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ABSTRACT OF THE THESIS

Reading Comprehension Analysis and Prediction Based on EEG and Eye-Tracking Techniques

by

Qin Li

Master of Science in Bioengineering

University of California San Diego, 2021

Professor Tzyy-Ping Jung, Chair
Professor Gert Cauwenberghs, Co-Chair

Research in reading comprehension traditionally relied on the experimental setting of

word-by-word presentation which eventually revealed many neural biomarkers as well as estab-

lishing the basis of modern reading research. Since the development of brain-computer techniques

and computational methods in the past decades, it has become possible to study reading com-

prehension in natural settings. This study used a variety of advanced technologies to analyze a

dataset collected by the ZuCo group regarding reading comprehension. With natural language

processing tools, we extracted the words essential for understanding sentences, and identified

eye-tracking patterns that relate to these words. Using the EEG time series and frequency series,

xi



we also looked at neural patterns associated with those words and tried to build up a statistical

model and neural network model that predicted the linguistic patterns. Consequently, the study

is likely to provide new insights into future cognitive linguistics and brain-computer interaction

research, which may help advance reading-aid technologies.
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Chapter 1

Introduction

Reading comprehension has been studied at various levels in several fields, including vi-

sion, attention, neural correlates, and lexical semantics. Because of limitations in both techniques

and recording equipment, prior studies often used word-by-word presentations, which required

the participants to maintain their gaze on a fixed space of the screen [1]. Many neurobiomarkers

associated with reading comprehension were discovered in the 1980s, such as P300 and N400

[2]. The word-to-text integration theory attempted to explain reading comprehension through the

development of a mental model in the memory space [3, 4], among many studies that examined

the process of integrating single words into a complete sentence in the neural system. They

assumed that every word in a sentence is used to update the working memory, which creates

mental representations of words [4]. As a reader browsed through all the words, these represen-

tation units interacted and collaborated to form a mental model of the sentence [4]. Perfetti’s

experiment further confirmed this theory, indicating that the event-related potential (ERP), N400,

occurs when the explicit hyperlink of one word is directly linked to the word in the preceding

text [3]. The correlation between N400 and semantic information processing was also evident in

Kutas’ research [1]. Later studies further indicated a significant association between P300 and

the updates of information in the working memory during reading [5]. While these studies with
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word-by-word presentations provided much information concerning reading comprehension, their

applications were limited due to restrictions in eye movements and reading styles.

The development of computation algorithms and brain-computer interface technologies,

electroencephalography (EEG), eye-tracking, signal processing algorithms, and natural language

processing (NLP) techniques enabled reading comprehension studies in a natural setting. In an

experiment setting like this, the subjects were free to move their eyes freely over the sentences and

paragraphs on the screen and follow their own reading style [6]. Eye motions and EEG signals

were simultaneously recorded, allowing us to track eye fixation upon each word and extract neural

signals corresponding to them. By integrating eye-tracking and EEG technologies, it has become

possible to study the natural reading process and develop a real-time reading monitor and study

aid. NLP tools allowed for greater flexibility in reading text design and analysis, which made it

possible to translate everyday reading materials into computer-interpretable information.

Due to the difficulty of gathering data during the pandemic, the Zurich Cognitive Language

Processing Corpus (ZuCo) dataset [6] was used in this study. Natural language processing tools,

including WordNet [7], Global Vector [8], and fastText [9] to extract the significant words in

sentence comprehension. Then, we tried to extract the eye-tracking and EEG biomarkers at

word-level associated with reading comprehension.

1.1 ZuCo Dataset

The Zurich Cognitive Language Processing Corpus dataset collects the eye motions, and

EEG signals during the natural reading settings [6]. A 128-channel EEG Geodesic Hydrocel

system collected the EEG and an infrared video-based eye tracking device captured the eye

position with [6]. The participants were twelve healthy adults aged 22 to 54 with their first

language as English [6]. All participants approved of their participation and the disclosure of the

collected data from the experiments [6] and University of Zurich Ethics Commission approved
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the study [6]. Three reading tasks were divided into two sessions of 2-3 hours each at the same

time of day [6].

For our study, the task-specific reading data was selected from the three reading tasks.

During the entire task-specific reading, 407 sentences with 8284 words were presented. The 407

sentences were arranged from top to bottom in blocks that shared the same meaning and the

sequence is shown in Table 1.1. Before every block began, the screen would display the definition

of a keyword and asked the subject to determine whether the following sentence contains the

relationship with the keyword and use the keyboard to enter an answer “[1]=yes” or “[2]=no” [6].

Each block would display three example sentences at the beginning ahead for practice [6]. During

the practice, the eye-tracker was calibrated [6]. The sentences were displayed in the middle of the

screen, with the question at the right bottom corner [6].

Table 1.1: The number of sentences per keyword.

keyword # Sentences # Controls
award 38 7

education 37 8
employer 38 9
founder 34 7
job title 38 8

nationality 38 8
political affiliation 36 8

visited 38 10
wife 38 7

1.2 Natural Language Processing in this Project

In this project, we started our analysis by analyzing the texts displayed to the subjects. In

order to transform the texts into computationally meaningful information, we studied concepts

in linguistics and applied natural language processing tools. In this study, we first identified the

words that were significant in interpreting the sentence meaning, as well as the words that were
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least relevant. We used stop words as our first identification method. Stop words refer to the most

common words in a language, which are usually filtered out during the natural language process

[10]. Stop words in English include “he”, “I”, “that”, and “run,” which are very common.

Our next step was to explore the words that are significance in the successful interpretation

of the relationship between the sentence and the keyword. We used two major categories of

NLP tools, the WordNet lexical databases and word vectorization representation models. Using

those models, we calculated the semantic similarity between the words, since it is considered a

significant measurement of the relationship between words [8].

1.2.1 WordNet Lexical Databases

A lexical database, WordNet, is used for computational analysis and machine learning,

where English words are linked together based on their semantic meaning and organized into

synonym sets [7]. An example of how WordNet taxonomy is organized is given in Figure 1.1. As

the figure note illustrates, each taxonomy will have a root word, node words, and paths connecting

the words. Many methods have been developed to interpret word relationships from this dataset.

A quantifiable characteristic is semantic similarity, which indicates how similar two words are

within the WordNet. The current method of calculating semantic similarity is either based on the

path distance between two English words [11] or on the information content between two words

[12, 13].

1.2.2 Word Vectorization Models

Recent advances in computing power and technologies have enabled neural networks to

establish vector representations for English words [8, 9]. The word vector representations may

differ according to the algorithms and training datasets, so when applying the models, the model

bias should be carefully evaluated.
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Figure 1.1: An example of WordNet connections: Words are mapped and linked by their
conceptual-semantic and lexical relations [7]. The root of this taxonomy is “Entity”. In this
figure, each word represents a node, connected by a path. As an example “Politician” is the least
common super-concept of “Eparch” and “Mayor”.

The Global Vector (GloVe) model was developed by Pennington et al. in 2014 at Stanford

University [8]. The vector representation was obtained with an unsupervised learning algorithm

trained on large linguistic datasets, such as Wikipedia [8]. Words were mapped into the 300-

dimensional vector space, based on the global word-word co-occurrence statistics [8]. By

establishing vector representations of words, the distance between words will be determined by

their semantic similarity [8].

FastText is another word-vector model developed by Facebook’s AI Research Lab based

on the studies of Bojanowski et al. [9], and Joulin et al. [14]. The algorithms from fastText

enable users to apply supervised or unsupervised learning to obtain word vector representations.

Both models have pre-trained word vector representations available online, so we could use these

representations to extract the semantic relationships between words.

5



Chapter 2

Word-Level Semantic Analysis and

Eye-Fixation Biomarkers

2.1 Introduction

In ZuCo’s experiment, the subjects were asked to determine whether the sentences contain

a relationship with the keyword in the question [6]. By ZuCo, 82.3% of the sentences contained

the relationship, and the answer correctness rate was above 90% on average [6]. As a result, it was

very difficult to study the cases of comprehension versus miscomprehension of the relationship.

As an alternative, we would like to determine the eye-tracking and EEG features associated with

detecting the relationship during sentence reading.

In the first step, we would try to identify the words that were significant in sentence

comprehension. We assumed that words that are semantically related to the question are those

which are significant in a correct sentence comprehension. Based on this assumption, we

calculated the semantic similarity between the words in the each and the keyword in the question

using NLP tools. The calculated semantic similarity is used to represent the semantic significance

of the words in comprehending the sentence. There were seven different methods used to calculate
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similarity scores, and we compared their selection of high similarity words. We then identified

the words with the higher similarity scores.

Considering the bias in the datasets and the divergence of algorithms, we needed to find a

common ground among the methods. In this case, we defined a concept, similarity level (SL),

which is how many methods agreed that a word has a similarity score of one standard deviation

above the mean. The statistics of eye-fixation data were then compared to determine the threshold

of SL to pick up the high-similarity words shared by the majority. It was tentatively planned that

if four or more methods independently indicated that a word had a similarity score of one standard

deviation above the mean, it would be considered a high-similarity word. With this standard, we

obtained a group of high-similarity words, and the rest will be considered less relevant to the

keyword.

In addition, we examined the statistics of eye-fixation features for words with different

similarity scores. Using the eye-fixation results, we can then sort the words into high-similarity

and low-similarity groups.

2.2 Methods

2.2.1 WordNet-Based Word Similarity Calculations

A path-based method to measure semantic similarity was proposed by Wu and Palmer

in 1994 and named Wu-Palmer similarity [11]. The Wu-Palmer method represents a word as

a concept, C. Since a word could have multiple meanings, the meanings would be assigned to

different conceptual domains that can be interpreted as different taxonomies. The conceptual

similarity between any two concepts, C1 and C2 can be expressed as follows [11]:

SimWP(C1,C2) =
2N3

N1 +N2 +2N3
(2.1)
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In this equation, we introduce a third concept, C3, which is the least common super-concept of C1

and C2. In this equation, N1 is the path length in terms of the number of nodes (or words) between

C1 and C3, N2 is the path length between C2 and C3, N3 is the path length from C3 to root. For

words with multiple meanings, the semantic similarity can be calculated as follows [11]:

WordSim(W1,W2) = ∑
i

αi SimWP(Ci,1,Ci,2) (2.2)

where W1 and W2 are two words and αi is the weight for each conceptual domain.

Lin, in 1998, developed a method to calculate word similarity [13] based on Resnik’s

similarity measure [12]. The Lin similarity is determined by the information contents of each

word. For two words, W1 and W2, the calculation can be expressed as [13]:

SimLin(W1,W2) =
2IC(W1,W2)

IC(W1)+ IC(W2)
(2.3)

IC(W ) =− ∑
f∈F(W )

logP( f ) (2.4)

IC(W1,W2) =− ∑
f∈F(W1)

⋂
f∈F(W2)

logP( f ) (2.5)

IC refers to the information content, which describes the amount of information in a set of

features for each word. F(W ) represents the set of features for one word, which are defined and

summarized into a feature vector by this method. The Lin similarity score would increase if the

feature sets overlapped more. We would expect a Lin similarity of 1 if the features of the two

words match completely.
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2.2.2 Cosine Similarity

To estimate the similarity between any two vectors in a vectorized system, we can use

cosine similarity:

Sim(V1,V2) = cos(θ) =
V1V2
‖V1‖‖V2‖

(2.6)

The vector representations of two words are V1 and V2. θ represents the angle between the two

vectors. The similarity score will increase if two vectors are closer in the vector space. The cosine

similarity between two vector representations would equal 1 when they completely overlapped.

In this study, the Global Vector (GloVe) [8] and fastText [9] algorithms are applied to

extract the similarity between each word and the keyword in the question. The pre-trained

GloVe model on the Common Crawl dataset was available from https://nlp.stanford.edu/

projects/glove/. The fastText models are pre-trained on the wiki-news dataset, and Com-

mon Crawl dataset with or without considering subword information [15]. The pre-trained

word vector representations of fastText are available from https://fasttext.cc/docs/en/

english-vectors.html. These learned vector representations were used to calculate the cosine

similarity between each word in the sentence and the keyword in the question.

2.2.3 Evaluation of Word Similarity

For each word in the sentence, similarity scores were calculated based on seven methods:

1) Wu-Palmer similarity based on WordNet, 2) Lin similarity based on WordNet, 3) cosine

similarity based on GloVe pre-trained on Common Crawl, 4-5) cosine similarity based on fastText

pre-trained on wiki-news with or without subword information, and 6-7) cosine similarity based

on fastText pre-trained on Common Crawl databases with or without subword information. The

seven calculation methods were compared in terms of their selection of high-similarity words. A

comparison of the methods was made and we attempted to find the high-similarity words that

they commonly agreed on.
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Considering the datasets’ biases and the algorithms’ divergence, we needed to find the

common space among all the methods in the word that they found similar with the question

keyword. In this case, we defined a concept, similarity level (SL), which is how many methods

agreed that a word has a similarity score of one standard deviation above the mean. A threshold

was set up to pick up the high-similarity words that most methods agreed. The tentative plan

was that if more than four methods independently indicated that a word has a similarity score of

one standard deviation above the mean, it is considered a high-similarity word. Based on this

standard, we obtained a group of high-similarity words, and the rest will be considered irrelevant

to the keyword.

2.2.4 Eye-Tracking Data Preprocessing

The saccades were detected by measuring the velocity and acceleration of the eye move-

ments [16]. The acceleration threshold was set at 8000°/s2, velocity threshold at 30°/s, and

deflection threshold at 0.1°[6]. The periods between saccades corresponded to the fixations [16].

The eye-fixations with a duration below 100 ms were discarded since they are less likely to

reveal reading-relevant information [17]. The eye-fixations were recorded as two-dimensional

coordinates, which were then compared to the word boundaries to determine which word the eyes

stared upon [6].

2.3 Results

Among the 8284 words, each method found five hundred to ten hundred high-similarity

words, summarized in Table 2.1. Across each two methods, 20% to 89% of high-similarity words

are shared. For the methods based on word vectorization models, 491 to 722 high-similarity

words can be shared with a second method. Between the two WordNet-based methods, 410 words

worth of high-similarity were shared. The vector-based methods and the WordNet methods shared

10



Table 2.1: The number of high-similarity words found by each method (in gray) and shared by
each two methods (others).

#Words with a
high similarity score
shared per method

fastText
wiki

fastText
crawl

fastText
wiki

subword

fastText
crawl

subword

GloVe
wiki

Wu-
Palmer Lin

fastText wiki 663 — — — — — —
fastText crawl 512 584 — — — — —

fastText wiki subword 589 518 1003 — — — —
fastText crawl subword 568 531 722 813 — — —

GloVe score 506 491 612 625 963 — —
Wu-Palmer 286 234 274 280 251 919 —

Lin 207 166 200 195 199 410 594

Table 2.2: For each similarity level, the mean and standard deviation of each characteristic are
displayed in the table.

Counts #Stop
Words

Word
Length

Word
Length

(no SWs)
#Fix Prob.

≥ 1 Fix t1 (sec) t2 (sec) t3 (sec)

SL=0 6092 2374 4.63±2.68 5.91±2.63 0.70±0.55 0.46±0.27 224±88 234±102 249±116
SL=1 1045 397 4.79±2.47 6.16±2.10 0.73±0.50 0.50±0.26 223±86 231±106 243±107
SL=2 395 121 5.40±2.74 6.64±2.38 0.76±0.48 0.52±0.26 223±87 227±93 252±114
SL=3 168 95 4.77±2.45 6.96±2.30 0.69±0.51 0.47±0.26 225±86 239±99 256±119
SL=4 99 1 7.42±2.64 7.46±2.63 1.17±0.58 0.69±0.21 228±82 236±108 258±126
SL=5 244 1 7.68±2.19 7.70±2.17 1.12±0.55 0.70±0.22 229±92 234±106 248±113
SL=6 103 0 6.70±1.72 6.70±1.72 1.11±0.53 0.66±0.19 225±79 218±84 224±68
SL=7 138 1 6.22±2.01 6.24±2.00 1.04±0.48 0.67±0.20 231±90 234±96 249±113

166 to 286 high similarity words.

Table 2.2 displayed the statistics for each similarity level. The majority of words (n=6092)

had SL= 0, and very few words (n=138) had SL= 7. There were 1045 words with SL= 1, which

is the next largest set.

We then counted the stop words for each score calculation. Each method assigned a high

similarity score to 20 to 306 stop words (mean=134, std= 120). 1 to 103 stop words were shared

by two methods or more. The majority of stop words in the sentences had SL≤ 3. Each set of

SL≤ 3 had 30%−57% words that were stop words. There were no or one stop words in every

set of SL≥ 4. Before and after removing the stop words, different word lengths were observed

across the SLs. For SL≤ 5, we can observe an increase trend in the average word length. We will
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Figure 2.1: Histogram of the counts of eye-fixations for each similarity level. A) and c) are
for the number of fixations per word. B) and D) are for the probability of getting one or more
eye-fixation.

also discuss the statistics for the eye-fixations and durations in the following figures.

In Figure 2.1, we plotted the distribution of eye-fixation numbers and the probability

of eye-fixations, grouped by the SL. Table 2.1 contained the mean and standard deviations of

these distributions. Figure 2.1a) showed that the eye-fixations on a word with an SL of ≤ 3 were

skewed toward the left. Averaged across all words (n=7700) of the four SL groups, the mean was

0.70, and the standard deviation was 0.54. Figure 2.1b) showed that the probability of at least one

eye-fixation on a word with an SL ≤ 3 was spreading along the axis. Figure 2.1c) showed that the

number of eye-fixations on a word with an SL ≥ 4 was nearly a normal distribution. For the four

groups, the mean was 1.10, and the standard deviation was 0.54 across all words (n=584).
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Table 2.3: P-values for comparing two similarity levels in their numbers of eye-fixations per
word. Red highlights indicate those below the threshold (α = 0.01

28 ).

SL=0 SL=1 SL=2 SL=3 SL=4 SL=5 SL=6 SL=7
SL=0 1.00E+00 — — — — — — —
SL=1 4.91E-02 1.00E+00 — — — — — —
SL=2 1.20E-02 2.93E-01 1.00E+00 — — — — —
SL=3 9.83E-01 4.21E-01 1.66E-01 1.00E+00 — — — —
SL=4 2.24E-12 6.20E-11 2.01E-09 2.66E-10 1.00E+00 — — —
SL=5 1.37E-26 7.98E-22 1.83E-16 7.48E-15 5.24E-01 1.00E+00 — —
SL=6 5.44E-12 2.45E-10 1.29E-08 1.96E-09 4.54E-01 8.06E-01 1.00E+00 —
SL=7 1.48E-13 5.27E-11 2.02E-08 6.19E-09 7.02E-02 1.10E-01 2.87E-01 1.00E+00

Table 2.4: P-values for comparing two similarity levels in their probability to get one fixation or
more per word. Red highlights indicate those below the threshold (α = 0.01

28 ).

SL=0 SL=1 SL=2 SL=3 SL=4 SL=5 SL=6 SL=7
SL=0 1.00E+00 — — — — — — —
SL=1 1.96E-05 1.00E+00 — — — — — —
SL=2 9.00E-06 1.43E-01 1.00E+00 — — — — —
SL=3 6.63E-01 1.91E-01 3.48E-02 1.00E+00 — — — —
SL=4 3.84E-19 1.30E-14 4.80E-11 4.89E-13 1.00E+00 — — —
SL=5 2.11E-42 8.50E-30 4.25E-19 4.81E-18 8.00E-01 1.00E+00 — —
SL=6 4.16E-17 4.90E-12 2.17E-08 1.78E-10 2.05E-01 7.74E-02 1.00E+00 —
SL=7 4.39E-22 2.17E-15 1.98E-10 3.63E-12 3.13E-01 1.34E-01 7.43E-01 1.00E+00

Table 2.3 indicated that the number of eye-fixations on a word with any SL ≤ 3 was

statistically different from that of any SL ≥ 4. Also, any SL ≤ 3 did not statistically differ from

each other in terms of the number of eye-fixations on a word. So did all SLs ≥ 4. Table 2.4

indicated a similar conclusion that the probability of at least one eye-fixation on a word with any

SL ≤ 3 was statistically different from the words with any SL ≥ 4. Both SL = 1 and SL = 2 had

a statistically significant difference from SL= 0.

We then checked the statistics of the eye-fixation duration and plotted the distribution in

Figures2.2 a) and c). The shape of all the similarity levels looked similar. According to Table 2.5,

no statistical significance existed across any two similarity levels. Considering the difference in

the reading speed per subject, we plotted the distribution normalized to the average first-fixation

duration for each subject in Figures 2.2 b) and d). The distribution was more centralized, and

Table 2.6 indicated that SL= 5 was statistically different from SL= {0,1,2}. By performing a
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Figure 2.2: Histogram of the duration of eye-fixation for each similarity level. A) and c) are for
the first eye-fixation duration per word. B) and D) are for the normalized eye-fixation duration
per word.

t-test on the two groups SL≤ 3 and SL≥ 4, we got a p-value of 2.1×10−4 for the first-fixation

duration and a p-value of 4.5× 10−8 for the normalized duration. Those p-values indicated a

statistical significance between SL≤ 3 and SL≥ 4 on the eye-fixation duration.
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Table 2.5: P-values for comparing two similarity levels according to their first fixation duration
per word.

SL=0 SL=1 SL=2 SL=3 SL=4 SL=5 SL=6 SL=7
SL=0 1 — — — — — — —
SL=1 4.41E-01 1 — — — — — —
SL=2 4.17E-01 7.84E-01 1 — — — — —
SL=3 6.07E-01 4.29E-01 3.73E-01 1 — — — —
SL=4 1.69E-01 1.09E-01 1.03E-01 5.25E-01 1 — — —
SL=5 1.42E-02 8.81E-03 1.40E-02 2.90E-01 7.51E-01 1 — —
SL=6 6.62E-01 4.71E-01 4.09E-01 9.53E-01 4.86E-01 2.57E-01 1 —
SL=7 8.46E-03 5.19E-03 6.84E-03 1.35E-01 4.04E-01 5.20E-01 1.18E-01 1

Table 2.6: P-values for comparing two similarity levels according to their normalized first
fixation duration per word. Red highlights indicate those above the threshold (α = 0.01

28 ).

SL=0 SL=1 SL=2 SL=3 SL=4 SL=5 SL=6 SL=7
SL=0 1 — — — — — — —
SL=1 8.35E-01 1 — — — — — —
SL=2 4.30E-01 5.66E-01 1 — — — — —
SL=3 6.29E-01 5.90E-01 3.98E-01 1 — — — —
SL=4 2.73E-02 2.94E-02 1.91E-02 1.99E-01 1 — — —
SL=5 7.30E-05 2.07E-04 2.70E-04 4.51E-02 6.30E-01 1 — —
SL=6 3.33E-01 3.18E-01 2.05E-01 7.33E-01 3.37E-01 1.03E-01 1 —
SL=7 9.04E-04 1.30E-03 1.03E-03 4.66E-02 5.28E-01 8.14E-01 9.76E-02 1
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2.4 Conclusion

In this chapter, we analyzed all the words using NLP tools and examined eye-fixation

statistics. We first calculated the semantic similarity between the words in the sentences and the

keyword in the question. Each method assigned a high similarity score to around six hundred

words or more. However, only 1.7% of words (n=138) obtained a high similarity score by every

method. This number is very small, compared to 407 sentences in total. Therefore, we need to

determine looser criteria for a high similarity.

A large percentage of stop words is present in every set of SL≤ 3. Despite 616 stop words

getting a high similarity score by one or more methods, only 219 of them got a high score by two

methods or more. Interestingly, each calculation method tended to assign tens or hundreds of stop

words a high similarity score, but the other methods usually disagreed. As SL increases, the word

length in the set increases. After SL goes above 4, there is no statistically significant difference

between the word lengths in each set of SL.

Based on our analysis of eye-fixation statistics, we observed statistically significant

differences between any set of SL≤ 3 and any set of SL≥ 4. Compared to the sets of SL≤ 3, a

higher number of fixations and a higher probability of at least one eye fixation were observed in

the sets of SL/geq4. First, second, and third fixation durations were not statistically significant

among any two sets of SLs. After we tried normalizing the fixation duration to the average fixation

duration of each subject, we discovered that the set of SL= 5 was different from SL= 0,1,2.

Thus, we found that the words in the sets of SL≤ 3 were statistically different from the

words in the sets of SL≥ 4. Prior studies have also shown that the content that is critical for

comprehension attracts the most attention and thus more eye-fixations [18]. Thus, it was probably

that words with SL≥ 4 have a significant impact on sentence comprehension. This is evident that

a threshold of SL ≥ 4 could be used to select the words with a higher relevance to the sentence

comprehension.
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Next, we separated the words into two groups, and the statistically significant features of

each group are shown in Table 2.7. Among the 8284 words, 584 words were classified as high SL

(SL≥ 4) and the rest as low SL (SL≤ 3) to the keyword in the question. There were significantly

more eye-fixations for high-SL words (1.11 vs. 0.70) in the table. These words were more likely

to get eye-fixations upon them (0.68 vs. 0.47). These words also had a longer first eye-fixation

duration after normalizing the time with each subject’s average fixation duration (1.03 vs. 1.00).

We were going to explore more features of the two groups of words in the next chapter.

Table 2.7: The table summarizes the significant differences between high similarity-level words
and low similarity-level words.

Counts #Stop
Words

string
length

string
length

(no SW)
#Fixation Prob.

Eye-Fix t1-norm

Low SL 7700 2987 4.69±2.65 6.00±2.56 0.70±0.54 0.47±0.27 1.00±0.37
High SL 584 3 7.12±2.24 7.14±2.23 1.11±0.54 0.68±0.21 1.03±0.38

Total 8284 2990 4.86±2.70 6.13±2.55 0.73±0.55 0.49±0.27 1.00±0.37
p-vale 3.54E-99 4.14E-28 7.14E-57 8.42E-89 4.52E-08
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Chapter 3

EEG-biomarker Analysis

3.1 Introduction

Following the low-SL and high-SL group division in Chapter 2, we analyzed the EEG

signal time-locked to the eye-fixations upon each group of words, in both the time domain and

in the frequency domain. Then, we used statistical models and a simple convolutional neural

network to learn and predict the two groups of words based on the EEG signals.

3.2 Methods

3.2.1 EEG Data Preprocessing

ZuCo collected the EEG signals from the subjects with a 128-channel EEG Geodesic

Hydrocel system [6]. The EEG signals was recorded at a sampling rate of 500Hz with a bandpass

set at 0.1 to 100 Hz and all electrodes were referenced to channel Cz [6]. 105 scalp electrodes

were retained in the dataset, while those for EOG, facial, and neck signals were used for artifact

removal and were discarded from the preprocessed dataset [6]. In their paper [6], the ZuCo

dataset was already preprocessed using the Automagic protocol (version: 1.4.6) available at
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https://github.com/methlabUZH/automagic. They identified and replaced bad electrodes

based on an EEGLab script clean rawdata.m from http://sccn.ucsd.edu/wiki/Plugin_

list_process [6, 19]. Using EEGlab script pop eegfiltnew.m [19], a 0.5 Hz high-pass filter was

applied, followed by a 49-51 Hz notch filter [6]. They performed artifact removal using linear

regression, ICA, and multiple artifact rejection algorithms [6].

Prior to our analysis, we discarded EEG signals associated with eye-fixations short than

100 ms since previous studies have shown that fixations shorter than this duration does not reveal

reading-relevant information [17]. We also extracted 200 ms of signals before fixation onset

and 800 ms after for each fixation-locked EEG signal. A statistical analysis was performed to

compare the difference between the two groups.

Independent frequency bandpass filters were performed on the entire EEG recording

to extract the time-series for the frequency bands of theta (4-7 Hz), alpha (7.5-13 Hz), beta

(13.5-30 Hz), and gamma (30.5-50 Hz) with the EEGLab script pop eegfiltnew.m [17]. To each

of these time series, a Hilbert transformation was applied. For each frequency, we averaged the

Hilbert series amplitude within the eye-fixation time window as the band power. This method

of frequency band power calculation was equivalent to the fast Fourier transformation based

calculation [20]. To compare the overall and dynamic EEG frequency patterns time-locked to

eye fixations, the band power under the following conditions was calculated: 1) within the entire

fixation window; 2) within each 20-ms window from the fixation onset to 300 ms later. 300 ms

was selected since 86.7% of the total fixations were between 100 ms and 300 ms. In each time

window, scalp topography was plotted as a quad-layered topographic image of 32x32 pixels for

all four frequency bands combined. Machine learning methods and neural networks would be

used to analyze the images.
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3.2.2 Feature Space Projection

In order to learn the representation of the high-dimensional data, dimension reduction

techniques were applied to extract representative features in the lower dimensions. To balance

out the high amplitude of alpha and gamma bands, the band power for each frequency band was

normalized using the standard score. Principal component analysis (PCA) and factor analysis

(FA) were independently applied to project the band power for all the channels to 50 components,

which preserves 95.5% of the variance in the PCA space. By linear discriminant analysis (LDA),

those components were then projected into the subspace that characterizes two classes (high SL

vs. low SL). This LDA model was trained with 4-fold validation within and across subjects and

established a linear decision boundary between the two groups. The LDA model was used to

classify the two classes based on Bayes’ rule, and the test results were reported.

3.2.3 Simple Convolutional Neural Network

Figure 3.1: The simple convolutional neural network structure: Convolutional layers (conv),
rectified linear units (ReLU), max-pooling layers, fully connected layers (fc) and softmax were
used in this model.

The structure of the simple convolutional neural network was visualized in Figure 3.1,

which was modified from EEGLearn’s CNN model [21]. A topographic image comprised of
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four layers of four colors (i.e., four frequency bands) was the input to the neural network. A 2D

convolutional neural network was constructed using five convolutional layers, three max-pooling

layers, and three fully connected layers, as shown in Figure 3.1. Tue CNN model would output

the binary classification result of either high SL or low SL

3.2.4 Handling Class Imbalance

In Chapter 2, we extracted 584 words in the high-SL group, whereas there were 7700

in the low-SL group, which caused the class imbalance problem. In our preliminary study, we

also found that the total fixations on the low-SL words were around ten times greater than those

on the high-SL words. The two classes to be put into the training set were highly imbalanced.

As a result, we examined multiple candidate strategies for the class imbalance problem and

selected to under-sample the larger class. In order to decrease the sample size for the low-SL

group, we first excluded all low-SL words with more than one fixation. We then used the random

under-sampling method to decrease the number of samples in the larger class. The low-SL class

was down-sampled to an equal size of the high-SL class.

3.3 Results

Figure 3.2 showed the fixation-related potentials (FRP) associated with high-SL and

low-SL words. From this figure, we can see that some channels showed a lower voltage at 90 ms,

160 ms and 230 ms since the fixation onset for the fixation onto high-SL words. However, no

time point in any channel passed a t-test with a threshold α = 0.01
105×501 = 1.90×10−7.

Figure 3.3 illustrated the FRPs associated with high-SL and stop words. Many channels

experienced a decrease in voltage of 0.6 µV in the time ranges 150 ms - 170 ms and 210 ms - 240

ms for the high-SL group. Figure 3.4 showed the t-test result at each time point between the two

groups. We zoomed in to the region of statistically significant points. For six or more time points,
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Figure 3.2: EEG waves time-locked to the fixation onset on a) high-similarity-level words b)
low-similarity-level words and c) the difference between them.

eight channels had statistical significance: E69, E70, E74, E75, E82, E83, E89, and E100. All

of these channels resided in the occipital lobe. For one to five time points, sixteen channels had

statistical significance: E45, E47, E50, E51, E57, E58, E59, E64, E65, E66, E71, E76, E90, E95,

E96, and E101. Those channels were either from the occipital lobe or the parietal lobe. Figure

3.4 plotted the electrodes with statistical significance on the scalp map. As we can see, most

statistically significant channels were found in the occipital lobe, and some were found in the

parietal lobe.

In Figure 3.5, we plotted the power scalp topographic maps for the high-SL and low-SL

words averaged across all subjects in order to visualize the frequency band power distribution.

The occipital lobe displayed strong power in all four frequency bands for both groups. A few

channels in the occipital lobe showed an increase in alpha, beta, and gamma band power, as the
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Figure 3.3: EEG wave time-locked to the fixation onset on a) high-similarity-level words b)
stop words and c) the difference between them.

third row showed. After performing the t-test, we did not find any statistically significance for

any frequency at any channel.

As shown in Figures 3.6, we visualized the frequency band power distribution every 20

seconds starting from the eye-fixation onset. Through the 300 ms, some occipital lobe channels

showed higher gamma band power in words with high similarity. Beta power also increased in

the occipital lobe from 0 ms to 100 ms and from 160 ms to 240 ms. A decrease in beta power was

observed between 120 and 160 ms. We then performed the t-test for each time-frequency series at

each channel, which was shown in Figure 3.7. The electrode E74 showed statistical significance

for the gamma band between 60 ms and 240 ms. The electrode E89 showed statistical significance
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Figure 3.4: T-test results for 105 channels at 501 time points between -200 ms and 800 ms, with
a threshold of α = 1.90×10−7. The upper left plot shows when and what channels passed t-test
in black. Red color indicates significant channels at each time points.

for the gamma band between 60-80 ms and 280-300 ms.

Using feature space projection methods, we analyzed the frequency patterns with results

shown in Figure 3.8 and Figure 3.9. Based on a 5-fold train-test split, the training accuracy was

56.7%, and the test accuracy was 55.7% when using LDA modeling and PCA augmentation. The

training accuracy was 56.7%, and test accuracy was 56.3% when using LDA modeling and FA

augmentation, as shown in Table 3.1. Our next step was to train both LDA models for data within

individual subjects. The average test accuracy for LDA with PCA was 59.1% with a standard

deviation of 6.0%. The average test accuracy for LDA with FA was 59.4%, with a standard

deviation of 4.7%, as shown in Figure 3.10 and Table 3.1. Both models achieved an accuracy

above the chance level. We also tried to classify the words for each block of sentences within
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Figure 3.5: The band power distribution averaged across all subjects for each band frequency in
the entire fixation window. Each letter represents a frequency band (t: theta; a: alpha; b: beta; g:
gamma). The first row contained high-SL words, the second row contained low-SL words, and
the third row is the difference between them.

or across subjects, but the results were chance accurate. With the data from the eight channels

instead of all channels, the average test accuracy drops to 51%-52% for both models.

Afterwards, we trained and tested the CNN model for 300 epochs with a learning rate of

5×10−5. The model was first fitted and tested for the samples across all subjects (4745 samples

for the high-SL group vs. 4745 samples for the low-SL single-fixation group). The accuracy

at every epoch of time was calculated, as shown in Figure 3.11. This figure shows that the test

accuracy reached the maximum after one hundred and twenty epochs, which is 59.3%.

We also fitted and tested models for single subjects, and the accuracy of training and

testing was displayed in Figure 3.12. Table 3.1 displayed the best accuracy in the test. Each

subject has a class size of 395 ± 103 EEG pieces associated with the high-SL words. Low-SL

sets were randomly under-sampled to the same size. Overall, the best test accuracy was 63.3%

with a standard deviation of 5.6%.
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Figure 3.6: The band power distribution averaged across all subjects for each band frequency
per 20-ms window. The first four rows are for high similarity level words, the second four rows
are for the low similarity level words, and the rest four row are the difference between them.
Each column is a 20-ms time window.
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Figure 3.7: This plot showed the band power distribution averaged across all subjects for each
band frequency at each time window. The first four rows contained high-SL words, the second
four rows contained low-SL words, and the third four rows were the difference between them.

Figure 3.8: The test result of the LDA with PCA data-augmentation across all subjects.

Figure 3.9: The test result of the LDA with FA data-augmentation across all subjects.
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Figure 3.10: The results from the LDA with FA data-augmentation for within-subject training
and testing.
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Figure 3.11: The train and test accuracy per epochs of training across all subjects.

Figure 3.12: The train and test accuracy per epochs of training for each single subject.
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Table 3.1: The table lists the number of words with eye-fixations per category. The training
result of each method is also displayed.

Subject ZJS ZDN ZJN ZPH ZAB ZJM ZKB ZKH ZMG ZGW ZKW ZDM Average
#high-SL words
with fixation(s) 369 350 475 201 428 519 221 472 408 366 519 417 395±103

# low-SL words with
1 fixation 2348 2203 3411 1614 2603 3434 1358 2909 2827 1963 3059 2529 2521±659

# all words with
fixation(s) 3371 3294 5557 2372 3916 5849 2143 4554 4122 3149 5531 3782 3970±1216

PCA+LDA
test accuracy 63.2% 57.7% 65.1% 56.4% 65.4% 65.8% 51.4% 65.3% 51.5% 51.4% 62.3% 54.1% 59.1%±6.0%

FA+LDA
test accuracy 56.2% 61.1% 62.2% 57.4% 65% 63.8% 54.1% 63.6% 64.2% 51.3% 60% 53.6% 59.4%±4.7%

CNN best test
accuracy 66.5% 65.1% 68.5% 70.3% 67.3% 69.6% 64.9% 56.8% 56.9% 56.3% 61.9% 55.5% 63.3% ± 5.6%

3.4 Conclusion

In this chapter, we examined the EEG signals associated with the high-SL and low-SL

groups of words. Time-series and time-frequency analyses suggested a couple of features which

were confirmed statistically. We observed a voltage decrease of 0.4-0.7 µV in the occipital lobe

between 100 ms and 270 ms for the high-SL group. In our comparison of high-SL words and

stop words, the voltage decreased statistically significantly for eight channels of the occipital

cortex at two time periods, 158 ms - 168 ms and 228 ms - 248 ms. This decline in voltage could

be explained by N170, a event-related potential that reflects neural processing of familiar objects

and words [22]. It is likely that this finding is indicative of neural biomarkers associated with the

eye-fixations upon significant words within a sentence.

The ZuCo group found that the EEG power would continue decreasing after 100 ms and

would remain below zero after 120 ms until the second fixation onset [6]. In addition, word

length has a positive correlation with fixation duration [6]. The stop words, which were often

shorter than the high-similarity words, may get a shorter fixation duration, and the voltage may

rise earlier due to the second fixation onset. There were no statistically significant EEG patterns

associated with word length in our current study. Yet, we cannot rule out the possibility that the

high-SL words’ lower voltage at around 160 ms and around 240 ms is due to their longer fixation
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duration. This possibility needs to be verified or rejected by further experiments.

We observed a very mild increase in beta and gamma band power in the occipital lobe for

words with high SL, but the difference did not reach statistical significance. Several findings can

be drawn from time-frequency analysis of fixation-locked EEG. The gamma band power in the

occipital lobe was stronger for the high-SL words between 60 ms and 300 ms, while the t-test

showed two occipital channels were statistically significant.

By modeling the We achieved a test accuracy above the chance accuracy with the LDA

model with either PCA or FA data augmentation. Considering the inter-subject discrepancies,

we also trained the LDA model within single subjects. The test accuracy for cross-subject and

within-subject conditions was both above the chance level. Using data from just one subject, both

LDA models performed better in a test than when they were trained across subjects.

We also explored the possibility of using CNN to learn the difference between the two

classes and predict the class based on the EEG features. Test accuracy was 59.3% for cross-subject

conditions and 63.3% for within-subject conditions. The best test accuracy was often achieved

between 100 epochs and 150 epochs when the training accuracy rose to around 70%. In terms of

testing accuracy, CNN model that fits within single subjects typically performed better than the

CNN model that fits across all samples. The CNN models performed slightly better than the LDA

models as they achieved a higher test accuracy either within or between subjects.
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Chapter 4

Discussions and Future Directions

As part of this project, we looked at the semantics of the ZuCo Task-Specific-Reading

dataset and tried to identify biomarkers that are associated with reading different words. With

regards to both EEG signals and eye-tracking data, some biomarkers were found to be statistically

significant. We also tried to train algorithms to learn the differences in the EEG responses. In this

chapter, we will discuss our significant findings and our innovations. Afterwards, we discussed

the disadvantages of this study and future directions.

4.1 Major Conclusions

1. We propose a method combining the current NLP models to evaluate the significance of

a word in interpreting the entire sentence meaning based on semantic similarity measurement. We

found that the underlying calculations for each NLP model were prone to biases due to differences

in assumptions, algorithm design, and language corpus embedding. Thus, we needed to consider

these biases and did not rely on one calculation alone. Based on the results of each calculation, we

calculated a similarity level, which is the number of methods that consider the word with a high

similarity score. To evaluate and confirm the effectiveness of the similarity level, we examined

eye-fixation probability and average fixation times.
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2. We found statistically significant eye-fixation features for the words with different

similarity levels (SL). First, the word with a high SL had a higher probability of getting at least

one eye-gazing and more times of eye-fixations upon it. The absolute duration of first fixations

was not significantly different between the high-SL words and the low-SL words. However, after

normalized with the average first fixation duration for each subject, we found that high-SL words

had a 3% longer duration of the first fixation upon them. To conclude, the words with a higher SL

to the question keyword often attract a higher probability of eye-gazing, more times of eye-gazing,

and a slightly longer duration of eye-gazing.

3. For the low-SL words, fixation-locked EEG potential decreased dramatically from

100ms to 270ms, possibly related to the manifestation of neural biomarkers N170. The comparison

between high-SL and low-SL words did not indicate statistical significance, but the comparison

between high-SL words and stop words did. Compared to stop words, high-SL words would

have a significantly lower voltage by 0.6 µV in the occipital lobe between 158 ms - 168 ms and

between 228 ms - 248 ms. The channels indicating statistical significance were often found in the

occipital and parietal regions, as shown in Figure 3.4.

4. We found greater gamma-band power in the occipital lobe for the high-SL words than

for those associated with the low-SL words. Upon evaluating the time frequency decomposition

of the EEG signal, we observed a greater gamma band power in the occipital lobe from 60 ms to

240 ms. We found two channels in the occipital lobe to be statistically significant, which were

E74 and E89.

5. The EEG frequency band power was used to train an LDA model and a CNN model

to predict the high-SL or low-SL for the words. CNN and LDA models were both able to

differentiate between two groups, showing an accuracy level higher than a chance level. This

analysis showed that machine learning models can be used to detect comprehension-related EEG

features.
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4.2 Innovations

The previous studies often utilized a word-by-word paradigm /cite[Kutas1980, Per-

fetti2008, POLICH2007], which was extremely restrictive in terms of eye position and reading

speed. Through the development of eye-tracking and high-resolution EEG recording techniques,

studies of neural features during natural reading settings have become more feasible in recent

decades. Although the recent studies explored eye movement across words within a normal

sentence, they didn’t fully investigate neural signals that accompany eye-gazing upon each word

within the sentence. We also had other tools for decoding any neural features found during

reading comprehension processes since complex NLP models were developed in the recent ten

years. Thus, the integration of the new approaches into traditional reading comprehension studies

would be a worthwhile endeavor.

The ZuCo group also attempted to integrate the popular NLP models with EEG, eye-

tracking, and magnetoencephalography datasets to explore the relationship between word meaning

and biological signals [23, 24]. According to the authors, the eye-tracking and EEG data correlated

to some extent when fitted to the NLP models [23]. The studies were established at the sentence

level and did not explore the use of NLP tools to decode the neural responses. Therefore, we

aimed to use NLP tools in studies of eye-tracking and EEG regarding reading comprehension.

Based on those previous studies, this project explored and demonstrated a potential

application of NLP tools to assist in the analysis of the experiment texts and the exploration of

the eye-tracking and EEG biomarkers related to word-level comprehension. In this study, we

examined word-level reading comprehension biomarkers during natural sentence reading, as a

unique direction in the field of reading comprehension research. Using NLP tools, we identified

the significant words in interpreting the relationship contained in the sentence, followed by a

statistical analysis of eye-tracking and EEG signals in relation to those words. In this paper, the

statistically significant features for those words were summarized, which were unique from the
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ZuCo group’s findings. We hoped that our findings would contribute to future research in this

area.

In this study, we tested the feasibility of using a neural network model to predict the word

similarity level from the EEG signal. In this attempt, the aim was to try to expand the applications

of neural networks to predict the effects of word stimuli, which have not been fully investigated

within the current field. The results of this study confirmed that machine learning algorithms and

neural networks are capable of decoding complex neural signals.

4.3 Reflections and Future Directions

During the pandemic season, we were unable to conduct in-person experiments and collect

data of interest due to various difficulties. We were limited in what analysis we could perform and

had to adapt existing datasets for our purpose. We did not have enough data on miscomprehension

cases in this dataset, since the answer correctness rate was above 90% /cite[Hollenstein2018].

We may, in the future, design a modified experiment and adapt the questions and sentence

presentations in order to compare the cases of true comprehension and miscomprehension. It is

also important to record the subjects’ uncertainty level in understanding the sentences.

This project could better address the data imbalance problem. Our model was not

sufficiently general for those non-involved data since we chose the random under-sampling

method. Methods such as sample duplication of the minor class and class-specific learning rates

were explored, but results were not improved as expected. Only the under-sampling method

worked. In the future, we may use random forest, which should be resilient to class imbalances.

The EEG frequency-domain features were learned using the CNN model based on previous

studies on application of image-learning neural networks to EEG data [21, 25]. Time-series

data and time-frequency decomposition of the EEG signals were not fully analyzed with neural

network models. We explored deeper neural networks, but a successful implementation required
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more time and more in-depth knowledge preparation. We may continue to explore the possibility

of applying recurrent neural networks to these data.
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