap Epigenomics et al., 

2015; Spurrell et al., 2019; Tan et al., 2020; Thurman et al., 2012; Vierstra et al., 2020). These 

maps have provided important insights into dynamic gene regulation during heart failure (Gilsbach 

et al., 2018; Spurrell et al., 2019; Tan et al., 2020) and begun to shed light on the function of non-

coding cardiovascular disease variants (Anene-Nzelu et al., 2020; Dickel et al., 2016; Gilsbach et 

al., 2018; Maurano et al., 2012; Tan et al., 2020). However, major limitations of these studies 

including their focus on particular chambers/regions of the heart and failure to interrogate cis-

regulatory elements across all distinct cardiac cell types, have restricted their utility in 

understanding how specific gene regulatory mechanisms may impact distinct cell types and 

regions of human hearts in health and disease. Although recent single cell genomic tools provide 
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the opportunity to interrogate cis-regulatory elements at single cell resolution (Buenrostro et al., 

2015; Cusanovich et al., 2015; Lareau et al., 2019; Satpathy et al., 2019), their application to 

mammalian hearts has been limited to one single cell ATAC-seq dataset from adult mouse heart 

(Cusanovich et al., 2018), fewer than 200 total cells from mouse fetal hearts (Jia et al., 2018), and 

fetal human heart (Domcke et al., 2020). Thus, to comprehensively investigate cis-regulatory 

elements in the specific cell types of the adult human heart, we profiled chromatin accessibility in 

~80,000 heart cells using single nucleus ATAC-seq (snATAC-seq) (Cusanovich et al., 2015; 

Preissl et al., 2018) and created a comprehensive cardiac cell atlas of cCREs annotated by cell type 

and putative target genes. Integration of these data with single nucleus RNA-seq datasets from 

matched specimens revealed gene regulatory programs in nine major cardiac cell types. Using this 

human cardiac cCRE atlas, we further observed the remodeling of cell type-specific candidate 

enhancers during heart failure and the enrichment of cardiovascular disease-associated genetic 

variants in cCREs of specific cell types. Finally, we showed that a cardiomyocyte-specific 

enhancer harboring risk variants for atrial fibrillation is necessary for cardiomyocyte KCNH2 

expression and regulation of cardiac action potential repolarization. 

 

2.3 Results 
 
2.3.1 Single nucleus analysis of chromatin accessibility and transcriptome in adult human 

hearts 

To assess the accessible chromatin landscape of distinct cardiovascular cell types, we 

performed snATAC-seq (Preissl et al., 2018), also known as sci-ATAC-seq (Cusanovich et al., 

2015), on all cardiac chambers from four adult human hearts without known cardiovascular disease 

(Table S1). We obtained accessible chromatin profiles for 79,515 nuclei, with a median of 2,682 
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fragments mapped per nucleus (Fig. 1A, B, Fig. S1, Table S2).  

 

Figure 1: Single-nucleus chromatin accessibility and transcriptome profiling of human hearts. (A) 
snATAC-seq and snRNA-seq were performed on nuclei isolated from cardiac chambers from four human 
donors without cardiovascular pathology. snATAC-seq: n = 4 (left ventricle), n = 4 (right ventricle), n = 3 
(left atrium), n = 2 (right atrium), snRNA-seq: n = 2 (left ventricle), n = 2 (right ventricle), n = 2 (left 
atrium), n = 1 (right atrium). (B) Uniform manifold approximation and projection (UMAP) (Leland 
McInnes, 2018) and clustering analysis of snATAC-seq data reveals nine clusters. Each dot represents a 
nucleus colored by cluster identity. (C) Uniform manifold approximation and projection (UMAP) (Leland 
McInnes, 2018) and clustering analysis of snRNA-seq data reveals 12 major clusters. Each dot represents 
a nucleus colored by cluster identity. Nerv. = Nervous. Art. sm. musc. = arterial smooth muscle. (D) 
Genome browser tracks (Robinson et al., 2011) of aggregate chromatin accessibility profiles (scale = reads 
per million; RPM) at selected representative marker gene examples for individual clusters and for all nuclei 
pooled together into an aggregated heart dataset (top track, grey). Black genes below tracks represent the 
indicated marker genes, non-marker genes are greyed. (E) Dot plot illustrating expression of representative 
marker gene examples in individual snRNA-seq clusters. (F) Heatmap illustrating the correlation between 
clusters defined by chromatin accessibility and transcriptomes. Pearson correlation coefficients were 
calculated between chromatin accessibility at cCREs within 2 kbp of annotated promoter regions (Harrow 
et al., 2006) and expression of the corresponding genes for each cluster. 

 

We also performed single nucleus RNA-seq (snRNA-seq) for a subset of the above heart 

samples to complement the accessible chromatin data and obtained 35,936 nuclear transcriptomes, 

with a median of 2,184 unique molecular identifiers (UMIs) and 1,286 genes detected per nucleus 
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(Fig. 1A, C, Fig. S2A-F, Table S3). Using SnapATAC (Fang et al., 2021) and Seurat (Stuart et al., 

2019), we identified nine clusters from snATAC-seq (Fig. 1B) and twelve major clusters from 

snRNA-seq (Fig. 1C, Fig. S2G, H), which were annotated based on chromatin accessibility at 

promoter regions or expression of known lineage-specific marker genes, respectively (Litvinukova 

et al., 2020; Tucker et al., 2020) (Fig. 1D, E, Table S4). For example, chromatin accessibility and 

gene expression of atrial and ventricular cardiomyocyte markers such as NPPA and MYH7 (Ng et 

al., 2010) were used to classify these two cardiomyocyte subtypes (Fig. 1D, E). Although gene 

expression patterns of lineage markers strongly correlated with accessibility at promoter regions 

across annotated cell types (Fig. 1F) and single cell integration analysis (Stuart et al., 2019) 

revealed 93% concordance in annotation between snATAC-seq and snRNA-seq datasets (Fig. S3, 

Table S3), some cellular sub-types identified from snRNA-seq including endocardial cells and 

myofibroblasts were not detected by snATAC-seq (Fig. 1F). Notably, cluster correlation and 

integration analysis showed that these cell types are present within the snATAC-seq data as part 

of the endothelial and smooth muscle clusters, respectively (Fig. 1F, Fig. S3, Table S3). The 

discrepancy in clustering may be attributable to the conservative snATAC-seq clustering 

parameters or the sparse nature of snATAC-seq data (Chen et al., 2019). Additionally, atrial and 

ventricular cardiomyocyte nuclei from the left and right regions of the heart could be further 

clustered by transcriptome but not chromatin accessibility (Fig. S2I, J). We noted that cell type 

composition varied significantly between biospecimens and donors, highlighting the importance 

of single cell approaches to limit biases due to cell proportion differences in bulk assays (Fig. S4, 

Tables S2 and S3). In summary, we identified and annotated cardiac cell types using both 

chromatin accessibility and nuclear transcriptome profiles.  
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2.3.2 Identification of candidate cis-regulatory elements (cCREs) in distinct cell types of the 

human heart 

To discover the cCREs in each cell type of the human heart, we aggregated snATAC-seq 

data from nuclei comprising each cell cluster individually and determined accessible chromatin 

regions with MACS2 (Zhang et al., 2008). We then merged the peaks from all nine cell clusters 

into a union of 287,415 cCREs, which covered 4.7% of the human genome (Fig. 2A, Table S5).  
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Figure 2: Characterization of gene regulatory programs in cardiac cell types. (A) Heatmap illustrating 
row-normalized chromatin accessibility values for the union of 287,415 cCREs. K-means clustering was 
performed to group cCREs based on relative accessibility patterns. (B) Heatmap showing row-normalized 
chromatin accessibility of 19,447 cell type-specific cCREs (FDR < 0.01 after Benjamini-Hochberg 
correction; fold change > 1.2). K-means clustering was performed to group cCREs based on relative 
accessibility patterns. Number of cCREs per K can be found in brackets. (C) GREAT ontology analysis 
(McLean et al., 2010) of cell type-specific cCREs. Q-value for enrichment indicates Bonferroni adjusted p-
value. (D) Transcription factor motif enrichment (Heinz et al., 2010) for known and de novo motifs within 
cell type-specific cCREs. The heatmap in shows motifs with enrichment p-value <10-5 in at least one cluster. 
For de novo transcription factor motifs the best matches for the top motifs are displayed. Statistical test for 
motif enrichment: hypergeometric test. P-values were not corrected for multiple testing. (E) Combination 
of transcription factor motif enrichment and gene expression shows cell type-specific roles for members of 
transcription factor families. Displayed are heatmaps for known motif enrichment in cell type-specific 
cCREs (left) and gene expression across clusters (right). (Fb. = Fibroblast, vCm. = Ventricular 
Cardiomyocyte, aCm. = Atrial Cardiomyocyte, Ec. = Endothelial, Sm. = Smooth Muscle, Mac. = 
Macrophage, Lc. = Lymphocyte, Ad. = Adipocyte, Nr. = Nervous). 
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67.0% of the cCREs identified in the current study overlapped previously annotated cCREs 

from a broad spectrum of human tissues and cell lines (Consortium et al., 2020) (Fig. S5A), and 

the union of heart cCREs captured 98.6% and 95.4% of candidate human heart enhancers reported 

in two previous bulk studies (Dickel et al., 2016; Spurrell et al., 2019) (Fig. S5B, C). Furthermore, 

75% of cCREs in the union were at least 2 kbp away from annotated promoter regions, and 19,447 

displayed high levels of cell type-specificity (FDR < 0.01, Fig. 2B, Table S6). Gene ontology 

analysis (McLean et al., 2010) revealed that these cell type-specific cCREs were proximal to genes 

involved in relevant biological processes, including collagen fibril organization for cardiac 

fibroblast-specific cCREs (K1), and myofibril organization for ventricular cardiomyocyte-specific 

cCREs (K2, Fig. 2C, Table S7). Employing chromVAR (Schep et al., 2017) (Table S8) and 

HOMER (Heinz et al., 2010) (Table S9), we detected cell type-dependent enrichment for 231 

transcription factor binding signatures, such as MEF2A/B, NKX2.5, and THR-β sequence motifs 

in cardiomyocyte-specific cCREs and TCF21 motifs in cardiac fibroblast-specific cCREs (Fig. 

2D). To discover the transcription factors that may bind to these sites, we combined corresponding 

snRNA-seq data with sequence motif enrichments to correlate expression of these transcription 

factors with motif enrichment patterns across cell types (Fig. 2E). As an example, we found strong 

enrichment of the binding motif for the macrophage transcription factor SPI1/PU.1 (Zhang et al., 

1994) in macrophage-specific cCREs, and SPI1 was exclusively expressed in macrophages (Fig. 

2E, Tables S4). In addition, we observed that transcription factor family members were expressed 

in cell type-specific combinations. For instance, while GATA family members displayed similar 

motif enrichment patterns across sets of cell type-specific cCREs, we discovered that endothelial 

cells and cardiac fibroblasts expressed GATA2 and GATA6, respectively, whereas cardiomyocytes 
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expressed both GATA4 and GATA6, and endocardial cells expressed GATA2, GATA4, and GATA6 

(Fig. 2E, Tables S4). In summary, these results establish a resource of candidate cis-regulatory 

elements for interrogation of cardiac cell type-specific gene regulatory programs. 

 

2.3.3 Cardiac cell type-specific gene regulatory programs implicated in chamber-specific 

structure and function 

Each cardiac chamber performs a unique role that is crucial to system-level heart function 

(Moorman and Christoffels, 2003). To investigate the gene regulatory programs underlying 

chamber-specific gene expression and cellular functions in distinct cardiac cell types, we tested 

cCREs for differential accessibility across five of the most abundant cell types of the heart: 

cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, and macrophages. We 

discovered 16,451 differentially accessible (DA) cCREs between pooled atria and ventricles, the 

majority of which were detected in cardiomyocytes (Fig. 3A-C, Table S10).  
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Figure 3: Cardiomyocyte cCREs display chamber-dependent differences in chromatin accessibility. 
(A) Scheme for comparison of major cell types across heart chambers. (B) Volcano plot showing 
differentially accessible (DA) candidate cis-regulatory elements (cCREs) in each cell type between atria 
and ventricles. Each dot represents a cCRE and the color indicates the cell type. cCREs with log2(fold 
change) > 1 and FDR < 0.05 after Benjamini-Hochberg correction (outside the shaded area) were 
considered as DA. (C) Number of DA cCREs between atria and ventricles by cell type. (D) Heatmaps 
showing normalized gene expression levels of differentially expressed genes between atrial (aCM) and 
ventricular cardiomyocytes (vCM) that were linked by co-accessibility to distal DA cCREs that were more 
accessible in atrial cardiomyocytes (Atrial CMDA) or ventricular cardiomyocytes (Ventr. CMDA), 
respectively. (E) GREAT ontology analysis (McLean et al., 2010) of DA cCREs between atrial and 
ventricular cardiomyocytes. P-values shown are Bonferroni adjusted (n.d.: not detected). (F) Genome 
browser tracks (Robinson et al., 2011) showing chromatin accessibility (scale = reads per million; RPM) 
and gene expression (scale = reads per kilobase million; RPKM) in atrial and ventricular cardiomyocytes 
as well as DA cCREs that were co-accessible with the promoter of MYL2. Grey dotted line indicates co-
accessibility threshold (> 0.1). Red boxes: distal DA cCREs co-accessible with MYL2 promoter. Gray 
boxes: DA cCREs overlapping the promoter region of MYL2. (G) Transcription factor motif enrichment 
analysis (Heinz et al., 2010) of DA cCREs between atrial and ventricular cardiomyocytes. The best matches 
for the top de novo motifs (score > 0.7) are shown. Statistical test for motif enrichment: hypergeometric 
test. P-values were not corrected for multiple testing (n.d.: not detected). 

 

Specifically, 11,159 cCREs displayed differential accessibility between right atrium and 

right ventricle and 12,962 cCREs exhibited differential accessibility between left atrium and left 

ventricle (Fig. S6A-C, Table S10). Comparing the left and right sides of the heart, we identified 
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101 DA cCREs between the right and left ventricle (Fig. S6D), and 2,687 DA cCREs between left 

and right atria, which in contrast to comparisons between atria and ventricles were found primarily 

in cardiac fibroblasts (Fig. S6E, Table S10).  

Utilizing co-accessibility analysis (Pliner et al., 2018) to link distal DA cCREs (~88% of 

all DA cCREs) to their putative target genes (Table S11, median distance: 88.7 kbp), we observed 

that distal DA cCREs in cardiomyocytes between atria and ventricles were associated with 

chamber-specific gene expression of their putative target genes (Fig. 3D, Figure S15B-E, Table 

S12), and genes near these DA cCREs were enriched for chamber-specific biological processes 

(Fig. 3E, Figure S15B-E, Table S13). Specifically, distal DA cCREs with higher accessibility in 

atrial cardiomyocytes were associated with genes such as PITX2, a transcriptional regulator of 

cardiac atrial development (Liu et al., 2001), as well as the ion channel subunit SCN5A which 

regulates cardiomyocyte action potential (Rivaud et al., 2020) (Fig. 3E, Table S13). Furthermore, 

we found distal DA cCREs with higher accessibility in atrial cardiomyocytes at the HAMP gene 

locus, which encodes a key regulator of ion homeostasis and was recently described as a potential 

novel cardiac gene in the right atrium by single nucleus transcriptomic analysis (Litvinukova et 

al., 2020; Tucker et al., 2020). Conversely, genes near distal DA cCREs with higher accessibility 

in ventricular cardiomyocytes were enriched for biological processes such as trabecula formation 

and ventricular cardiac muscle cell differentiation. For example, several distal DA cCREs with 

increased accessibility in ventricular cardiomyocytes compared to atrial cardiomyocytes were 

linked to the promoter region of MYL2, which encodes the ventricular isoform of myosin light 

chain 2 (Veevers et al., 2018) (Fig. 3F, Table S4), a regulator of ventricular cardiomyocyte 

sarcomere function.  
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Additionally, analysis of distal DA cCREs in cardiac fibroblasts revealed that putative 

target genes were involved in distinct biological processes between right and left atria. In 

particular, we found that DA cCREs with higher accessibility in right atrial cardiac fibroblasts 

were proximal to genes involved in heart development, heart growth, and tube development, 

whereas DA cCREs with higher accessibility in left atrial cardiac fibroblasts were adjacent to genes 

involved in biological processes such as wound healing and vasculature development (Fig. S6E, 

Table S13). We further found a cardiac fibroblast-specific DA cCRE with higher accessibility in 

left atria at the fibrinogen FN1 gene locus, potentially indicating a more activated fibroblast state 

(Hortells et al., 2019; Litvinukova et al., 2020). Supporting these findings, we identified several 

other DA cCREs with higher accessibility in left atrial cardiac fibroblasts adjacent to genes 

involved in generation of extracellular matrix (ECM) such as MMP2 and FBLN2 (Table S13). 

These observations are consistent with previous findings that a higher fraction of ECM is produced 

in fibroblasts of the left atrium (Litvinukova et al., 2020). 

Using motif enrichment analysis, we inferred candidate transcriptional regulators involved 

in chamber-specific cellular specialization, including TBX5, GATA4, and TGIF1 for atrial 

cardiomyocytes, and NFAT, ERRG, HAND1, and HAND2 for ventricular cardiomyocytes (Fig. 

3G, Table S14). While the TBX5 DNA binding motif was strongly enriched in both right and left 

atrial cardiomyocyte DA cCREs, the NFAT5 motif ranked highest in left ventricular 

cardiomyocyte DA cCREs and the TBX20 motif was strongly enriched in right ventricular 

cardiomyocyte DA cCREs (Fig. S6B, C, Table S14). Furthermore, cardiac fibroblast DA cCREs 

with higher accessibility in the right atrium were enriched for the binding motif of forkhead 

transcription factors (Fig. S6E), whereas cardiac fibroblast DA cCREs with higher accessibility in 

the left atrium were enriched for the homeobox transcription factor CUX1 motif (Fig. S6E, Table 
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S14). Altogether, we identified cCREs and candidate transcription factors associated with specific 

cardiac chambers, particularly within cardiomyocytes and cardiac fibroblasts. 

 

2.3.4 Cell type specificity of candidate enhancers associated with heart failure 

Recent large-scale studies profiling the H3K27ac histone modification in human hearts 

have uncovered candidate enhancers associated with heart failure (Spurrell et al., 2019; Tan et 

al., 2020). However, because these studies either examined heterogeneous bulk heart tissue 

(Spurrell et al., 2019; Tan et al., 2020) or focused solely on enriched cardiomyocytes (Gilsbach 

et al., 2018), it remains unclear what role, if any, additional cardiac cell types and cCREs may 

contribute to heart failure pathogenesis. Using our cell atlas of cardiac cCREs, we revealed the 

cell type specificity of candidate enhancers showing differential H3K27ac signal strength 

between human hearts from healthy donors and donors with dilated cardiomyopathy (heart 

failure) (Spurrell et al., 2019) (Fig. 4, Fig. S7A-E). 
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Figure 4: Cell type specificity of candidate enhancers associated with heart failure. A) Cell type-
specificity of 4,406 candidate enhancers with increased H3K27ac signal in failing left ventricles (Spurrell 
et al., 2019). Heatmap displays cell type-resolved chromatin accessibility RPKM (reads per kilobase per 
million mapped reads) values for cell types from left ventricular snATAC-seq datasets. Candidate 
enhancers were grouped based on chromatin accessibility patterns across cell clusters using K-means. (B) 
Cell type-specificity of 3,101 candidate enhancers with decreased H3K27ac signal in failing left ventricles 
(Spurrell et al., 2019). (C) Genome browser tracks (Robinson et al., 2011) showing several candidate enha-
ncers with increased activity during heart failure (HF) that were primarily accessible in fibroblasts and co-
accessible with the promoters of LUM and/or DCN. For visualization, linkages between cCREs within 
candidate enhancers and all gene promoters are shown (co-accessibility > 0.1, grey dotted line). Candidate 
enhancers co-accessible with gene promoters are indicated by red shaded boxes and promoter regions are 
indicated by grey shaded boxes (scale = RPM) (D) Genome browser tracks (Robinson et al., 2011) showing 
several bulk candidate enhancers with decreased activity in heart failure that were primarily accessible in 
cardiomyocytes and co-accessible with the promoter of IRX4 (scale = RPM). (E, F) Transcription factor 
motif enrichment (Heinz et al., 2010) in the candidate enhancers with (E) increased and (F) decreased 
activity in failing left ventricles. Analysis was performed on the indicated K cluster(s) from panels (A) and 
(B) respectively. The best matches for selected de novo motifs (score > 0.7) are shown. Statistical test for 
motif enrichment: hypergeometric test. P-values were not corrected for multiple testing. 
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We observed that a large fraction of candidate enhancers that displayed increased activity 

(45%) during heart failure were accessible primarily in cardiac fibroblasts (Fig. 4A, K2-4up, Table 

S15), whereas a majority of those exhibiting decreased activity (67%) were accessible primarily 

in cardiomyocytes (Fig. 4B, K1-3down, Table S15). Candidate enhancers with increased activity in 

cardiac fibroblasts were proximal to genes involved in extracellular matrix organization and 

connective tissue development (Fig. 4A, K2-4up, Table S16), whereas those exhibiting decreased 

activity in cardiomyocytes were proximal to genes involved in regulation of heart contraction and 

cation transport (Fig. 4B, K1-3down, Table S16). For example, several of these cardiac fibroblast 

candidate enhancers were present at loci encoding the extracellular matrix proteins lumican (LUM) 

and decorin (DCN) and co-accessible with the promoters of these genes (Fig. 4C). Consistent with 

these findings, both genes were primarily expressed in cardiac fibroblasts (Fig. S7F, Table S4), 

and LUM has been reported to exhibit increased expression in failing hearts compared to control 

hearts (Spurrell et al., 2019). On the other hand, several cardiomyocyte candidate enhancers 

displaying decreased activity in heart failure were co-accessible with the promoter region of IRX4 

(Fig. 4D), which encodes a ventricle-specific transcription factor (Bruneau et al., 2000) and is 

primarily expressed in cardiomyocytes of the left ventricle (Fig. S7G, Table S4). 

To identify potential transcription factors regulating these pathologic responses during 

heart failure, we performed motif enrichment analysis in cell type-specific subsets of enhancers 

showing differential H3K27ac signal strength between healthy and failing hearts (Table S17). For 

candidate enhancers exhibiting increased activity in heart failure, we identified enrichment of not 

only bHLH motifs such as AP4 in cardiac fibroblast candidate enhancers which matched previous 

bulk analysis (Spurrell et al., 2019) (Fig. 4E, K2-4up), but also TEAD3 and MYF6 motifs in 

cardiomyocyte candidate enhancers (Fig. 4E, K1up). Conversely, for candidate enhancers 
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displaying decreased activity in heart failure, we observed enrichment of nuclear receptor motifs 

such as glucocorticoid response element (GRE) in cardiomyocyte candidate enhancers, which is 

consistent with previous findings (Spurrell et al., 2019) (Fig. 4F, K1-3down), as well as other motifs 

which were not detected in bulk analyses, such as the bZIP transcription factor CEBPA for cardiac 

fibroblast candidate enhancers (Fig. 4F, K4down). Thus, these results show that this cardiac cell 

atlas of cCREs may be used to assign disease-associated candidate enhancers from bulk assays to 

their affected cell types and infer transcriptional regulators involved in lineage-specific disease 

pathogenesis.  

 

2.3.5 Interpreting non-coding risk variants of cardiac diseases and traits 

Non-coding genetic variants contributing to risk of complex diseases are enriched within 

cCREs in a tissue and cell type-dependent manner (Chiou et al., 2021; Corces et al., 2020; 

Cusanovich et al., 2018; Hook and McCallion, 2020; Nott et al., 2019). To examine the 

enrichment of cardiovascular disease variants within cCREs active in cardiac cell types, we 

performed cell type-stratified LD (Linkage disequilibrium) score regression analysis (Bulik-

Sullivan et al., 2015) using GWAS summary statistics for cardiovascular diseases (Arvanitis et 

al., 2020; Malik et al., 2018; Nelson et al., 2017; Nielsen et al., 2018; Shadrina et al., 2019) (Fig. 

5A) and control traits (Fig. S8A, Table S18) by measuring the enrichment of disease-associated 

variants within all cCREs identified for each cell type. This analysis revealed significant 

enrichment of atrial fibrillation (AF)-associated variants in both atrial (Z = 5.61, FDR = 1.9e-6) 

and ventricular cardiomyocyte cCREs (Z = 6.80, FDR = 2.8e-9), varicose vein-associated variants 

in endothelial cell cCREs (Z = 4.36, FDR = 3.9e-4), and coronary artery disease-associated 

variants in cardiac fibroblast cCREs (Z = 3.29, FDR = 1.7e-2, Fig. 5A). Notably, except for atrial 
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fibrillation, these associations were not significant in a pseudobulk heart dataset created by 

combining chromatin accessibility profiles from all cardiac cell types (Fig. 5A). Furthermore, 

cardiovascular disease variants were not significantly enriched in accessible chromatin from non-

cardiac tissues (Consortium, 2012a; Consortium et al., 2020; Vierstra et al., 2020) or human lung 

cell types (Wang et al., 2020), with the exception of a significant enrichment of varicose vein-

associated variants in endothelial cells (Fig. S8B, C).  
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Figure 5: Identification and characterization of atrial fibrillation-associated variants at the KCNH2 
locus. (A) Enrichment of cardiovascular disease variants within cardiac cell type cCREs. Z-scores are 
shown and were used to compute two-sided p-values for enrichments. * = FDR < 0.05, *** = FDR < 0.001. 
(B) Cardiomyocyte differentiation model schematic. hPSC = human pluripotent stem cell. (C) Fine 
mapping (Wakefield, 2009) and molecular characterization of two atrial fibrillation (AF) variants. Genome 
browser tracks (Robinson et al., 2011) for snATAC-seq (top; scale = RPM) and indicated molecular features 
during hPSC-cardiomyocyte differentiation (scale = RPKM). Co-accessibility track shows linkages 
between the AF variant-containing cCRE and promoters (cutoff > 0.1). PPA = Posterior probability of 
association (Wakefield, 2009). (D) Transgenic mouse embryo showing LacZ reporter expression under 
control of a genomic region (hs2192, Vista database (Visel et al., 2007)) overlapping the variant-cCRE pair. 
(E) Luciferase reporter assay for the AF variant-harboring cCRE in D15 cardiomyocytes. Genotypes for 
rs7789146 and rs7789585 were either both G (risk), both A (non-risk), or a combination. Each dot 
represents luciferase activity (average of two transfections) in independent replicates of D15 
cardiomyocytes. Data are mean +/- SD. *** p < 0.001, ** p < 0.01 (one-way ANOVA and Tukey post hoc 
test). Control: minimal promoter. (F) Expression of KCNH2 and TNNT2 in D25 cardiomyocytes after 
CRIPSR/Cas9-mediated cCRE deletion. Each dot represents an independent cardiomyocyte differentiation. 
Data are mean +/- SD. *** p < 0.001, ** p < 0.01, * p < 0.05, (one-way ANOVA and Tukey post hoc test); 
WT = unperturbed control. (G) Action potential recordings in hPSC-derived cardiomyocytes with and 
without cCRE deletion at D25-35. (H) APD90 (action potential duration at 90% depolarization) at 1 Hz 
pacing for 4 independent hPSC derived cardiomyocytes with and without cCRE deletion at D25-35. Data 
are mean +/- SD. ** p < 0.01 (unpaired two-sided t-test).  
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Next, to identify likely causal AF risk variants in cardiomyocyte cCREs, we first 

determined the probability that variants were causal for AF (Posterior probability of association, 

PPA) at 111 known loci using Bayesian fine-mapping (Wakefield, 2009). We then intersected fine-

mapped AF variants with cCREs detected in atrial and/or ventricular cardiomyocytes and 

identified 38 variants with PPA > 10% in cardiomyocyte cCREs, including previously reported 

variants at the HCN4 (Dickel et al., 2016) and SCN10A/SCN5A (van den Boogaard et al., 2014) 

loci (Table S19). We further prioritized AF variants for molecular characterization based on their 

overlap with cCREs that were primarily accessible in cardiomyocytes, evolutionarily conserved, 

and co-accessible with promoters of genes expressed in cardiomyocytes. In order to experimentally 

validate the molecular functions of cCREs containing AF variants, we utilized a human pluripotent 

stem cell (hPSC)-derived cardiomyocyte differentiation model system (Zhang et al., 2019c) (Fig. 

5B). From the variant prioritization analysis, we discovered a cCRE in the second intron of the 

potassium channel gene KCNH2 (HERG) which was co-accessible with the KCNH2 promoter (Fig. 

5C) and harbored two variants, rs7789146 and rs7789585, with a combined PPA of 28% (Fig. 5C, 

Fig. S9A). KCNH2 was primarily expressed in ventricular and atrial cardiomyocytes in the adult 

human heart (Fig S9B). The cCRE appeared to be activated during hPSC-cardiomyocyte 

differentiation as evidenced by an increase in H3K27ac signal that correlated with KCNH2 

expression (Fig. 5C). Supporting its in vivo role in regulating gene expression in mammalian 

hearts, a genomic region (hs2192) (Visel et al., 2007) containing this cCRE was previously shown 

to drive LacZ reporter expression in mouse embryonic hearts (Visel et al., 2007) (Fig. 5D).  
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2.3.6 A cardiomyocyte enhancer of KCNH2 is affected by non-coding risk variants 

associated with atrial fibrillation 

To investigate whether these AF variants may affect enhancer activity and thereby regulate 

KCNH2 expression and cardiomyocyte electrophysiologic function, we initially carried out 

reporter assays using a hPSC cardiomyocyte model system. Results from these studies confirmed 

that in D15 hPSC-cardiomyocytes, the KCNH2 enhancer carrying the rs7789146-G/rs7789585-G 

AF risk allele displayed significantly weaker enhancer activity than when containing the non-risk 

variants (Fig. 5E, Fig. S9C), thus supporting the functional significance of these AF variants. We 

next used CRISPR/Cas9 genome editing strategies to remove the enhancer and performed qPCR 

and electrophysiologic assays to examine its role in KCNH2 expression and function. Supporting 

the aforementioned findings, CRISPR/Cas9 genome deletion of this cCRE in hPSC-

cardiomyocytes resulted in decreased KCNH2 expression in an enhancer dosage-dependent 

manner (Fig. 5F, Fig. S9D). Similar to human cardiomyocytes with loss of KCNH2 function due 

to mutations in the KCNH2 coding sequence (Curran et al., 1995) or gene knockdown (Jones et 

al., 2014), cellular electrophysiologic studies demonstrated that these cCRE-deleted hPSC 

cardiomyocytes displayed a significantly prolonged action potential duration (Fig. 5G, H), thus 

suggesting that cardiac repolarization abnormalities in atrial cardiomyocytes may lead to AF in an 

analogous manner to ventricular arrhythmias due to long QT syndrome (Curran et al., 1995). Taken 

together, these results highlight the utility of this single cell atlas for assigning non-coding 

cardiovascular disease risk variants to distinct cell types and affected cCREs, and functionally 

interrogating how these variants may contribute to cardiovascular disease risk.  
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2.4 Discussion 

The limited ability to interrogate cell type-specific gene regulation in the human heart has 

been a major barrier for understanding molecular mechanisms of cardiovascular traits and diseases. 

Here, we report a cell type-resolved atlas of cCREs in the human heart, which was ascertained by 

profiling accessible chromatin in individual nuclei from all four chambers of multiple human 

hearts and includes both cell type-specific and heart chamber-specific cCREs. In particular, we 

observed chamber-specific differences in chromatin accessibility between ventricles and atria as 

well as left and right atria but notably detected few differences between left and right ventricles. 

This finding is consistent with recent single nucleus RNA-seq analysis in human hearts which 

found few differentially expressed genes between left and right ventricles (Tucker et al., 2020). 

We note that the power to detect chamber-specific differences in chromatin accessibility depends 

on the number of samples assayed and the total nuclei used as input for differential analysis. Thus, 

future studies with larger cohorts will likely reveal additional chamber-specific differences 

between cardiac cell types. 

We further highlight the utility of this atlas of heart cCREs to provide new insight into 

aberrant gene regulation during cardiovascular pathology. To this end, we delineated the cell type-

specificity of enhancers which were differentially active between healthy and failing heart tissue 

(Spurrell et al., 2019) and identified additional transcription factors that may be involved in the 

pathogenesis of specific cell types during heart failure. Such cell type-specific analysis is 

particularly important in the context of heart failure because cellular composition can differ 

between diseased and control hearts (Gilsbach et al., 2014; Gilsbach et al., 2018). This change in 

cellular composition may in part explain the cell type bias that we observed between candidate 

enhancers exhibiting increased and decreased activity during heart failure (i.e. cardiac fibroblasts 
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and cardiomyocytes, respectively). However, due to the large differences in H3K27ac signal, we 

suspect that measured changes in candidate enhancer activity could be due to a combination of 

both enhancer remodeling and shift in cell type composition. Thus, future studies profiling 

snATAC-seq and H3K27ac in parallel from the same cardiac sample or novel approaches to profile 

histone modifications in single nuclei (Kaya-Okur et al., 2019; Wang et al., 2019) will provide 

greater insight into the extent of changes in chromatin accessibility and enhancer activity in 

individual cardiac cell types from diseased hearts. 

Finally, we show how this atlas can be used to not only assign non-coding genetic variants 

associated with cardiovascular disease risk to cCREs in specific cardiac cell types, but also 

illuminate their cellular and molecular consequences. In particular, we discovered significant 

enrichment of AF-associated variants within cardiomyocyte cCREs and functionally interrogated 

one of these cCREs by demonstrating its role in regulating KCNH2 expression and cardiomyocyte 

repolarization. Similar to electrophysiologic phenotypes of human cardiomyocytes exhibiting 

KCNH2 loss of function (Curran et al., 1995; Jones et al., 2014), hPSC-cardiomyocytes harboring 

deletions of this cCRE displayed action potential prolongation, suggesting that cardiac 

repolarization abnormalities may contribute to atrial fibrillation, possibly through similar 

mechanisms as to how they may contribute ventricular arrhythmias (Curran et al., 1995). On the 

other hand, we found no enrichment of variants associated with heart failure in any cardiac cell 

type. This finding may reflect the heterogeneous etiologies of cardiovascular diseases and the 

limited number of currently known risk loci for heart failure (Arvanitis et al., 2020). Future GWAS 

in large cohorts with detailed phenotyping, including biobanks such as the UK Biobank (Sudlow 

et al., 2015) and the BioBank Japan Project (Ishigaki et al., 2020) and whole genome sequencing 

efforts such as the NHLBI Trans-Omics for Precision Medicine (TOPMed) program (NHLBI, 
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2014), will help identify and refine disease association signals. Therefore, this atlas of cardiac 

cCREs will be a valuable resource for continued discovery of regulatory elements, target genes, 

and specific cell types that may be affected by non-coding cardiovascular genetic variants. 

In summary, we created a human heart cell atlas of >287,000 cCREs, which may serve as 

a reference to further expand our knowledge of gene regulatory mechanisms underlying 

cardiovascular disease. To facilitate distribution of these data, we created a web portal at: 

http://catlas.org/humanheart. Integrating this resource with genomic and epigenomic clinical 

cardiac datasets, we built a systematic framework to interrogate how cis-regulatory elements and 

genetic variants might contribute to cardiovascular diseases such as heart failure or atrial 

fibrillation. Overall, such information will have great potential to provide new insight into the 

development of future cardiac therapies that are tailored to affected cell types and thus optimized 

for treating specific cardiovascular diseases. 

 

2.5 Materials and Methods 
 
2.5.1 Experimental Design 

We performed single nucleus ATAC-seq to define a comprehensive catalogue of candidate 

cis-regulatory elements (cCREs) for the cell types in four regions of non-failing human hearts and 

generated in parallel snRNA-seq datasets for a subset to delineate gene expression patterns. We 

used the cCRE catalogue to computationally assign dynamic enhancers in failing hearts to cell 

types and to assign cardiovascular disease risk variants to cCREs in individual cardiac cell types. 

Finally, we applied reporter assays, genome editing and electrophysiogical measurements in in 

vitro differentiated human cardiomyocytes to validate the molecular mechanisms of cardiovascular 

disease risk variants. 
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2.5.2 Human Tissues 

Adult human heart tissues were procured at the time of organ donation using an 

Institutional Review Board protocol (No. 101021) approved by the University of California, San 

Diego. Donated hearts were perfused with cold cardioplegia prior to cardiectomy and then 

explanted immediately into an ice-cold physiologic solution as we previously described (Smyth et 

al., 2010). Full-thickness samples from each chamber were obtained and epicardial fat rapidly 

removed before immediately flash freezing samples in liquid nitrogen. Samples were received 

from the United Network for Organ Sharing. Limited clinical data was obtained for each heart per 

approved Institutional Review Board protocol (Table S1). All samples were stored at -80˚C until 

processing. 

 

2.5.3 Single nucleus ATAC-seq 

Combinatorial barcoding single nucleus ATAC-seq was performed as described previously 

(Cusanovich et al., 2015; Fang et al., 2021; Preissl et al., 2018) with slight modifications. Nuclei 

were isolated in gentleMACS M tubes (Miltenyi) on a gentleMACS Octo Dissociator (Miltenyi) 

using the “Protein_01_01” protocol in MACS buffer (5 mM CaCl2, 2 mM EDTA, 1X protease 

inhibitor (Roche, 05-892-970-001), 300 mM MgAc, 10 mM Tris-HCL pH 8, 0.6 mM DTT). Nuclei 

were pelleted with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf) and 

resuspended in 1 mL Nuclear Permeabilization Buffer (1X PBS, 5% Bovine Serum Albumin, 0.2% 

IGEPAL CA-630 (Sigma), 1 mM DTT, 1X Protease inhibitor). Nuclei were rotated at 4 ˚C for 5 

minutes before being pelleted again with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 

5920R, Eppendorf). After centrifugation, permeabilized nuclei were resuspended in 500 μL high 
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salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM potassium-acetate, 11 mM 

Mg-acetate, 17.6% DMF) and counted using a hemocytometer. Concentration was adjusted to 

2,000 nuclei/9 μl, and 2,000 nuclei were dispensed into each well of a 96-well plate per sample 

(96 tagmentation wells/sample, samples were processed in batches of 2-4 samples). For 

tagmentation, 1 μL barcoded Tn5 transposomes (Table S20) were added using a BenchSmart™ 

96 (Mettler Toledo), mixed five times, and incubated for 60 min at 37 °C with shaking (500 rpm). 

To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA (final 20mM) were added to each well with a 

BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 15 min with shaking 

(500 rpm). Next, 20 µL of 2x sort buffer (2 % BSA, 2 mM EDTA in PBS) were added using a 

BenchSmart™ 96 (Mettler Toledo). All wells were combined into a separate FACS tube for each 

sample, and stained with Draq7 at 1:150 dilution (Cell Signaling). Using a SH800 (Sony), 20 

nuclei per sample were sorted per well into eight 96-well plates (total of 768 wells) containing 

10.5 µL EB (25 pmol primer i7, 25 pmol primer i5, 200 ng BSA (Sigma)). During the sort, nuclei 

with 2-8 copies of DNA (2-8n) were included since cardiomyocyte nuclei in human hearts are 

often polyploid (Gilsbach et al., 2018). Preparation of sort plates and all downstream pipetting 

steps were performed on a Biomek i7 Automated Workstation (Beckman Coulter). After addition 

of 1 µL 0.2% SDS, samples were incubated at 55 °C for 7 min with shaking (500 rpm). 1 µL 12.5% 

Triton-X was added to each well to quench the SDS. Next, 12.5 µL NEBNext High-Fidelity 2× 

PCR Master Mix (NEB) were added and samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, 

(98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined. 

Libraries were purified according to the MinElute PCR Purification Kit manual (Qiagen) using a 

vacuum manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRISelect 

reagent (Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one more time with 
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SPRISelect reagent (Beckman Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter 

(Life technologies) and a nucleosomal pattern of fragment size distribution was verified using a 

Tapestation (High Sensitivity D1000, Agilent). Libraries were sequenced on a NextSeq500 

sequencer (Illumina) using custom sequencing primers with following read lengths: 50 + 10 + 12 

+ 50 (Read1 + Index1 + Index2 + Read2). Primer and index sequences are listed in Table S20. 

 

2.5.4 Single nucleus RNA-seq 

Nuclei were isolated from heart tissue using a gentleMACS (Miltenyi) dissociator. ~40 mg 

of frozen heart tissue was suspended in 2 ml of MACS dissociation buffer (5 mM CaCl2 (G-

Biosciences, R040), 2 mM EDTA (Invitrogen, 15575-038), 1X protease inhibitor (Roche, 05-892-

970-001), 3 mM MgAc (Grow Cells, MRGF-B40), 10 mM Tris-HCl pH 8 (Invitrogen, 15568-

075), 0.6 mM DTT (Sigma-Aldrich, D9779), and 0.2 U/µL of RNase inhibitor (Promega, N251B) 

in water (Corning, 46-000-CV)) and placed on wet ice. Next, samples were homogenized using 

gentleMACS dissociator (Miltenyi) with gentleMACS M tubes (Miltenyi, 130-096-335)) and the 

“Protein_01_01” protocol. Suspension was filtered through a 30 µM CellTrics filter (Sysmex, 04-

0042-2316). M tube and filter were washed with 3 mL of MACS dissociation buffer and combined 

with the suspension. Suspension was centrifuged in a swinging bucket centrifuge (Eppendorf, 

5920R) at 500 g for 5 minutes (4°C, ramp speed 3/3). Supernatant was carefully removed and 

pellet was resuspended in 500 µL of nuclei permeabilization buffer (0.1% Triton X-100 (Sigma-

Aldrich, T8787), 1X protease inhibitor (Roche, 05-892-970-001), 1 mM DTT (Sigma-Aldrich, 

D9779), 0.2 U/µL RNase inhibitor (Promega, N251B), and 2% BSA (Sigma-Aldrich, SRE0036) 

in PBS). Sample was incubated on a rotator for 5 minutes at 4°C and then centrifuged at 500 g for 

5 minutes (Eppendorf, 5920R; 4°C, ramp speed 3/3). Supernatant was removed and pellet was 
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resuspended in 600-1000 µl of sort buffer (1 mM EDTA and 0.2 U/µL RNase inhibitor in 2% BSA 

(Sigma-Aldrich, SRE0036) in PBS) and stained with DRAQ7 (1:100, Cell Signaling, 7406). 

75,000 nuclei were sorted using a SH800 sorter (Sony) into 50 µL of collection buffer (1 U/ µL 

RNase inhibitor, 5% BSA (Sigma-Aldrich, SRE0036) in PBS); Sorted nuclei were then 

centrifuged at 1000 g for 15 minutes (Eppendorf, 5920R; 4°C, ramp speed 3/3) and supernatant 

was removed. Nuclei were resuspended in 18-25 ul of reaction buffer (0.2 U/µL RNase inhibitor, 

1% BSA (Sigma-Aldrich, SRE0036) in PBS) and counted using a hemocytometer. 12,000 nuclei 

were loaded onto a Chromium controller (10x Genomics). Libraries were generated using the 

Chromium Single Cell 3′ Library Construction Kit v3 (10x Genomics, 1000078) according to 

manufacturer specifications. cDNA was amplified for 12 PCR cycles. SPRISelect reagent 

(Beckman Coulter) was used for size selection and clean-up steps. Final library concentration was 

assessed by Qubit dsDNA HS Assay Kit (Thermo-Fischer Scientific) and fragment size was 

checked using Tapestation High Sensitivity D1000 (Agilent) to ensure that fragment sizes were 

distributed normally around 500 bp. Libraries were sequenced using a NextSeq500 or HiSeq4000 

(Illumina) using these read lengths: Read 1: 28 cycles, Read 2: 91 cycles, Index 1: 8 cycles.  

 

2.5.5 Human pluripotent stem cell culture 

An engineered H9-hTnnTZ-pGZ-D2 human pluripotent stem cell transgenic reporter line 

was purchased from WiCell and maintained on Geltrex (Gibco) pre-coated tissue culture plates in 

E8 medium (Chen et al., 2011) containing DMEM/F12, L-ascorbic acid-2-phosphate magnesium 

(64 mg/L), sodium selenium (14 µg/L), FGF2 (100 µg/L), insulin (19.4 mg/L), NaHCO3 (543 

mg/L) transferrin (10.7 mg/L), and TGFβ1(2 µg/L). Cells were passaged every 3 to 5 days upon 

reaching ~80% confluency. For single cell passaging experiments, cells were incubated with pre-
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warmed TrypLE™ Select Enzyme, no phenol red (1 mL per well of a 6-well plate) for 2-3 minutes 

in a 37°C, 5% CO2 incubator. Following incubation, cells were triturated to create a single cell 

suspension and cultured in E8 Medium supplied with Rock inhibitor (Watanabe et al., 2007) for 

18-24 hours post-split, followed by daily feeding with E8 medium. 

 

2.5.6 In vitro cardiomyocyte differentiation 

The H9-hTnnTZ-pGZ-D2 cell line was differentiated into beating cardiomyocytes utilizing 

a previously reported Wnt-based monolayer differentiation protocol (Lian et al., 2013). Briefly, 

the H9-hTnnTZ-pGZ-D2 cell line was cultured in E8 medium for 3-10 passages. Prior to 

differentiation, human pluripotent stem cells were seeded at a density of 350,000-400,000 cells 

per well of a 12-well plate and cultured for two days. For direct differentiation, cells were treated 

with 10 µM CHIR99021 (Fisher, #442350) in RPMI/B-27 without insulin. Fresh RPMI/B-27 

without insulin media was replaced at post 24hr and cells were then cultured two days. At day 3, 

cells were treated with 5 µM IWP2 (TOCRIS, #353310) in conditional medium and RPMI/B-27 

without insulin 1:1 mix medium for another two days. At day 5, cells were exposed to fresh 

RPMI/B-27 without insulin media again for two days. Then, fresh RPMI/B-27 with insulin media 

was used and replenished every two days. Contracting cardiomyocytes were usually observed at 

day 7-8. D25 in vitro cardiomyocytes were purified utilizing PSC-derived cardiomyocyte isolation 

kit, human (Miltenyi Biotec, 130-110-188) and used for Real-time quantitative PCR (RT-qPCR). 

 

2.5.7 Luciferase reporter assay 

A genomic region harboring the KCNH2 intronic enhancer (containing the risk allele: 

rs7789146-G / rs7789585-G) was amplified by nested-PCR (KCNH2-E-cF: 
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CTGGCTGAAGACACCTTACTTT; KCNH2-E-cR: ACGGAGCAGTCAAGGAAAC and 

KCNH2-In-cF: CGGGGTACCCCTCCGTAAATGAGGTGCTATC; KCNH2-In-cR: 

CCCTCGAGACGGAGCAGTCAAGGAAAC) using genomic DNA of H9-hTnnTZ-pGZ-D2 

transgenic cells as a template and cloned into pGL4.23 [luc2/minP] (Promega, Cat#E8411) 

luciferase reporter vector. Synthetic DNA containing the KCNH2 intronic 5’-half enhancer 

(rs7789045-rs7789690) with the non-risk/non-risk allele (rs7789146-A / rs7789585-A), non-

risk/risk allele (rs7789146-A / rs7789585-G) and risk/non-risk allele (rs7789146-G / rs7789585-

A) were purchased from integrated DNA technologies. KCNH2 intronic 3’-half enhancer 

(rs7789654-rs7790480) was amplified by PCR (KCNH2-R-In-cF: 

GCTGTGCAGTGTCAGGTTAT; KCNH2-In-cR: 

CCCTCGAGACGGAGCAGTCAAGGAAAC). Then the whole KCNH2 intronic enhancer with 

the non-risk/non-risk allele (rs7789146-A / rs7789585-A), non-risk/risk allele (rs7789146-A / 

rs7789585-G) and risk/non-risk allele (rs7789146-G / rs7789585-A) were generated by second 

PCR (KCNH2-In-cF: CGGGGTACCCCTCCGTAAATGAGGTGCTATC; KCNH2-In-cR: 

CCCTCGAGACGGAGCAGTCAAGGAAAC). One day prior to transfection, 3×105 of D15 in 

vitro differentiated cardiomyocytes were plated in a Geltrex-coated 24-well plate. Cardiomyocytes 

were transfected with 500 ng of pGL4.23 plasmid (either empty, KCNH2 enhancer with G/G allele, 

A/A allele or mix) and 10 ng TK:Renilla-luc as internal control using Lipofectamine Stem 

Transfection Reagent (Invitrogen, #STEM00003). Media was replaced with fresh media at 24 hrs 

post-transfection. At 72 hrs post-transfection, media was removed and the cells were washed with 

PBS. Luminescence was measured using a Dual-Luciferase Reporter Assay System (Promega, 

#E2920) according to the manufacturer’s protocol. 
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2.5.8 CRISPR mediated genome editing experiments 

To interrogate the functional significance of the atrial fibrillation-associated risk variant-

containing cCRE at the KCNH2 locus, the cCRE sequence was genetically deleted in H9-hTnnTZ-

pGZ-D2 transgenic hPSCs using an efficient CRISPR/Cas9-mediated knockout system (Teumer 

et al., 2016; Zhang et al., 2019c). Two adjacent gRNAs (KCNH2-enh gRNA-1, 

CTCATTTACGGAGGAGCGCA; KCNH2-enh gRNA-2, TACAGTGGCCTTCTAGACGA) 

targeting the cCRE were designed using a web-based software tool CRISPOR (Haeussler et al., 

2016), based on targeting region of interest and minimizing potential off-target effects. The 

identified gRNAs were then synthesized in vitro using the GeneArt Precision gRNA Synthesis kit 

(Invitrogen) according to the manufacturer’s protocol. One day prior to transfection, 1.5×105 H9-

hTnnTZ-pGZ-D2 hPSCs were seeded in 12-well plates. A pair of RNP complexes containing 1.2 

µg of Cas9 protein (NEB) and 400 ng of in vitro transcribed gRNA were then transfected (Kim et 

al., 2014; Zuris et al., 2015) using Lipofectamine stem transfection reagent (Invitrogen). 72 hours 

after the transfection, cells were diluted and clonally expanded another 7 days. Colonies were 

picked and lysates were prepared after the first passage for genotyping (Santos et al., 2016) 

(KCNH2-enh extended forward primer, ACACCTTACTTTGGGTGAGAAG; KCNH2-enh 

extended reverse primer, AGACAGAGCACAGACCTAGAA; KCNH2-enh internal forward 

primer, GCTGTGCAGTGTCAGGTTAT; KCNH2-enh internal reverse primer, 

TCTCCCTCCTTCTCTCTCATTC). After confirmation of genome-edited clones by Sanger 

sequencing, two transfected WT clones, two heterozygote clones, and two homozygote clones 

were selected for further functional analysis. 

 

2.5.9 RT-qPCR 
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Total RNA was isolated from the cells using TRIzol reagent (Invitrogen). 1 µg of total 

RNA was reverse transcribed using the iScript Reverse Transcription Supermix kit (Bio-Rad) for 

RT-qPCR. RT-qPCR was performed using PowerUPTM SYBRTM Green Master Mix (Applied 

Biosystems) in the CFX Connect Real-Time System (Bio-Rad). The results were normalized to 

the TBP gene. The primers used for RT-qPCR are listed in Table S21. 

 

2.5.10 Electrophysiology of cardiomyocytes 

Both WT and KCNH2 enhancer knockout D15 in vitro cardiomyocytes were purified using 

the PSC-derived cardiomyocyte isolation kit, human (Miltenyi Biotec, 130-110-188) and cultured 

for another 10-20 days in a low density prior to electrophysiological measurements. The single-

pipette, whole-cell patch current-clamp technique was used for recordings. Action potentials were 

recorded with a patch clamp amplifier (Axopatch 200B, Axon) and experiments were performed 

at a temperature of 35 ± 0.5 °C. Current-clamp command pulses were generated by a digital-to-

analog converter (DigiData 1440, Axon) which was controlled by the pCLAMP software (10.3, 

Axon). Pipettes (resistance 3-5 MΩ) were pulled using a micropipette puller (Model P-87, Sutter 

Instrument Co.). Several minutes after seal formation, the membrane was ruptured by gentle 

suction to establish the whole-cell configuration for voltage clamping. Subsequently, the amplifier 

was switched to the current-clamp mode. Cells were paced with 1 Hz, injected current stimuli from 

3 to15 nA for 5 ms duration. Cells were superfused with extracellular solution containing (in mM): 

140 NaCl, 5.4 KCl, 1.8 CaCl2, 1.0 MgCl2, 5.5 glucose and 5.0 HEPES (pH 7.4 adjusted with 

NaOH). Pipette solution contained (in mM): 120 K-gluconate, 10 KCl, 5 NaCl, 10 HEPES, 5 

Phosphocreatine, 5 ATP-Mg2 and Amphotericin 0.44 µM (pH 7.2 adjusted with KOH). 
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2.5.11 Demultiplexing of snATAC-seq reads 

For each sequenced snATAC-Seq library, we obtained four FASTQ files, two for paired-

end DNA reads as well as the combinatorial indexes for i5 (768 different PCR indices) and T7 (96 

different tagmentation indices; Table S20). We selected all reads with <= 2 mistakes per individual 

index (Hamming distance between each pair of indices is 4) and subsequently integrated the full 

barcode at the beginning of the read name in the demultiplexed FASTQ files 

(https://gitlab.com/Grouumf/ATACdemultiplex/).  

 

2.5.12 Filtering of snATAC-seq profiles by TSS enrichment and unique fragments 

TSS (transcriptional start site) positions were obtained from the GENCODE database v31 

(Harrow et al., 2006). Tn5-corrected insertions were aggregated ± 2000 bp around each TSS 

genome wide. Then, this profile was normalized to the mean accessibility ± (1900 to 2000) bp 

from the TSS and smoothed every 11 bp. The maximum value of the smoothed profile was taken 

as the TSS enrichment. We selected all nuclei that had at least 1,000 unique fragments and a TSS 

enrichment of at least 7 for all data sets. 

 

2.5.13 Clustering strategy for snATAC-seq datasets 

We utilized two rounds of clustering analysis to identify clusters. The first round of 

clustering analysis was performed on individual samples. We divided the genome into 5 kbp 

consecutive bins and then scored each nucleus for any insertions in these bins, generating a bin-

by-cell binary matrix for each sample. We filtered out those bins that were generally accessible in 

all nuclei for each sample using a z-score threshold of 1.65 (equivalent to a one tailed p-value < 

0.05). Based on the filtered matrix, we then carried out dimensionality reduction followed by 
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graph-based clustering to identify cell clusters. We called peaks using MACS2 (Zhang et al., 2008) 

for each cluster using the aggregated profile of accessibility and then merged the peaks from all 

clusters to generate a union peak list. Based on the peak list, we generated a cell-by-peak count 

matrix and used Scrublet (Wolock et al., 2019) to remove potential doublets with default 

parameters. Doublet scores returned by Scrublet (Wolock et al., 2019) were then used to fit a two-

component Gaussian mixture model using the BayesianGaussianMixture function from the python 

package scikit-learn (Fabian Pedregosa, 2011). Nuclei in the component with the larger mean 

doublet score were removed from downstream analysis since they likely reflected doublets. 

Next, to carry out the second round of clustering analysis, we merged peaks called from all 

samples to form a reference peak list. We generated a binary cell-by-peak matrix using nuclei from 

all samples and again performed the dimensionality reduction followed by graph-based clustering 

to obtain the final cell clusters across the entire dataset. 

 

2.5.14 Dimensionality reduction and batch correction of snATAC-seq data 

For processing of snATAC-seq data we adapted our previously published method, 

SnapATAC (Fang et al., 2021). To reduce the dimensionality of the peak by cell count matrix, 

SnapATAC utilizes spectral embedding for dimensionality reduction. To further increase the 

performance and scalability of spectral embedding, we applied the Nyström method (Bouneffouf, 

2016) to enable handling of large datasets. Specifically, we first randomly sampled 35,000 nuclei 

as training data. . We computed the matrix 𝑃 = 𝐷!"𝑆 S, where D is the diagonal matrix such that 

𝐷## = ∑ 𝑆#$$ . The eigendecomposition was performed on P and the eigenvector with eigenvalue 1 

was discarded. From the rest of the eigenvectors, we took k of them corresponding to the largest 

eigenvalues as the spectral embedding of the training data. We utilized the Nyström method 
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(Bouneffouf, 2016) to extend the embedding to the data outside the training set. Given a set of 

unseen samples, we computed the similarity matrix S' between the new samples and the training 

set. The embedding of the new samples is given by ′ = 𝑆′𝑈𝛬!" , where U and Λ are the 

eigenvectors and eigenvalues of P obtained in the previous step.  To correct for donor/batch 

specific effects, after dimensionality reduction we performed cell grouping on individual samples 

using k-mean clustering with k equal to 20. We then constructed k-NN graphs for each sample and 

used the MNN correction method to identify mutual nearest neighbors (Haghverdi et al., 

2018).These mutual nearest neighbors were used as the anchors to match the cells between 

different samples and correct for donor/batch effects as described previously (Haghverdi et al., 

2018). 

 

2.5.15 Clustering of snATAC-seq data 

We constructed the k-nearest neighbor graph (k-NNG) using low-dimensional embedding 

of the nuclei with k equal to 50. We then applied the Leiden algorithm (Traag et al., 2019) with 

constant Potts model (CPM) to find communities in the k-NNG corresponding to the cell clusters. 

The Leiden algorithm can be configured to use different quality functions. The modularity model 

is a popular choice but it is hampered by the resolution-limit, particularly when the network is 

large (Traag et al., 2011). Therefore, we used the modularity model only in the first round of 

clustering analysis to identify initial clusters. In the final round of clustering, we chose the constant 

Potts model as the quality function since it is resolution-limit-free and is better suited for 

identifying rare populations in a large dataset (Traag et al., 2011). Nuclei from two small clusters 

(280 and 254 nuclei) with low reproducibility and stability were discarded from downstream 

analysis. 34 nuclei that formed clusters of 1 and 2 nuclei were discarded as well. 
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2.5.16 Processing and clustering analysis of snRNA-seq datasets 

Raw sequencing data was demultiplexed and preprocessed using the Cell Ranger software 

package v3.0.2 (10x Genomics). Raw sequencing files were first converted from Illumina BCL 

files to FASTQ files using cellranger mkfastq. Demultiplexed FASTQs were aligned to the 

GRCh38 reference genome (10x Genomics), and reads for exonic and intronic reads mapping to 

protein coding genes, long non-coding RNA, antisense RNA, and pseudogenes were used to 

generate a counts matrix using cellranger count; expect-cells parameter was set to 5,000. A 

separate counts matrix for each sample was also generated using only reads mapped to intronic 

regions. 

Next, exon + intron count matrices for individual datasets were processed using the Seurat 

v3.1.4 R package (Stuart et al., 2019) (https://satijalab.org/seurat/) to assess dataset quality. 

Features represented in at least 3 cells and barcodes with between 500 and 4,000 genes were used 

for downstream processing; additionally, barcodes with mitochondrial read percentages greater 

than 5% were removed. Counts were log-normalized and scaled by a factor of 10,000 using 

NormalizeData. To identify variable genes, FindVariableFeatures was run with default 

parameters except for nfeatures = 3000 to return the top 3,000 variable genes. All genes were then 

scaled using ScaleData, which transforms the expression values for downstream analysis. Next, 

principal component analysis was performed using RunPCA with default parameters and the top 

3,000 variable features as input. The first 20 principal components were used to run clustering 

using FindNeighbors and FindClusters (parameter res = 0.4). To generate UMAP coordinates 

RunUMAP was run using the first 20 principal components and with parameters umap.method = 

“umap-learn”, and metric = “correlation”. Doublet scores (pANN) were generated for cell 
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barcodes using DoubletFinder (McGinnis et al., 2019) (https://github.com/chris-mcginnis-

ucsf/DoubletFinder) using the parameters pN =0.15 and pK = 0.005; the anticipated collision rate 

was set by specifying 2% collisions per thousand nuclei for individual datasets. 

Individual datasets were merged together using the merge function in Seurat to combine 

the count matrices and designate unique barcodes. Cell barcodes with pANN scores greater than 0 

were removed from downstream analysis. Metadata was also encoded for each barcode, and the 

merged dataset was processed in a similar manner as described above; clusters were identified 

using FindNeighbors and FindClusters (res = 0.8). To generate the UMAP coordinates, the first 

14 principal components were used in RunUMAP; the UMAP algorithm for Seurat v3.1.4 uses the 

uwot R-package, and that setting was used to generate the coordinates here. To regress out donor 

specific effects, the Harmony R package (https://github.com/immunogenomics/harmony)  

(Korsunsky et al., 2019) was used, and the recomputed principal components were used to re-

cluster the cells and rerun UMAP using the above parameters. For downstream analysis and 

comparison to snATAC-seq data we combined ventricular cardiomyocyte clusters, atrial 

cardiomyocyte clusters, fibroblast clusters, and endothelial cell clusters manually based on shared 

gene expression patterns (Fig S2G, H). Cluster-specific genes in the all-transcripts dataset were 

identified in a global differential gene expression test using FindAllMarkers with parameters 

logFC = 0.25, min.pct = 0.25, and only.pos = FALSE.  

 

2.5.17 Integration of snRNA-seq and snATAC-seq data 

The snRNA-seq and snATAC-seq datasets were used to perform label transfer from the 

RNA cells onto the snATAC-seq dataset using the Seurat v3.1.4 R package 

(https://satijalab.org/seurat/) (Stuart et al., 2019). Gene activity scores were calculated using 
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chromatin accessibility in regions from the promoter up to 2kb upstream for each ATAC nucleus. 

Activity scores were log-normalized and scaled using NormalizeData and ScaleData. To compare 

the snRNA and snATAC datasets and identify anchors, FindTransferAnchors was run considering 

the top 3,000 variable features from the snRNA-seq dataset. Anchor pairs were used to assign 

RNA-seq labels to the snATAC-seq cells using TransferData, with the weight.reduction parameter 

set to the principal components used in snATAC-seq clustering. The efficacy of integration was 

assessed by examining the distribution of the maximum prediction scores output by TransferData 

and the distribution of annotated snATAC-seq identities to the corresponding predicted label. 

 

2.5.18 Creation of a consensus list of heart candidate cis regulatory elements 

MACS2 (v2.1.2) (Zhang et al., 2008) was used to identify accessible chromatin sites for 

each cluster with the following parameters: -q 0.01 --nomodel --shift -100 --extsize 200 -g 

2789775646 --call-summits --keepdup-all. Estimated genome size was determined to be 

2789775646 bp and was indicated by the -g parameter. We next filtered out peaks overlapping 

with the ENCODE blacklist (Amemiya et al., 2019) (hg38, https://github.com/Boyle-

Lab/Blacklist/). 

To generate the union of heart cCREs, we merged the blacklist-filtered peaks obtained for 

each cluster using the BEDtools merge command with default settings (v2.25.0) (Quinlan and Hall, 

2010). 

 

2.5.19 Computing relative accessibility scores for candidate cis regulatory elements 

To correct biases arising from differential read depth among cells and cell types, we derived 

a procedure that normalizes chromatin accessibility at cCREs identified by MACS2 peak calling 
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(v2.1.2) (Zhang et al., 2008). We define the set of accessible loci by L and we define a peak p as a 

subset of related loci l from L. Let 𝑎% be the accessibility of accessible locus l and P the set of non-

overlapping peaks used to define the loci. For a given cell type 𝑆# ∈ 𝑆, we computed the median 

𝑚𝑒𝑑$ number of reads sequenced per cells. For each feature 𝑝$ ∈ 𝑃, we computed 𝑚#$ the average 

number of reads sequenced from 𝑆# and overlapping 𝑝$. We then defined the activity 𝑎#$of loci 𝑝$ 

in 𝑆# as 𝑎#$ = 10&. '("!	*!")
#/%&'"

∑ '("!	*!")
#/%&'"

"	∈*

. We then define the relative accessibility score (RAS) 𝐴#$ =

-!"
∑ -!"!	∈+

. 

 

2.5.20 K-means clustering of candidate cis regulatory elements 

We clustered the union of 287,415 candidate cis regulatory elements (cCREs) using a K-

means clustering procedure. We first created a sparse cell x peak matrix that was transformed into 

a RAS-normalized cell type x peak matrix. We then performed K-means on the normalized matrix 

with K from 2 to 12 and computed the Davies-Bouldin (DB) index for each K (Davies and Bouldin, 

1979). Let 𝑅./ =	
(0,10-)
2,-

 with 𝑠. the average distance of each cell of cluster x and 𝑑./ the distance 

between the centroids of clusters x and y. The Davies-Bouldin index is defined as 𝐷𝐵 =

	"
3
∑ max

.4/
(𝑅./).,/	∈3 . We selected K = 9 since it resulted in the lowest DB index which indicates 

the best partition. We used the python library scikit-learn (Fabian Pedregosa, 2011) to compute 

the K-means algorithm and the DB index (Davies and Bouldin, 1979).  

 

2.5.21 Cell type annotation 
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We annotated snATAC-seq and snRNA-seq clusters based on chromatin accessibility at 

promoter regions or expression of known lineage marker genes, respectively. We annotated atrial 

and ventricular cardiomyocytes based on differential chromatin accessibility and gene expression 

at NPPA, MYH6, KCNJ3, MYL7, MYH7, HEY2, MYL2 and other reported markers of atrial and 

ventricular cardiomyocytes (Kubalak et al., 1994; Ng et al., 2010; Sheikh et al., 2015). We used, 

for example, the gene DCN to annotate cardiac fibroblasts (Furtado et al., 2014); VWF and EGFL7 

for endothelial cells (Kalucka et al., 2020; Nichol and Stuhlmann, 2012); GJA4 and TAGLN for 

smooth muscle cells (Schaum et al., 2018; Shanahan et al., 1993); CD163 and MS4A6A for 

macrophages (Fabriek et al., 2005; Martinez et al., 2006); IL7R and THEMIS for lymphocytes 

(Lesourne et al., 2009; Peschon et al., 1994); ADIPOQ and CIDEA for adipocytes (Hu et al., 1996; 

Puri et al., 2008); NRXN3 and GPM6B for a cluster of nervous cells with neuronal and Schwann-

like gene expression and chromatin accessibility signatures (Litvinukova et al., 2020; Skelly et al., 

2018; Tucker et al., 2020). From snRNA-seq, we identified a population of endothelial-like cells 

with specific expression of endocardial cell markers NRG3 and NPR3 (Tang et al., 2018; Zhao et 

al., 1998). We also identified subtypes of mesenchymal cells that included myofibroblasts with 

characteristic expression of embryonic smooth muscle actin MYH10 (Baum and Duffy, 2011; 

Southern et al., 2016) as well as arterial smooth muscle cells with preferential expression of ACTA2 

and TAGLN relative to a larger cluster of pericytes (Vanlandewijck et al., 2018) (Table S4). 

snRNA-seq annotations were consistent with recent single cell transcriptomic analyses of adult 

human heart tissue (Litvinukova et al., 2020; Tucker et al., 2020).  

 

2.5.22 Identification of cell type-specific candidate cis-regulatory elements 
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We used edgeR (version 3.24) in R (Robinson et al., 2010) to identify cell type-specific 

cCREs. For each cCRE, accessibility within a cell type was compared to average accessibility in 

all other clusters. For each cell type, we created a count table for each cCRE using the following 

strategy: each sample was described with a donor and a chamber ID. For each sample ID we 

reported read count within 1) the cell type and 2) the rest of the cell types in aggregate. We used 

this count matrix as input for edgeR analysis (Robinson et al., 2010) and performed a likelihood 

ratio test. We considered cCREs with fold change > 1.2 and FDR < 0.01 after Benjamini-Hochberg 

correction as cell type-specific. 

 

2.5.23 Co-accessibility analysis using Cicero 

We used the R package Cicero (Pliner et al., 2018) to infer co-accessible chromatin loci. 

For each chromosome, we used as input the corresponding peaks from our 287,415 cCRE union 

set and the coordinates of the snATAC-seq UMAP (Leland McInnes, 2018). We randomly 

subsampled 15,000 cells from our aggregate snATAC-seq dataset to construct input matrices for 

Cicero analysis. We used +/-250 kbp as cutoff for co-accessibility interactions. All other settings 

were default. 

 

2.5.24 Correlation of gene expression and promoter accessibility 

We defined promoter regions as transcriptional start sites (TSS) +/-2 kbp. Transcriptional 

start sites were extracted from annotation files from GENCODE release 33 (Harrow et al., 2006). 

We identified promoter-overlapping peaks using BEDtools (Quinlan and Hall, 2010) and a custom 

script (see Code availability). For each overlapping pair (peak, promoter) identified, we kept only 

the open chromatin site closest to the TSS in order to obtain a 1:1 correspondence between genes 
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and open chromatin peaks. We then used the relative accessibility score (RAS) and the cluster-

scaled FPKM gene expression score to create feature x cell type matrices for RNA-seq and ATAC-

seq datasets. We then used these matrices to create heatmaps and to perform ATAC-seq/RNA-seq 

cluster correlation analysis using the Pearson similarity metric. For each cell type, we computed 

the Pearson correlation score between the RAS vector of the 7,081 promoters and the scaled FPKM 

vector of the corresponding 7,081 genes identified via the 1:1 correspondence method described 

above.  

 

2.5.25 Differentially accessible cCREs between heart chambers 

Between-heart chamber differential accessibility analysis was performed for five cell types 

from our aggregated single nucleus ATAC-seq dataset. We considered only cell types which had 

a representation of at least 50 nuclei per dataset and at least 300 nuclei across each tested condition. 

The cell types that met these inclusion criteria included cardiomyocytes, fibroblasts, endothelial 

cells, smooth muscle cells, and macrophages. Within each cell type, a generalized linear model 

framework was employed using the R package edgeR (Robinson et al., 2010). All fragments for a 

given cell type were aggregated in the .bed format. MACS2(Zhang et al., 2008) was used to call 

peaks on the aggregate .bed file for each cell type with the parameters specified above. 

NarrowPeak output bed files were used for differential accessibility testing. The aggregate .bed 

file for each cell type was then partitioned based on dataset of origin using nuclear barcodes. The 

‘coverage’ option of the BEDtools package (Quinlan and Hall, 2010) was applied with default 

settings to count the total number of chromatin fragments from each dataset overlapping 

narrowPeaks called on the aggregate .bed file for the corresponding cell type. This yielded a raw 

count matrix in the format of single nucleus ATAC-seq datasets (columns) by narrowPeaks (rows) 
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for each cell type. The raw count matrix was used as input for edgeR analysis. To filter low-

coverage peaks from our analysis, we used the ‘filterByExpr’ command within edgeR with default 

settings. We applied an average prior count of one during fitting of the generalized linear model 

in order to avoid inflated fold changes in instances for which peaks lacked coverage for one but 

not both tested conditions. We modelled chromatin accessibility at each peak as a function of heart 

chamber (group) with sex as a covariate. The generalized linear model was expressed as follows 

in edgeR notation: 

-- 

design <- model.matrix(~sex+group) 

y <- estimateDisp(y, design, prior.count = 1) 

glmFit(y, design) 

-- 

Significance was tested using a likelihood ratio test. To account for testing multiple 

hypotheses, a Benjamini-Hochberg significance correction was applied for all cCREs tested within 

each considered cell type. Any cCRE with an absolute log2(fold change) > 1 and an FDR-corrected 

p value < 0.05 was considered significant. 

 

2.5.26 Gene expression analysis of genes co-accessible with DA candidate cis-regulatory 

elements 

To compare the expression of genes co-accessible with heart chamber-dependent distal DA 

cCREs (outside +/- 2 kb of TSS) in cardiomyocytes and fibroblasts, we performed differential 

expression testing for all genes between indicated heart chambers using Wilcoxon rank sum test 

in Seurat (Stuart et al., 2019). Genes with an absolute Fold Change > 1.5 and an FDR-adjusted P 
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value < 0.05 were considered differentially expressed. We then tested resulting genes for co-

accessibility (Pliner et al., 2018) with distal DA cCREs at a co-accessibility score threshold of 0.1, 

and displayed scaled gene expression values from Seurat for the indicated differentially expressed 

genes linked to chamber-dependent distal DA cCREs. 

 

2.5.27 GREAT ontology analysis 

The Genomic Regions Enrichment of Annotations Tool (GREAT, 

http://great.stanford.edu/public/html/index.php) (McLean et al., 2010) was used with default 

settings for indicated cCREs or candidate enhancers in the .bed format. Biological process 

enrichments are reported. P-values shown for enrichment are Bonferroni-corrected binomial p-

values.  

 

2.5.28 Motif enrichment analysis 

 For de novo and known motif enrichment analysis of cluster-specific cCREs, the 

findMotifsGenome.pl utility of the HOMER package was used with default settings (Heinz et al., 

2010). For display of enrichment patterns for motifs from the JASPAR (Mathelier et al., 2016) 

database with evidence of enrichment in at least one set of cell type-specific cCREs, motifs with 

an enrichment p-value < 10-5 in at least one set of cluster-specific cCREs were selected. For motif 

enrichment within differentially accessible cCREs, narrowPeak calls from MACS2 were used as 

input, with peaks called on the corresponding cell type (as described above) used as background. 

For enrichment of motifs within cell type-attributed bulk enhancers, snATAC-seq peaks from the 

union of snATAC-seq peaks were utilized. Summits were extracted from peaks that overlapped 

bulk enhancer annotations and extended by 250bp on either side to obtain fixed-width peaks. We 



51 
 

also computed motif enrichment scores at single-cell resolution using chromVAR (Schep et al., 

2017).  

For input to chromVAR, we used the summits of the 287,415 peaks in our consensus list 

extended by 250 base pairs in either direction, and a set of 870 non-redundant motifs as input 

(https://github.com/GreenleafLab/chromVARmotifs).  To identify differentially enriched motifs 

in each cell type, we used the following strategy: for each cell type and each motif, we computed 

a Rank Sum test between the chromVAR Z-score distributions from cells within the cell type and 

outside of the cell type. Tests were run using a random sampling of 40,000 cells. Then, for each 

cell type we used 1e-8 as p-value cutoff. In addition, we applied a Bonferroni correction to account 

for multiple testing which resulted in selection of significant motifs with p-value < 1e-11.   

 

2.5.29 Measuring single cell chromatin accessibility signal within bulk candidate heart 

enhancers 

We obtained published candidate heart enhancers annotated by H3K27ac ChIP-seq from a 

recently reported bulk survey of healthy left ventricular tissue from 18 human donors (Spurrell et 

al., 2019). Candidate enhancers were defined per the study as H3K27ac ChIP-seq peaks that were 

at least 1kb away from a transcription start site and present in two or more donors. Because these 

reference annotations were derived from bulk profiling of healthy left ventricles, we selected only 

left ventricular nuclei from our aggregate dataset for comparison. We limited our analysis to cell 

types that comprised at least 5% of nuclei by proportion in our aggregate dataset. These included 

cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and macrophages. We first 

combined all fragments for each cell type from left ventricular datasets. The ‘coverage’ option of 

BEDtools (Quinlan and Hall, 2010) was applied with default settings to count the total number of 
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chromatin fragments from each ventricular cell type overlapping the candidate enhancer 

annotations. This yielded a raw count matrix in the format of snATAC-seq cell types (columns) 

by candidate enhancers (rows). The raw count matrix was normalized to RPKM (reads per kilobase 

per million mapped reads) for each candidate enhancer. We next used Cluster3.0 (de Hoon et al., 

2004) to k-means cluster the 31,033 healthy heart candidate enhancers into K groups between 2 

and 12 with the following settings (Method = k-Means, Similarity Metric = Euclidian distance, 

number of runs = 100). We calculated the Davies-Bouldin (DB) index (Davies and Bouldin, 1979) 

as described above for each clustering using the index.DB function of the R package clusterSim 

(http://keii.ue.wroc.pl/clusterSim/). We selected a k-means of 8, which yielded the lowest DB 

index, indicating the best partitioning.  

We repeated the above analysis for 4,406 candidate enhancers reported have increased bulk 

H3K27ac ChIP signal and 3,101 candidate enhancers reported to have decreased signal in 18 late 

stage idiopathic dilated cardiomyopathy (heart failure) left ventricles versus 18 healthy control left 

ventricles reported in the same study. We again clustered the candidate enhancers for both groups 

into k groups between 2 and 12 as above and selected the clustering that yielded the lowest DB 

index (Davies and Bouldin, 1979). 

 

2.5.30 Genome-wide association study (GWAS) variant enrichment analysis 

We used LD (linkage disequilibrium) score regression (Bulik-Sullivan et al., 2015; 

Finucane et al., 2015) to estimate genome-wide enrichment for GWAS traits using annotation sets 

from single cell chromatin accessibility from the heart or lung (Wang et al., 2020), or bulk DNase 

hypersensitivity sites for tissues from ENCODE (Consortium, 2012a; Consortium et al., 2020; 

Vierstra et al., 2020). For bulk DNase-seq datasets, peak annotations were merged across 
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biological replicates from the same tissue type. We compiled published GWAS summary statistics 

for cardiovascular diseases (Arvanitis et al., 2020; Malik et al., 2018; Nelson et al., 2017; Nielsen 

et al., 2018; Shadrina et al., 2019), other diseases (Aylward et al., 2018; Bentham et al., 2015; de 

Lange et al., 2017; Grove et al., 2019; Lambert et al., 2013; Mahajan et al., 2018; Okada et al., 

2014; Ripke et al., 2014; Tachmazidou et al., 2019; Wiberg et al., 2019; Wray et al., 2018), and 

non-disease traits (Day et al., 2015; Day et al., 2017; den Hoed et al., 2013; Horikoshi et al., 2016; 

Jansen et al., 2019; Jiang et al., 2018; Locke et al., 2015; Okbay et al., 2016; Wittemans et al., 

2019; Wood et al., 2014) using the European subset from transethnic studies where applicable. We 

created custom LD score files by using peaks from each cell type or tissue as a binary annotation. 

As background, we used baseline annotations included in the baseline-LD model v2.2. For each 

trait, we used LD score regression to estimate enrichment coefficient z-scores for each annotation 

relative to the background. Using these z-scores, we computed two-sided p-values for enrichment 

and used the Benjamini-Hochberg procedure to correct for multiple tests within each set of 

annotations. 

 

2.5.31 Fine mapping for atrial fibrillation 

We obtained published atrial fibrillation GWAS summary statistics and index variants for 

111 disease-associated loci (Nielsen et al., 2018). To construct credible sets of variants for each 

locus, we first extracted all variants in linkage disequilibrium (r2 > 0.1 using the EUR subset of 

1000 Genomes Phase 3) (Auton et al., 2015a) in a large window (±2.5 Mb) around each index 

variant. We next calculated approximate Bayes factors (Wakefield, 2009) (ABF) for each variant 

using effect size and standard error estimates. We then calculated posterior probabilities of 

association (PPA) for each variant by dividing its ABF by the sum of ABF for all variants within 
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the locus. For each locus, we then defined 99% credible sets by sorting variants by descending 

PPA and retaining variants that added up to a cumulative PPA of > 0.99. This resulted in an output 

of 6,014 candidate causal variants. 

 

2.5.32 Variant prioritization for functional validation 

To prioritize variants for functional validation, we refined our list of candidate causal 

variants from fine mapping analysis to only those with a posterior probability of association (PPA) 

> 0.1 (216 remaining out of 6,014). We used BEDtools (Quinlan and Hall, 2010) to intersect these 

variants with ATAC-seq peaks called on an aggregate .bed file for atrial and ventricular 

cardiomyocyte snATAC-seq clusters (cardiomyocyte cCREs). This resulted in 40 fine-mapped 

variants that resided within 38 candidate cardiomyocyte cCREs (38 cCRE-variant pairs).  

We assessed each remaining cCRE-variant pair via the following criteria: 

• cCREs primarily accessible in cardiomyocytes 

• presence of a corresponding ATAC-seq peak at a testable time point in the in vitro 

hPSC-cardiomyocyte differentiation model system  

• sequence conservation in 100 vertebrates (genome browser track generated using 

phyloP of the PHAST5 package downloaded from UCSC genome browser (Siepel 

et al., 2005), http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way/) 

• predicted co-accessibility of candidate enhancer with a gene promoter 

• expression of putative target gene associated with cCRE appearance (chromatin 

accessibility and H3K27ac) during hPSC-cardiomyocyte differentiation (Zhang et 

al., 2019c) 
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A candidate cCRE-variant pair at the KCNH2 locus was prioritized for functional 

experimentation. 

 

2.5.33 ChIP-seq data processing 

Reads were mapped to the human genome reference GRCh38 using Bowtie2 (version 

2.2.6) (Langmead and Salzberg, 2012) and reads with MAPQ > 30 selected using SAMtools 

(version 1.3.1) (Li et al., 2009). PCR duplicates were removed using MarkDuplicates function of 

Picard tools (version 1.119) (Institute, 2019). RPKM normalized signal tracks were generated 

using BamCoverage function in deepTools (version 2.4.1) (Ramirez et al., 2014). 

 

2.5.34 RNA-seq data processing 

Reads were mapped to the human genome reference GRCh38 using STAR (version 

020201) (Dobin et al., 2013) and reads with MAPQ > 30 selected using SAMtools (version 1.3.1) 

(Li et al., 2009). PCR duplicates were removed using MarkDuplicates function of Picard tools 

(version 1.1.19) (Institute, 2019). RPKM normalized signal tracks were generated using 

BamCoverage function in deepTools (version 2.4.1) (Ramirez et al., 2014). 

 

2.5.35 ATAC-seq data processing 

Reads were mapped to the human genome reference GRCh38 using Bowtie2 (version 

2.2.6) (Langmead and Salzberg, 2012) and reads with MAPQ > 30 selected using SAMtools 

(version 1.3.1) (Li et al., 2009). PCR duplicates were removed using SAMtools (version 1.3.1) (Li 

et al., 2009). RPKM normalized signal tracks were generated using BamCoverage function in 

deepTools (version 2.4.1) (Ramirez et al., 2014). 
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2.5.36 Statistical analysis 

No statistical methods were used to predetermine sample sizes. There was no 

randomization of the samples, and investigators were not blinded to the specimens being 

investigated. However, clustering of single nuclei based on chromatin accessibility was performed 

in an unbiased manner, and cell types were assigned after clustering. Low-quality nuclei and 

potential barcode collisions were excluded from downstream analysis as outlined above. Cluster-

specificity at each cCRE was tested using edgeR (Robinson et al., 2010) as described above, with 

p-values corrected via the Benjamini Hochberg method. To identify differentially accessible sites 

between heart chambers and for each cell type, a likelihood ratio test was used and the resulting p-

value was corrected using the Benjamini Hochberg method. For significance of ontology 

enrichments using GREAT, Bonferroni-corrected binomial p values were used (McLean et al., 

2010). For significance testing of enrichment of de novo and known motifs, a hypergeometric test 

was used without correction for multiple testing (Heinz et al., 2010). For luciferase and qPCR data, 

we performed one-way ANOVA (ANalysis Of VAriance) analysis with post-hoc Tukey HSD 

(Honestly Significant Difference) using GraphPad Prism version 8.0.0 for Windows, GraphPad 

Software, San Diego, California USA, www.graphpad.com. 

 

2.5.37 External datasets 

Cardiomyocyte differentiation: RNA-Seq, H3K27ac day 0 (hPSC); day 5 (cardiac 

mesoderm); and day 15 (primitive cardiomyocytes) were downloaded from GSE116862 (Zhang 

et al., 2019c). Signal tracks for heart H3K27ac ChIP-seq data were downloaded from 

https://portal.nersc.gov/dna/RD/heart/. List of candidate enhancers was downloaded from 
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supplementary tables (Spurrell et al., 2019). H3K27ac ChIP-seq data for cardiomyocyte nuclei 

from non-failing donors (NF1) were downloaded from NCBI SRA BioProject ID PRJNA353755 

(Deutsch et al., 2018). We acquired snATAC-seq data for human lung from GSE161383 (Wang 

et al., 2020) and bulk DNase-seq datasets for human tissues from ENCODE (Consortium, 2012a; 

Consortium et al., 2020; Vierstra et al., 2020) with the following identifiers: ENCSR053ZKP, 

ENCSR259GYP, ENCSR277KRY, ENCSR458AOS, ENCSR597NVK, ENCSR422IIZ, 

ENCSR968TPO, ENCSR788IZL, ENCSR859LTL, ENCSR060HPL, ENCSR783OCW, 

ENCSR171ADO, ENCSR171ETY, ENCSR520BAD, ENCSR686WJL, ENCSR791BHE, 

ENCSR856XLJ, ENCSR361DND, ENCSR579KDC, ENCSR693UHT, ENCSR365NDK, 

ENCSR712PYJ, ENCSR930PDT, ENCSR178JBL, ENCSR595HZQ, ENCSR261RWJ, 

ENCSR455GUW, ENCSR689DSM, ENCSR954AJK, ENCSR564FZH, ENCSR000ELO, 

ENCSR909HFI, ENCSR931UQB, ENCSR128GBN, ENCSR006IMH, ENCSR163PKT, 

ENCSR641ZPF, ENCSR782SSS, ENCSR101QXF, ENCSR709IYR, ENCSR866ODX, 

ENCSR195ONB, ENCSR450PWF, ENCSR549NRK, ENCSR749MUH, ENCSR080ISA, 

ENCSR090IDV, ENCSR102RSU, ENCSR401ESD, ENCSR484UAU, ENCSR508FVM, 

ENCSR340MRJ, ENCSR760QZM, ENCSR763AKE, ENCSR923JYH, ENCSR164WOF, 

ENCSR323UTX, ENCSR650FLQ, ENCSR702DPD, ENCSR129BZE, and ENCSR437AYW. 

 

2.5.38 Code availability 

The pipeline for processing snATAC-seq data is available as a part of the Taiji software: 

https://taiji-pipeline.github.io/  

Custom code used for demultiplexing and downstream analysis for snATAC data is 

available here:  
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https://gitlab.com/Grouumf/ATACdemultiplex/-/tree/master/ATACdemultiplex  

https://gitlab.com/Grouumf/ATACdemultiplex/-/blob/master/scripts/  

 

2.5.39 Data availability 

Sequencing data are available from dbGaP (phs002204.v1.p1). Processed data are 

available from GEO (GSE165839) and can be explored using our publicly available web portal 

including a UCSC cell browser (https://github.com/maximilianh/cellBrowser) and genome 

browser track viewer (IGV.js: https://github.com/igvteam/igv.js#igvjs): 

http://catlas.org/humanheart. All data needed to evaluate the conclusions in the paper are present 

in the paper and/or the Supplementary Materials. Additional data related to this paper may be 

requested from the authors. 
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2.6 Supplemental Figures 

 

 
Supplemental Figure 1: Quality control for snATAC-seq datasets. (A) Density plots showing 
enrichment of fragments at transcription start sites (TSS enrichment) versus number of fragments per 
nucleus for each dataset. (B) Density plot of TSS enrichment versus number of fragments for all datasets 
combined. (C) Percentage of barcode collisions identified as heterotypic cell type collisions by Scrublet 
(Wolock et al., 2019) (top row), TSS enrichment (second row), fragments per nucleus (third row), duplicate 
read percentage (fourth row), and number of nuclei passing quality control (bottom row) for each snATAC-
seq dataset.   
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Supplemental Figure 2: Quality control for snRNA-seq datasets and annotation of snRNA-seq 
clusters. (A) Distribution of barcodes by unique molecular identifier (UMI) counts for nuclei (red; passing 
quality control) and background (black; not passing quality control) barcodes. (B) Distribution of doublet 
scores for all snRNA-seq nuclei that passed initial Cell Ranger (10x Genomics) and Seurat (Stuart et al., 
2019) quality control. (C) Median genes detected per nucleus for each snRNA-seq dataset. (D) Median 
UMIs detected per nucleus for each snRNA-seq dataset. (E) Distribution of genes per nucleus on final 
snRNA-seq UMAP(Leland McInnes, 2018). (F) Distribution of UMIs per nucleus on final snRNA-seq 
UMAP(Leland McInnes, 2018). (G) Initial Seurat(Stuart et al., 2019) clustering result of snRNA-seq data 
showing 18 clusters, and dashed lines indicating final 12 major cell cluster annotations based on shared 
expression patterns (H). (H) Differential gene expression heatmap showing top 10 differentially expressed 
genes for each initial cluster by Seurat (Stuart et al., 2019). Initial clusters were merged into major cell 
clusters based on shared gene expression patterns as indicated above the heatmap. (I, J) UMAPs (Leland 
McInnes, 2018) showing chamber-of-origin for nuclei included in the final (I) snRNA-seq and (J) snATAC-
seq datasets.  
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Supplemental Figure 3: Integration of snRNA-seq and snATAC-seq datasets. (A, B) Seurat (Stuart et 
al., 2019) was used to perform integration of chromatin accessibility and transcriptomes at the single cell 
level. (A) UMAP (Leland McInnes, 2018) showing nuclei colored based on original snATAC-seq cluster 
annotation (same as in Chapter 1 Fig. 1b). (B) UMAP (Leland McInnes, 2018) showing nuclei colored with 
cluster labels transferred from snRNA-seq. (C) 93% of nuclei showed a prediction score >0.5 indicating a 
match between chromatin accessibility and transcriptome. Histogram showing the prediction score 
distribution by original snATAC-seq cluster annotation.   
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Supplemental Figure 4: Cellular composition of snATAC-seq and snRNA-seq datasets. (A) Dot plot 
showing number of nuclei passing quality control per cluster for each snATAC-seq dataset. (B) Bar plot 
showing cell type composition of each snATAC-seq dataset as percentage of cell types. (C) Dot plot 
showing number of nuclei passing quality control per cluster for each snRNA-seq dataset. (D) Bar plot 
showing cell type composition of each snRNA-seq dataset as percentage of cell types.   
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Supplemental Figure 5: Overlap of union of heart candidate cis regulatory elements (cCREs) with 
several reference datasets. (A) Overlap of the union of 287,415 heart cCREs from snATAC-seq with 
annotated cCREs in the human genome from the SCREEN database (Consortium, 2011, 2012b). (B) 
Overlap of union with healthy left ventricular candidate enhancers from 18 human donors (Spurrell et al., 
2019). Arrows pointing from Venn diagram indicate number of overlapping (by at least one base pair) and 
non-overlapping genomic regions. Histograms display the number of donors harboring reported healthy 
heart enhancers (out of 18) for candidate enhancers that overlap union cCREs (left) and candidate enhancers 
that do not overlap union cCREs (right). (C) Overlap of heart cCREs with post-natal heart candidate 
enhancers (reported post-natal score > 0.2) from a meta-analysis of epigenomic data from human and mouse 
heart tissues (Dickel et al., 2016). Venn diagrams are not to scale.  



64 
 

Supplemental Figure 6: cCREs in cardiomyocytes and cardiac fibroblasts display chamber-
dependent differences in accessibility. (A) Scheme for comparison of major cell types across individual 
heart chambers to identify differential accessible (DA) cCREs. (B-E) Comparisons were performed 
between (B) right atrium (RA) and right ventricle (RV), (C) left atrium (LA) and left ventricle (LV), (D) 
right ventricle (RV) and left ventricle (LV) and (E) right atrium (RA) and left atrium (LA). For each 
comparison the following data are displayed. Left: Volcano plots showing identification of differentially 
accessible (DA) cCREs in each cell type between indicated chambers. cCREs with log2(fold change) > 1 
and FDR < 0.05 after Benjamini-Hochberg correction (outside the shaded area) were considered DA. Each 
dot represents a cCRE and the color indicates the cell type. Second from the left: Bar plots showing number 
of DA cCREs per cell type. Number of DA cCREs listed in brackets. Second from the right: GREAT 
ontology analysis (McLean et al., 2010) and transcription factor motif enrichment analysis result (Heinz et 
al., 2010) for the indicated DA cCREs. The best matches for selected de novo motifs (score > 0.7) are 
displayed. Statistical test for motif enrichment: hypergeometric test. P-values were not corrected for 
multiple testing. Ontology p-values were adjusted using Bonferroni correction. Right: Heatmaps showing 
normalized gene expression levels of differentially expressed genes linked to distal DA cCREs. Displayed 
are expression levels for putative target genes of distal DA cCREs for the cell type with most DA cCREs 
for the indicated chamber comparisons. Number of genes is shown in brackets. For lists of differentially 
expressed genes linked to distal DA cCREs for all comparisons in cardiomyocytes and fibroblasts see 
Chapter 1 Chapter 2, Table S12 (Cm. = cardiomyocyte, Fb. = fibroblast, ns. = no significant enrichment).  
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Supplemental Figure 7: Measurement of single cell chromatin accessibility signal within bulk 
candidate heart enhancers. (A) H3K27ac peaks from bulk healthy heart tissue samples (Spurrell et al., 
2019) were attributed to major cardiac cell types using cell type-resolved chromatin accessibility data. 
Heatmap displays cell type-resolved chromatin accessibility RPKM (reads per kilobase per million mapped 
reads) values from left ventricular snATAC-seq datasets. Candidate enhancers were grouped based on 
chromatin accessibility pattern across cell clusters using K-means. (B) Heatmap displays cell-type resolved 
gene expression of putative enhancer target genes (co-accessibility score > 0.1) from left ventricular 
snRNA-seq datasets. (C) Genome browser tracks (Robinson et al., 2011) of H3K27ac in left ventricle tissue 
and cell type-resolved gene expression (snRNA-seq; scale = RPKM) and chromatin accessibility (snATAC-
seq; scale = RPM) for several candidate heart enhancers (indicated by shaded red boxes) attributed to 
macrophages (K6 in panel (A)). The co-accessibility track shows linkages between the candidate enhancers 
and the promoter of CD163 (cutoff > 0.1, grey dotted line). (D) GREAT analysis (McLean et al., 2010) of 
cell type-attributed candidate enhancers. Gene ontology enrichments are shown as Bonferroni-adjusted p-
values. (E) Pileup tracks showing H3K27ac signal in bulk left ventricle datasets (Spurrell et al., 2019) (left) 
and from purified cardiomyocyte nuclei (Gilsbach et al., 2018) (right) from non-failing (NF) hearts in 
distinct groups of enhancers which were either associated with a cell type (K1-6 in panel (A)) or broadly 
accessible across cell types (K7 in panel (A)). H3K27ac signal in cardiomyocyte nuclei data was highest in 
the cardiomyocyte-attributed candidate enhancers as well as the widely accessible candidate enhancers 
(K1,2,7), whereas signal strength in left ventricular tissue was highest in widely accessible enhancers and 
comparable between groups of cell type-specific candidate enhancers. (F, G) Dot plots illustrating 
expression of (F) LUM and DCN, and (G) IRX4 in individual snRNA-seq clusters in the adult human heart.  
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Supplemental Figure 8: Association of cardiac cell types, bulk tissues, and lung cell types with 
variants for cardiovascular and non-cardiovascular diseases and traits. Heatmap showing enrichment 
of variants associated with non-cardiovascular diseases and phenotypic traits from genome wide association 
studies in cardiac cell type-resolved cCREs and from all cardiac cell types combined (pseudobulk). (B) 
Heatmap showing enrichment of risk variants associated with cardiovascular diseases in cCREs identified 
by DNase-seq in non-heart tissues from ENCODE (Consortium, 2012a; Consortium et al., 2020; Vierstra 
et al., 2020). (C) Heatmap showing enrichment of risk variants associated with cardiovascular diseases in 
lung cell type-resolved cCREs from snATAC-seq of the human lung (Wang et al., 2020). Total cCREs 
identified independently in each cell type or dataset were used as input for analysis. Z-scores for enrichment 
are displayed, and were used to compute two-sided p-values for enrichments. P-values were corrected using 
the Benjamini-Hochberg procedure for multiple tests (*:  FDR < 0.1; **: FDR < 0.01; ***: FDR < 0.001).   
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Supplemental Figure 9: Validation of KCNH2-associated candidate enhancer. (A) Genome browser 
tracks (Robinson et al., 2011) displaying cell type-resolved chromatin accessibility (scale = RPM) and co-
accessibility from snATAC-seq as well as chromatin accessibility, H3K27ac signal, and gene expression 
during hPSC-cardiomyocyte differentiation (scale = RPKM). For illustration purposes, the co-accessibility 
track shows linkages between the AF variant-containing cCRE and annotated gene promoters (co-
accessibility > 0.1, grey dotted line). The grey arc represents links to the promoter of AOC1 which was not 
expressed. Fig. 5C shows a zoom into this locus. (B) Dot plot illustrating expression of KCNH2 in 
individual snRNA-seq clusters in the adult human heart. (C) Representative Sanger sequencing peak map 
at KCNH2 intronic cCRE showing the risk allele for AF (top row rs7789146-G / rs7789585-G), the non-
risk allele for AF (second row rs7789146-A / rs7789585-A), and the constructs with a combination of risk 
and non-risk alleles (rs7789146-A / rs7789585-G; third tow and rs7789146-G / rs7789585-A bottom row) 
used for luciferase assay. Blue highlighted regions indicate positions of variants. (D) Schematic 
representation of the strategy for deletion of the KCNH2 enhancer. The paired gRNAs (gRNA-1 and gRNA-
2) were designed to target upstream and downstream of the KCNH2 enhancer. Bottom panels show genomic 
DNA PCR verification of deletion in the H9-hTnnTZ-pGZ-D2 cell line. The red asterisk indicates specific 
bands.  
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2.7 Supplemental Tables 

Supplemental Table 1: Clinical metadata for heart samples. 

Supplemental Table 2: Quality control and cell type composition data for each snATAC dataset. 

Supplemental Table 3: Quality control, cell type composition, and integration with snATAC-seq 

results for snRNA-seq datasets. 

Supplemental Table 4: snRNA-seq gene expression by major cluster and major cluster-specific 

genes. 

Supplemental Table 5: Union of 287,415 cCREs in the cell types of the human heart. 

Supplemental Table 6: List of 19,447 cell type-specific cCREs. 

Supplemental Table 7: GREAT analysis for cell type-specific cCREs. 

Supplemental Table 8: ChromVAR motif enrichment results in snATAC-seq cell clusters. 

Supplemental Table 9: HOMER motif enrichment results for cell type-specific cCREs. 

Supplemental Table 10: Differentially accessible cCREs between heart chambers. 

Supplemental Table 11: Co-accessible cCRE pairs from Cicero. 

Supplemental Table 12: Lists of differentially accessible (DA) cCREs linked to differentially 

expressed genes. 

Supplemental Table 13: GREAT analysis for differentially accessible (DA) cCREs between heart 

chambers in cardiomyocytes and fibroblasts. 
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Supplemental Table 14: HOMER motif enrichments for differentially accessible (DA) cCREs 

between heart chambers in cardiomyocytes and fibroblasts. 

Supplemental Table 15: RPKM values and cluster membership for healthy and disease-associated 

candidate heart enhancers in different cell types. 

Supplemental Table 16: GREAT analysis for distinct groups of cell type-attributed candidate heart 

enhancer. 

Supplemental Table 17: HOMER motif enrichment results for distinct groups of cell type-

attributed candidate heart enhancers. 

Supplemental Table 18: Studies for non-cardiovascular disease and non-disease trait GWAS used 

for LD score regression. 

Supplemental Table 19: 38 fine mapped risk variants associated with atrial fibrillation within 

cardiomyocyte cCREs. 

Supplemental Table 20: Primer sequences with indexes for snATAC-seq libraries. 

Supplemental Table 21: Primer sets used in qPCR assays. 
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Chapter 3: A single cell atlas of chromatin accessibility in the human genome 
 

3.1 Abstract 

Current catalogs of regulatory sequences in the human genome are still incomplete and 

lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types 

and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult 

human tissue types from multiple donors. We integrated these datasets with single-cell chromatin 

accessibility data from 15 fetal tissue types to reveal the status of open chromatin for 

approximately 1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types 

comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell 

type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding 

variants associated with complex human traits and diseases. This rich resource provides a 

foundation for the analysis of gene regulatory programs in human cell types across tissues, life 

stages, and organ systems. 

 

3.2 Introduction 

The human body is comprised of various organs, tissues and cell types, each with highly 

specialized functions. The genes expressed in each tissue and cell type – and in turn their 

physiologic roles in the body – are regulated by cis-regulatory elements such as enhancers and 

promoters (Carter and Zhao, 2020). These sequences dictate the expression patterns of target genes 

by recruiting sequence specific transcription factors (TFs) in a cell-type specific manner (Shlyueva 

et al., 2014). Upon binding of TFs, cis-regulatory elements frequently adopt conformational 

changes such that they are more accessible to endonucleases or transposases, enabling genome-

wide discovery of candidate cis-regulatory elements (cCREs) by combining assays incorporating 
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these enzymes with high throughput sequencing (Buenrostro et al., 2013; John et al., 2013; Klemm 

et al., 2019). However, conventional assays have, in large part, used heterogeneous tissues as input 

materials to produce population average measurements, and consequently, the current catalogs of 

candidate regulatory sequences in the human genome (Andersson et al., 2014; Meuleman et al., 

2020; Moore et al., 2020; Roadmap Epigenomics et al., 2015; Shen et al., 2012) still lack 

information about the cell type-specific activities of most elements. This limitation has hampered 

our ability to study gene regulatory programs in distinct human cell types and to interpret the 

noncoding DNA in the human genome.  

Genome wide association studies (GWAS) have identified hundreds of thousands of 

genetic variants associated with a broad spectrum of human traits and diseases. The large majority 

of these variants are noncoding (Claussnitzer et al., 2020). Observations that annotated cis-

regulatory elements in disease-relevant tissues and cell types are enriched for noncoding disease 

risk variants (Ernst et al., 2011; Maurano et al., 2012; Roadmap Epigenomics et al., 2015) led to 

the hypothesis that a major mechanism by which noncoding variants influence disease risk is by 

affecting transcriptional regulatory elements in specific cell types. However, annotation of these 

noncoding risk variants has been hindered by a lack of cell type-resolved maps of regulatory 

elements in the human genome. While innovative approaches to distinguish causal variants from 

local variants in linkage disequilibrium (LD) using fine mapping (Wakefield, 2009), and to link 

variants to target genes using co-accessibility of open chromatin regions in single-cells (Pliner et 

al., 2018) or 3-dimensional chromosomal contact-based linkage scores (Nasser et al., 2021), have 

made important strides toward the prioritization of causal variants and the prediction of their target 

genes, functional interpretation of the noncoding variants continues to be challenging.  

Single-cell omics technologies, enabled by droplet-based, combinatorial barcoding or other 
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approaches, have now enabled the profiling of transcriptome, epigenome and chromatin 

organization from complex tissues at single-cell resolution (Grosselin et al., 2019; Klein et al., 

2015; Lake et al., 2018; Luo et al., 2017a; Macosko et al., 2015; Preissl et al., 2018). In particular, 

combinatorial cellular barcoding-based assays such as sci-ATAC-seq (Cusanovich et al., 2015) 

have permitted the identification of cCREs in single nuclei without the need for physical 

purification of individual cell types. The resulting data can be used to deconvolute cell types from 

mixed cell populations and to dissect cell type-specific transcriptomic and epigenomic states in 

primary tissues.  While these tools have been applied to mammalian tissues including murine 

biosamples (Cusanovich et al., 2018; Lareau et al., 2019; Li et al., 2021; Preissl et al., 2018; 

Sinnamon et al., 2019), human fetal tissues (Domcke et al., 2020; Trevino et al., 2021), and a few 

individual adult human organ systems (Chiou et al., 2021; Corces et al., 2020; Hocker et al., 2021; 

Wang et al., 2020), we still lack comprehensive cell-type-resolved maps of cCREs from most 

primary tissues of the adult human body.  

In the present study we used a modified sci-ATAC-seq protocol optimized for flash frozen 

primary tissues (Hocker et al., 2021; Preissl et al., 2018) to profile chromatin accessibility in 30 

adult human tissue types from multiple donors. We profiled 615,998 nuclei from these tissues, 

grouped them into 111 distinct cell types based on similarity in chromatin landscapes, and 

identified a union of 890,130 open chromatin regions corresponding to cCREs from the resulting 

maps. We next integrated these data with a recent fetal cell atlas of chromatin accessibility 

(Domcke et al., 2020) to reveal open chromatin profiles for >1.3 million cells across the human 

lifespan, and chromatin accessibility maps at 1,154,611 cCREs covering 14.8% of the genome for 

222 cell types. Finally, we used this cCRE atlas to interpret cell types and target genes for 

noncoding variants associated with 240 complex human traits and diseases, reveal cell type-disease 
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associations and suggest relevant therapeutic targets in human cell types. We created an interactive 

web atlas to disseminate this resource [CATLAS, Cis-element ATLAS] 

http://catlas.org/humanenhancer. 

 

3.3 Results 

To generate a cell atlas of cCREs in the adult human body, we performed sci-ATAC-seq 

(Cusanovich et al., 2015; Preissl et al., 2018) with primary tissue samples collected from 30 distinct 

anatomic sites in postmortem adult human donors (Figure 6A, Table S22).  
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Figure 6: Single-cell chromatin accessibility analysis of 30 adult human primary tissues. A total of 92 
biosamples from 30 tissue types, were used for sci-ATAC-seq. The number of nuclei profiled per tissue is 
denoted in parentheses. B) Clustering of 615,998 nuclei revealed 30 major cell groups. Each dot represents 
a nucleus colored by cluster ID. Embedding was created by Uniform Manifold Approximation and 
Projection (UMAP) (McInnes et al., 2018). C) An example illustrating subclusters within the major cell 
group of gastrointestinal (GI) epithelial cells revealed by iterative clustering. D) Bar plot showing the 
number of cell types identified in each of the 30 human tissues, counting only cell types constituting >0.2% 
of all cells in the given tissue. E) Distribution of cell types across human tissues. The dendrogram on the 
left was created by hierarchical clustering of cell clusters based on chromatin accessibility. The bar chart 
represents relative contributions of tissues to cell clusters. Raw data are available on Mendeley Data: 
10.17632/yv4fzv6cnm.1. 
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Tissue samples were chosen to survey a breadth of human organ systems which differed in 

their nuclear compositions and sensitivities to mechanical dissociation, posing a technical 

challenge. We thus optimized nuclear isolation methods and buffer conditions for different tissue 

types (Table S22, see Methods). Subsequently, we generated sci-ATAC-seq datasets using a semi-

automated workflow (Hocker et al., 2021; Preissl et al., 2018) and sequenced resulting libraries to 

6,464 raw sequence reads per nucleus on average, with a median read duplication rate of 44.88% 

(Table S23). After filtering out lower quality nuclei and potential doublets, we finally obtained 

high quality open chromatin profiles for 615,998 nuclei, with a median of 2,822 unique open 

chromatin fragments per nucleus and an average transcription start site (TSS) enrichment score of 

12.8 (±3.2) per nucleus (Figure 6B, Table S23, Figure S18, Figure S19, see Methods). 

Analyzing large single-cell chromatin accessibility datasets has been challenging. In the 

latest development of SnapATAC (Fang et al., 2021), we further improved its scalability to handle 

millions of cells. Using this algorithm, we first identified 30 major cell groups (Figure 6B), 22 

(73%) of which were found to consist of multiple subclusters during a second round of clustering 

analysis (see Methods and Figure S20). Altogether we uncovered a total of 111 distinct cell clusters 

(Figure 6B-E). 

 

3.3.1 Single-cell chromatin accessibility analysis of adult human primary tissues 

To generate a cell atlas of cCREs in the adult human body, we performed sci-ATAC-seq 

(Preissl et al., 2018) with primary tissue samples collected from 30 distinct anatomic sites in 

postmortem adult human donors (Figure 6A, Table S22). Tissue samples were chosen to survey a 

breadth of human organ systems which differed in their nuclear compositions and sensitivities to 

mechanical dissociation, posing a technical challenge. We thus optimized nuclear isolation 
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methods and buffer conditions for different tissue types (Table S22, see Methods). Subsequently, 

we generated sci-ATAC-seq datasets using a semi-automated workflow (Hocker et al., 2021; 

Preissl et al., 2018) and sequenced resulting libraries to 6,464 raw sequence reads per nucleus on 

average, with a median read duplication rate of 44.88% (Table S23). After filtering out lower 

quality nuclei and potential doublets, we finally obtained high quality open chromatin profiles for 

615,998 nuclei, with a median of 2,822 unique open chromatin fragments per nucleus and an 

average transcription start site (TSS) enrichment score of 12.8 (±3.2) per nucleus (Figure 6B, Table 

S23, see Methods and Figure S18). 

Analyzing large single-cell chromatin accessibility datasets has been challenging. In the 

latest development of SnapATAC (Fang et al., 2021), we further improved its scalability to handle 

millions of cells. Using this algorithm, we first identified 30 major cell groups (Figure 6B), 22 

(73%) of which were found to consist of multiple subclusters during a second round of clustering 

analysis (see Methods and Figure S20). Altogether we uncovered a total of 111 distinct cell clusters 

(Figure 6B-E). 

 

3.3.2 Annotation of major and sub-classes of human cell types 

To annotate the resulting cell clusters, we first curated a set of marker genes from the 

PanglaoDB marker gene database (Franzén et al., 2019) corresponding to expected human cell 

types. We utilized chromatin accessibility at the promoter as a proxy for gene activity and 

computed cell-type enrichment scores for each of the 111 clusters to create initial cell cluster 

annotations (Figure S21, see Methods). We next manually reviewed these assignments based on 

focused consideration of marker gene accessibility (Figure S22, see Methods). Altogether, we 

annotated each of the 30 major cell groups and all 111 distinct clusters with a cell type label (Figure 
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6E, Table S24). For example, within the major cell group of gastrointestinal epithelial cells, higher 

resolution subclustering and annotation revealed three clusters of colon epithelial cells, one cluster 

of enterocytes from the small intestine, two clusters of goblet cells from the colon and small 

intestine respectively, and three rare populations with distinct chromatin accessibility profiles 

including enterochromaffin cells (0.060% of total nuclei), tuft cells (0.050% of total nuclei), and 

Paneth cells (0.045% of total nuclei) (Figure 6B-C).  

Encouragingly, several prevalent cell types detected in most tissue samples such as 

endothelial cells and myeloid cells clustered based on cell type rather than tissue of origin or 

individual (Figure 6E). On the other hand, tissue-resident fibroblasts clustered into seven subtypes 

with diverse tissues of origin for each (Figure 6E). Notably, the majority of the 111 cell types 

exhibited high tissue specificity. For example, highly specialized cell types such as follicular cells, 

pneumocytes, and hepatocytes were restricted to only one tissue type, reflecting their tissue-

specific functions (Figure 6E). Finally, we observed that the cell types we identified by sci-ATAC-

seq are highly concordant with those identified by single-cell RNA-seq experiments on 

corresponding tissues (See Methods and Tables 3-4). 

 

3.3.3 An atlas of cCREs in adult human cell types 

To identify accessible chromatin regions in each of the 111 cell types, we aggregated 

chromatin accessibility profiles from all nuclei comprising each cell cluster and applied a peak 

calling procedure optimized for single-cell data (Figure S23, see Methods). We then merged these 

accessible chromatin regions to obtain a list of 890,130 non-overlapping cCREs (Figure 7A).  
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Figure 7: An atlas of cCREs in adult human cell types. A) Classification of 890,130 cCREs across the 
human genome based on their distances to annotated TSSs. B) Heatmap showing the average chromatin 
accessibility for each of four groups (blood vessel, forebrain, heart, negative control) of validated tissue-
specific enhancers from the VISTA database (Visel et al., 2007) across indicated cell types. Z-scores were 
calculated using all 111 cell types. The top 10 cell types in each validated enhancer group are shown. C) 
Average phyloP (Pollard et al., 2010) conservation scores of cCREs stratified by groups defined in A. 
Genomic background is indicated in gray. D) Two-dimensional density plot showing the median chromatin 
accessibility compared with the range (difference between maximum and minimum) of chromatin 
accessibility across 111 cell clusters for 890,130 cCREs, stratified by groups defined in A. E) Heatmap 
representation of 435,142 cCREs showing cell-type-restricted patterns in 111 cell types. Color represents 
log2-transformed chromatin accessibility. F,G) Heatmaps showing GO terms (F) and TF motifs (G) with 
maximal enrichment in cell-type-restricted cCREs of selected cell types. Only the most enriched TF motif 
in each of the previously identified motif archetypes (Vierstra et al., 2020) was selected as the representative 
and the top 10 motifs were selected for each cell type. Color represents −Log10P. Full GO and motif 
enrichments are available on Mendeley Data: 10.17632/yv4fzv6cnm.1. 
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These cCREs covered 58.9% of the elements in the registry of cCREs published by the 

ENCODE consortium (Moore et al., 2020), and also included 420,152 previously unannotated 

elements (Figure S10A). To benchmark these cCREs, we next compared chromatin accessibility 

profiles between biosamples profiled by bulk DNase-seq and cell types identified by sci-ATAC-

seq in the current study. In aggregate, sci-ATAC-seq cell types resembled primary cell type 

biosamples more closely than bulk tissue or immortalized cell line biosamples (Figure S10B), and 

prevalent cell types with higher tissue abundance defined by sci-ATAC-seq showed closer 

similarities to bulk DNase-seq biosamples than rare cell types did (Figure S10C). Out of the 111 

cell types profiled in the current study, 44 (40%) did not show statistically significant correlation 

with any bulk biosample profiled by the ENCODE consortium (Figure S10D). Many of these cell 

types were rare: their median maximal tissue abundance was only 3.2%, and 36 (81.8%) of them 

constituted fewer than 10% of all cells in any tissue. Taken together, these findings suggest that 

our dataset contributes previously underrepresented cCREs from in vivo human cell types to 

existing catalogues, particularly from cell types with low abundance in bulk tissues.  

To assess the potential function of these cCREs, we next compared them with catalogs of 

transgenic reporter-validated mammalian enhancers (Visel et al., 2007) and found that validated 

tissue-specific enhancers exhibited much higher chromatin accessibility in cell types comprising a 

large proportion of nuclei identified in the corresponding tissue (Figure 7B). For example, 

validated enhancers in heart showed higher average chromatin accessibility in atrial 

cardiomyocytes (z-score: 1.41) and ventricular cardiomyocytes (z-score: 1.43) compared with 

other cell types (Figure 7B), suggesting a good correlation between cell type-specific chromatin 

accessibility and tissue-specific enhancer activity. We further found that eQTLs from 49 adult 

tissue types (Consortium, 2020) were most commonly accessible in prevalent cell types, such as 
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endothelial and smooth muscle cells. In addition, eQTLs from homogenous tissues, such as liver 

and thyroid, displayed strongest accessibility in the corresponding cell type which comprised a 

large proportion of nuclei identified in the tissue (Figure S11A-B). These results suggest that bulk 

tissue eQTLs best represent sequence variants associated with gene expression in abundant cell 

types and homogenous tissues, and may be less representative for rarer cell types within 

homogenous tissues or for unique cell types from heterogenous tissues. 

We next categorized each cCRE based on distance to the nearest TSS as shown in Figure 

7A. The majority (80.94%) of cCREs in the current catalogue resided more than 2,000 bp away 

from annotated TSSs. cCREs located directly over TSSs or near promoter regions displayed higher 

levels of sequence conservation and elevated chromatin accessibility (Figure 7C-D). By contrast, 

gene-distal cCREs were less accessible and showed larger variance relative to their accessibility 

(Figure 7D), suggesting the presence of shared programs of highly accessible promoter-proximal 

cCREs alongside variable programs of gene-distal cCREs across cell types and species. To further 

dissect cell-type specific chromatin signatures and regulatory programs, we applied an entropy-

based strategy (Schug et al., 2005) to reveal 435,142 cCREs that demonstrated restricted 

accessibility in one or a few cell types (Figure 7E, see Methods). We next applied GREAT 

ontology enrichment analysis and motif enrichment analysis on cell-type restricted cCREs to 

reveal putative biological processes and TFs of each cell type, which largely correlated with 

expected cell type-specific functions (FDR < 0.01). For instance, cCREs restricted to hepatocytes 

yielded biological process ontology terms such as steroid metabolic process (Figure 7F), and were 

enriched for the binding sites of hepatocyte nuclear factor TF family members HNF1A/B, 

HNF4A/G, and ONECUT1/2 (Figure 7G) (Costa et al., 2003). 

 

3.3.4 Integrative analysis of adult and fetal chromatin accessibility 
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To examine transcriptional regulators and cCRE remodeling between fetal and adult stages, 

we re-processed data from a recent cell atlas of chromatin accessibility in 15 human fetal tissue 

types (Domcke et al., 2020) using the same quality control, clustering, and annotation strategies 

described above, which lead to the discovery of 111 fetal cell types and 802,025 cCREs (Figure 

S12, Table S24). Combining these cCREs with those identified from the adult cell types, we 

mapped a total of 1,154,611 distinct cCREs spanning 14.8% of the human genome in 222 fetal and 

adult cell types (Mendeley Data: 10.17632/yv4fzv6cnm.1). These cCREs covered 58.5% and 

69.7% of the elements in the EpiMap (Boix et al., 2021) and the ENCODE cCRE registry (Moore 

et al., 2020), respectively. In addition, 34.8% and 51.0% of our cCREs were not annotated by the 

EpiMap and the ENCODE cCRE registry, respectively. 

To compare the 222 fetal and adult cell types across the two atlases of chromatin 

accessibility, we utilized SnapATAC followed by batch-correction to obtain a low dimensional 

representation of the 1,323,041 nuclei from both fetal and adult tissues (Figure 8AB, see Methods).  
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Figure 8: Integrative analysis of adult and fetal single-cell chromatin accessibility atlases. A) Number 
of sci-ATAC-seq cells per tissue type for 30 adult and 15 human fetal tissue types that were integrated. 
Matching tissue types between adult and fetal datasets are highlighted in red or blue respectively. Standard: 
sentinel tissue (trisomy 18 cerebrum). B) UMAP embedding of 1,323,041 nuclei from fetal and adult 
tissues. Each dot in the scatter plot represents a nucleus, colored by life stage. C) Heatmap showing Pearson 
correlation coefficient (PCC) between 69 adult cell types and 89 fetal cell types from 17 manually defined 
cell groups that are present in both adult and fetal tissues. A comprehensive heatmap is provided in Figure 
S14. D) Bar plot showing the median PCC for each major cell group indicated in C. 
  



89 
 

We next performed phylogenetic analysis to place the fetal and adult cell types into 

different groups based on the distance defined in the low dimensional space (see Methods, Figure 

S13A). In general, cell types belonging to different lineages separated into independent groups and 

harbored specific cCREs that were enriched for previously characterized lineage-specific TF 

motifs (Figure S13B). However, while many fetal cell types such as lymphoid, myeloid, and 

endothelial cells clustered near their adult counterparts in the tree, some cell types such as neurons 

and skeletal myocytes differed drastically between adult and fetal stages (Figure S13A), suggesting 

distinct cCRE usage by these cell types during development. To more systematically quantify 

differences in chromatin accessibility between adult and fetal cell types, we compared normalized 

accessibility across the list of 1,154,611 cCREs for each pair of fetal and adult cell types (Figure 

8C-D, Figure S14). We found that fetal cell types such as immune and endothelial cells showed a 

relatively higher correlation with their adult counterparts than did other cell types such as neurons, 

glial cells, and skeletal myocytes (Figure 8D), consistent with the findings from our phylogenetic 

analysis. Together, these analyses suggest that the extent to which cCREs remodel to achieve 

developmental-stage specific functions varies greatly between human cell types. 

To reveal the specific elements that may underlie fetal or adult-specific regulatory 

programs, we calculated life stage-specific cCREs for major cell groups which contained 

corresponding adult and fetal cell types (Figure 9A). 
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Figure 9: Differential chromatin accessibility landscapes in adult and fetal human cell types. A) Dot 
plot showing the number of adult and fetal specific cCREs detected for each major cell group indicated in 
C. B-C) Significant GO biological process ontology terms and transcription factor motif enrichments for 
adult-specific (B) and fetal-specific (C) cCREs. D) Heatmap representation of 72,648 differentially 
accessible (DA) cCREs between fetal and adult skeletal myocytes along with significant GREAT biological 
process ontology enrichments (McLean et al., 2010). Color represents log-transformed normalized signal. 
E) Significantly enriched TF motifs within fetal and adult skeletal myocyte DA cCREs. The most enriched 
motif within each motif archetype (Vierstra et al., 2020) was selected and the top three were displayed.  F) 
Genome browser tracks showing chromatin accessibility for fetal and adult skeletal myocytes along with 
DA cCREs between the adult and fetal skeletal myocytes. Indicated genes are shown in black, other genes 
are shown in gray. TSSs of the indicated genes are shaded in red and blue. 

 

 Characterization of these elements revealed striking life stage-specific regulatory 

programs (Figure 9B-C). For example, skeletal myocytes differentiate substantially during pre and 

post-natal development (Chal and Pourquié, 2017) and showed lower global similarity between 

life stages than most other major cell types (Figure 8C-D). In total, we identified 72,648 

differentially accessible (DA) cCREs between fetal and adult skeletal myocytes (Figure 9D). DA 

cCREs in fetal myocytes were associated with biological processes such as embryo development 
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and response to wounding, and were enriched for motifs of myogenic regulatory TFs (MRFs) 

which orchestrate normal myogenesis (Mary Elizabeth Pownall et al., 2002) (Figure 9E-F), 

highlighting the role of these elements in regulating myogenic properties of fetal myocytes. On 

the other hand, adult skeletal myocyte DA cCREs were associated with biological processes 

related to muscle adaptation to contractile activity as well as insulin and steroid hormone response, 

and were enriched for MEF family members (P = 1e-424) and AP-1 complex members including 

FOSL1 (P = 1e-274) (Figure 9D-E), suggesting a role for these elements in regulating 

transcriptional responses to hormonal exposures and load bearing in adult skeletal muscle. In line 

with these ontology results and with established patterns of myosin isoform expression across the 

human lifespan (Schiaffino and Reggiani, 2011; Schiaffino et al., 2015; Stuart et al., 2016), we 

discovered DA cCREs at loci encoding marker genes of pre-natal myocytes including MYH3 and 

MYH8, the heavy chains of embryonic and neonatal myosin respectively, as well as markers of 

type I (slow) and type II (fast) twitch adult myocytes including MYH6/MYH7 and MYH1/MYH2 

respectively (Figure 9F). Taken together, these findings reveal the regulatory elements that may 

underlie the proliferative capacity and mature functionality of fetal and adult skeletal myocytes, 

respectively, and emphasize the value of this dataset alongside emerging human cell atlases 

collected at different timepoints along the lifespan for determining life stage-specific gene 

regulatory programs at cell type resolution.  

 

3.3.5 Delineation of cell-type specificity of human cCREs 

To characterize the cell-type specificity of cCREs across fetal and adult cell types, we 

organized the 1,154,611 cCREs into 150 clusters, referred to as cis-regulatory modules (CRMs), 

based on their normalized accessibility across the 222 cell types. While several CRMs displayed 

shared accessibility patterns across all cell types, most CRMs were limited either to single fetal or 
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adult cell types or to groups of cell types that reflected shared cellular lineages (Figure 10A).  
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Figure 10: Delineation of CRE modules across 222 fetal and adult human cell types. A) Heatmap 
representation of chromatin accessibility for 1,154,611 cCREs across 222 fetal and adult cell types. Color 
represents normalized chromatin accessibility. cCREs were organized into 150 modules by K-means 
clustering, indicated by the color bars on the right. 20 groups of lineage-specific modules (colored boxes) 
are highlighted. B-D) Heatmaps showing chromatin accessibility (B), GO terms (C) and motifs (D) with 
maximal enrichment in a subset of CRE modules (rows) for immune cell types. The GO and motif heatmaps 
are colored by enrichment −log10P. Only the most enriched TF motif in each of the previously identified 
motif archetypes (Vierstra et al., 2020) was selected as the representative and the top 5 motifs were selected 
for each module. Full GO and motif enrichments are available on Mendeley Data: 10.17632/yv4fzv6cnm.1.  
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To annotate putative functions of CRMs, we applied GREAT ontology enrichment analysis 

(McLean et al., 2010). Broadly, CRMs showing preferential accessibility in specific fetal and adult 

cell types were enriched for biological process ontology terms related to both cell type and life 

stage-specific cellular processes (FDR < 0.01) (Figure 10B-C).  

To identify sequence features underlying these CRMs, we next measured the enrichment 

of 1,565 human TF motifs across the 150 CRMs to reveal putative master regulators of fetal and 

adult human cell types. This analysis revealed a comprehensive catalogue of fetal and adult cell 

and lineage-specific TF motifs. For example, a module with strong accessibility in adult CD8+ T 

cells and natural killer T cells was distinguished by enrichment for TBR, EOMES, and TBX TF 

family motifs (Module 8, P < 1e-84; Figure 10B-D), modules with strong accessibility in B cells 

were distinguished by enrichment for EBF family TF motifs (Module 13, P = 1e-27; Module 17, 

P = 1e-197) and a module with strong accessibility in adult mast cells was distinguished by GATA 

family member motif enrichment (Module 25, P = 1e-84) (Figure 10B-D). Further, the module 

with the strongest accessibility across all identified cell types was characterized by enrichment of 

the SP1 motif (Module 1, P = 1e-9180), consistent with the original description of SP1 as a 

regulator of ubiquitously-expressed housekeeping genes (Black et al., 2001). In addition to these 

well-characterized associations, we also report previously undefined TF associations with human 

cell types that are challenging to study in their in vivo tissue contexts: for example, motifs of the 

ESRR (Module 92, P = 1e-357; Module 93, P = 0.1) and FOX (Module 92, P = 1e-36; Module 93, 

P = 1e-255) TF family were preferably enriched in modules accessible in fetal (Module 92) and 

adult (Module 93) gastric epithelial cells respectively (Figure 10A), and motifs of the FOS and 

JUN families were enriched in modules accessible in fetal and adult adrenal cortical cells (Modules 

135-138, P < 1e-10; Figure 10A). 
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3.3.6 Association of human cell types with complex traits and diseases 

We next sought to use our 1.2 million cell type-resolved cCREs to interpret genetic variants 

associated with complex traits and multigenic disease phenotypes. We downloaded the NHGRI-

EBI GWAS catalogue (Buniello et al., 2019) and retained 1,123 well-powered GWAS with 10 or 

more significant SNPs and over 20,000 cases (14% of 8,219 GWAS publications). We then used 

a hypergeometric test to measure the enrichment of trait-associated variants within cCREs 

identified from the 222 fetal and adult cell types. GWAS variants of 450 traits/diseases were found 

to be enriched in cCREs from at least one cell type (FDR < 0.1%) (Figure S15). As a comparison, 

EpiMap, a comprehensive enhancer catalogue comprising 833 epigenomic maps from bulk human 

tissue samples, primary cells and ex vivo cell lines (Boix et al., 2021), captured 457 GWAS studies 

(FDR < 0.1%) (Figure S15). For the 290 traits shared by both this study and EpiMap, our data 

captured the strongest GWAS enrichment in 74.8% of cases (217 of 290) and provided improved 

resolution by linking complex traits to specific cell type(s) (Figure S15). Further, for 160 additional 

traits, we were able to identify enrichments that were not detected in previous analyses (Figure 

S15), highlighting the added value of cell type-resolved cCREs maps. 

The GWAS enrichment analysis above considered only index variants, i.e., SNPs in 

genome-wide significant loci. However, the index variants may not represent the specific causal 

variants due to linkage disequilibrium (Schaid et al., 2018) and much of the heritability lies in 

SNPs with associations that do not reach genome-wide significance (Yang et al., 2010). We thus 

curated 240 GWAS studies with publicly available summary statistics and examined the 

enrichment of their associated SNPs within cCREs annotated in fetal and adult cell types using 

stratified linkage disequilibrium score regression (LDSC), a method for identifying functional 

enrichment from GWAS summary statistics using genome-wide information from all SNPs and 
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explicitly modeling linkage disequilibrium (Finucane et al., 2015). This analysis revealed a total 

of 3,220 significant (FDR < 0.1) associations between fetal and adult cell types and human traits 

and disease phenotypes (Figure 11, Table S25).  
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Figure 11: Association of fetal and adult human cell types with complex traits and diseases. A) 
Heatmap showing enrichment of risk variants associated with disease and non-disease traits from genome 
wide association studies in human cell type-resolved cCREs.  Cell type-stratified linkage disequilibrium 
score regression (LDSC) analysis was performed using GWAS summary statistics for 240 phenotypes. 
Total cCREs identified independently from each fetal and adult cell type were used as input for analysis. 
P-values were corrected using the Benjamini Hochberg procedure for multiple tests. FDRs of LDSC 
coefficient are displayed. 66 selected traits were highlighted on the left, with PubMed identifiers (PMIDs) 
or “UKB”, indicating summary statistics downloaded from the UK Biobank, enclosed in parentheses. 
Numerical results are reported in Table S25. B) Dot plots showing significance of enrichment for selected 
traits from panel A within cCREs from 222 fetal and adult cell types. Each circle represents a cell type. 
Large circles pass the cutoff of FDR < 1% at –log10(P) = 3.55. The top 3 most highly associated cell types 
are labeled for each trait. Comprehensive data are provided in Table S25. 
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These enrichments revealed many expected cell type-disease phenotype relationships - for 

example, eczema risk variants were strongly enriched in adult T lymphocyte cCREs, atrial 

fibrillation risk variants were strongly enriched in both adult and fetal atrial and ventricular 

cardiomyocyte cCREs (FDR < 0.001), and thyroid stimulating hormone variants were enriched in 

follicular cell cCREs (Figure 11, Table S25). In addition to expected relationships, our analysis 

also revealed GWAS enrichment for human cell types not presently annotated by bulk DNase-seq 

or ATAC-seq data. These included a strong enrichment of coronary artery disease variants in adult 

vascular smooth muscle cCREs (FDR < 0.001) in addition to fetal and adult fibroblast, pericyte, 

and endothelial cell cCREs (FDR < 0.01), COPD variants in several adult stromal smooth muscle 

cell types (FDR < 0.01), triglyceride and HDL cholesterol level-associated variants in adult 

adipocyte cCREs (FDR < 0.01), and a nominal enrichment of ulcerative colitis variants in colon 

epithelial cell cCREs (P < 0.02). Interestingly, we detected substantial differences in the 

enrichment of disease and trait associated noncoding variants in subtypes of adult and fetal 

fibroblasts. These included a significant enrichment of variants associated with birth weight in 

fetal fibroblasts (FDR < 0.01) but not in adult fibroblasts (Table S25). Further, we detected 

differences in the enrichment of disease and trait variants in subtypes of adult fibroblasts, each of 

which displayed unique regulatory elements in addition to comparable chromatin accessibility at 

a set of core fibroblast cCREs (Figure S16). While all adult fibroblast populations were enriched 

for variants associated with standing height to an equivalent degree (FDR < 0.001), adult epithelial 

fibroblasts displayed a striking enrichment for variants associated with balding (FDR < 0.001) and 

only adult cardiac fibroblasts showed any enrichment for variants associated with myocardial 

fractal dimensions (FDR < 0.1; Table S25). 

 

3.3.7 Systematic interpretation of molecular functions for noncoding risk variants 
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Many noncoding genetic variants enriched within cCREs from the analysis above are 

hypothesized to alter the expression of disease-associated genes by disrupting TF binding to cis-

regulatory elements (Claussnitzer et al., 2020). To systematically interpret molecular mechanisms 

for the specific genetic variants associated with complex traits, we first applied the Activity-by-

Contact (ABC) model (Fulco et al., 2019) to link the cCREs identified in 111 adult cell types to 

their target genes using our previously published promoter capture Hi-C data from 15 adult human 

tissues (Jung et al., 2019) (See Methods). This analysis revealed 5,723,307 unique distal cCRE-

to-gene linkages across the 111 adult cell types, with a median of 726,514 total linkages and 6,804 

cell type-specific linkages per cell type (Figure S17). Second, we determined the probability that 

variants from 48 GWAS were causal for disease or trait association (Posterior probability of 

association, PPA) using Bayesian fine-mapping (Wakefield, 2009). We defined likely causal 

variants as those with a PPA > 0.1, and found that they were more likely to reside within cCREs 

than variants with low PPA (Figure S17A). Overall, we detected 3,096 likely causal variants 

residing within cCREs mapped in 111 adult human cell types (Figure 12A-B, Table S26), 2,096 

of which were linked to putative target genes via the ABC model (Figure 12A, Table S26).  
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Figure 12: Systematic interpretation of molecular functions of noncoding risk variants. A) Schematic 
illustrating the workflow for annotating fine-mapped noncoding risk variants. B) Table showing the number 
of likely causal variants (PPA > 0.1), number of cCREs overlapping likely causal variants, number of cell 
types in which overlapping cCREs are accessible, top cell types variants are enriched in based on LD score 
regression (Bulik-Sullivan et al., 2015), number of predicted target genes for likely causal variants, and 
significantly altered motifs predicted by deltaSVM model trained using SNP-SELEX data for 10 examples 
out of 48 total fine-mapped diseases and traits. Comprehensive data are provided in Table S26. C,D) Fine 
mapping and molecular characterization of an ulcerative colitis (UC) risk variant (C) in a gastrointestinal 
(GI) epithelial cell cCRE and an osteoarthritis variant (D) in an immune cell cCRE. Genome browser tracks 
(GRCh38) display ChIP-seq and DNase-seq from ENCODE human colon datasets (C) and primary T cell 
datasets (D) as well as chromatin accessibility profiles for cell types from sci-ATAC-seq. Chromatin 
interaction tracks show linkages between the variant-containing cCREs and genes from promoter capture 
Hi-C data via Activity-by-Contact (ABC) (Fulco et al., 2019) analysis. All linkages shown have an ABC 
score > 0.015. PPA: Posterior probability of association.  
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Third, we applied our recently developed deltaSVM models for 94 TFs (Yan et al., 2021) 

to identify variants potentially disrupting binding by these regulators. This analysis revealed 527 

TF binding sites predicted to be significantly altered by the likely causal variants (Figure 12A, 

Table S26). The intersection of these lists prioritized 361 likely causal variants that 1) resided 

within a human cell type cCRE, 2) significantly altered TF binding 3) and were linked to one or 

more target genes (Figure 12A-B, Table S26). 

For example, one likely causal variant for ulcerative colitis (rs16940186) resided within an 

intergenic cCRE restricted to epithelial cells of the gastrointestinal tract, particularly colon 

epithelial cells, enterocytes, and goblet cells (Figure 12C). The cCRE containing rs16940186 was 

predicted to contact the TSS of IRF8 (ABC score > 0.015), which encodes a TF involved in the 

regulation of immune cell maturation (Salem et al., 2020) and regulation of innate immunity in 

gastric epithelial cells (Yan et al., 2016). The rs16940186 risk allele is an eQTL associated with 

increased IRF8 expression in human colon tissue and, consistent with these findings, deltaSVM 

models predicted this risk allele to create a binding site for the ETS family of activating TFs 

(Figure 12C), which are expressed in intestinal epithelia and have been suggested to regulate 

intestinal epithelial maturation (Jedlicka et al., 2009). One other prioritized likely causal risk 

variant for osteoarthritis (rs75621460) resided within a cCRE that was primarily accessible in 

immune cell types, was predicted to target the immunosuppressive cytokine gene TGFB1, and 

disrupted a binding site for the zinc-finger TF ERG1 (Figure 12D). 

 

3.4 Discussion 

Detailed knowledge of the regulatory programs that govern gene expression in the human 

body has key implications for understanding human development and disease pathogenesis. Here, 

we used single-cell ATAC-seq to profile chromatin accessibility in 615,998 cells across 30 adult 
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human tissues representing a wide range of human organ systems and integrated this dataset with 

single-cell chromatin accessibility data from human fetal tissues (Domcke et al., 2020). We 

mapped the state of activity for approximately 1.2 million cCREs across 222 fetal and adult cell 

types, bridging the key gap of cell type resolution in the annotation of candidate regulatory 

elements in the human genome. This work highlights the value of integrating human sci-ATAC-

seq datasets from multiple sources and timepoints (Chiou et al., 2021; Domcke et al., 2020; Hocker 

et al., 2021; Wang et al., 2020) and, in the future, integration of these data along with new human 

single-cell datasets of increasing scale, breadth, and depth will enable a comprehensive 

understanding of gene regulatory features of human cell types throughout the lifespan. 

While genome-wide association studies (GWAS) have been broadly used to enhance our 

understanding of polygenic human traits and reveal clinically-relevant therapeutic targets for 

complex diseases, to date the discovery of new variants has far outpaced our ability to interpret 

their molecular functions (Claussnitzer et al., 2020). Two central goals of the current study were 

thus to link individual human cell types to complex traits and to leverage cCRE maps to interpret 

the molecular functions of specific noncoding risk variants. By applying our datasets alongside 

cutting-edge methods to prioritize likely causal variants in LD, link distal cCREs to putative target 

genes, and predict motifs altered by risk variants, we revealed thousands of cell type-trait 

associations and created a framework to systematically interpret noncoding risk variants. For 

example, we highlight the likely causal ulcerative colitis-associated variant rs16940186. This risk 

variant may function to increase IRF8 expression in gastrointestinal epithelial cells by creating a 

binding site for ETS family TFs in a GI epithelial-specific enhancer, and thereby alter the 

transcriptional responses of intestinal epithelial cells to inflammatory cytokines. Pending 

functional validation experiments, our results suggest that targeting IRF8 in GI epithelial cells 
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could be a potential therapeutic target for ulcerative colitis. As future GWAS in large cohorts with 

detailed phenotyping, whole genome sequencing efforts, and additional association studies 

employing long read technologies to capture structural variants become available, we anticipate 

that this combined resource and framework will be of continued utility for the interpretation of 

molecular functions for noncoding genetic variants. This resource thus lays the foundation for the 

analysis of gene regulatory programs across human organ systems at cell type resolution, and 

accelerates the interpretation of noncoding sequence variants associated with complex human 

diseases and phenotypes. The datasets can be accessed and explored at 

http://catlas.org/humanenhancer. 

The current study is still limited in several ways: firstly, we solely integrated data from two 

discrete life stages and in an incomplete sampling of organ systems. While we utilized tissue from 

anatomic sites corresponding directly to existing biosamples in large-scale databases (Carithers et 

al., 2015; Stranger et al., 2017), the size and diversity of adult human organ systems make it 

difficult to representatively sample them in their entirety. Additionally, our assay solely profiles 

chromatin accessibility in dissociated nuclei, and thus misses key orthogonal molecular and spatial 

information. Future assays that incorporate gene expression, chromatin accessibility, histone 

modifications, DNA methylation, chromosomal conformation, TF binding, and spatial information 

in the same single-cell will greatly enhance our understanding of gene regulation in human cell 

types (Zhu et al., 2020). 
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3.5 Supplemental Data 

3.5.1 Comparing our dataset with tissue-level single-cell chromatin atlases 

Compared with published scATAC-seq data previously generated in lung (Wang et al., 

2020) and heart (Hocker et al., 2021) tissues, our newly generated datasets from the same tissues 

are of equal quality, indicated by a comparable number of nuclei passing QC, median TSS 

enrichment and median number of fragments between datasets (Table 1, Figure S18). 

Table 1: Comparison of major QC metrics for sci-ATAC-seq data from the current study with 
previously published sci-ATAC-seq data for matching tissue types. Each column represents one sci-
ATAC-seq dataset. QC = Quality Control. Median TSSe = median transcription start site enrichment per 
nucleus. 

 

Regarding recovery of cell types from prior sci-ATAC-seq studies, all nine cardiac cell 

types in (Hocker et al., 2021) were also found in our clustering analysis. Our analysis additionally 

revealed several other cardiac cell types which were not resolved by Hocker et al, such as pericytes 

(~5%) and mesothelial cells (~1%). Similarly, 17 out of 19 lung cell types in (Wang et al., 2020) 

were also found in our clustering analysis. The two cell types missing in our dataset that were 

annotated by Wang et al. included pulmonary neuroendocrine cells (PNECs) and erythrocytes. 

According to (Wang et al., 2020), ~95% of PNECs were present only in donors with age less than 

3-years-old, and ~90% of erythrocytes were present only in fetal lung samples. Since the youngest 
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adult lung dataset we analyzed is from a 37 year-old donor, the age difference likely underlies the 

absence of PNECs and erythrocytes from (Wang et al., 2020) in our datasets.  

In another study we compared sci-ATAC-seq data generated from the same tissue type via 

our combinatorial indexing-based protocol and via the 10X Genomics single-cell ATAC-seq 

platform (Li et al., 2021). We found that both detected clusters and cell type proportions were 

comparable between the two methods. Side-by-side comparison using two biological replicates of 

mouse primary motor cortex showed comparable nuclei passing quality control for both methods 

(combinatorial barcoding: 15,939 nuclei, 10x: 16,314, Li et al., Extended Data Figure 8a). Co-

embedding of these datasets showed that the chromatin accessibility profiles and cell clusters from 

both platforms were in excellent agreement across cell types (Li et al., Extended Data Figure 8a-

c). This was further shown by a confusion matrix comparing the similarity between clusters 

derived from the combinatorial barcoding and the 10x platform, respectively (Li et al., Extended 

Data Figure 8d). Further, we did not observe a significant difference in cell type composition 

between the two platforms (Li et al., Extended Data Figure 8e), except for one small population of 

vascular cells (VLMC, 326 nuclei from 10x, 155 nuclei from sci-ATAC-seq). 

 

3.5.2 Comparing our datasets with single-cell RNA-seq datasets from corresponding tissues 

To benchmark our cell type composition against high resolution scRNA-seq datasets, we 

compared cell types identified in lung and heart tissues with high-resolution scRNA-seq data sets 

reported in lung (Wang et al., 2020) and heart (Litvinukova et al., 2020) respectively. Overall, we 

found that the cell types identified, and even the cell type fractions, estimated using sci-ATAC-

seq are in good agreement with those reported by high-resolution scRNA-seq despite technical 

variations in sample preparation and nuclei isolation, and biological differences such as donor 

characteristics. For example, in lung tissues, we annotated 23 out of 29 cell types reported by 
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scRNA-seq in (Wang et al., 2020) (Table 2). Cell types that were not annotated included three 

blood cell types: monocytes, dendritic cells and enucleated erythrocytes, two stromal cell types: 

myofibroblasts and chondrocytes, and one goblet cell type. The Pearson’s correlation of estimated 

fractions for matching major cell types between two technologies was 0.8897. 

Table 2: Cell type proportions for 23 lung cell types annotated by sci-ATAC-seq in the current study 
and scRNA-seq in (Wang et al., 2020). 

 

In heart tissue, we uncovered all 11 major cell types reported in (Litvinukova et al., 2020). 

Again, the cell type fractions estimated using sci-ATAC-seq correlated well with those estimated 

using scRNA-seq (Table 3). The average Pearson’s correlation across all 4 heart chambers was 

0.832. 
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Table 3: Cell type proportions for 11 cardiac cell types annotated by sci-ATAC-seq in the current 
study and scRNA-seq in (Litvinukova et al., 2020). 
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3.6 Materials and Methods 
 
3.6.1 Data and code availability 

Single-nucleus ATAC-seq datasets generated in this study have been deposited at GEO 

and are publicly available as of the date of publication. Accession numbers are listed in the key 

resources table and Table S23. This paper analyzes existing, publicly available data. These 

accession numbers for these datasets are listed in the key resources table. Raw data from Figures 

1, 2, 4, 6, S4 and S6 were deposited on Mendeley at 10.17632/yv4fzv6cnm.1. All original code 

has been deposited at Github and is publicly available as of the date of publication. Links are listed 

in the key resources table. Any additional information required to reanalyze the data reported in 

this paper is available from the lead contact upon request. 

 

3.6.2 Human Subjects 

Adult human tissue samples were acquired by the ENTEx collaborative project (Stranger 

et al., 2017) via the GTEx collection pipeline (Carithers et al., 2015). Donor characteristics 

including age and sex are provided in Table S22. All human donors were deceased, and informed 

consent was obtained via next-of-kin consent for the collection and banking of deidentified tissue 

samples for scientific research. Donor eligibility requirements were as described previously 

(Carithers et al., 2015), and excluded individuals with metastatic cancer and individuals who had 

received chemotherapy for cancer within the prior two years. 

 

3.6.3 Tissue feasibility testing for sci-ATAC-seq 

Frozen tissue samples were sectioned on dry ice into two aliquots of equivalent mass. For 

nuclear isolation, one aliquot was subjected to manual pulverization via mortar and pestle while 
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submerged in liquid nitrogen, and the other aliquot was homogenized in a gentleMACS M-tube 

(Miltenyi) on a gentleMACS Octo Dissociator (Miltenyi) using the “Protein_01_01” protocol in 

MACS buffer (5 mM CaCl2, 2 mM EDTA, 1X protease inhibitor (Roche, 05-892-970-001), 300 

mM MgAc, 10 mM Tris-HCL pH 8, 0.6 mM DTT) and pelleted with a swinging bucket centrifuge 

(500 x g, 5 min, 4°C; 5920R, Eppendorf). Pulverized frozen tissue and pelleted nuclei from 

gentleMACS M-tubes were each split into two further aliquots. One aliquot from each of the two 

nuclear isolation conditions was then resuspended in 1 mL Nuclear Permeabilization Buffer (1X 

PBS, 5% Bovine Serum Albumin, 0.2% IGEPAL CA-630 (Sigma), 1 mM DTT, 1X Protease 

inhibitor), and the other aliquot from the same nuclear isolation condition was resuspended in 1 

mL OMNI Buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM MgCl2, 0.1% Tween-20 

(Sigma), 0.1% IGEPAL-CA630 (Sigma) and 0.01% Digitonin (Promega) in water), yielding a total 

of four nuclear isolation/nuclear permeabilization buffer conditions tested for each tissue type. 

Nuclei were rotated at 4 ˚C for 5 minutes before being pelleted again with a swinging bucket 

centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf). After centrifugation, permeabilized nuclei 

were resuspended in 500 μL high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 

mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a hemocytometer. 

Concentration was adjusted to 2,000 nuclei/9 μl, and 2,000 nuclei were dispensed 12 wells of a 

96-well plate per nuclear isolation/permeabilization condition (samples were processed in batches 

of 4 nuclear isolation/permeabilization conditions per 2 different tissue samples). For 

tagmentation, 1 μL barcoded Tn5 transposomes (Table S27) were added using a BenchSmart™ 

96 (Mettler Toledo), mixed five times, and incubated for 60 min at 37 °C with shaking (500 rpm). 

To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA (final 20mM) were added to each well with a 

BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 15 min with shaking 
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(500 rpm). Next, 20 µL of 2x sort buffer (2 % BSA, 2 mM EDTA in PBS) were added using a 

BenchSmart™ 96 (Mettler Toledo). All 12 wells from each nuclear isolation/permeabilization 

condition were combined into a separate FACS tube, and stained with Draq7 at 1:150 dilution 

(Cell Signaling). For each nuclear isolation/permeabilization condition, we used a SH800 (Sony) 

to sort four wells containing 0 nuclei per well and four wells containing 80 nuclei per well into 

one 96-well plate (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol primer 

i5, 200 ng BSA (Sigma)). After addition of 1 µL 0.2% SDS using a BenchSmart™ 96 (Mettler 

Toledo), the 96 well plate was incubated at 55 °C for 7 min with shaking (500 rpm). 1 µL 12.5% 

Triton-X was added to each well to quench the SDS. Next, 12.5 µL NEBNext High-Fidelity 2× 

PCR Master Mix (NEB) were added to each well and samples were PCR-amplified (72 °C 5 min, 

98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells 

were assayed for DNA library concentration using the PerfeCTa NGS Quantification RT-qPCR 

Kit (Quanta Biosciecnces) according to manufacturer’s protocols, and subsequently returned to 

the thermal cycler for a second round of PCR amplification (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 

63 °C 30 s, 72°C 60 s) × 4 cycles, held at 12 °C). After the second PCR amplification, for each 

nuclear isolation/permeabilization condition, wells containing 0 nuclei were combined and wells 

containing 80 nuclei were combined. The resulting DNA libraries were purified according to the 

MinElute PCR Purification Kit manual (Qiagen) and size selection was performed with 

SPRISelect reagent (Beckmann Coulter, 0.55x and 1.5x). Final libraries were quantified using a 

Qubit fluorimeter (Life technologies) and a nucleosomal pattern of fragment size distribution was 

verified using a Tapestation (High Sensitivity D1000, Agilent). We calculated a signal to noise 

ratio for final feasibility test libraries using LightCycler® 480 SYBR Green I Master Mix (Roche) 

along with custom primers for the promoter of human GAPDH (5’-
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CATCTCAGTCGTTCCCAAAGT-3’, 5’-TTCCCAGGACTGGACTGT-3’) and a 

heterochromatic gene desert region (5’-CCCAAACTCTGA GAGGCTTATT-3’, 5’-

GAGCCATCATCTAGACACCTTC-3’). For each tissue type, the nuclear 

isolation/permeabilization condition that resulted in optimized nuclear yield (nuclei/mg tissue), 

library concentrations > 50 pM per 80 sorted nuclei, nucleosomal distribution pattern of fragments, 

and a log2(signal to noise ratio) > 3.3 was selected for combinatorial indexing-assisted single 

nucleus ATAC-seq (Table S22). 

 

3.6.4 Combinatorial indexing-assisted single nucleus ATAC-seq 

Combinatorial indexing-assisted single nucleus ATAC-seq was performed as described 

previously (Preissl et al., 2018) with slight modifications (Hocker et al., 2021) and using new sets 

of oligos for tagmentation and PCR (Table S27). Nuclei were isolated and permeabilized according 

to the optimized conditions from feasibility testing (Table S22). After resuspension in 

permeabilization buffer, nuclei were rotated at 4 ˚C for 5 minutes before being pelleted again with 

a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf). After centrifugation, 

permeabilized nuclei were resuspended in 500 μL high salt tagmentation buffer (36.3 mM Tris-

acetate (pH = 7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted 

using a hemocytometer. Concentration was adjusted to 2,000 nuclei/9 μl, and 2,000 nuclei were 

dispensed into each well of a 96-well plate per sample (96 tagmentation wells/sample, samples 

were processed in batches of 2-4 samples). For tagmentation, 1 μL barcoded Tn5 transposomes 

(Table S27) were added using a BenchSmart™ 96 (Mettler Toledo), mixed five times, and 

incubated for 60 min at 37 °C with shaking (500 rpm). To inhibit the Tn5 reaction, 10 µL of 40 

mM EDTA (final 20mM) were added to each well with a BenchSmart™ 96 (Mettler Toledo) and 



113 
 

the plate was incubated at 37 °C for 15 min with shaking (500 rpm). Next, 20 µL of 2x sort buffer 

(2 % BSA, 2 mM EDTA in PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All wells 

were combined into a separate FACS tube for each sample, and stained with Draq7 at 1:150 

dilution (Cell Signaling). Using a SH800 (Sony), 20 nuclei per sample were sorted per well into 

eight 96-well plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol primer 

i5, 200 ng BSA (Sigma)). Preparation of sort plates and all downstream pipetting steps were 

performed on a Biomek i7 Automated Workstation (Beckman Coulter). After addition of 1 µL 

0.2% SDS, samples were incubated at 55 °C for 7 min with shaking (500 rpm). 1 µL 12.5% Triton-

X was added to each well to quench the SDS. Next, 12.5 µL NEBNext High-Fidelity 2× PCR 

Master Mix (NEB) were added and samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 °C 

10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined. 

Libraries were purified according to the MinElute PCR Purification Kit manual (Qiagen) using a 

vacuum manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRISelect 

reagent (Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one more time with 

SPRISelect reagent (Beckman Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter 

(Life technologies) and a nucleosomal pattern of fragment size distribution was verified using a 

Tapestation (High Sensitivity D1000, Agilent). Libraries were sequenced on a NextSeq500 or 

HiSeq4000 sequencer (Illumina) using custom sequencing primers with following read lengths: 

50 + 10 + 12 + 50 (Read1 + Index1 + Index2 + Read2). Primer and index sequences are listed in 

Table S27. 

 

3.6.5 Demultiplexing of single nucleus ATAC-seq sequencing reads 

For each sequenced single nucleus ATAC-Seq library, we obtained four FASTQ files, two 
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for paired end DNA reads and two for the combinatorial indexes for i5 and T7 (768 and 364 

indices, respectively). We selected all reads with up to 2 mismatches per i5 and T7 index 

(Hamming distance between each pair of indices is 4) and integrated the concatenated barcode at 

the beginning of the read name in the demultiplexed FASTQ files. The customized scripts can be 

found at: https://gitlab.com/Grouumf/ATACdemultiplex/. 

 

3.6.6 Quality control metrics: TSS enrichment and unique fragments 

TSS positions were obtained from the GENCODE database v31 (Frankish et al., 2019). 

Tn5 corrected insertions were aggregated ±2000 bp relative (TSS strand-corrected) to each unique 

TSS genome wide. Then this profile was normalized to the mean accessibility ± (1900 to 2000) bp 

from the TSS and smoothed every 11 bp. The max of the smoothed profile was taken as the TSS 

enrichment. We then filtered out all single-cells that had fewer than 1,000 unique fragments and/or 

a TSS enrichment of less than 7 for all data sets. 

 

3.6.7 Overall clustering strategy 

We utilized multiple rounds of clustering analysis to identify cell clusters. The first round 

of clustering analysis was performed on individual samples. We divided the genome into 5kb 

consecutive windows and then scored each cell for any insertions in these windows, generating a 

window by cell binary matrix for each sample. We filtered out those windows that are generally 

accessible in all cells for each sample using z-score threshold 1.65. Based on the filtered matrix, 

we then carried out dimension reduction followed by graph-based clustering to identify cell 

clusters. We called peaks for each cluster using the aggregated profile of accessibility and then 

merged the peaks from all clusters to generate a union peak list. Based on the peak list, we 
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generated a cell-by-peak count matrix and used Scrublet (Wolock et al., 2019) to remove potential 

doublets. Next, to carry out the second round of clustering analysis, we merged peaks called from 

all samples to form a reference peak list. We then generated a single binary cell-by-peak matrix 

using cells from all samples and again performed the dimension reduction followed by graph-

based clustering to obtain the major cell groups across the entire dataset. To further dissect cell-

type heterogeneity within the major cell groups, we then performed another round of clustering 

analysis for each of the identified major cell group to identify subclusters. 

 

3.6.8 Doublet removal 

We applied Scrublet to the cell-by-peak count matrix with default parameters. Doublet 

scores returned by Scrublet were then used to fit a two-component Gaussian mixture model using 

the “BayesianGaussianMixture” function from the python package “scikit-learn”. The component 

with larger mean doublet score is presumably formed by doublets and cells belonging to it were 

removed from downstream analysis. 

 

3.6.9 Dimension reduction 

To find the low-dimensional manifold of the single-cell data, we adapted our previously 

published method, SnapATAC (Fang et al., 2021), to reduce the dimensionality of the peak by cell 

count matrix. The previous iteration of SnapATAC utilized spectral embedding for dimension 

reduction. To increase scalability of spectral embedding, we applied the Nyström method 

(Bouneffouf, 2016) for handling large datasets. Specifically, we first randomly sampled 35,000 

cells as the training data. We then computed the Jaccard index between each pair of cells in the 

training set and constructed the similarity matrix . We computed the matrix , where  is the diagonal 
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matrix such that . The eigendecomposition was performed on  and the eigenvector with eigenvalue 

1 was discarded. From the rest of the eigenvectors, we took the first 30 of them corresponding to 

the largest eigenvalues as the spectral embedding of the training data. We utilized the Nyström 

method to extend the embedding to the data outside the training set. Given a set of unseen samples, 

we computed the similarity matrix  between the new samples and the training set. The embedding 

of the new samples is given by , where  and  are the eigenvectors and eigenvalues of  obtained in 

the previous step. 

 

3.6.10 Correction of Batch Effects 

We performed batch correction for each tissue separately. Inspired by the mutual nearest 

neighbor batch-effect-correction method (Haghverdi et al., 2018), we developed a variant using 

mutual nearest centroids to iteratively correct for batch effects in multiple donor samples. 

Specifically, after dimension reduction we performed k-means clustering on individual replicate 

or donor sample with k equal to 20. We choose this number because the number of major clusters 

in a given tissue sample is typically less than 20. We then computed the centroid for each cluster 

and identified pairs of mutual nearest centroids across different batches. These mutual nearest 

centroids were used as the anchors to match the cells between different batches and correct for 

batch effects as described previously (Haghverdi et al., 2018). We found that the result can be 

further improved by performing above steps iteratively. However, too many iterations may lead to 

over-correction. We therefore used two iterations in this study.  

 

3.6.11 Graph-based clustering algorithm 

We constructed the k-nearest neighbor graph (k-NNG) using low-dimensional embedding 
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of the cells with k equal to 50. We then applied the Leiden algorithm (Traag et al., 2019) to find 

communities in the k-NNG corresponding to cell clusters. The Leiden algorithm can be configured 

to use different quality functions. The modularity model is a popular choice but it suffers from the 

issue of resolution-limit, particularly when the network is large (Traag et al., 2011). Therefore, we 

used the modularity model only in the first round of clustering analysis to identify initial clusters. 

In the final round of clustering, we chose the constant Potts model as the quality function since it 

is resolution-limit-free and is better suited for identifying rare populations in a large dataset (Traag 

et al., 2011). To determine the optimal number of clusters, we varied the resolution parameter in 

the Leiden algorithm and computed the clustering stability and average silhouette score under each 

resolution. Cluster stability was defined as the consistency, measured by the average adjusted rand 

index, of results from five independent clustering analyses on perturbed inputs. The perturbation 

was introduced in a way that 2% of the edges were randomly selected and subjected to removal. 

We selected the resolution that leads to both high average silhouette score and high clustering 

stability as well as biological considerations, e.g., number of known cell types in the tissue, marker 

gene accessibility.  

 

3.6.12 Peak calling and peak filtering 

For each cell cluster, initial peak calling was performed on Tn5-corrected single-base 

insertions (each end of the Tn5-corrected fragments) using the MACS2 (Zhang et al., 2008) 

callpeak command with parameters “–shift -100 –extsize 200 –nomodel –call-summits –nolambda 

–keep-dup all”, filtered by the ENCODE hg38 blacklist (accession: ENCFF356LFX). Due to the 

varying abundance of cell types in each tissue, single-cell assays typically profile different cell 

types at different sequencing depths. To account for these differences, we adapted peak calling 
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cutoffs to different sequencing depths. Specifically, we choose a cutoff of FDR less than 0.1, 0.05, 

0.025, 0.01, and 0.001, corresponding to the situations when the number of reads is with then range 

of 0-5 million, 5-25 million, 25-50 million, 50-100 million, and 100 million and above. Using 

simulated datasets, we found that this procedure achieved good balance between the sensitivity 

and specificity for detecting peaks under different sequencing depths. Next, based on the chromatin 

accessibility at the single cell level, we developed a peak filtering procedure to further reduce the 

false positive rate by retaining only those peaks that were accessible in a significant fraction of the 

cells compared to background regions. To do so, we first randomly selected 1 million regions from 

the genome and for each of these regions we calculated the fraction of cells that are accessible. 

These were used to fit a beta distribution as the null model. We then computed the fraction of 

accessible cells and its significance level for each candidate peak identified by MACS2. Candidate 

peaks with FDR < 0.01 were included in the final peak list. 

 

3.6.13 Generating the union peak set 

To compile a union peak set, we combined peaks from all clusters and extended the peak 

summits by 200 bp on either side. Overlapping peaks were then handled using an iterative removal 

procedure. First, the most significant peak, i.e., the peak with the smallest p-value, was kept and 

any peak that directly overlapped with it was removed. Then, this process was iterated to the next 

most significant peak and so on until all peaks were either kept or removed due to direct overlap 

with a more significant peak.  

 

 

3.6.14 Computing relative accessibility scores 
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We define an accessible locus as the minimal genomic region that can be bound and cut by 

the Tn5 enzyme. We use 𝐿 ⊂ 𝑁 to represent the set of all accessible loci. We further define a 

pseudo-locus as the set of accessible loci that relates to each other in certain meaningful way (for 

example, nearby loci, loci from different alleles). In this example, pseudo-loci correspond to peaks. 

We use { 𝑑# ∣∣ 𝑑# ⊂ 𝐿 } to represent the set of all pseudo-loci. Let 𝑎% be the accessibility of 

accessible locus 𝑙, where 𝑙 ∈ 𝐿. We define the accessibility of pseudo-locus 𝑑# as 𝐴# = ∑ 𝑎77∈2! , 

i.e., the sum of accessibility of accessible loci associated with di. Let 𝐶$ be the library complexity 

(the number of distinct molecules in the library) of cell 𝑗. Assuming unbiased PCR amplification, 

then the probability of being sequenced for any fragment in the library is: 𝑠$ = 1 − (1 − "
8"
)𝑘$, 

where 𝑘$ is the total number of reads for cell 𝑗. If we assume that the probability of a fragment 

present in the library is proportional to its accessibility and the complexity of the library, then we 

can deduce that the probability of a given locus 𝑙 in cell 𝑗 being sequenced is: 𝑝%$ ∝ 𝑎%𝐶$𝑠$. For 

any pseudo-locus 𝑑#, the number of reads in 𝑑# for cell 𝑗 follows a Poisson binomial distribution, 

and its mean is 𝑚#$ = ∑ 𝑝7$7∈2! ∝ 𝐶$𝑠$ ∑ 𝑎77∈2! = 𝐶$𝑠$𝐴#. Given a pseudo-locus (or peak) by cell 

count matrix 𝑂, we have: ∑ 𝑂#$$ = ∑ 𝑚#$$ . Therefore, 𝐴# = 𝑍
∑ 9!""
∑ 8"0""

, where 𝑍 is a normalization 

constant. When comparing across different samples the relative accessibility may be desirable as 

they sum up to a constant, i.e., ∑ 𝐴## = 1 × 10&. In this case, we can derive 𝐴# =
∑ 9!""
∑ 9!"!"

∗ 10&. 

 

3.6.15 Assigning cell types to cell clusters 

To annotate the cell clusters, we first curated a set of marker genes from the PanglaoDB 

(Franzén et al., 2019) corresponding to expected cell types. We aggregated open chromatin 

fragments from each cluster and utilized the promoter accessibility, defined as RPM of +/- 1kb 
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around TSS, as the proxy for gene activity. We then computed the raw cell type enrichment score 

as the logarithm of the geometric mean of marker genes’ activity. The final enrichment scores were 

obtained by applying two rounds of z-score transformation, first across cell types and then across 

cell clusters, on raw enrichment scores. For each cluster, we picked the cell type that showed 

strongest enrichment to make initial assignments. Finally, we manually reviewed these 

assignments and made adjustments based on focused consideration of marker gene accessibility in 

conjunction with information about tissue(s) of origin. 

 

3.6.16 Identification of cell type-restricted peaks 

We used a Shannon entropy-based method (Schug et al., 2005) to identify cell type-specific 

peaks. Given the relative accessibility scores of a peak across clusters, we first converted the scores 

to probabilities: 𝑝# = 𝑞#/∑ 𝑞## . The entropy was then calculated by: 𝐻: = −∑ 𝑝;; log<(𝑝;). The 

specificity score is 𝑄:|; = 𝐻: − log<(𝑝;). To estimate the statistical significance of specificity 

scores, we assumed that under the null hypothesis each peak has an average accessibility level 

across all cell types and that the log base 2 of the cell-type-dependent fold changes from the 

average level follow a normal distribution with mean equal to zero and standard deviation 𝑠. The 

value of 𝑠 was estimated using the top 50% least variable peaks, and 500,000 samples were then 

drawn to form the empirical distribution of 𝑄: that are used to determine the p-values of specificity 

scores. The cell-type-restricted peaks were then identified using a p-value cutoff of 0.025. 

 

3.6.17 Cell-type enrichment analysis of fine-mapped GTEx eQTLs 

The fine-mapped eQTLs (GTEx Analysis V8) in each of the 49 tissues or cell lines were 

downloaded from the GTEx portal (https://gtexportal.org). For each tissue, we first identified the 



121 
 

overlapping cCREs with its eQTLs. We then calculated the average of log-transformed 

accessibility scores of these peaks in each of the 111 cell types. This yielded a tissue by cell-type 

table containing raw cell-type enrichment scores of eQTLs from each tissue. The raw enrichment 

scores were then normalized row-wise using z-score transformation. For each tissue, we define the 

maximum cell-type enrichment as the largest value of z-scores across 111 cell types. In general, 

we found that homogenous tissues tend to have higher maximum cell-type enrichment than tissues 

that are more heterogenous. 

 

3.6.18 Differential peak analysis 

To carry out differential peak analysis between foreground set and background set, we first 

removed all peaks with fold changes of relative accessibility less than 2. For each peak, we then 

built a full model and a reduced model. 

log
𝑃>?%%

1 − 𝑃>?%%
= 𝛽@ + 𝛽"𝑟 + 𝛽<𝑐 

log
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1 − 𝑃AB2?CB2
= 𝛽@ + 𝛽"𝑟 

𝑃AB2?CB2 and 𝑃>?%% represent the likelihood of the reduced model and full model 

respectively. 𝑟 contains the logarithm of number of fragments. 𝑐 is categorical variable indicating 

if the cell comes from foreground or background. We then used a likelihood ratio test framework 

to determine whether the full model provided a significantly better fit of the data than the reduced 

model. We selected the sites using a 5% FDR threshold (Benjamini-Hochberg method). 

 

3.6.19 Identification of fibroblast core signature and subtype-specific signatures 

We first performed pairwise differential peak analysis for the seven fibroblast subtypes. 



122 
 

We then defined fibroblast core signature as peaks that are shared by all subtypes and were not 

called as differentially accessible in any of the pairwise comparison. Likewise, we defined the 

specific signature for a subtype as peaks that are differentially more accessible in the given subtype 

for every pairwise comparison. 

 

3.6.20 Measuring the similarity of chromatin accessibility profiles between cell types 

identified by sci-ATAC-seq and bulk biosamples 

We downloaded bulk DNase-seq data from the ENCODE portal. We excluded samples 

collected at embryonic stage or originated from kidney, bladder or brain tissues, as we did not 

perform experiments on those tissues. As a result, 638 datasets were kept for downstream analysis. 

For each of the DNase-seq datasets, we calculated its Pearson correlation coefficient with 111 

identified cell types based on RPKM values at identified cCREs. These correlation scores were 

then scaled using z-score transformation across 111 cell types. We used the maximum of scaled 

correlation scores to represent each biosample’s overall similarity with sci-ATAC-seq cell types. 

 

3.6.21 Identification of cCRE modules 

A cCRE module is defined as co-accessible regions that share similar accessibility pattern 

across cell types. To identify cCRE modules, we first performed quantile normalization on the 

log2 transformed matrix containing accessibilities of 1,154,611 cCREs in 222 fetal and adult cell 

types. For each cCRE, we then divided its accessibility vector by the L2 norm, which allowed us 

to better extract the accessibility pattern from the data. Next we applied the k-mean algorithm to 

this matrix to identify clusters of cCREs. Using the “elbow” method, we determined the number 

of clusters to be 150.  
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3.6.22 Motif enrichment analysis 

We measured the enrichment of 1565 human TF motifs consisting of the JASPAR (2018) 

core non-redundant vertebrate motifs, the HOCOMOCO v1156 human motif set and the SELEX 

motifs by Jolma et al.. We computed the enrichments for each of the 1565 motifs relative to a joint 

cCRE background and filtered the list using FDR cutoff 0.01. For each motif. We reported the 

motif with the highest enrichment for each of the 286 previously identified motif archetypes 

(Vierstra et al., 2020). 

 

3.6.23 Identification of candidate driver TFs 

We used the Taiji pipeline (Zhang et al., 2019b) to identify candidate driver TFs in each 

cell cluster. Briefly, for each cell type cluster, we constructed the TF regulatory network by 

scanning TF motifs at the accessible chromatin regions and linking them to the nearest genes. The 

network is directed with edges from TFs to target genes. The genes’ weights in the network were 

determined based on the relative accessibility of their promoters. The weights of the edges were 

calculated by the relative accessibility of the promoters of the source TFs. We then used the 

personalized PageRank algorithm to rank the TFs in the network. 

 

3.6.24 Integration of adult and fetal datasets 

To integrate our dataset with the recent cell atlas of fetal chromatin accessibility (Domcke 

et al., 2020), we downloaded the fragment files for 63 fetal samples spanning 15 tissues and 

converted the genomic coordinates from GRC37 (hg19) to GRCh38 using the UCSC liftOver tool. 

We then performed the quality control, cell filtering and cell clustering using the same pipeline 
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described above and identified 111 fetal cell types. Next, we combined the QC passed cells from 

adult and fetal datasets and performed the joint embedding using the SnapATAC algorithm. We 

considered fetal or adult cells as belonging to different batches, and used a linear model to remove 

technical batch effects for each dimension in the reduced dimensional space. Using these batch-

corrected lower-dimensional representations, we applied the UMAP algorithm to visualize the 

cells in a 2D space and used the FASTME algorithm (Guindon and Gascuel, 2003) to construct 

the phylogenetic tree for adult and fetal cell types. 

 

3.6.25 Differential peak analysis between fetal and adult cells 

To perform differential peak analysis between fetal and adult samples, we modified the 

likelihood-ratio test framework described above to account for technical batch effects between two 

datasets. We started with three set of cells. The first two sets of cells corresponded to foreground 

and background sets that are subject to the differential test. The third set was the auxiliary set 

corresponding to remaining cells that were not from the first two sets. The auxiliary set served as 

a proxy to estimate the batch effects. For instance, when performing differential test between two 

sub-trees of the phylogenetic tree of fetal and adult cell types, for each sub-tree we randomly 

sampled an equal number of cells for each cell type in the sub-tree. The cells sampled from one 

branch were considered as foreground and those from the other were considered as background. 

The remaining cells did not belong to the two sub-trees form the auxiliary set.  For each peak, we 

then built a full model and a reduced model. 
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𝑃AB2?CB2 and 𝑃>?%% represent the likelihood of the reduced model and full model 

respectively. 𝑟 contains the logarithm of number of fragments. 𝑠 is a categorical variable indicating 

whether the cell comes from the fetal tissue or the adult tissue. 𝑡 indicates whether the cell comes 

from the auxiliary set. 𝑐 indicates whether the cell comes from foreground set. We then used a 

likelihood ratio test framework to determine whether the full model provided a significantly better 

fit of the data than the reduced model. We selected the sites using a 1% FDR threshold (Benjamini-

Hochberg method). 

 

3.6.26 Generation of bigwig tracks 

Each Tn5-corrected insertion was extended in both directions by 100 bp to form a 200-bp 

fragment. We then counted the number of fragments overlapping with each base on the genome 

and generated a bedgraph file. The bedgraph file was converted to bigwig file using the 

“bedGraphToBigWig” tool. 

 

3.6.27 Linking cCREs to target genes 

We downloaded the chromosome interactions called from published promoter capture Hi-

C data in 14 human tissues (Jung et al., 2019). In each tissue, we first filtered the chromosome 

interactions using a lenient p-value cutoff of 0.1. We then created the chromosome interaction 

matrix using the normalized interaction frequency. The interaction matrices from 14 tissues were 

then averaged to get the final interaction matrix. We applied the Activity-by-Contact (ABC) Model 

(Fulco et al., 2019) to compute the ABC Score for each cCRE-gene pair as the product of Activity 

(chromatin accessibility) and Contact (interaction frequency), normalized by the product of 

Activity and Contact for all other cCREs. We retained all distal cCRE-gene connections with an 
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ABC score greater than 0.015. 

 

3.6.28 Stratified linkage disequilibrium (LD) score regression 

We used LD score regression (Bulik-Sullivan et al., 2015) v1.0.1 to estimate genome-wide 

GWAS enrichment for disease and non-disease phenotypes within cell type resolved cCREs (peaks 

called on each cell cluster via MACS2 (Zhang et al., 2008) using the above parameters). We 

compiled published GWAS summary statistics for complex diseases (Bentham et al., 2015; 

Bronson et al., 2016; Consortium, 2019; Cordell et al., 2015; Jansen et al., 2019; Ji et al., 2017; 

Jin et al., 2016; Luo et al., 2017b; Mahajan et al., 2018; Malik et al., 2018; Michailidou et al., 

2017; Nielsen et al., 2018; Nikpay et al., 2015; Okada et al., 2014; Paternoster et al., 2015; Pividori 

et al., 2019; Sakornsakolpat et al., 2019; Schafmayer et al., 2019; Shadrina et al., 2019; 

Tachmazidou et al., 2019; Tin et al., 2019; Watanabe et al., 2019; Wiberg et al., 2019; Wuttke et 

al., 2019) and endophenotypes (Astle et al., 2016; Hoffmann et al., 2018; Kemp et al., 2017; 

Kilpeläinen et al., 2016; Manning et al., 2012; Saxena et al., 2010; Shrine et al., 2019; Strawbridge 

et al., 2011; Teumer et al., 2018; Warrington et al., 2019) within European populations. Using cell 

type resolved cCREs as a binary annotation, we created custom partitioned LD score files by 

following the steps outlined in the LD score estimation tutorial. As background annotations, we 

included all baseline annotations in the baseline-LD model v1.2 as well as partitioned LD scores 

created from all merged cCREs. For each trait, we used LD score regression to then estimate 

coefficient p-value for each cell type relative to the background annotations and used the 

Benjamini-Hochberg procedure to correct for multiple tests. 

 

3.6.29 GWAS enrichment analysis 
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We downloaded the NHGRI-EBI GWAS catalogue (Buniello et al., 2019) (downloaded 

from https:// www.ebi.ac.uk/gwas/docs/file-downloads on July 7, 2021) and pruned the catalogue 

using an approach described previously (Boix et al., 2021). Specifically, for each trait and PMID 

combination, we ranked associations by their significance (P value) and added SNPs iteratively if 

they were not within 5 kb of previously added SNPs. We then compiled a compendium of 1,123 

well-powered GWAS with 10 or more significant SNPs and over 20,000 cases (14% of 8,219 

GWAS publications) that capture over 81,057 GWAS loci. 

For each cell type and trait combination, we computed the number of intersections between 

trait associated SNPs and cell-type associated cCREs. We compared this number with the number 

of intersections between SNPs and the entire set of cCREs from all cell types, using a 

hypergeometric test to evaluate the statistical significance of enrichments. To estimate the false 

discovery rate, we generated 1,000 null GWAS with the same lead SNP set size by randomly 

shuffling the trait associations across GWAS locations. We then computed the null association P 

values for each permuted GWAS and used the 0.1% top quantiles as the cut-off. 

 

3.6.30 Fine mapping 

We performed genetic fine mapping for GWAS of diseases and endophenotypes that had 

sufficient coverage (i.e., were at least imputed into 1000 Genomes). For GWAS with available 

fine mapping data, we took 99% credible sets directly from the supplemental tables. For GWAS 

without available fine mapping data, we calculated approximate Bayes factors (Wakefield, 2009) 

(ABF) for each variant assuming prior variance ω = 0.04. For every trait, we obtained index 

variants for each locus from the supplemental tables of the respective study. We extracted all 

variants in at least low linkage disequilibrium (r2 > 0.1 using the European subset of 1000 
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Genomes Phase 3 (Auton et al., 2015b)) in a large window (±2.5 Mb) around each index variant. 

We calculated posterior probabilities of association (PPA) for each variant by dividing its ABF by 

the cumulative ABF for all variants within the locus. We then defined 99% credible sets for each 

locus by sorting variants by descending PPA and keeping variants adding up to a cumulative PPA 

of 0.99. 

 

3.6.31 Predicting the effects of noncoding variants on TF binding 

To identify SNPs that affect TF binding, we employed deltaSVM models as described 

previously (Yan et al., 2021). Briefly, 40 bp sequences centered on each SNP were used as input 

to 94 previously trained and validated TF models. For each SNP, we predicted the binding scores 

for both alleles by running "gkmpredict". A SNP was considered to be bound if the binding score 

passed the pre-defined threshold for either allele. Among those SNPs, deltaSVM scores were 

calculated using the "deltasvm.pl" script and SNPs with deltaSVM scores passing the threshold 

for the corresponding model are predicted to affect TF binding. 

 

3.6.32 External genome browser track data 

Genome browser tracks displaying ChIP-seq and DNase-seq signal from bulk transverse 

colon datasets and human primary T cell datasets were downloaded from ENCODE with the 

following identifiers: ENCSR340MRJ, ENCSR557OWY, ENCSR500QVK, ENCSR792VLP, 

ENCSR627UDJ, ENCSR902BOX, ENCSR218OEZ, ENCSR222QLW. 

 

3.6.33 Quantification and statistical analysis 

Statistical parameters were reported either in individual figures or corresponding figure 
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legends. Statistical details of experiments can be found in “METHOD DETAILS”. All statistical 

analyses were performed in either R or Python. 

 

3.6.34 Additional Resources 

The raw data and analyzed results are available at our interactive web portal: 

http://catlas.org/humanenhancer. 

 

3.7 Supplemental Methods 
 
3.7.1 Cell clustering 

To fully dissect the heterogeneity within each tissue, we utilized an iterative clustering 

strategy. The first round of clustering analysis was performed on individual samples to identify 

initial clusters and candidate peaks. Using the peaks called in the first round of clustering analysis, 

we then generated a single binary cell-by-peak matrix using cells from all samples and again 

performed the dimension reduction followed by graph-based clustering to obtain the major cell 

groups across the entire dataset (Figure S19). We next performed sub-clustering analysis for each 

of the identified major cell group to identify subclusters (Figure S20). 

The resolution parameter in the leiden algorithm was chosen according to the joint 

consideration of cluster separation (measured by the average silhouette width) and the stability of 

clustering results. Silhouette width is designed to assess the quality of clusters with a convex shape. 

Although single-cell clusters are generally non-convex, the spectral clustering technique employed 

by SnapATAC is a non-linear dimensionality reduction method and is able to transform the 

clusters into a convex shape suitable for applying silhouette width to measure cluster separation. 

Indeed, using benchmarking datasets we showed that the silhouette width is extremely useful for 
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selecting appropriate clustering parameters: silhouette width was highly correlated with the 

adjusted rand index (ARI), which measures the consistency between the clustering result and the 

ground truth. We also noticed that parameters that produced the optimal number of clusters were 

generally associated with high clustering stability. We therefore used a criterion of stability greater 

than 0.85 to filter clustering parameters. The parameters selected according to the criterion above 

were further tuned with biological considerations (Table 4). In total, we identified 30 highly stable 

major cell groups, and then subclustered each to arrive at a total of 111 adult cell types.  
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Table 4: Resolution parameters used in the sub-clustering analysis.Major cell groups that do not have 
subclusters were omitted from the table, including C10, C11, C14, C24, C26, C28, C29, and C30. 
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3.7.2 Annotation of cell clusters  

To annotate the cell clusters, we first curated a set of marker genes from the PanglaoDB 

(Franzén et al., 20x19) corresponding to expected cell types. We aggregated open chromatin 

fragments from each cluster and utilized the promoter accessibility, defined as RPM of +/- 1kb 

around TSS, as the proxy for gene activity. We then computed the raw cell type enrichment score 

as the logarithm of the geometric mean of marker genes’ activity. The final enrichment scores were 

obtained by applying two rounds of z-score transformation, first across cell types and then across 

cell clusters, on raw enrichment scores (Figure S21). For each cluster, we picked the cell type that 

showed strongest enrichment to make initial assignments. Finally, we manually reviewed these 

assignments and made adjustments based on focused consideration of marker gene accessibility in 

conjunction with information about tissue(s) of origin. For example, the figures below show the 

marker gene accessibility for neuroendocrine cell types and non-neuroendocrine pancreatic cell 

types as controls at the genes encoding GCG, INS-IGF2, SST, and GHRL (Figure S22).  

 

3.7.3 Optimizing peak calling procedure 

Single-cell assays typically profile different cell types at different sequencing depths due 

to the varying abundance of cell types in each tissue. Using simulated datasets, we found that 

adapting peak calling cutoffs to each cell type’s sequencing depth increased the sensitivity to detect 

legitimate peaks in rare cell types and decreased false discovery rate for calling peaks in cell types 

with high relative abundance. To further improve our overall confidence in identified peaks, we 

next adopted a peak-filtering protocol (Li et al., 2021) by removing peaks that were not 

significantly more accessible than background at the single-cell level.  
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3.8 Supplemental Figures  

Supplemental Figure 10: Comparison of open chromatin landscapes in adult human cell types from 
the current study with previous DNase-seq data from bulk biosamples. A) Venn diagram showing the 
intersection between cCREs identified in the current study with the registry of cCREs created by the 
ENCODE consortium. B) Distribution of similarity scores for 291 bulk DNase-seq samples stratified by 
sample classification. Similarity score is defined as the maximum of the standardized correlation scores of 
a bulk DNase-seq sample with 111 adult human cell types from sci-ATAC-seq. C) Scatter plot showing the 
similarity score of each cell type as function of its maximal abundance in tissues. Since we did not profile 
spleen tissue or peripheral blood mononuclear cells, the maximal abundances of immune cell types cannot 
be accurately estimated and immune cell types were thus excluded from this analysis. D) Pie chart showing 
similarity between cell types from sci-ATAC-seq and bulk DNase-seq seq samples based on significance 
level of similarity score. Heatmaps display p-values of similarity scores between sci-ATAC-seq cell types 
and bulk DNase-seq seq samples for each category, bar chart displays maximum abundance across all 
tissues for each cell type with no significant correlation to a bulk DNase-seq sample. NS = not significant. 
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Supplemental Figure 11: Enrichment of GTEx tissue eQTLs in human cell type cCREs. A) Z-scores 
for enrichment of GTEX eQTLs from corresponding bulk tissues in cCREs from each sci-ATAC-seq cell 
type. B) The chromatin accessibility enrichment of GTEx tissue eQTLs in each tissue was computed as 
described in Methods, and the maximum value across the 25 matching tissue types was used for the plot. 
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Supplemental Figure 12: Clustering analysis of sci-ATAC-seq data from 15 fetal tissues. Each scatter 
plot shows the UMAP embedding of nuclei from one of 35 major cell groups. Subclusters are indicated by 
different colors. Subclustering is displayed for 19 out of 35 major cell groups that had more than one 
subcluster. 
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Supplemental Figure 13: Phylogenetic analysis of fetal and adult cell types. Phylogenetic tree showing 
relationship between fetal and adult cell types. The tree was constructed using the FASTME algorithm. The 
distance between two cell types was calculated in the batch-corrected low-dimensional space, and defined 
as the average Euclidean distance of cell pairs from the two populations. Leaf nodes are colored by life 
stage. B) Heatmap showing the TF motif enrichments in cCREs that distinguish clades labeled in Panel A. 
Color represents −log10P. Only the most enriched TF motif in each of the previously identified motif 
archetypes (Vierstra et al., 2020) was selected as the representative and the top 5 motifs were selected for 
each group. Full GO and motif enrichments are available to download on Mendeley Data: 
10.17632/yv4fzv6cnm.1. 
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Supplemental Figure 14: Comparison between fetal and adult cell types. Heatmap showing Pearson 
correlation coefficients (PCC) between chromatin accessibility at the 1.2 million cCREs annotated in the 
current study in 111 adult cell types and 111 fetal cell types. Major cell groups are indicated in boxes. 
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Supplemental Figure 15: GWAS variant enrichment analysis with single-cell cCRE atlases and 
EpiMaps. Heatmap showing significant hypergeometric enrichments (FDR < 0.1%) of index variants from 
617 traits downloaded from the NHGRI-EBI catalogue (Buniello et al., 2019) (rows) within cCREs 
identified from 222 fetal and adult cell types from the current study (left column) and 833 aggregated 
epigenomic datasets from bulk tissues, cell lines, and primary cells compiled by (Boix et al., 2021) (right 
column). The data underlying the heatmap are available to download on Mendeley Data: 
10.17632/yv4fzv6cnm.1. 
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Supplemental Figure 16: Chromatin features of fibroblasts in different tissue environments. A) 
Heatmap representation of core fibroblast cCREs and fibroblast subtype-specific elements. Color represents 
log2(accessibility). Bar plot on the top indicates tissues of origin by percentage for each fibroblast subtype. 
All subtypes showed comparable chromatin accessibility at a set of core fibroblast cCREs, each also showed 
subtype-specific chromatin accessibility patterns, which were enriched for biological process ontology 
terms that suggested potential subtype-specific functions. B) Top GREAT biological process ontology 
enrichments (McLean et al., 2010) for core fibroblast and fibroblast subtype-specific cCREs. C) De novo 
sequence motifs and their matched known TF motifs identified by HOMER (Heinz et al., 2010). D) 
Heatmap representation showing key TFs (row) in each fibroblast subtype (column) revealed using 
transcription regulatory network analysis. Color represents standardized PageRank scores. E) Genome 
browser tracks for cardiomyocytes and fibroblast subtypes from sci-ATAC-seq at several cardiomyocyte 
marker genes. Notably, cardiac fibroblasts were accessible at loci encoding cardiac developmental 
transcription factors GATA4 and TBX20 (Perrino and Rockman, 2006; Shen et al., 2011; Singh et al., 2005), 
but at other cardiomyocyte marker genes suggesting cardiogenic gene programs in cardiac fibroblasts 
(Furtado et al., 2014). F) Similarity indices between (top) core fibroblast cCREs and (bottom) subtype-
specific cCREs with in vitro cultured fibroblast DNase-seq datasets, and non-fibroblast DNase-seq datasets. 
All fibroblast subtypes from the current study showed similarity to in vitro fibroblasts based on core 
fibroblast cCRE signatures, but minimal similarity based on subtype-specific fibroblast cCRE signatures 
suggesting that fibroblast subtype-specific signatures are environment dependent and may be lost during in 
vitro culturing.  
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Supplemental Figure 17: Characterization of fine mapped risk variants. A) Bar graph showing the 
percentage of likely causal (Posterior Probability of Association; PPA > 0.1) fine mapped GWAS variants 
from 48 traits and diseases that overlap the union set of cCREs in adult cell types in the present study. 
Fisher's exact test was used to compute statistical significance. B) Histogram showing the multiplicities of 
cCRE-gene linkage (number of cell types having the linkage). C) Histogram showing distances in kilobase 
pairs (kbp) for distal cCRE-to-gene linkages from Activity by Contact (ABC) analysis (Fulco et al., 2019) 
(ABC score > 0.015). 
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Supplemental Figure 18: Quality control for sci-ATAC-seq datasets. A) Upper bar plot shows the 
percentage of doublets detected in each dataset. Lower bar plot shows the number of nuclei that passed 
quality control in each experiment. Nuclei were first filtered by stringent quality control criteria (TSS 
enrichment greater than 7 and number of mapped fragments greater than 1000 per nucleus) and then 
subjected to doublet removal. B) Upper violin plot shows the distribution of TSS enrichments for nuclei 
that passed quality control in each experiment. Lower violin plot shows the distribution of number of 
fragments for nuclei that passed quality control in each dataset. 
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Supplemental Figure 19: Computational framework for analyzing sci-ATAC-seq data. A) Schematic 
illustrating the workflow of the analysis pipeline. B) Example scatter plots showing the UMAP embedding 
of nuclei before and after batch correction. Dots with the same color are derived from the same donor or 
batch.  C,D) Line plots showing the Adjusted Rand Index (ARI), average silhouette width, and stability of 
clustering results as a function of resolution parameter in the Leiden algorithm. ARI was computed based 
the cell annotations from the previous study (Chen et al., 2019). To compute the stability under a particular 
resolution, five perturbations were conducted on the kNN graph. During each perturbation 2% of the edges 
were randomly selected and subjected to removal. The clustering was performed on the perturbed graph 
and the average ARI between different runs were taken as the stability. 
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Supplemental Figure 20: Iterative clustering analysis of the 30 major cell groups. Each scatter plot 
shows the UMAP embedding of nuclei from one of 30 major cell groups. Subclusters are indicated by 
different colors. 22 out of 30 major cell groups had more than one subcluster. 
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Supplemental Figure 21: Evidence supporting the annotation of 111 cell clusters. Heatmap 
representation showing the marker gene enrichment of cell types. The marker genes were downloaded from 
the PanglaoDB (Franzén et al., 2019). 
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Supplemental Figure 22: Example of focused lineage marker gene consideration for cell type 
annotation. Genome browser tracks show chromatin accessibility for six neuroendocrine cell types 
subclustered from the neuroendocrine major cell group. Non-neuroendocrine pancreatic cell types are 
included as controls. Neuroendocrine cell marker genes encoding GCG, INS-IGF2, SST, and GHRL are 
indicated in black, neighboring genes are indicated in gray. Transcription start site(s) of the indicated genes 
are highlighted. Gast. Neuroendo = Gastric Neuroendocrine. 
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Supplemental Figure 23: Peak call benchmarking using different FDR cutoff and down-sampling 
rate. Each plot shows the precision (y-axis) and recall (x-axis) of peaks called by MACS2 (Zhang et al., 
2008) under different combinations of FDR (color) and number of reads (shape). In all cases, the ground 
truth was taken as the peaks produced by the ENCODE consortium using all reads. 
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3.9 Supplemental Tables 

Supplemental Table 22: Donor clinical characteristics and contributions to sci-ATAC-seq datasets. 

Supplemental Table 23: Quality control data for sci-ATAC-seq datasets. 

Supplemental Table 24: Adult and fetal cell cluster annotations and example marker genes. 

Supplemental Table 25: P-values of LDSC coefficients for 240 complex traits. 

Supplemental Table 26: Likely causal GWAS variant PPAs, overlapping cCREs, corresponding 

cell types, motifs altered, and candidate target genes. 

Supplemental Table 27: Oligo and primer sequences for sci-ATAC-seq. 
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Chapter 4: Future Directions and Preliminary Data 

4.1 Summary 

With this dissertation, I have shown the utility of single cell epigenomic analysis to reveal 

gene regulatory programs in distinct human cell types and decipher the association of cell type-

resolved cCREs with noncoding risk variants. In chapter 2, I defined >287,000 cCREs in the four 

chambers of the human heart at single-cell resolution, which revealed cCREs and candidate 

transcription factors associated with cardiac cell types in a region-dependent manner and during 

heart failure. I next outlined the cardiovascular disease-associated genetic variants enriched within 

these cCREs, which included a strong enrichment of AF variants localized to cardiomyocyte 

cCREs. Further functional studies revealed that two noncoding AF variants affected a 

cardiomyocyte-specific cCRE controlling KCNH2 expression and action potential repolarization.  

In chapter 3, I built upon the framework from chapter 2 to apply single-cell chromatin 

accessibility assays to 30 adult human tissue types from multiple donors. Integration of these 

datasets with single-cell chromatin accessibility data from 15 fetal tissue types (Domcke et al., 

2020) revealed the status of open chromatin for approximately 1.2 million candidate cis-regulatory 

elements (cCREs) in 222 distinct cell types composed of >1.3 million nuclei. I used these 

chromatin accessibility maps to delineate cell type-specificity of fetal and adult human cCREs and 

to systematically interpret the noncoding variants associated with complex human traits and 

diseases.  

Together, these studies illustrate how knowledge of cell type-resolved human cCREs 

enables the interpretation of noncoding complex disease risk variants. Further, the datasets created 

herein provide a foundation for the analysis of gene regulatory programs in human cell types across 

tissues, life stages, and organ systems in health and disease. 
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4.2 Overview 

In this final chapter, I summarize two major future directions. In section 4.3, I begin by 

summarizing technological limitations of current approaches to interpret mechanisms of risk 

variants from GWAS, along with future developments that will greatly enhance the utility of the 

data and frameworks developed in this dissertation. In section 4.4, I next describe the potential for 

the healthy reference datasets I generated to be used as a springboard for uncovering cell type-

specific gene regulatory programs in diseased human tissues, with a focus on ischemic heart 

failure. 

 

4.3 Improvements in risk variant association studies 
 
4.3.1 Moving beyond common variants 

Genome wide association studies have made major advances in our understanding of 

complex disease, and each of the tens of thousands of signals detected so far could reveal insight 

into the polygenic pathways underlying these diseases. However, because GWAS have 

traditionally depended upon targeted genotyping of specific and pre-selected SNPs using 

microarrays (Uffelmann et al., 2021), these studies have largely only captured information about 

common sequence variants. The common variants captured by traditional GWAS very often have 

low effect sizes - explaining only a portion of the heritability of complex diseases, which is defined 

as the portion of phenotypic variance in a population attributable to additive genetic factors. This 

discrepancy between the amount of phenotypic variance in complex diseases explained by GWAS 

and the measurable heritability of complex traits (Wray et al., 2018) means that traditional GWAS 

miss a significant portion of the genetic information underlying complex disease (Manolio et al., 
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2009). 

One likely possibility underlying this “missing heritability” is the failure of traditional 

GWAS to capture information about intermediate frequency variants, which are rarer than 

common variants but may have larger effect sizes. Thus, a major technological advance that would 

improve the findings of GWAS would be to forgo the use of pre-selected SNPs using microarrays 

in favor of whole genome sequencing (WGS) in future association studies. However, even at the 

level of whole genome sequencing, current technologies do not capture the spectrum of variants 

associated with complex disease. Cost effective approaches to perform WGS typically utilize 

“NextGen” sequencing/short read technologies – that is, DNA libraries amplified via PCR often 

from low starting quantities, fragmented or otherwise selected to appropriate fragment size (on the 

order of ~hundreds of base pairs), and sequenced in parallel on an Illumina flowcell. Currently, 

structural sequence variants such as large insertions, deletions, inversions, or translocations as well 

as copy number repeat variants such as short tandem repeats (STRs) are not identified well via 

these approaches due to problems with their amplification (polymerase is more likely to slip over 

repetitive regions), sequencing (repetitive regions are more difficult to sequence), and mapping to 

reference genomes (the predominant use of short read technology means that short reads may not 

span the full length of repetitive regions, and thus may not be accurately mapped). Thus, even if 

all GWAS transitioned to NextGen sequencing-based WGS, many putatively disease-associated 

variants such as STRs, which likely account for a significant proportion of variation in gene 

expression (Gymrek et al., 2016) and could underlie signals from index SNPs in GWAS (Fotsing 

et al., 2019), could still be missed. 

By contrast, “third generation” sequencing approaches are able to sequence much longer 

reads (up to ~50 kilobases) than Next Gen sequencing technologies (van Dijk et al., 2018). This is 
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advantageous for detecting short tandem repeats (STRs), large structural variants, and other 

variants that are not identified well by NextGen sequencing. Although these methods are currently 

more expensive, have higher base call error rates, and are much lower throughput than NextGen 

sequencing – their continued development and ultimately their employment in GWAS could help 

close the “missing heritability” gap and explain the spectrum of sequence variants associated with 

complex traits and diseases. In the future, using the body-wide cCRE maps conceptual frameworks 

that I developed in this dissertation in parallel with the full spectrum of rare, intermediate, and 

common risk variants could yield additional cell type-resolved mechanisms of complex disease 

and ultimately to novel treatments. 

 

4.3.2 Improving the design of current association studies 

The majority of GWAS to date have been performed using genotype data from Caucasian 

individuals. Summary statistics from these types of studies may not be directly transferable to 

individuals from non-Caucasian populations, as linkage disequilibrium patterns and variant 

frequencies vary notably between populations (Duncan et al., 2019). Thus, even employing 

existing microarray-based technologies, future GWAS in larger, more diverse, and more finely-

phenotyped cohorts, including biobanks such as the UK Biobank (Sudlow et al., 2015) and the 

BioBank Japan Project (Ishigaki et al., 2020), will be of improved utility for the discovery of 

common noncoding sequence variants associated with complex disease. 

 

4.3.3 Improvements in single cell epigenomic technologies 

In Chapters 2 and 3 of this dissertation, I mapped the state of activity for over one million 

cCREs in over 200 cell types in the four chambers of the adult heart and across the whole fetal and 



156 
 

adult human body. However, this work remains an initial and incomplete sampling of human 

tissues and organ systems, and permits a window into gene regulation only at concrete adult and 

fetal life stages. While I utilized tissue from anatomic sites corresponding directly to existing 

biosamples in large-scale databases (Carithers et al., 2015; Stranger et al., 2017), the size and 

diversity of adult human organ systems make it difficult to representatively sample them in their 

entirety. Additionally, the single cell ATAC-seq assay solely profiles chromatin accessibility in 

dissociated nuclei, and thus misses key orthogonal molecular information and spatial context for 

each cell. Future assays that incorporate gene expression, chromatin accessibility, histone 

modifications, DNA methylation, chromosomal conformation, TF binding, and spatial information 

in the same single-cell will greatly enhance our understanding of gene regulation in human cell 

types (Zhu et al., 2020) - leading to better body-wide maps of cCREs which can be employed 

through similar frameworks to those developed in this dissertation for the improved interpretation 

of noncoding complex disease variants. 
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4.4 Single cell epigenomic and transcriptomic analysis of human heart failure 

4.4.1 Introduction 

Cardiovascular diseases are the leading cause of morbidity and mortality worldwide 

(Benjamin et al., 2019), and comparison of the genes and cCREs that are differentially activated 

in diseased cardiac cell types has the potential to reveal disease mechanisms in individual heart 

cell types (Reilly and Bornfeldt, 2021). Heart failure (HF) in particular is a debilitating complex 

cardiovascular disease, with a median survival of fewer than 2 years from diagnosis, major impacts 

on quality of life for patients (Metra and Teerlink, 2017; Murphy et al., 2020), and an outsized 

financial burden on health care systems (Heidenreich et al., 2022). A hallmark of HF is the 

progressive remodeling and eventual malfunction of the left ventricle (LV), the cardiac chamber 

responsible for pumping oxygenated blood into circulation. Cellular modifications to the LV in 

LV remodeling include cardiomyocyte loss and progressive deposition of extracellular matrix by 

activated fibroblasts leading to cardiac fibrosis (Burchfield et al., 2013; Mann and Bristow, 2005). 

Due in part to the difficulty in regenerating damaged myocytes and in reversing LV remodeling, 

treatment options are currently limited and the optimal medial regimen for HF remains 

symptomatic therapy (McDonagh et al., 2021). Uncovering the molecular pathways underlying 

LV remodeling in HF, with the goal of identifying novel targets for new HF therapies, has thus 

been a major research focus for decades. Previous studies using bulk measurements of gene 

expression (Lowes et al., 2002; Margulies et al., 2005; Sweet et al., 2018; Tan et al., 2002) in 

healthy and failing heart tissue have established a molecular fingerprint for HF. However, these 

assays utilized heterogeneous myocardium as input material to produce population average 

measurements. 

By contrast, the human heart is composed of diverse cell types - each of which engages a 
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unique gene expression program (Hocker et al., 2021; Litviňuková et al., 2020; Tucker et al., 

2020). These gene expression programs are in turn governed by the action of highly-cell type 

specific noncoding DNA sequences called cis-regulatory elements (Carter and Zhao, 2020), which 

dictate the expression of distal genes by recruiting sequence specific transcription factors (TFs) 

(Shlyueva et al., 2014). Profiling of cCREs in bulk cardiac tissue in combination with next-

generation sequencing has enabled genome-wide discovery of candidate cis-regulatory elements 

(cCREs) in both healthy (Dickel et al., 2016; Gilsbach et al., 2014; Gilsbach et al., 2018; Spurrell 

et al., 2019; Tan et al., 2020) and failing (Spurrell et al., 2019; Tan et al., 2020) hearts at the tissue 

level. Single-cell omics technologies including combinatorial cellular barcoding-based sci-ATAC-

seq (Cusanovich et al., 2015) and droplet-based scRNA-seq (Zheng et al., 2017) have now enabled 

the profiling of the cardiac epigenome and transcriptome at cell type resolution without the need 

for marker-based purification of individual cell types (Hocker et al., 2021). Recently, single cell 

transcriptomic technologies have also been applied to reveal gene expression programs engaged 

by cardiac cell types in dilated cardiomyopathy (Koenig et al., 2021; Linna-Kuosmanen et al., 

2021), but we still lack information about the cell type-specific activities of cis-regulatory elements 

in human HF. 

In the following sections, I summarize preliminary findings from our application of single 

cell ATAC-seq (Cusanovich et al., 2015) and single cell RNA-seq to profile chromatin 

accessibility and gene expression in LV samples from 19 adult human donors with and without 

ischemic cardiomyopathy (hereafter referred to as HF). First, I describe our profiling of 157,091 

and 159,784 nuclei via sci-ATAC-seq and snRNA-seq, respectively, and organized these nuclei 

into 13 major cardiac cell types that are shared between the two modalities. I next describe our use 

of cell type-stratified differential testing to identify 11,949 differentially accessible (DA) cCREs 
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and 2,876 differentially expressed (DE) genes between cardiac cell types from healthy and failing 

hearts, which are enriched for biological pathways related to HF pathogenesis. I lastly summarize 

possible future directions of this research including the validation of HF-specific cCREs and target 

genes in in vitro models of cardiac cell types and the integration of epigenomic and transcriptomic 

data to predict cell type-resolved transcriptional regulators in heart failure. 

 

4.4.2 Preliminary Results 

In order to generate a cell atlas of chromatin accessibility and gene expression in healthy 

and diseased human hearts, we performed sciATAC-seq (Cusanovich et al., 2015; Preissl et al., 

2018) and snRNA-seq (Zheng et al., 2017) using primary myocardial tissue samples collected from 

the left ventricles of 9 healthy donors and 10 donors with ischemic cardiomyopathy (Figure 13A, 

Table S28). 
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Figure 13: Single-cell chromatin accessibility and transcriptomic analysis of healthy and failing 
hearts. A) Experimental design schematic. Sci-ATAC-seq and snRNA-seq were performed on nuclei 
isolated from the left ventricle of control donors (n = 9) or ischemic heart failure donors (n = 10). (B) 
Uniform manifold approximation and projection (UMAP) (Leland McInnes, 2018) and clustering analysis 
of sci-ATAC-seq data revealed nine major clusters. * = both assigned to endothelial cluster. Left grouping 
of endothelial cluster was identified as endocardial cells in a subclustering analysis. Adipocytes, 
granulocytes, and smooth muscle were also detected by subclustering analysis leading to a total of 13 cell 
types identified by sciATAC-seq. C) Uniform manifold approximation and projection (UMAP) (Leland 
McInnes, 2018) and clustering analysis of snRNA-seq data revealed 13 major clusters. Grn. = Granulocyte. 
Sm. ms. = smooth muscle. D-E) UMAP clustering of fibroblasts and cardiomyocytes from (B-C) 
respectively, colored by control or heart failure status of the donor from which nuclei were derived.   
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 Resulting sciATAC-seq libraries were sequenced to a median read duplication rate of 

69.8% (Table S29). After filtering out low quality nuclei and potential doublets (Wolock et al., 

2019), we finally obtained high quality open chromatin profiles for 157,091 nuclei, with a median 

of 7,061 unique open chromatin fragments per nucleus and an average transcription start site (TSS) 

enrichment score of 13.4 per nucleus (Figure S24). From single nucleus RNA-seq, after filtering 

out low quality nuclei, read contamination from highly-expressed cytoplasmic transcripts (Young 

and Behjati, 2020), and potential doublets (McGinnis et al., 2019), we obtained a total of 159,784 

nuclear transcriptomes, with a median of 3,827 unique molecular identifiers (UMIs) and 2,010 

genes detected per nucleus. We used SnapATAC (Fang et al., 2021) and Seurat (Stuart et al., 2019) 

to cluster nuclei based on chromatin accessibility and transcriptome profiles respectively. From 

sciATAC-seq data, we first identified 9 cardiac cell clusters, 4 of which were found to consist of 

multiple constituent cell types during a second round of clustering analysis (Figure 13B). From 

our transcriptomic datasets, we uncovered 23 cell groups, which we aggregated into 13 major 

clusters based on shared gene expression patterns (Figure 13C). 

To annotate the resulting cell clusters, we examined chromatin accessibility at the 

transcription start sites of lineage marker genes or expression levels of the same genes for sci-

ATAC-seq and scRNA-seq respectively. For instance, cardiac fibroblasts were annotated based on 

cluster-specific promoter accessibility and expression of DCN, and cardiomyocytes were 

annotated based on MYH7 as exemplified in chapter 2. Altogether, we annotated each of the 13 

corresponding cell clusters from sciATAC-seq and snRNA-seq with a cell type label (Figure 13B-

C). We next examined our clustering results for disease-specific effects, which revealed major HF-

specific differences in both chromatin accessibility and gene expression which were not explained 

by either donor or batch effects. HF-specific clustering differences were particularly pronounced 
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in cardiomyocytes and cardiac fibroblasts, which segregated within their respective clusters on the 

basis of HF vs. control status (Figure 1D-E). We next measured the proportion of nuclei 

comprising each cluster in HF and control LV samples. Consistent with previous reports, 

cardiomyocytes, cardiac fibroblasts, and immune cells showed disease-specific proportional 

differences according to HF status – with fewer cardiomyocytes, more cardiac fibroblasts, and 

more immune cells detected in failing left ventricles (Gilsbach et al., 2014; Gilsbach et al., 2018; 

Koenig et al., 2021) (Figure S25). 

To examine cCREs and genes for differential expression between healthy and failing 

cardiac cell types, we began by identifying a master list of accessible chromatin regions in each of 

the 13 cardiac cell types from sciATAC-seq. We first aggregated chromatin accessibility profiles 

from all nuclei comprising each cell cluster then applied and a peak calling procedure optimized 

for single cell data (Zhang et al., 2021) to each cluster. We finally merged these accessible 

chromatin regions to obtain a list of 500,613 non-overlapping cCREs from both healthy and 

diseased cardiac cell types (Table S30). To benchmark these cCREs against previous catalogues, 

we compared our list with cCREs annotated by H3K27ac in healthy and failing human LVs from 

two previous studies (Spurrell et al., 2019; Tan et al., 2020). Our list of 500,613 cCREs captured 

>99% and 97.6% of cCREs annotated in bulk control and HF LVs by (Spurrell et al., 2019) and 

(Tan et al., 2020) respectively, and contained 336,109 additional cCREs that were not annotated 

by either bulk study (Figure S26). Compared to our previous atlas of cCREs defined by sci-ATAC-

seq from healthy heart tissues from all four cardiac chambers (Hocker et al., 2021), our list of 

500,613 HF and control LV cCREs captured 94.9% of previous elements, and contained an 

additional 277,697 previously unannotated elements (Figure S26). We finally compared our union 

of cCREs to the VISTA database of functionally validated tissue-specific mammalian enhancers 
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(Visel et al., 2007). Our list of cardiac cCREs captured was enriched for heart-specific enhancers, 

capturing 134 out of 141 (95.0%) validated cardiac enhancers compared to only 507 out of 900 

(56.3%) validated non-heart enhancers (Figure S26).  

We next tested for HF-specific genes and cCREs in each cardiac cell type. We first 

combined open chromatin fragments from sciATAC-seq or transcriptomic reads from snRNA-seq 

from each cell type into biological replicates, and used a generalized linear model controlling for 

age, BMI, and biological sex to test for significant differences in chromatin accessibility or gene 

expression between HF and control via the edgeR software package (Robinson et al., 2010) (Figure 

14A-D). 

  



164 
 

 
Figure 14: Differential chromatin accessibility and gene expression in healthy and failing cardiac cell 
types. A) Stacked volcano plots showing differentially accessible (DA) candidate cis-regulatory elements 
(cCREs) in each cell type between control (left) and heart failure left ventricles (right). Each dot represents 
a cCRE and the color indicates the cell type in which it was tested. cCREs with log2(fold change) > 1 and 
FDR < 0.05 after Benjamini-Hochberg correction (outside the shaded area) were considered as DA. (B) 
Number of DA cCREs between between control and heart failure left ventricles by cell type. C) Stacked 
volcano plot showing differentially expressed (DE) genes in each cell type between control (left) and heart 
failure left ventricles (right). Each dot represents a gene and the color indicates the cell type in which it was 
tested. Genes with log2(fold change) > 1 and FDR < 0.05 after Benjamini-Hochberg correction (outside the 
shaded area) were considered as DE. (D) Number of DE genes between control and heart failure left 
ventricles by cell type. 
  



165 
 

 This strategy notably conserves information about biological replicates, a key feature for 

statistical tests utilizing single cell data, and demonstrated improved accuracy and specificity in a 

recent survey of single cell differential expression testing methods (Squair et al., 2021). In total, 

we detected 11,943 differentially accessible (DA) cCREs from sci-ATAC-seq and 2,876 

differentially expressed (DE) genes from scRNA-seq between healthy and diseased cardiac cell 

types (Figure 14A-D). To benchmark this result, we repeated the differential accessibility analysis 

but randomly shuffled disease status labels for each biological replicate across three independent 

iterations. Randomly assigning disease statuses led to an average of only 64 DA cCREs detected, 

or a loss of >99% significant DA cCREs (Figure S27). 

These initial results suggested promising disease-related differences detected between 

healthy and failing cardiac cell types. For example, HF-specific cCREs in cardiac fibroblasts 

neighbored genes involved in extracellular matrix reorganization, a defining feature of cardiac 

fibrosis and heart remodeling in HF, including genes such as COL1A1 and COL3A1 which encode 

protein components of type I and type III collagen isoforms respectively (Figure S28). Further, 

these DA cCREs were also enriched for the binding sites of transcription factors including NFAT, 

which functions downstream of calcineurin activation to drive myofibroblast differentiation, an 

important step leading to LV remodeling, both in vivo and in vitro (Berry et al., 2011; Davis et al., 

2012; Lighthouse and Small, 2016; Molkentin et al., 1998; Wilkins and Molkentin, 2004).  

 

4.4.3 Preliminary conclusions 

There is currently no cure for heart failure, but investigation of the specific regulatory 

pathways engaged by individual cardiac cell types in the failing human heart could lead to novel 

cell type specific therapies (Reilly and Bornfeldt, 2021; Weldy and Ashley, 2021). In a preliminary 
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analysis of gene expression and chromatin accessibility in control and failing cardiac cell types, 

we identified thousands of differentially accessible cCREs and differentially expressed genes, 

providing a window in to the regulation of gene expression in failing human hearts at cell type 

resolution. The current study is still limited in several ways. Firstly, we profiled only the left 

ventricle from donors with and without ischemic heart failure. While the left ventricle is the site 

of the most severe and consequential pathology in left sided heart failure, it remains to be evaluated 

whether the differences detected here are chamber specific or global throughout the failing heart. 

Future studies with larger cohorts, additional etiologies of heart failure, and additional chambers 

will reveal a more comprehensive view of differences between healthy and diseased cardiac cell 

types in human heart failure. These limitations notwithstanding, I envision several exciting 

strategies to capitalize on these preliminary findings which I summarize below. 

 

4.4.4 Future directions 

4.4.4.1 Functional validation of HF-specific cCREs in cardiac fibroblasts 

Cardiac fibroblasts remodel extensively in the failing heart leading to cardiac fibrosis and 

contributing to LV remodeling in end stage disease (Travers et al., 2016), and targeting myocardial 

fibrosis is an appealing possible avenue for future HF treatments (Aghajanian et al., 2019; Fan and 

Guan, 2016). We detected more HF-associated differences in chromatin accessibility in cardiac 

fibroblasts than any other cell type, along with hundreds of differentially expressed genes. 

However, because these differences may be a result of disease induced changes rather than causal 

regulators of maladaptive phenotypes (Porcu et al., 2021), functional validation of their roles in 

shaping HF-associated phenotypes in cardiac fibroblasts is a critical next step in their evaluation.  

One possible method to link the preliminary findings described above to measurable 
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disease-associated phenotypes would be to apply high throughput CRISPRi screening methods 

(Chen et al., 2021) in in vitro model systems of human cardiac fibroblasts. One could begin by 

stimulating primary or iPSC-derived human cardiac fibroblasts (Bao et al., 2016; Whitehead et al., 

2022; Zhang et al., 2019a) with recombinant human TGFβ to induce fibroblast activation and 

approximate chromatin accessibility and gene expression changes that occur in the failing heart 

(Alexanian et al., 2021). One could then perform Bulk ATAC-seq and RNA-seq on stimulated and 

unstimulated in vitro cardiac fibroblasts and compare the resulting data to control and HF 

fibroblasts from sci-ATAC-seq to assess 1) whether HF-specific chromatin accessibility and gene 

expression patterns can be induced in vitro and 2) the optimal in vitro fibroblast system, whether 

primary or iPSC-derived, to mimic in vivo HF-associated chromatin accessibility and gene 

expression changes.  

Proceeding with these in vitro cardiac fibroblasts, one could apply recently-published high 

throughput CRISPR interference (CRISPRi) screening methods (Chen et al., 2021) to reveal pro-

activation HF-specific cardiac fibroblast genes and enhancers. Briefly, one could design a CRISPR 

guide RNA library of redundant probes targeting 1) HF-specific cardiac fibroblast cCREs 2) HF-

specific cardiac fibroblast gene promoters 3) the promoters of pro-growth genes such as MYC as a 

positive control, and 4) non-targeting controls. One could then transfect this library into iPSC-

derived or primary CFs, activate them with TGFβ, and following several population doublings 

with CRISPRi, measure the redundant probes that are no longer present in activated fibroblast 

populations to reveal pro-growth enhancers. With cell type-resolved HF-specific, pro-growth 

enhancers in cardiac fibroblasts, one could link these enhancers to target genes using Activity by 

Contact (Fulco et al., 2019) with human left ventricle promoter capture HiC data (Jung et al., 2019) 

or measurements of co-accessibility from sci-ATAC-seq data (Pliner et al., 2018) as discussed in 
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Chapters 2 and 3. Deletion of HF-specific, pro-growth cCREs in in vitro fibroblasts followed by 

qPCR of target gene activity could validate accuracy of these predictions, as illustrated in Chapter 

2. With target gene(s) of HF-specific pro-growth enhancers established, one could and perturb 

these targets using RNA interference in stimulated and unstimulated in vitro cardiac fibroblasts to 

measure whether they influence cardiac fibrosis related phenotypes such as the ability to induce 

contraction of a collagen gel (Alexanian et al., 2021).  

These experiments illustrate one possible avenue to explore the functional mechanisms of 

the HF-specific cCREs we identified and link them to measurable phenotypes associated with 

human heart failure. They may also be applicable to other cell types and HF-associated phenotypes 

that can be modeled using primary cells or iPSC derived lines, such as cardiomyocytes and 

endothelial cells (Jang et al., 2019; Karakikes et al., 2015). 

 

4.4.4.2 Transcrciptional regulators of HF-specific gene expression programs 

A major advantage of having both differential chromatin accessibility and gene expression 

data together, instead of either modality separately, is that these data can be integrated to reveal 

transcriptional regulators of cardioprotective and/or maladaptive gene expression programs in 

specific cardiac cell types. For instance, using single cell RNA-seq data, one could subset all 

differentially expressed genes to only the transcriptional regulators in the human genome (Lambert 

et al., 2018) to suggest TFs with increased and decreased activity in HF for single cardiac cell 

types. Separately, using single cell ATAC-seq data, one could extract DA cCREs which contain a 

binding site for differentially expressed TFs (Grant et al., 2011). Using Activity by Contact (Fulco 

et al., 2019) or measurements of co-accessibility from sci-ATAC-seq data (Pliner et al., 2018) to 

link DA cCREs containing binding sites for these DE TFs genome wide, one could analyze the list 
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of target genes for biological processes and ontologies related to cardioprotective or maladaptive 

processes in single cell types. Transitioning to iPSC derived models of cardiac cell types such as 

cardiomyocytes, cardiac fibroblasts, or endothelial cells, one could perturb these TFs using RNA 

interference and perform RNA-seq to quantitate changes in predicted target gene expression, or 

functional assays such as collagen contraction following TGFβ stimulation in cardiac fibroblasts 

to assess the influence of these regulators on HF-associated phenotypes in the distinct cell types 

of the heart.  

 

4.4.4.3 Intercellular communication in healthy and failing cardiac cell types 

While the two strategies described above could yield additional insights into regulators of 

HF-associated phenotypes in individual cardiac cell types, they do not consider cellular 

communication between these cell types. Using a database of interactions among cellular receptors 

and ligands (Jin et al., 2021) and the single cell transcriptomic data from healthy and failing hearts 

we generated, one could examine differential intercellular communication networks between 

healthy and diseased cell types to peer into differential biological processes occurring between cell 

types in the failing heart. 

 

4.4.4.4 Deciphering fetalization of gene expression and cCRE utilization in HF 

Previous studies have described a re-activation of the fetal of transcriptome (D’Antonio et 

al., 2021; Dirkx et al., 2013; Rajabi et al., 2007; Taegtmeyer et al., 2010) and enhancer architecture 

(Spurrell et al., 2019) in human heart failure. Using the single cell transcriptomic and epigenomic 

data we generated from healthy and failing hearts, particularly in combination with recently-

published scRNA and sci-ATAC-seq datasets from fetal human heart tissues (Asp et al., 2019; 
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Domcke et al., 2020), could help to shed light onto the distinct cell types and cell type 

compositional shifts underlying these observations. 

 

4.4.4.5 Deciphering fetalization of gene expression and cCRE utilization in HF 

Chapters 2 and 3 of this dissertation focused on deciphering the association of noncoding 

risk variants with cell type-resolved cCREs from healthy human tissues. However, it remains to 

be determined whether these enrichments change in cell types from diseased human tissues. 

Examination of whether common variants associated with cardiovascular diseases and phenotypes 

– including heart failure (Arvanitis et al., 2020; Shah et al., 2020), hypertrophic cardiomyopathy 

(Harper et al., 2021), and cardiac morphologic measurements (Tadros et al., 2021) – are 

differentially enriched in cCREs from healthy vs. failing heart cell types could reveal novel 

associations of these complex traits with diseased cell types, or define specific mechanisms by 

which common variants function through cCREs that remodel in cardiac disease. 
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4.4.5 Supplemental Figures 

 

Supplemental Figure 24: Quality control for sciATAC-seq datasets. A) Upper bar plot shows the 
number of nuclei passing quality control for each dataset. Nuclei were first filtered by stringent quality 
control criteria (TSS enrichment greater than 7 and number of mapped fragments greater than 1000 per 
nucleus) and then subjected to doublet removal using scrublet (Wolock et al., 2019).  B-D) violin plots 
show the distribution of fragments, read duplication rate, and mitochondrially-aligning reads per nucleus 
respectively stratified by dataset. 
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Supplemental Figure 25: Comparison of cell type composition in healthy and failing left ventricles. 
Dot plots displaying percent of total nuclei per sample comprising each cell type, based on the aggregated 
sciATAC-seq dataset. Each data point represents one human left ventricle dataset. Lines = mean.  Error 
bars = standard deviation. Statistical significance was evaluated via Mann-Whitney-U test, * = p<0.05, ** 
p<0.01, *** p<0.001. 
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Supplemental Figure 26: Overlap of cCREs from healthy and diseased left ventricle with prior 
catalogues. A) Overlap of the union of 500,613 healthy and diseased left ventricle cCREs identified from 
sciATAC-seq with annotated cCREs in the human genome from the SCREEN database (Moore et al., 
2020). (B) Overlap of union with healthy heart cCREs defined by sci-ATAC-seq in (Hocker et al., 2021). 
(C-D) Overlap of union with catalogue of healthy and diseased heart cCREs defined by bulk H3K27ac 
ChIP-seq in (Spurrell et al., 2019) and (Tan et al., 2020) respectively. Arrows pointing from Venn diagram 
indicate the number of overlapping (by at least one base pair) and non-overlapping genomic regions. (E) 
Overlap of union with murine in vivo LacZ reporter assay-validated heart enhancers (left) and non-heart 
enhancers (right) from the VISTA enhancer database (Visel et al., 2007). Venn diagrams are not drawn to 
scale. 
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Supplemental Figure 27: Random assignment of disease status in differential accessibility test. (Left) 
Disease or control status was randomly shuffled among the 19 donors over three independent iterations, 
and the differentially accessibility test repeated. Top volcano plot shows result of true DA test (see Figure 
14). Bottom volcano plot shows a representative result following random HF status assignment. (Right) 
Table shows number of DA cCREs detected in each cell type (Log2FC > 1, FDR > 0.05) for the true DA 
test as compared to three independent iterations of random HF status assignment. 
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Supplemental Figure 28: Ontologies and motif enrichments for HF-specific cCREs in fibroblasts. A) 
Differentially accessible cCREs detected between HF and control cardiac cell types (Log2FC > 1, FDR > 
0.05; see Figure 14). HF-specific cCREs in cardiac fibroblasts are highlighted and were used as input for 
analyses represented in the following panels. B) Select significant GREAT biological process ontology 
terms for HF-specific cCREs in cardiac fibroblasts, ranked by significance. Arrow indicates genes 
neighboring HF-specific cCREs in cardiac fibroblasts, underlying the “extracellular matrix organization” 
enrichment. C) De novo transcription factor motif enrichment (Heinz et al., 2010) in HF-specific cCREs 
from cardiac fibroblasts. Statistical test for motif enrichment: hypergeometric test. P-values were not 
corrected for multiple testing. 
 
 
  



176 
 

4.4.6 Supplemental Tables 

Supplemental Table 28: Clinical metadata for healthy and diseased heart donors. 

Supplemental Table 29: Quality control data for each sciATAC-seq dataset. 

Supplemental Table 30: Union of cCREs in healthy and failing cardiac cell types. 
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4.5 Conclusion 

With this dissertation, I have shown the utility of single cell epigenomic analysis to reveal 

gene regulatory programs in distinct human cell types, decipher the association of cell type-

resolved cCREs with noncoding risk variants from GWAS, and reveal testable hypothesis about 

the function of specific noncoding risk variants. It is my sincere hope that the datasets and 

frameworks outlined here provide a foundation for the discovery of new target genes and 

treatments for complex disease, and ultimately the improvement of human health. 
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