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ABSTRACT OF THE DISSERTATION

Accelerating Conformational Sampling in Free Energy Calculations

by

Mikolai Fajer

Doctor of Philosophy in Chemistry
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Professor J. Andrew McCammon, Chair

Molecular dynamics are increasingly used to construct conformational ensem-

bles of biochemical systems. The accuracy of these ensembles is determined by the

accuracy of the underlying model and the extent of conformational sampling during

the simulation. Biochemical systems can have motion on time scales that vary by

several orders of magnitude, and these must all be described before a specific model

can be validated. For this reason research into enhanced sampling methods that

accelerate conformational sampling are vital to the progress of molecular dynamics.

This dissertation describes the validation and application of the replica ex-

change accelerated molecular dynamics (REXAMD) method in the context of free

energy calculations. In chapters 2 and 3 the REXAMD method is validated using

simple model systems. The convergence of REXAMD is shown to be an improvement
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over classical molecular dynamics. Additionally, various methods to improve the sta-

tistical behavior of REXAMD are investigated. In chapter 4 gradient-augmented

Harmonic Fourier Beads, a minimum free energy pathway method, is used to study

the conformational change of the ion selectivity peptide from the KcsA potassium

channel. The robustness of various models, ranging from classical to quantum me-

chanical, is investigated and the importance of conformational sampling is observed.

Finally in chapter 5, I propose a modification to the AMBER molecular dynamics

package which allows the calculation of absolute binding free energies to be computed.

xv



Chapter 1

Introduction

1.1 Molecular Models
Art is the lie that helps tell the truth.

Pablo Picasso

A scientific model is a simplified, and frequently mathematical, representation

of a physical object that is used to assist in the analysis and prediction of experimental

results. The equivalent experiments may be expensive or practically impossible, but

a good model always offers new predictions that will help validate itself.

One of the most pervasive uses of modeling in biochemistry today is in struc-

ture prediction of biomolecules. In 1931 William Astbury reported the X-ray diffrac-

tion of several fibrous materials, including three different types of wool. [5] Of par-

ticular interest was the reversible change of diffraction patterns upon stretching the

materials. Astbury referred to these as the α- and β-forms and showed that the amino

acids repeated every 5.15 and 3.32 , respectively. Twenty years later Linus Pauling

took his knowledge of amino acid structure and the hydrogen bond strength to pro-

pose the α-helix and β-strand polypeptide structures that maximized intermolecular

hydrogen bonds and contained structural repeats close to those identified by Astbury.

[6, 7] The application of molecular modeling to protein structure prediction from X-

ray crystallography has continued to grow since Pauling’s contribution. Currently

diffraction patterns are converted to a three-dimensional model of electron density

and then an atomistic model is proposed that reproduces the diffraction patterns.

1
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The same type of physical intuition that Pauling used to construct low energy

conformations has been formalized under the namemolecular mechanics. In molecular

mechanics the atoms are treated as classical particles for which the Hamiltonian, a

function that describes the energy and forces of any structure, can be written. These

Hamiltonians are generally constructed to be pairwise-additive as seen in Equation

1.1. The collection of parameters (kb, b0, etc.) are referred to as a forcefield. The

forcefields are constructed from fitting the parameters to experimental data of small

compounds, for example the IR vibration frequencies to set the bond force constants.

After these force-fields are constructed they are assumed to be transferable, or retain

accuracy for larger collections of atoms than the compounds they were originally

parametrized for.

U (r) =
∑
bonds

kb (b− b0)2 +
∑
angles

kθ (θ − θ0)2 +
∑

dihedrals

kχ (1 + cos (nχ− δ))

+
∑

impropers

kψ (ψ − ψ0)2 +
∑
non-

∑
bonded

εij

[
Rmin,ij

rij

]
+

(
−Aij
r6
ij

+
Bij

r12
ij

)
(1.1)

A more detailed history of molecular modeling can be found in Tamar Schlick’s

excellent book. [8]

1.2 Conformational Sampling
If the blind lead the blind, both will fall into a pit.

Matthew 15:14 (NIV)

A typical use of molecular modeling is to determine the conformations and

dynamics of a molecule in solution with atomic resolution. The collection of confor-

mations is called the configuration ensemble, and we know that the ensemble will obey

the Boltzmann distribution (equation 1.2), where U is the potential energy and q is a

specific conformation. The integral in equation 1.3 is over all conformational space V
and as the number of atoms increases this space grows exponentially. The Boltzmann

probability distribution p (q) clearly shows that the low energy conformations will be

much more probable than high energy conformations, so instead of looking at every
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possible conformation it is a good approximation to focus on the low energy confor-

mations. The normalization constant Z is referred to as the configuration integral,

and is a foundational quantity in statistical mechanics.

p (q) =
exp [−βU (q)]

Z
(1.2)

Z (N, V, T ) =

∫
V

exp [−βU (q)] dq (1.3)

The potential energy can be visualized as a surface, or a series of mountains

and valleys. We want to learn about all of the valleys so we hire an intrepid explorer

and ask him to visit each valley in turn. If you give him a map the length of the task

will depend on the length of his stride, his endurance and the difficulty of the path.

Now take away his map and he must wander about, not knowing in which direction

the next valley lies or if the path he is currently on will come to a dead end. Finally

blindfold him, cover his ears and hand him only a walking stick with which to feel

about himself with. This is an accurate illustration of the difficulties in sampling

molecular models. The length of our explorer’s stride is the time step limit imposed

by numerical integration schemes, and we must be careful to take small steps in order

to retain accuracy. The explorer’s endurance and path are reflections of statistical

mechanics which tells us we are more likely to fall down slopes than climb them. The

highly local nature of the Hamiltonian, equation 1.1, is the reduction of our explorer’s

senses so that we only know our immediate energy and forces but not what the energy

and forces will be several feet in any direction without travelling there.

One assumption needs to be made explicit: the explorer can reach any point

starting from any other point. This property is called ergodicity and is incredibly

difficult to prove but is absolutely essential. If a system is indeed ergodic then we can

leverage statistical mechanics and assume the ergodic hypothesis, equation 1.4, which

states that the probability of a specific conformation q predicted from a simulation

will converge to the value predicted by the Boltzmann distribution as the simulation

length increases.

p (q) = lim
t→∞

1

T

∫ T

0

δ (q,q (t)) dt (1.4)
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We have now exchanged the need to test every possible conformation for the

need to simulate an infinitely long time. This may not seem like an advantage,

but let us study the limit in equation 1.4 more closely. The limit removes any bias

that we have due to initial conditions because an infinite number of conformational

transitions occur. The convergence behavior is thus determined by the kinetics of

conformational transitions. If we can increase the rate of conformational transitions

while still knowing the unperturbed statistics we can achieve convergence of equation

1.4 in a practical timescale. This is the motivation for enhanced sampling methods.

For example, in the metadynamics method a history dependent bias is applied

to the system. [9] A series of Gaussians are added to Hamiltonian, which can be

visualized as carrying around a large bag of cement and periodically laying cement

under our explorer’s feet. Over time the valley is filled in and the height between the

cement and the mountain pass decreases. Transition state theory shows that the rate

of a process depends on the free energy difference of the initial and transitions states,

and that decreasing that difference will increase the rate. If you carefully record

where you place the cement you can remove that bias from the simulation results and

estimate what the original energy of each conformation would be. The extrapolation

back to the unperturbed landscape will vary from method to method, but typically

the less bias you apply the more accurate the extrapolation will be.

Many enhanced sampling methods additionally try to identify useful direc-

tions, called collective variables, to promote uphill movement in those directions.

This is done to improve the efficiency of the methods since we only want to visit

the transition paths and the basins, and not waste time climbing Mount Everest.

These additional instructions can be very specific such as "enhance sampling only

due north", or general such as "enhance sampling if we have been traveling in this

direction for a while". The advantage of specific instructions is that they apply less

bias and thus are more efficient, however they require prior knowledge of the system

in order to know which direction is important. The choice of collective variable is

thus very important. Laio et al. suggests finding as few collective variables as pos-

sible that clearly distinguish between the initial, intermediate and final states while

still describing all of the relevant slow degrees of freedom. [1] More generic collective

variables, for example the temperature or various energy terms, apply bias and ac-
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Figure 1.1: Hamiltonian lagging example taken from [1]. There is strong coupling
between CV1 and CV2, and sampling in one will be dependent on sampling in the
other.

celeration more broadly. This lowers the efficiency of the method but simplifies the

selection of collective variables. Examples of these methods are simulated tempering

[10], hyperdynamics [11], accelerated molecular dynamics [12], simulated scaling [13],

and energy-space metadynamics [14].

The assumption we have made thus far is that we know all of the important

directions, but what happens if we miss one? This issue is referred to as Hamiltonian

lagging, and is illustrated in Figure 1.1. [15, 1] Here we have failed to recognize the

importance of the y-axis and are only biasing along the x-axis. During a transition

from A to B we are unlikely to move along the y-axis since it is still uphill, and thus

incorrectly conclude that B is unfavorable relative to A.

1.3 Free Energy
There is no free lunch.



6

Milton Friedman

Free energy is the amount of work that a system can perform. Accurate

prediction of free energy changes can determine ligand-protein affinity, protein con-

formational transitions, and a whole host of other important biophysical phenomena.

For example, the association constantKa is a function of the Gibbs free energy change

upon binding ∆Gb (equation 1.5).

Ka = C◦ exp [−β∆G◦b ] (1.5)

The Helmholtz free energy of a state can be determined solely from the par-

tition function as shown in equation 1.6. The configuration space V can now refer

to a well-defined subspace instead of the entire configuration space as in section 1.2.

For example, in protein-ligand binding the bound state (V1) would refer to all of the

conformations with the ligand in the binding cavity and the unbound state (V0) to

the conformations at large inter-molecular separation. Once these two volumes are

defined the free energy difference can be expressed as a ratio of the corresponding

configuration integrals (equation 1.7). This formalism applies to chemical reactions,

molecular association and intra-molecular rearrangement.

A = −β−1 ln
1

N !Λ3N
Z (N, V, T ) (1.6)

∆A = −β−1 ln (Z1/Z0) (1.7)

Free energy is a state function and is thus independent of the path taken

between two states. The most physically analogous path is to construct a potential of

mean force (PMF) along one or more collective variables that connects the two states.

In the case of protein-ligand binding this would be the intermolecular separation. The

bound and unbound states can then be defined as the attractive portion of the PMF

and the volume at large separation distances, respectively. [16] The sampling along

the collective variable usually needs to be enhanced in order to achieve convergence of

the entire PMF. The most commonly used method is umbrella sampling [17], although

biased sampling methods like metadynamics [18] and non-equilibrium methods like
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steered molecular dynamics [19] are becoming more popular. Identifying the minimum

free energy path between two states is also very important in determining rate limiting

steps. Early work on the nudged elastic band method [20] has continued to be refined.

[21, 22]

It is also possible to take non-physical, or alchemical, paths between two states.

The typical alchemical path has two Hamiltonians that describe the two different

states. For example, in protein-ligand binding it is common practice to use a de-

coupled or gas state (λ = 1) to complete the thermodynamic cycle (figure 1.2). [23]

Another possibility is to have two different force-fields. [24] The Hamiltonians are

then mixed as a function of the alchemical parameter λ. There are many paths to

move from one alchemical endpoint to the other, and the linear mixing in equation

1.8 is just the simplest case. The most important property that distinguishes alchem-

ical paths is their statistical uncertainty, and the decoupling of the van der Waals

interactions in particular has been a source of numerical and statistical challenges.

[25, 26, 27, 28]

Halchemical (q, λ) = (1− λ)H0 (q) + λH1 (q) (1.8)

Computation of the alchemical free energy difference is done with either ther-

modynamic integration (TI) [29], thermodynamic perturbation (TP) [30], or one of

their derivatives. These competing methods differ in philosophy and practical accu-

racy. Thermodynamic perturbation determines the work to instantly perturb from

one state to another. This method requires a moderate amount of overlap between

the two alchemical states in order to be accurate, and additional simulations utilizing

intermediate states will need to be performed if there is poor overlap. In thermody-

namic integration a series of simulations are constrained at different λ values and the

gradient with respect to λ is computed. This gradient, 〈∂Halchemical/∂λ〉λ, can then

be integrated to determine the free energy difference between the two states. The

statistical uncertainty of TI arises first from convergence of the gradient and second

from the numerical integration of an a priori undetermined function. Thermody-

namic integration may require more simulations in order to achieve the same level of

accuracy as thermodynamic perturbation. [31]
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Figure 1.2: Schematic of the double-decoupling alchemical pathway. Two sim-
ulations are performed to determine ∆Ga and ∆Gc. The ∆Gb is zero. Thus
∆Gbind = ∆Ga −∆Gc
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Both thermodynamic integration and thermodynamic perturbation require ac-

curate sampling of the mixed Hamiltonian, and the challenges described in section

1.2 are only complicated by the addition of the λ parameter. For this reason en-

hanced sampling methods are frequently used in free energy calculations. There is

also quite a bit of work on how to make the most efficient use of data collected from

the simulations. The evolution of better estimators for free energy perturbation has

been particularly successful, moving from the original uni-directional estimator to

the Bennett acceptance ratio [32] and multi-state Bennett acceptance ratio methods

[33, 4].



Chapter 2

Replica-Exchange Accelerated

Molecular Dynamics (REXAMD)

Applied to Thermodynamic

Integration

Abstract

Accelerated molecular dynamics (AMD) is an efficient strategy for accelerating

the sampling of molecular dynamics simulations, and observable quantities such as

free energies derived on the biased AMD potential can be reweighted to yield results

consistent with the original, unmodified potential. In conventional AMD the reweight-

ing procedure has an inherent statistical problem in systems with large acceleration,

where the points with the largest biases will dominate the reweighted result and re-

duce the effective number of data points. We propose a replica exchange of various

degrees of acceleration (REXAMD) to retain good statistics while achieving enhanced

sampling. The REXAMD method is validated and benchmarked on two simple gas-

phase model systems, and two different strategies for computing reweighted averages

over a simulation are compared.

10
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2.1 Introduction

Free energy is one of the most important quantities in biophysics. The cal-

culation of free energy using molecular dynamics simulations is complicated by the

dependence on the amount of the relevant phase space sampled. The complication is

more pronounced when two alchemical free energy end points differ by more than a

few trivial moieties. The use of restraints to restrict the phase space has proven useful

in the convergence of thermodynamic integration, umbrella sampling, and the Ben-

nett acceptance ratio techniques. [34, 35, 36] Another approach is to enhance phase

space sampling instead of restricting the phase space, and often relies on the modi-

fication of the original Hamiltonian during molecular dynamics simulations. [13, 37]

Accelerated molecular dynamics (AMD), which conventionally modifies the energy

landscape by adding a bias to states below an energy threshold, Ecut (Equation 2.1

and 2.2), is an example of the Hamiltonian modification approach and has proven

capable of efficiently generating canonical ensembles consistent with experiments on

the millisecond timescale. [12, 38]

V ∗ (r, Ecut, α) = V (r) +

{
0 V (r) ≥ Ecut

∆V (r, Ecut, α) V (r) < Ecut
(2.1)

∆V (r, Ecut, α) =
(Ecut − V (r))2

α + (Ecut − V (r))
(2.2)

A potential problem with modifying the Hamiltonian occurs when reweighting

an observable O∗ from the accelerated simulation to find O on the original potential

(Equation 2.3 for AMD). If the simulation is highly accelerated and involves a large

range of boost factors ∆V , the reweighted average will be dominated by the relatively

few points/structures with large values of ∆V in the limit of finite sampling. This

statistical problem has recently been quantified as a reduction in the effective number

of data points in the simulation. [39] Thus there is a tradeoff between the degree of

acceleration and the statistical precision in AMD simulations. The calculation of

free energies using thermodynamic integration computes 〈dV/dλ〉λi
over the course

of a simulation, and the calculation of free energy is very sensitive to the statistical

accuracy of the computed averages.
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〈O〉 =
〈O∗exp [β∆V (r)]〉
〈exp [β∆V (r)]〉

(2.3)

In order to take advantage of the sampling efficiency of the AMD method

as well as maintain the statistical relevance of every data point, we propose using

a replica-exchange framework to couple varying degrees of acceleration. The low

degrees of acceleration will not be prone to the reweighting problem, and can still take

advantage of the high acceleration through replica exchanges. This replica-exchange

accelerated molecular dynamics (REXAMD) is a member of the Hamiltonian replica-

exchange (HREM) class of simulations, varying from other HREM techniques in the

specific Hamiltonian modification scheme. A similar REXAMD approach has recently

been applied to studying the effects of neighboring side chains on peptide backbone

conformations in short peptides. [40] We demonstrate the REXAMD approach by

increasing the convergence rate of thermodynamic integration (TI) for two simple gas-

phase model systems, although the method could utilize other free energy calculation

methods instead of TI.

2.2 Computational Detail

First some terms should be defined. State is used to denote a specific level

in the replica-exchange scheme. For example, in temperature replica-exchange each

state corresponds to a specific temperature, and in REXAMD each state is a modified

Hamiltonian described by a set of boost parameters. The term replica is used to

denote the individual structures that are exchanged between the various REXAMD

states. The term simulation refers to a specific setup of REXAMD, and the term run

refers to an instance of a simulation. Simulation is also used to identify the average

and standard error computed from multiple runs.

The current replica-exchange framework is a Python program that launches a

modified AMBER8 accelerated molecular dynamics simulation [12] for each replica in

between Metropolis Monte Carlo exchanges (Equation 2.4). The Monte Carlo (MC)

exchanges occur every 1000 molecular dynamics (MD) steps and the pairs that at-

tempt exchanges alternate every other MC period. For example, in a simulation with

four states (labeled s0-s3) the simulation would execute 1000 MD steps, attempt MC
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exchanges between the s0-s1 states and the s2-s3 states, execute 1000 MD steps, at-

tempt a MC exchange between the s1-s2 states, and repeat. The molecular dynamics

simulations used a 1 fs−1 time step and were coupled to a 300K Langevin thermostat

with a collision frequency of 10.0 ps−1. The Python program reset the seed number

for the AMBER random number generator after every MC exchange.

pex =

{
1 ∆ (i, j) ≤ 0

exp [−β∆ (i, j)] (i, j) > 0
(2.4)

∆ (i, j) = ∆V (rj, αi) + ∆V (ri, αj)−∆V (ri, αi)−∆V (rj, αj) (2.5)

The boosting scheme is identified as a suffix added to the REXAMD acronym

as follows: REXAMDt denotes a boost only to the torsional potential, and REXAM-

DtT denotes a dual boost scheme applied to the torsional and total potentials. [41]

The -rw suffix indicates the reported results are from the reweighting of the most

accelerated state in a specific simulation. When the -rw suffix is not present the

result is coming from the least accelerated state, which in this paper is always no

acceleration.

In order to separate the effect of acceleration from the effect of using M repli-

cas, the REXREG control simulations are a replica-exchange between identical reg-

ular dynamics potentials. Note that this makes the acceptance probability of MC

exchange in Equation 2.4 identically equal to one. The REXREG simulations are

analogous to M independent runs from the same starting point with different initial

velocities and taking an average result from the M runs.

The replica-exchange efficiency will be monitored based on two criteria. The

first criterion is the average acceptance ratio of the replica-exchanges over the course

of a run and gives a rough idea of how capable the given replica-exchange scheme

is at mixing replicas. The second criterion is the observed relative frequency RMSD

metric. [3] This metric compares the observed population frequency of the replicas

against the idealized case where each of M replicas spends 1/M of the total time

in any given state of the system. The RMSD metric varies from zero for the ideal

mixing to
√
M − 1/M for no mixing. The observed relative frequency metric is more

detailed than the average acceptance ratio in monitoring the mixing efficiency of the
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replica-exchange simulation.

The thermodynamic integration of the model systems was computed using

a linear scaling of an all-atom potential (Equation 2.6). Gaussian quadrature inte-

gration was used to evaluate the thermodynamic integral from a finite number of

〈dV/dλ〉λi
calculated at specific λi values (Equation 3.8). The Gaussian quadra-

ture points and weights were taken from the AMBER8 manual. [42] Two strategies

were used to calculate 〈dV/dλ〉λi
at each λi. The first strategy, reweighted periods,

calculated the reweighted average of each block of 1000 MD steps in between MC

exchanges. These reweighted averages were then averaged together over a complete

run to yield dV/dλ for a specific 〈dV/dλ〉λi
. The assumption behind this approach is

that the dV/dλ values sampled during 1 ps give rise to 〈dV/dλ〉λi
for a local region of

the conformational space. The replica exchange will then balance the occurrence of

the local regions. The second strategy, reweighted run, takes an instantaneous dV/dλ

and its corresponding ∆V from the MD step immediately prior to a MC exchange.

These values are then used to compute a reweighted 〈dV/dλ〉λi
for the entire simu-

lation. This approach virtually guarantees uncorrelated dV/dλ values at the expense

of the number of points being considered in the average. In both strategies each λi
was simulated ten times with different random seeds and velocities. An average and

standard error for each 〈dV/dλ〉λi
is then determined and combined into the overall

∆G. The average ∆G is only reported to the first significant digit of the standard

error.

V (λ) = (1− λ)V0 + λV1 (2.6)

∆G =

∫ 1

0

〈dV/dλ〉λi
dλ ≈

∑
i

wi 〈dV/dλ〉i (2.7)

Two model systems were studied to validate and benchmark the REXAMD

method. Both model systems are symmetric alchemical mutations where the product

has an identical structure to the reactant and thus the ∆G is zero and independent

of the force field. Model system A (MSA) is a gas-phase alchemical mutation from

ethane-to-ethane (Figure 2.1A). This system will serve as a positive control to show

that REXAMD can reproduce the results of an ergodic regular molecular dynamics
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Figure 2.1: Structure of the model systems (A) and (B). The Dm atoms indicate a
dummy atom with no nonbonded interactions.

simulation. The relative simplicity of the system and the low transition barriers

guarantees that the regular molecular dynamics (REXREG) is able to sample the

entire conformational space in a short timescale. The thermodynamic integration

for MSA uses a 9-point Gaussian quadrature. The MSA REXAMDt simulations

used only two replicas, an unmodified potential and an accelerated potential with a

torsional boost (Ecut of 5.0 kcal/mol, of 2.0 kcal/mol). Each run was simulated for 8

million MD steps, or the equivalent of 8 ns for an unmodified potential.

Model System B (MSB) is a highly halogenated butane (Figure 2.1B). The

initial conformation of the system is in a different rotameric state for the two λi end-

points, as seen in the Newman projections in Figure 2.1B, and thus requires proper

conformational sampling to yield the correct . The chlorine atoms attached to C2

and C3 were added to make the rotameric sampling more difficult, requiring acceler-
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Table 2.1: Summary of the Replica-Exchange Efficiency. The average and standard
deviation of the acceptance ratios are from the ten runs and the M states. The average
and standard deviation of the rmsd of the relative occupancy of the M replicas over
the M states, as defined by [3] are reported.

simulation acceptance ratio observed relative frequency rmsd

MSA REXAMDt
39.3 ± 2.2% 0.00565 ± 0.00420

(8 ns, 2 states)

MSB REXAMDtT
40.2 ± 16.0% 0.00827 ± 0.00231

(20 ns, 8 states)

ation to achieve the correct answer within the current timescale of 20 ns. The dual

boosting scheme was used for this model system in order to accelerate the large van

der Waals interactions experienced in this system. In order to increase the difficulty

of converging to the correct result, we are only using a 3-point Gaussian quadrature.

The boost parameters for the eight replicas in the MSB REXAMDtT simulations are

shown in Table S2.1, and are labeled from s0 to s7 in terms of increasing boost.

2.3 Results and Discussion

2.3.1 Model System A

In MSA both the REXREG and REXAMDt simulations were able to efficiently

and exhaustively explore the conformational space (data not shown), and the replica

mixing was quite efficient (Table 2.1) within the 8 ns runs. The exhaustive sampling

resulted in converged ∆G values within the first ns of the REXREG and REXAMDt

simulations (Figure 2.1). The ∆G results from the entire 8 ns are summarized in Table

2.2. Recall that MSA REXAMDt refers to result taken from the non-accelerated state

and MSA REXAMDt-rw refers to the reweighted results of the accelerated state.

The statistical precision can be monitored in terms of the number of values

that were used in computing 〈dV/dλ〉λi
. For example, applying the reweighted run

strategy to the REXAMDt simulation yields a total of 80,000 data points for each

〈dV/dλ〉λi
(ten 8 ns trajectories). This strategy resulted in a ∆G of 0.02 ± 0.02

kcal/mol. In order to produce the same number of points when using the reweighted
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Table 2.2: ∆G Summary of MSA Thermodynamic Integration Results. The units
are in kcal/mol. The average and standard error from ten simulations are reported
for each simulation type.

reweighting strategy REXREG REXAMDt REXAMDt-rw

periods +0.002 ± 0.001 -0.001 ± 0.001 -0.001 ± 0.001

runs -0.04 ± 0.01 0.02 ± 0.02 -0.01 ± 0.03

periods strategy we consider only the first 8 ps of the ten duplicate runs for each λi,

which yields a ∆G of 0.02 ± 0.03 kcal/mol. Note the similarity in both the accuracy

and precision of these two results, indicating that exhaustive sampling occurs below

the picosecond timescale. The slower ∆G convergence of the reweighted run strategy

versus the reweighted periods strategy is due to the slower rate of data collection for

the reweighted run strategy.

The REXAMDt-rw simulations also exhibit high accuracy and precision (Fig-

ure 2.2 and Table 2.2). The average boost applied over the MSA REXAMDt simu-

lations from all of the λi values was 2.0 ± 0.9 kcal/mol. The small range of boosts

(standard deviation of 0.9 kcal/mo) is predicted to have a relatively small effect on

the reweighted precision as predicted by Shen and Hamelberg. [39] The reweighted

periods strategy reduces the effective number of instantaneous dV/dλ values from 80

million to 16 million for each 〈dV/dλ〉λi
, and the REXAMDt-rw simulations exhibit

marginally worse accuracy/precision than the REXAMDt (Table 2.2). A similar effect

is observed in the reweighted runs strategy (a reduction from 80,000 to approximately

15,000).

2.3.2 Model System B

The 20ns MSB REXAMDtT simulations are well mixed (Table 2.1, Figure

S2.1, Figure S2.2). The regular molecular dynamics (REXREG) was unable to effi-

ciently sample the conformational space and still shows a substantially non-zero after

the 20ns for both the reweighted periods and reweighted runs strategies (Table 2.3).

The slow convergence of the REXREG result can also be seen in the block averaging

of 〈dV/dλ〉λi
in Figure 2.3. In contrast, the REXAMDtT simulations were able to
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Figure 2.2: Block average of the MSA thermodynamic integration results when using
the reweighted periods strategy. The symbols show the average value of each simu-
lation type, and the shaded region shows the standard error from the ten duplicate
runs.
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Table 2.3: ∆G Summary of MSB Thermodynamic Integration Results. The units
are in kcal/mol. The average and standard error from ten simulations are reported
for each simulation type.

reweighting strategy REXREG REXAMDt REXAMDt-rw

periods +0.12 ± 0.08 +0.04 ± 0.01 +0.08 ± 0.06

runs +0.16 ± 0.07 0.03 ± 0.04 -9 ± 7

efficiently sample the conformational space (data not shown). The was consistently

within 0.1 kcal/mol of zero after 2.9 and 5.5 ns for the reweighted periods strategy

and the reweighted runs strategy, respectively.

The reweighting procedure was applied to the state with the highest degree of

acceleration, s7, because this state is the most independent of the other states in terms

of convergence. The most accelerated state is also expected to have the highest range

of ∆V boost factors and therefore exhibit the largest reweighting problem. [39] This

prediction can be seen in the poor accuracy and precision of the of reweighted runs

for REXAMDtT-rw (Table 2.3, Figure 2.4). The effective numbers of data points for

the s7 states are shown in Table S-I and demonstrate the source of the poor statistics.

For example, the λi of 0.5 simulations had a standard deviation of boost values of

13 kcal/mol, and only 30 of the 200,000 data points from the ten duplicate runs

contributed to 〈dV/dλ〉λ=0.5.

The reweighted periods strategy for REXAMDtT-rw has at least one effec-

tive point in each 1 ps period, and therefore at least 200,000 data points for each

〈dV/dλ〉λ when the ten duplicate runs are considered. Compared to the reweighted

runs strategy, the increase of the effective number of points results in the increase of

the accuracy and precision of the computed ∆G by two orders of magnitude (Table

2.3). The effective number of points is still less than that of REXAMDtT, which

has 200 million data points, and the accuracy and precision of REXAMDtT are still

better than those of REXAMDtT-rw when using the same averaging strategy (Table

2.3, Figure 2.3).
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Figure 2.3: Block average of the MSB thermodynamic integration results when using
the reweighted periods strategy. The symbols show the average value of each simu-
lation type, and the shaded region shows the standard error from the ten duplicate
runs.
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Figure 2.4: Block average of the MSB thermodynamic integration results from the
reweighted runs strategy shown on two different scales. The symbols show the average
value of each simulation type, and the shaded region shows the standard error for each
simulation type. The top plot shows the REXAMDtT-rw results on scale and shows
how poor the statistics are after reweighting. The bottom plot shows the REXAMDtT
results on scale and shows how quickly the REXAMD technique converges to within
statistical accuracy.
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2.4 Conclusion

The REXAMDmethod has been shown to efficiently accelerate conformational

sampling while avoiding the statistical reweighting problem inherent in AMD. The

REXAMD method was validated on the simple model system A. In the more complex

model system B the dual boost REXAMD scheme showed marked improvement over

the regular molecular dynamics approach, as well as better statistical accuracy and

precision in comparison to the reweighted results of the accelerated replicas. We are

currently researching the application of this method to more complicated systems.
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Figure S2.1: A representative example of the replica exchange details for the MSB
REXAMDtT simulations. The top plot shows a time series of a single replica traveling
through the various states. The boxed numbers between the states are the overall
acceptance probability for the pairs of states. For example, the acceptance probability
over the 20 ns simulation for the s0-s1 pair was 49.0%. The bottom plot shows the
observed relative frequency of each replica (different colors) in each state. The overall
acceptance probability is also shown between the state pairs.
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Figure S2.2: A representative time series of the RMSD of the relative occupancy of
the M replicas over the M states for the MSB REXAMDtT simulations, as defined
by [3].
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Figure S2.3: A representative example of the conformational sampling of REXREG
for the halogenated dihedral angle of MSB (C2-C3-C4-Cl) at λ = 0.11270. (a) Time
series for the 8 replicas shown in different colors. Conformational transitions do occur,
but are rare. (b) Histogram of the 8 replicas, with the contribution from each replica
shown in different colors. Note the unequal contribution from each replica, indicating
non-ergodic sampling.
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Figure S2.4: A representative example of the conformational sampling of REX-
AMDtT for the halogenated dihedral angle of MSB (C2-C3-C4-Cl) at λ = 0.11270.
(a) Time series for the 8 replicas shown in different colors. Conformational transi-
tions very frequent in comparison to REXREG. (b) Histogram of the 8 replicas, with
the contribution from each replica shown in different colors. Note the near equal
contribution from each replica, indicating ergodic sampling.
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Table S2.1: Details for the MSB REXAMDtT simulations. The accelerated molec-
ular dynamics nomenclature follows that in [41]. Units are kcal/mol. bThe effective
number of reweighted and uncorrelated instantaneous dV/dλ values was calculated
using the method of [39]. The total number of effective points from the ten λ 0.11/0.89
and the 0.50 simulation when using the reweighted runs strategy are reported.

State
Boost Parameters Avg. ∆V

Neff
Et αt ET αT λ = 0.11/0.89 λ = 0.50

s0 n/a n/a n/a n/a 0.0±0.0 0.0±0.0 200000

s1 70 1024 350 2048 29.8±0.7 11.6±0.4 3700; 8340

s2 70 512 350 1024 51.9±1.4 20.9±0.7 1130; 3700

s3 70 256 350 512 81.8±2.7 34.5±1.3 330; 1300

s4 70 154 350 307 105±4 46.5±2.1 160; 530

s5 70 92 350 184 123±7 58.3±3.1 70; 260

s6 70 55 350 111 131±10 67.5±4.2 40; 150

s7 70 33 350 66 129±13 73.0±5.4 30; 100



Chapter 3

Using Multistate Free Energy

Techniques to Improve the Efficiency

of Replica Exchange Accelerated

Molecular Dynamics

Abstract

Replica exchange accelerated molecular dynamics (REXAMD) is a method

that enhances conformational sampling while retaining at least one replica on the

original potential, thus avoiding the statistical problems of exponential reweighting.

In this paper we study three methods that can combine the data from the accelerated

replicas to enhance the estimate of properties on the original potential: weighted

histogram analysis method (WHAM), pairwise multistate Bennett acceptance ratio

(PBAR), and multistate Bennett acceptance ratio (MBAR). We show that the method

that makes the most efficient use of equilibrium data from REXAMD simulations is

the MBAR method. This observation holds for both alchemical free energy and

structural observable prediction. The combination of REXAMD and MBAR should

allow for more efficient scaling of the REXAMD method to larger biopolymer systems.

28
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3.1 Introduction

Free energy is the driving force behind biochemical problems of great impor-

tance, from drug binding to protein function. A computational approach to free

energy calculation affords complete control over the system and method, as well as

atomistic detail of the results. The use of computational free energy calculation can

theoretically provide free energies for very specific processes that are difficult to isolate

in experiment. Among the necessary conditions for accurate free energy prediction

are accurate sampling and efficient use of the collected data.

The sampling of computational molecular dynamics has been practically lim-

ited due to the topography of the potential energy surface, which requires femtosec-

ond timesteps when propagating the system, and the in the case of biopolymers,

sampling many isolated regions of the potential energy. These issues mean that a

large number of molecular dynamics steps need to be computed in order to simulate

systems with micro- to millisecond relaxation times, but the most heroic brute force

approaches have yielded only tens of microseconds. [43, 44] Accurate sampling can

also be achieved through methodological developments that increase the sampling ef-

ficiency. For example, temperature replica exchange molecular dynamics (TREMD)

has enjoyed a surge in popularity following the seminal publication of Sugita and

Okamoto. [45] TREMD overcomes local energy barriers by simultaneously simu-

lating the dynamics of a set of non-interacting systems at different temperatures.

Conformations sampled at high temperatures are more likely to overcome conforma-

tional barriers and exhibit higher sampling efficiency than low temperatures. The

sampling efficiency passes between replicas through periodic Metropolis Monte Carlo

attempts, which retain the detailed balance of the system. Despite the advantage of

conformational exchange between temperatures, TREMD increases the energy of all

degrees of freedom instead of activating those specifically important to conformational

sampling.

Hamiltonian modification schemes selectively modify the system potential en-

ergy and can greatly enhance sampling over TREMD. [46] For example, by applying

a harmonic bias along a reaction coordinate of interest, umbrella sampling increases

the number of conformations sampled local to the bias minimum [17, 47] Accelerated
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molecular dynamics (AMD), on the other hand, typically applies a bias along the

dihedral degrees of freedom, decreasing the potential barrier between states while

retaining the general shape of potential basins. [12] Unlike umbrella sampling AMD

does not require prior knowledge of the reaction coordinate, although parameteri-

zation of the amount of bias should be done to optimize the acceleration. AMD

has been used to reproduce NMR residual dipolar couplings, measures of molecular

motion on up to the millisecond time scale, in the third IgG-binding domain of pro-

tein G. [38] Despite the promise of AMD to increase the computational efficiency of

conformational sampling, each observable must be exponentially reweighted in order

to recover the unbiased ensemble average, which Shen and Hamelberg showed yields

large statistical uncertainties when applying to highly accelerated simulations. [39]

In order to increase the statistical efficiency of AMD we recently developed

a replica exchange accelerated molecular dynamics (REXAMD) scheme, which com-

bines the selective activation of accelerated molecular dynamics and replica exchange.

[48] The resulting Hamiltonian replica exchange simultaneously simulates the dynam-

ics on potentials of varying acceleration instead of varying temperature. We previously

demonstrated the effectiveness of REXAMD for alchemical free energy calculations

of small model systems. [48] These free energy calculations only used the values sam-

pled from the ground, or unaccelerated, state. This analysis strategy makes no use of

data generated in the accelerated states and limits the computational efficiency of the

method as a result. Furthermore, the computational efficiency will decrease as the

system size increases because the number of replicas required for an efficient replica

exchange will increase. [49] In order to mitigate this decrease in computational ef-

ficiency we will briefly introduce and compare the performance of three methods

of recombining multi-state data from REXAMD simulations: WHAM, MBAR, and

PBAR.

The most widely used method to combine different biased simulations and pro-

duce an estimate of the unbiased result is the weighted histogram method (WHAM).

[50] Central to this approach is the definition of an observable of interest, for example

dV/dλ. The bias from each of the multiple states is removed through an exponen-

tial reweighting of the biased probability density function of the observable. These

unbiased probability density functions, one from each state, are then combined in
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a weighted sum at each value of the observable subject to the constraints that the

weighted variance be minimized and the weights normalized. TheWHAM formulation

has been extended to REXAMD and applied to combine the (φ, ψ) distribution from

accelerated potentials during a REXAMD simulation, yielding the unbiased (φ, ψ)

distribution of various oligopeptides. [40] While making use of the data generated in

accelerated states improves the computational efficiency of the REXAMD method,

WHAM suffers from an inherent systematic bias that plagues all histogram methods.

The bias arises when the probability density of the observable varies greatly over

the interval spanned by the bin, an observation rigorously derived by Kobrak. [51]

Decreasing the bin width attenuates the problem, but increases the statistical error

of the histogram of the simulation data used to approximate the population den-

sity. The optimal bin width that balances these two effects should be found for each

specific system, but the effects are always present. The pairwise multistate Bennett

acceptance ratio method (PBAR) method developed by Maragakis et al. extends the

maximum likelihood derivation of the Bennett acceptance ratio method to handle

multiple pairs of states simultaneously. [33]

The PBAR method is applicable to both equilibrium and non-equilibrium work

data and requires that the work data between different pairs of states be independent.

The independence criterion is a practical limitation when applying the PBAR method

to the equilibrium samples generated from REMD simulations; the total amount of

samples per state Ni must be split into independent samples for each pair of states

Nij , thus reducing the statistical quality of the estimates. The PBAR method was

validated on a gas-phase alchemical mutation of a capped amino acid simulated using

TREMD and showed considerable precision and accuracy from a large data set (360

ns).

Shirts and Chodera developed a different multistate Bennett acceptance ratio

method (MBAR). [4] The MBAR approach requires equilibrium samples from each

state and the energy of each sampled structure at every state. This lends itself

naturally to a REMD approach when the temperature or Hamiltonian modification is

straightforward and computing the energy of a structure at the different states is easy.

In extreme cases post-processing of the equilibrium samples to compute the energy

at different states can be expensive, such as when a soft-core alchemical potential is
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used. [25, 26] The MBAR analysis uses all of the equilibrium data for each pair of

states, and therefore should scale better with the number of states than the PBAR

method for equilibrium simulations. Validation was performed by constructing the

potential of mean force of the extension of a DNA hairpin in an optical double trap

from different constant force trajectories.

In this paper we will first describe the analytical model system and REXAMD

simulation scheme. The WHAM, PBAR and MBAR techniques will be discussed in

further depth, highlighting the main equations and practical implementation. The

performance of WHAM and MBAR will then be compared against the previous

ground state approach. The MBAR and PBAR methods will then be compared,

and finally the extension of MBAR to computing equilibrium structural properties

will be investigated.

3.2 Model System and Methods

A simple, analytically solvable model system provides a wealth of information

against which to compare the simulation performance. We selected a linear four-atom

molecule (pseudo-butane) with no van der Waals or electrostatics forces, leaving the

dihedral angle as the sole degree of freedom. There are two stable conformations at

ï£¡ 90 degrees (p-form and m-form, respectively) with different relative depths shown

in Figure 3.1. The alchemical change progressed from the dominant p-form to the

dominant m-form according to a linear scaling of the potentials (Equation 3.1), and

due to the symmetry of the endpoints the alchemical free energy change is zero. The

energetic barrier between the two conformations is at least 8 kcal/mol for all , and

thus requires aggressive acceleration in order to generate an equilibrium distribution.

V (λ) = (1− λ)V0 + λV1 (3.1)
dV

dλ
= V1 − V0 (3.2)

The REXAMD simulations have four states each, ranging from un-accelerated

(s00) to an acceleration that results in a completely flat potential energy surface

along the torsional degree of freedom (s03). The exchange rate between these states
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Figure 3.1: Potential energy of the model system.

is higher than 50%, and thus efficient mixing of the replicas occurs on a very short

timescale. [3] The exchange period of the REXAMD simulations is 1 ps and the

simulations are coupled to a 300K Langevin thermostat with a collision frequency of

50 ps-1.

The instantaneous energy and dV/dλ values are taken from the exchanging

structures. Systems corresponding to the endpoint lambda values (0.0 and 1.0) as

well as the lambda values corresponding to a five-point Gaussian quadrature (0.04691,

0.23077, 0.50000, 0.76923, 0.95309) were simulated for five nanoseconds, and each

REXAMD simulation was run four times.

The WHAM method applied to REXAMD relies on unbiasing the probabil-

ity densities of a specific reaction coordinate for each state j through exponential

reweighting (Equation 3.3). Equation 3.3 is exact in the limit of zero bin width, but

P j
biased (Q) must be approximated by a finite bin width histogram of the observable

Q. Kobrak showed analytically that the discretization of a continuous observable Q

required by WHAM results in a competition between systematic and statistical error.

[51] In the formalism of WHAM for REXAMD the systematic error arises from the
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approximation of the P j
biased (Q) and

〈
exp

(
βV j

bias

)〉
from a finite bin width and in-

creases with increasing bin width. The discretized P j
biased (Q) and

〈
exp

(
βV j

bias

)〉
are

estimated from a histogram of the sampled data, which introduces a statistical error

that decreases with increasing bin width. The P j
unbiased (Q) from each state are then

combined according to Equation 3.4 with a set of weights wj (Q) that minimize the

variance at each Q. These conditions result in a set of self-consistent equations that

can be iterated over until the desired level of precision is achieved (Equation A15 in

Reference [40]).

P j
unbiased (Q) =

Zj
biased

Zunbiased
Pbiasedj (Q)

〈
exp

(
βV j

bias

)〉
(3.3)

Punbiased =
K∑
j=1

wj (Q)P j
biased (Q) (3.4)

The MBAR method is rooted in the identity given in Equation 3.5 (Equation 5

in Reference 14) where qi (x) and qj (x) designate the un-normalized probability den-

sity functions of the configuration x in states i and j respectively, is some arbitrary

function, Zi and Zj are the configuration integrals from state i and j respectively,

and Γ indicates that the integrals are evaluated over all configuration space. Approx-

imating the expectation values as discrete averages of equilibrium data and summing

over all states results in a set of K estimating equations (Equation 3.6), where K

is the total number of states and Ni is the number of structures sampled at state i.

The details of the selection of the function αij (x) are outside of the scope of this pa-

per, but the selection exhibits the lowest variance of common reweighting estimators.

[4, 52] The solution of Equation 3.6 yields estimates for the partition function Zi of

each state.

∫
Γ

qi (z)αij (x) qj (x) dx = Zi 〈αijqj〉i = Zj 〈αijqi〉j (3.5)

K∑
j=1

Zi
Ni

Ni∑
n=1

αijqj (xin) =
K∑
i=1

Zj
Ni

Nj∑
n=1

αijqi (xjn) (3.6)

The Python implementation of MBAR, PyMBAR, was used for all MBAR

analysis. The statistical uncertainty of the free energies and expectation values are
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based on an estimate of the asymptotic covariance matrix of the provided data, which

requires an uncorrelated dataset. Correlation can be removed from the molecular

dynamics data by subsampling the original data set at an interval greater than or

equal to the equilibrium relaxation time of the molecular dynamics system. For this

work we used the subsampling technique implemented in PyMBAR. [4]

The PBAR method extends the maximum-likelihood derivation of the Ben-

nett acceptance ratio to multiple states. The log likelihood (Equation 3.7) involves

the Fermi function f (x) = 1/ (1 + exp (x)) of the instantaneous work values be-

tween states Wij, the free energy between states ∆Fij, and the constant Mij =

kBT ln (Nij/Nji) that accounts for a different number of samples in the forward and

reverse direction. The instantaneous workWij is defined as the difference in potential

energies of a specific configuration at states i and j, and these work values must be

independent for Equation 3.7 to hold. This requires that a structure xin pulled from

an equilibrium simulation of state i can only be used to calculate the work to go to a

single other state. The entire set of xin must be separated into K non-overlapping sets

of xnij
, which greatly reduces the number of data points per state pair ij compared to

MBAR. [4] The log likelihood has well defined derivatives and thus any optimization

method can be used to find the set of Zi that maximizes the likelihood function. We

implemented the PBAR method in Python using a gradient descent optimization. In

order to estimate the statistical uncertainty of the PBAR method the PBAR calcu-

lation was repeated multiple times using random subsets of the provided work data

and we report the average and standard deviation of the results. [33]

ln (L) =
K∑
i

K∑
i 6=j

Nij∑
nij

f
(
−β
[
Wij

(
xnij

)
−∆Fij +Mij

])
(3.7)

3.3 Combining Multistate Information for TI

The first application of the REXAMD method to alchemical free energy calcu-

lations used the instantaneous dV/dλ values taken from the un-accelerated, or ground

state, to compute 〈dV/dλ〉 for use with Gaussian quadrature thermodynamic inte-

gration (Equation 3.8). [48] The ground state only represents 1/N of the total data,

where N is the number of replicas per REXAMD, and therefore a significant fraction
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Table 3.1: Compiled Expectation Values of dV/dλ

λi

Expectation value of dV/dλ at λi (kcal/mol)

TI-GS TI-WHAM
Individual Lambda All Lambdas

Analytical
TI-MBAR TI-MBAR

0.04691 +3.904 ± 0.004 +3.138 ± 0.008 +3.922 ± 0.001 +3.922 ± 0.000 +3.923

0.23077 +3.69 ± 0.01 +2.54 ± 0.02 +3.714 ± 0.005 +3.722 ± 0.002 +3.722

0.50000 -0.09 ± 0.08 -0.08 ± 0.06 -0.06 ± 0.04 +0.01 ± 0.02 +0.000

0.76923 -3.703 ± 0.006 -2.48 ± 0.02 -3.710 ± 0.005 -3.721 ± 0.002 -3.722

0.95309 -3.926 ± 0.003 -3.125 ± 0.004 -3.922 ± 0.001 -3.922 ± 0.000 -3.923

∆F -0.03 ± 0.02 -0.01 ± 0.02 -0.02 ± 0.01 +0.002 ± 0.006 +0.000

of the data is never used. Multiple REXAMD simulations at each λi are then used to

estimate the statistical uncertainty of the TI Gaussian quadrature calculation. This

was previously referred to as the reweighted runs strategy, but we will refer to this

approach as TI-GS (Ground State) in this paper. The five-point Gaussian quadrature

〈dV/dλ〉 from the four combined runs are summarized in Table 3.1. The TI-GS values

are not within the estimated statistical uncertainty of the analytical result, so there

is room for the multistate methods to show improvement.

∆F =

∫ 1

0

〈dV/dλ〉λ′ dλ
′ ≈

N∑
i

wN (λi) 〈dV/dλ〉λi
(3.8)

In TI-WHAM the four replicas of a REXAMD simulation at a specific λi are

combined to estimate 〈dV/dλ〉λi
. The instantaneous dV/dλλi

values were separated

into 8000 bins, which gave the optimal estimates of 〈dV/dλ〉λi
. We then calculated

the unbiased probability density function of dV/dλλi
and subsequently the 〈dV/dλ〉λi

shown in Table 3.1. The WHAM estimates of 〈dV/dλ〉λi
deviate strongly from the

analytical results, and are actually worse than the TI-GS estimates. The steep cur-

vature of the population density of dV/dλλi
(not shown) forces a narrow bin width,

which in turn increases the statistical error of the histogram approximation leading to

a poor estimate of the biased probability density function and eventually 〈dV/dλ〉λi
.

The high accuracy of the computed free energy change from TI-WHAM is an artifact

of using a symmetric alchemical change, and cannot be expected in realistic systems.

The Individual Lamda TI-MBAR also uses the four REXAMD replicas for each

λi to compute 〈dV/dλ〉λi
. This is exactly equivalent to the TI-WHAM method in the

limit of zero bin width and should exhibit less bias. [4] The 〈dV/dλ〉λi
in Table 3.1
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Table 3.2: Comparison of TI and TI-MBAR methods. The combined TI-GS results
report the average and standard error from the four individual runs. The individ-
ual lambda method only uses information from a specific lambda value to compute
〈dV/dλ〉λi

at each λi. The all lambdas method uses information from all the lambda
values to compute 〈dV/dλ〉λi

at each λi.

Run
Alchemical Free Energy (kcal/mol)

TI-GS Individual Lambda TI-MBAR All Lambdas TI-MBAR

01 -0.055 -0.04 ± 0.02 +0.02 ± 0.01

02 -0.051 -0.07 ± 0.03 -0.02 ± 0.01

03 +0.040 +0.04 ± 0.03 +0.02 ± 0.01

04 -0.067 -0.05 ± 0.03 -0.02 ± 0.01

Combined -0.03 ± 0.021 -0.02 ± 0.01 +0.002 ± 0.006

show improvement over both the TI-GS and TI-WHAM results, and are very close to

the analytical results. The combined TI-GS result is calculated with four duplicate

simulations of five nanoseconds each, resulting in a total of 20,000 structures per

〈dV/dλ〉λi
. The Individual Lambda TI-MBAR runs utilize the four REXAMD states

of five nanoseconds each for a similar 20,000 structures per 〈dV/dλ〉λi
, and yield results

that are quite comparable to the combined TI-GS result (Table 3.2). In other words,

these results imply that Individual Lambda TI-MBAR is able to calculate 〈dV/dλ〉λi

to a comparable accuracy as TI-GS with only a quarter of the data required by TI-GS.

A more efficient use of the data is to simultaneously use all four states from

all five λi and thus utilize 100,000 structures per 〈dV/dλ〉λi
. This All Lambdas TI-

MBAR performs very well when considering the four individual five nanosecond runs,

but really shines when all four runs are combined (Table II). It is noteworthy that

the MBAR estimate of the statistical uncertainty for a relatively low number of data

points, namely the individual runs of All Lambdas TI-MBAR, is too low to account

for the offset of the calculated free energy from the analytical result. An increase in

the number of samples used does correct this, but this effect should be studied further

to gain confidence in the MBAR uncertainty estimate as it applies to larger systems.



38

Table 3.3: Comparison of TI-MBAR to MBAR and PBAR. The uncertainty of the
TI-MBAR and MBAR comes from the asymptotic covariance matrix estimator from
Shirts and Chodera. [4] The uncertainty in the MBAR Subsets results is estimated
from the standard deviation from 1000 different subsets of 185 random reduced po-
tential values per state for the individual runs, and 1000 different subsets of 740
random reduced potential values for the combined result. The uncertainty in the
PBAR results is estimated from the standard deviation from 1000 different subsets of
185 random work values per pair of states for the individual runs, and 1000 different
subsets of 740 random work values for the combined result.

Run
Free Energy (kcal/mol)

TI-MBAR MBAR MBAR Subsets PBAR

01 +0.01 ± 0.01 +0.005 ± 0.009 -0.00 ± 0.03 -0.01 ± 0.02

02 -0.02 ± 0.01 -0.016 ± 0.009 -0.01 ± 0.03 -0.02 ± 0.02

03 +0.00 ± 0.01 +0.000 ± 0.009 +0.01 ± 0.03 +0.00 ± 0.02

04 +0.00 ± 0.01 +0.001 ± 0.009 -0.01 ± 0.03 -0.01 ± 0.02

Combined -0.002 ± 0.005 -0.001± 0.005 -0.00 ± 0.01 -0.007 ± 0.008

3.4 Direct Multistate Free Energy Estimates

The TI-MBAR method was helpful in comparing the advantage of MBAR over

TI-WHAM, but the PBAR and MBAR methods were developed to directly estimate

the free energy difference between states. The λi endpoints (0.0 and 1.0) need to be

simulated in order for a direct estimate of the free energy difference from MBAR and

PBAR, and the results in Table 3.3 include data from all seven λi. The addition of

the endpoint data improves the combined runs TI-MBAR result from +0.002± 0.006

to −0.002±0.005 kcal/mol. The direct MBAR method shows slightly better accuracy

and precision than TI-MBAR for all of the runs as well as the combined data set.

The performance gain of MBAR relative to TI-MBAR is expected to increase with

the system size as the bias inherent the Gaussian quadrature process will be more

evident in complex, non-symmetric alchemical changes.

Interestingly, the direct MBAR method also outperforms the PBAR results.

Shirts and Chodera predicted that because the PBAR method requires independent

sets of work values between each pair of states MBAR would make better use of

equilibrium data. [4] To get independent sets of work values the Ni samples per state
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must be distributed into Nij sets that will be used to calculate the instantaneous work

to go from state i to state j. With K total states and Ni structures per state each

Nij can have at most Ni/K structures, and for large values of K the decrease in the

number of available data points relative to the equilibrium number Ni is large. For

example, the four replicas and seven λi used in the model system PBAR calculation

reduces the 5000 Ni structures to only 185 Nij structures. In order to better use the

equilibrium data set Maragakis et al. suggested repeating the PBAR analysis with

different random subsets and reporting the average and standard deviation. [33] The

average should be recovered with this method, but due to the small number of in each

PBAR calculation the standard deviation can be expected to be significantly higher

in PBAR than MBAR, which is observed in Table 3.3.

The MBAR Subsets results follow the procedure outlined above for sampling

random subsets of the total structures and reporting the average and standard de-

viation. The size of for each MBAR Subset was limited to same size required by

PBAR (185 for the individual runs, 740 for the combined runs), although for MBAR

to work properly it must use the same 185 structures from Ni for each pair of states

ij. The MBAR Subset results are comparable to the PBAR results, showing that the

increased precision of the direct MBAR method is indeed due to the more efficient

use of equilibrium data.

3.5 Equilibrium Conformations

The REXAMD method is not limited to free energy calculations, and has

been used for determining equilibrium structural properties in conjunction with the

WHAM method. [40] The calculation of expectation values using MBAR instead of

WHAM should avoid the bias introduced by discrete binning during the reconstruc-

tion process. [51, 4] The MBAR method naturally computes equilibrium expectation

values, and this can be extended to computing population histograms and potential

of mean force for observables. Figure 3.2 illustrates the distribution of the model sys-

temï£¡s dihedral angle from a single simulation at where the potential energy surface

is symmetric. The five thousand structures from the ground state method (Figure

3.2) show an overpopulation of the p-form. All four REXAMD states at can be used
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Figure 3.2: Comparison of the unbiased dihedral histogram for λi = 0.5 from 5
nanoseconds and 7 λi. The shaded histogram in each plot is the analytical result for
the model system. The Ground State result shows the distribution of the λi = 0.5
ground state replica. The WHAM result shows the WHAM reconstruction from the
four REXAMD states at λi = 0.5. The MBAR result shows the histogram derived
from the four REXAMD states at all 7 λi.

to generate the unbiased probability density histogram using WHAM. The result does

show a higher degree of symmetry than the ground state method, but the systematic

error introduced by the large bin widths causes the result to deviate strongly from the

analytical result. Decreasing the bin width does reduce this effect (Supplemental),

but finding the optimal bin width to balance the systematic and statistical errors can

be difficult. [51] If instead all four states of all seven are used by MBAR to compute

the population histogram the probability density the analytical result is completely

recovered (blue in Figure 3.2). This finding reiterates the benefit of using MBAR

over WHAM when combining equilibrium distributions from different biases.

Many important equilibrium conformational analysis techniques can be ex-

pressed as expectation values, and thus would greatly benefit form the combination of
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REXAMD and MBAR. For example, the covariance matrix and the related principal

components analysis and quasi-harmonic entropy (for the mass-weighted covariance

matrix), which are very sensitive to sampling, are defined in terms of expectation

values (Equation 3.9). The root mean squared deviation and the root mean squared

fluctuation are also expectation values that are frequently used in conformational

analysis.

Cov (Xi, Xj) = 〈(Xi − 〈Xi〉) (Xj − 〈Xj〉)〉 = 〈XiXj〉 − 〈Xi〉 〈Xj〉 (3.9)

3.6 Conclusion

All REMD methods require an increasing number of replicas as the system size

increases, and it becomes important to make efficient use of all of the replica data and

not just the data at the desired temperature or acceleration. We set out to determine

the best way to combine the biased data from REXAMD simulations to improve

the accuracy of free energy calculations and structural analysis. The performance of

WHAM and MBAR at computing the 〈dV/dλ〉λi
from multiple acceleration states at

specific λi was compared to the 〈dV/dλ〉λi
from the ground state (no acceleration).

TI-WHAM performed worse than the TI-GS, and this result was discussed in light of

the competing errors when selecting the WHAM bin width. The Individual Lambda

TI-MBAR, which is comparable to TI-WHAM in terms of number of structures used

to compute each 〈dV/dλ〉λi
, was very close to the analytical result. The asymptotic

covariance matrix estimator was not able to cover the offset from the analytical results

and indicates that MBAR will underestimate the statistical uncertainty when used

with a relatively low number of samples. The All Lambdas TI-MBAR represented the

most efficient method of calculating 〈dV/dλ〉λi
with MBAR given the five intermediate

λi and with this amount of data the estimates of 〈dV/dλ〉λi
were both precise and

accurate. The results were comparable to using four times as much ground state

data, and show that the computational gain by combining the replica information

from REXAMD is excellent.

The MBAR and PBARmethods were then compared against each other, which

required simulating the alchemical endpoints. The MBAR method was approximately
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an order of magnitude more precise than the PBAR method. The inefficiency of

PBAR relative to MBAR was shown to be due to the requirement of independent

data sets for PBAR, which reduced the amount of data available for each pair of

states during the analysis. The most efficient way of combining equilibrium samples

of REXAMD data is conclusively MBAR. We then demonstrated the usefulness of

MBAR in combining multiple states to generate unbiased structural quantities. The

combination of REXAMD and MBAR should allow large system sizes to be efficiently

sampled and analyzed.
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Chapter 4

Intrinsic free energy of the

conformational transition of the KcsA

signature peptide from conducting to

non-conducting state

Abstract

We explore a conformational transition of the TATTVGYG signature peptide

of the KcsA ion selectivity filter and its GYG to AYA mutant from the conduct-

ing α-strand state into the non-conducting pII-like state using a novel technique for

multidimensional optimization of transition path ensembles and free energy calcula-

tions. We find that the wild type peptide, unlike the mutant, intrinsically favors the

conducting state due to G77 backbone propensities and additional hydrophobic inter-

action between the V76 and Y78 sidechains in water. The molecular mechanical free

energy profiles in explicit water are in very good agreement with the corresponding

adiabatic energies from the Generalized Born Molecular Volume (GBMV) implicit

solvent model. However comparisons of the energies to higher level B3LYP/6-31G(d)

Density Functional Theory calculations with Polarizable Continuum Model (PCM)

suggest that the non-conducting state might be more favorable than predicted by

molecular mechanics simulations. By extrapolating the single peptide results to the

43
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tetrameric channel, we propose a novel hypothesis for the ion selectivity mechanism.

4.1 Introduction

Organisms transmit electric impulses by means of cellular membrane polar-

ization that critically depends on the work of ion channels. These channels per-

mit passage of specific ion types across the membrane. Ion channels selective for

potassium such as KcsA [53, 54] are particularly interesting as they solve a non-

trivial problem of selecting larger K+ over smaller Na+ ions. Despite the wealth

of information derived from both experimental [55, 56, 54, 53] and computational

[57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70] studies of potassium channels, the

mechanism of selectivity in these biological machines remains too difficult to tackle

as it requires probing the multi-ion permeation transition states. [56, 55, 57, 59, 60,

63, 64, 65, 66, 67, 68, 69, 70] From the computational perspective, this task demands

computing multi-dimensional potentials of mean force (PMFs) for which efficient tools

have been lacking. [71, 72, 73, 21, 74, 75, 76, 77, 78, 79, 80, 81, 82, 9, 83, 84, 85, 86]

Recently, we have developed and the generalized gradient-augmented Har-

monic Fourier Beads (ggaHFB) method [73, 21, 74] that allows studying rare events

in complex molecular systems by extending FukuiâĂŹs intrinsic reaction coordinate

(IRC) approach [87, 88] with the help of the multi-dimensional free-energy gradient.

[21, 74, 89, 90]

In the present paper we apply the ggaHFB methodology to study an important

functional transition of the signature peptide TATTVGYG of the KcsA selectivity

filter that pinches the filter shut by flipping its V76 carbonyl group away from the

channel axis coupled with the V76 sidechain rotation in response to lowering the

K+ concentration. [53, 56, 55] The V76 carbonyl group flip in the KcsA channel is

associated with the αL to pII backbone conformational transition at the G77 residue of

the signature peptide, and is believed to switch the selectivity filter from a conducting

(αL) to a non-conducting (pII) state. This transition has been alluded to by X-ray

crystallography that detected a partial flip of the V76 backbone carbonyls in the wild

type KcsA upon lowering K+ concentration, [53, 54] and recently a more pronounced

flip in the E71A mutant. [91] Similar transitions have been observed in numerous
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molecular dynamics (MD) simulations of KcsA [59, 60] and other related channels.

[92, 93, 94] Interestingly, X-ray crystallographic studies indicate that the αL to pII

backbone transition is accompanied by rotation of the V76 sidechain. However, to the

best of our knowledge, previous MD simulations of the KcsA and related potassium

channels did not report such a rotation. Furthermore, while the carbonyl flip into

pII state observed by X-ray crystallography preserved the four-fold symmetry of the

channel, the MD simulations reported only a single strand out of four identical strands

to undergo the αL to pII transition, thus breaking the symmetry of the channel.

It is possible that averaging over the four strands of the filter might artificially

diminish the extent of the transition seen by the X-ray crystallography, thus mask-

ing the symmetry breaking. However, unambiguous demonstration of the symmetry

breaking requires assessing the free energy of the conformational transition in the full

tetrameric channel. Although possible to accomplish with the help of the ggaHFB

method, this task is computationally intensive as it requires free energy optimization

of a transition path ensemble for a relatively large system. On the other hand, ex-

ploring the same transition using a single peptide might provide useful insights into

the function of the tetrameric channel with reduced computational burden. In par-

ticular, the intrinsic free energy profile should provide relative free energies of the αL

and pII states along with the corresponding free energy barrier outside the channel

environment, and thus suggest whether multiple transitions inside the channel are

likely.

We define the intrinsic free energy profile of the peptide as that of a single

peptide in water. Our choice of water medium has been motivated by the follow-

ing observations. The distributions of the Ramachandran dihedral angles of various

residues in the existing protein structures resemble those from the corresponding adi-

abatic maps in water, but differ markedly from those in gas phase. [95, 96, 97, 98, 99]

Even though KcsA is a trans-membrane protein, when fully assembled and in con-

ducting state, water molecules can access the back of the selectivity filter, where

they participate in hydrogen bonding with E71 and D80 residues (not present in our

model). [53, 54, 67, 100] Additional water molecules reach behind the selectivity filter

to interact with other residues of the signature peptide in the non-conducting state.

[54, 56] Furthermore, the filter is known to conduct water with and without the ions
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and hence has a water accessible interior. [53, 54, 56, 101] Therefore, we feel that

the study of the behavior of a single selectivity peptide in water will provide useful

insights for understanding the behavior of the same peptide in the tetrameric channel.

This paper is organized as follows. First, we review the ggaHFB methodol-

ogy for finding minimum adiabatic potential energy paths and minimum free energy

transition path ensembles, and computing corresponding energy profiles. Combining

the ggaHFB transition path ensemble optimization and free-energy evaluation capa-

bilities with the available X-ray structural information, we then explore the intrinsic

free energy profile of the signature peptide underlying the flip of the V76 carbonyl

from conducting into the non-conducting state. [102, 103, 104, ?, 106] Furthermore,

we evaluate the effect of the V76 sidechain rotation on the backbone transition. To

derive additional support for the functional importance of the specified transition to

the KcsA channel, we compare the free energy profile of the wild type peptide to

that of the GYG to AYA mutant. Note that a closely related G77A mutant either

abolishes the selectivity [107] or abrogates the activity of the channel. [108] To diffuse

any doubts regarding the choice of the water environment for our study, we examine

the changes to the functional transition upon removing the peptide from water and

placing it into gas phase. Here we fully utilize the ggaHFB capabilities in finding

minimum adiabatic potential energy pathways and computing the corresponding en-

ergy profiles via the generalized line integral formalism. Finally, we provide some

benchmarks to lend credence to the computed energy profiles in water. In particular,

we gauge the molecular mechanical (MM) CHARMM22 forcefield [109, 110] against

a popular Quantum Mechanical (QM) Density Functional Theory model, namely

B3LYP [111, 112, 113] with 6-31G(d) basis set. To account for the solvent contri-

bution, we employ the Generalized Born Molecular Volume (GBMV) [97, 114] and

Polarizable Continuum Model (PCM) [115, 116, 117, 118] with the MM and QM

energy functions, respectively.

4.2 Methodology

Given the novelty of the employed transition path and path ensemble optimiza-

tion technique, the generalized gradient augmented Harmonic Fourier Beads method,
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that makes this study possible, we briefly describe the main points of the method in

the following paragraphs.

4.2.1 Reactive coordinate space (RCS) and biasing potential

The generalized gradient-augmented Harmonic Fourier Beads (ggaHFB)

method considers an arbitrary system of N atoms described by 3N generalized co-

ordinates Q̄ = (q1, ..., q3N), and, equivalently, by 3N Cartesian coordinates X̄ =

(x1, ..., x3N). The method derives the gradient of either adiabatic potential energy or

the free energy of the system with respect to a selected subset of S ≤ 3N coordinates

q̄ = (q1, ..., qS) that comprise the reactive coordinate space (RCS) by employing either

biased optimization or biased molecular dynamics (MD) or Monte Carlo (MC) simu-

lations, correspondingly. The remaining 3N−S degrees of freedom r̄ = (qS+1, ..., q3N)

comprise the spectator coordinate space (SCS) and do not contribute explicitly to the

energy gradient.

The biasing potential is a linear combination of relatively stiff harmonic re-

straints and applies only to the RCS degrees of freedom centered at a reference con-

figuration q̄b,ref =
(
qb,ref1 , ..., qb,refS

)
: [21, 74]

V b
(
q1, ..., qS; qb,ref1 , ..., qb,refS

)
=

S∑
i=1

kbi

(
qi − qb,refi

)2

(4.1)

Here superscript b indicates the bias, and kbi is the ith coordinate bias force

constant. This biasing potential allows deriving the desired energy gradients using a

very simple idea described in the following section.

4.2.2 Adiabatic potential energy gradient from biased opti-

mization

The key idea for computing the energy gradients is most clearly demonstrated

on the example of the adiabatic potential energy. Let us add the biasing potential

(1.1) to the total energy of the system U
(
Q̄
)

= U (q̄, r̄) and then perform potential

energy optimization on the modified potential energy surface. Such optimization

should reach an equilibrium point at which the forces from the biasing potential
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that apply only to the S degrees of freedom balance those from the potential energy.

Because the forces on the remaining 3N − S degrees of freedom become identically

zero due to optimization, the equilibrium point provides the gradient not of the

full potential energy, but instead of the adiabatic potential energy. Therefore, the

biased optimization yields the gradient of the adiabatic potential energy in RCS. The

following equations summarize the above.

∂U (q̄, r̄)

∂qi

∣∣∣∣
q̄=[q̄]b,r̄=[r̄]

=
∂V (q̄)

∂qi

∣∣∣∣
q̄=[q̄]b

= −2kbi

(
[qi]

b − qb,refi

)
(4.2)

The square brackets indicate the local minimum on the modified potential

energy surface. This procedure effectively reduces the full potential energy surface of

3N degrees of freedom to the adiabatic potential energy surface of S ≤ 3N degrees

of freedom. It is worth noting that in order to compute the adiabatic potential

energy gradient on steep slopes in the vicinity of transition states one has to use

somewhat stiff springs. Otherwise the minimum on the modified energy surface will

slide downhill close to the corresponding minimum on the full energy surface providing

little or no information about the transition state region. This remark also applies to

the free energy gradient discussed in the next paragraph.

4.2.3 Free energy gradient from biased simulations

The idea used to derive the gradient of the adiabatic potential energy can be

applied to derive the gradient of the free energy from biased simulations. For the

proof of this statement we refer the reader to the previous work [21, 74, 89, 90] and

only summarize the results here. It has been demonstrated that for somewhat stiff

Cartesian restraint (1.1) with reference configuration x̄b,ref in RCS, one can compute

the corresponding Cartesian free energy gradient via equation (1.3).

∂W u (x̄)

∂xi

∣∣∣∣
x̄=〈x̄〉b

≈ −2kbi

(
〈xi〉b − xb,refi

)
(4.3)

Similarly, for the restraint (1.1) in generalized coordinates centered at q̄b,ref the

corresponding free energy gradient is given by equation (1.4). [74]
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∂W u (q̄)

∂qi

∣∣∣∣
q̄=〈q̄〉b

≈ −2kbi

(
〈qi〉b − qb,refi

)
+ kBT

∂ ln |J (q̄)|
∂qi

∣∣∣∣
q̄=〈q̄〉b

(4.4)

Here W u is the unbiased free energy, kB is the Boltzmann constant, T is the

simulation temperature, and |J (q̄)| is the ensemble-reduced Jacobian for the trans-

formation from Cartesian to the generalized coordinates. Note that equation (1.4)

is practically identical to equation (1.2) for the adiabatic potential energy gradient,

where the biased ensemble average 〈q̄〉b =
(
〈q1〉b , ..., 〈qS〉b

)
replaces the local mini-

mum [q̄]b configuration. The additional logarithmic Jacobian term on the right hand

side of the generalized gradient expression (1.4) is the consequence of using Carte-

sian MD or MC propagators with the nonlinear restraints. [74, 47] Unlike the case

for the adiabatic potential energy gradient, the free energy gradient expression is

approximate.

The quality of the free energy gradient depends on the stiffness of the harmonic

restraint [21, 74] and on the quality of the corresponding configuration averages. To

achieve the highest quality, one can either run a single very long simulation or run

several short simulations and then combine the results into the cumulative average.

We prefer the latter approach for accurate free energy calculations as it allows mon-

itoring convergence of the gradient. Specifically, running P batches of short MD

or MC simulations of equal length subject to the restraint (1.1) provides P sets of

averaged coordinates or âĂĲevolved beadsâĂİ 〈q̄〉 =
(
〈q1〉b,j , ..., 〈qS〉b,j

)
for a given

reference bead, where j is the batch number. These averages could then be easily

combined to yield the higher quality cumulative average:

〈q̄〉b =
1

P

P∑
j=1

〈q̄〉b,j (4.5)

Importantly, the averaged configuration provides the complete free energy gra-

dient in RCS and not just one of its components:

∇W u (q̄)|〈q̄〉b =

(
∂W u (q̄)

∂q1

∣∣∣∣
〈q̄〉b

, ...,
∂W u (q̄)

∂qS

∣∣∣∣
〈q̄〉b

)
(4.6)

This property of the ggaHFB method is a great advantage over the histogram-

based free energy estimates that require much larger arrays of simulations to populate
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multidimensional histograms. [21, 74, 89, 90, 50, 119] Therefore, the ggaHFB method

offers a practical alternative to the conventional umbrella sampling simulations with

weighted histogram analysis method (WHAM). [50, 119]

The ability to compute the free energy gradient efficiently makes it possible to

perform gradient-driven optimization on free energy surfaces and ultimately to find

minimum free energy transition path ensembles.

4.2.4 Minimum adiabatic energy transition path

The ggaHFB method as a path finding tool belongs to the class of double-

ended reaction path methods that require a reactant and a product state to describe

a transition of interest. [71, 72, 73, 21, 74, 75, 76, 77, 120, 121, 122, 123, 124, 125,

126, 127] Importantly, the ggaHFB method finds reaction or transition paths that

are invariant with respect to coordinate transformations. The concept of invariant

reaction paths, called âĂĲintrinsic reaction coordinateâĂİ (IRC), has been developed

by Fukui for the full potential energy surfaces [87, 88] and has been further elaborated

by many authors since. [71, 77, 123, 128, 129, 130, 131, 132] In simple terms IRC

represents the center curve of the reaction path region that follows the invariant

energy gradient.

In particular, in Cartesian coordinates the IRC curve satisfies the following

simple condition:

∇⊥U
(
X̄
)

= ∇U
(
X̄
)
− ~n

(
X̄
) ~n (X̄) · ∇U (X̄)
~n
(
X̄
)
· ~n
(
X̄
) = ~0 (4.7)

where ~n
(
X̄
)
is the curve tangent and ~0 is the null vector.

Importantly, for nonlinear coordinates the direction of the gradient vector has

to be corrected using the corresponding contravariant metric tensor G that potentially

depends on all 3N degrees of freedom:

G = (gij) =

(
3N∑
k=1

∂qi
∂xk

∂qj
∂xk

)
(4.8)

otherwise different nonlinear coordinate systems will yield different reaction

paths for the same stationary points. [71, 87, 88, 128, 129, 130, 131] Thus, to be
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invariant the transition path curve in nonlinear coordinates must satisfy the following

more complicated condition:

(
G∇U

(
Q̄
))
⊥ =

(
G∇U

(
Q̄
))
− ~n

(
Q̄
) ~n (Q̄) · (G∇U (Q̄))

~n
(
Q̄
)
· ~n
(
Q̄
) = ~0 (4.9)

where ~n
(
Q̄
)
is the curve tangent in the nonlinear coordinates.

Both equations (1.7) and (1.9) apply also to the adiabatic energy surfaces. Be-

cause the system of equations (1.9) is somewhat complicated by the need to compute

the metric tensor, the ggaHFB method employs Cartesian coordinates for the path

curve optimization instead of the generalized coordinates.

4.2.5 Minimum free energy transition path ensemble

Using the free energy gradient, the ggaHFB method generalizes the concept

of the FukuiâĂŹs IRC [87, 88] to free energy surfaces. In deriving the free energy

gradient the SCS degrees of freedom orthogonal to RCS are averaged over, which

results in each point in the RCS representing an ensemble. Thus, the ggaHFB method

finds continuous curves that connect the provided reactant and product ensembles

through a series of transition and intermediate state ensembles. These curves must

satisfy the condition that the invariant free energy gradient be tangential to the

path curve at any point. In particular, the ggaHFB method uses the straightforward

generalization of equation (1.7) to free energy surfaces in Cartesian coordinates:

∇⊥W
(
〈x̄〉b

)
= ∇W

(
〈x̄〉b

)
− ~n (x̄)

~n (x̄) · ∇W
(
〈x̄〉b

)
~n (x̄) · ~n (x̄)

= ~0 (4.10)

As noted above, working with nonlinear coordinates requires computing loga-

rithmic Jacobian corrections to the free energy gradient. Furthermore, finding invari-

ant paths requires additional metric tensor corrections. [71, 122] No such complica-

tions arise in Cartesian coordinates, which is why the ggaHFB method employs these

coordinates to optimize transition path ensembles.
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4.2.6 Transition path optimization

To optimize a transition path in Cartesian coordinates, we take K unique

configurations
{
Q̄k

}
k=1,K

that gradually progress from the reactant to the product

and assign them to a uniform grid
{
αk = k−1

K−1

}
k=1,K

with mesh size of δα = 1
K−1

.

If initial configurations Q̄k = Q̄ (αk) are unavailable they could be derived via a

linear interpolation or by the activated evolution procedure [73] that is similar to

the growing string method. [60] Using these K configurations, we obtain up to K

corresponding Fourier amplitudes for each degree of freedom by applying the standard

Fourier transform integration with the trapezoidal rule on the grid: [133]

bin =
K−1∑
k=1

(
f i,kn + f 1,k+1

n

)
δα (4.11)

where f i,kn = [qi (αk)− qi (0)− (qi (1)− qi (0))αk] sin (nπαk).

This procedure globally interpolates between all the K points, yielding a con-

tinuous Fourier curve [73, 134] which is an analytical function of a progress variable

α ∈ [0; 1]:

qi (α) = qi (0) + (qi (1)− qi (0))α +
K∑
n=1

bin sin (nπα) (4.12)

We then redistribute the K beads along the path curve such that they conform

to a particular metric. Usually, we reposition the beads to make the arc lengths

between adjacent beads of equal length in the RCS.

The newly redistributed beads serve as reference beads to compute the cor-

responding adiabatic potential energy gradients or the free energy gradients via the

evolution procedures described in previous sections. Thus, for each reference bead

q̄refk = q̄
(
αref
k

)
, the evolution returns either the minimized [q̄]bk =

(
[q1]bk , ..., [qS]bk

)
or

the average bead 〈q̄〉bk =
(
〈q1〉bk , ..., 〈qS〉

b
k

)
, also called the raw evolved bead.

The ggaHFB method borrows the idea of re-distributing beads along the curve,

and re-parametrizing the curve given the re-distributed beads from the string method.

[121, 122, 123, 135] All the other essential ingredients of the ggaHFB method, such

as the multidimensional energy gradient derived on the fly from the harmonic bias-

ing potential, the Fourier representation of both the path and of the corresponding
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energy gradient (see below) employed in the energy profile integration via general-

ized line integral, as well as optimization strategies have been obtained from sources

independent of the string method. [73, 21, 74, 127, 134]

In the following discussion, we omit the complementary SCS coordinates for

clarity. These coordinates are assumed to be either completely minimized or averaged

over and do not explicitly affect either the path or its energy. Optimization implies

that the SCS coordinates are passed along either through dynamics restart files or

through the complete coordinate files. In addition, it is assumed that the changes in

the SCS coordinates between the beads are continuous.

For brevity, we only discuss how to drive optimization of the transition path

ensembles and compute the corresponding free energy profiles. The same strategies

apply to finding the transition paths on adiabatic potential energy surfaces and com-

puting the corresponding energy profiles. In this case, the adiabatic potential energies

could also be calculated exactly for all the points along the path and compared to

those computed using the ggaHFBâĂŹs generalized line integral formalism.

Substituting the raw evolved beads into equation (1.3) gives estimates of the

free energy gradients for each bead. These gradients are then used in the steepest

descent step to generate the enhanced evolved beads :

q̄SD
k = 〈q̄〉bk + γk∇W u

(
〈q̄〉bk

)
(4.13)

Here γk is the parameter that controls the SD step size for the kth bead. In the

present paper we use the uniform step size parameter γ for all the beads for simplicity.

Following the Fourier transform of the enhanced beads to obtain new Fourier

amplitudes, redistribution of the beads along the resulting curve provides new refer-

ence beads. These reference beads are re-aligned to maintain the coordinate system.

For this purpose we invoke a mass-weighted best-fit procedure in a suitable space,

usually RCS, to enforce the Eckart conditions on the beads. [21, 127, 136, 137, 138]

In cases where only a few coordinates are available for the best fit or if their geometric

arrangement breaks down the standard best fit procedure, simpler alignment methods

could be used. The final re-aligned beads then replace the previous reference beads

in the next round of evolution. This procedure is repeated until convergence of the

path, i.e. until the path curve changes cease. The final optimized curve represents
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an invariant minimum free energy transition path ensemble that satisfies the Fukui’s

IRC criteria. [87, 88]

The convergence rate of the ggaHFB method depends to some extent on the

employed bias force constant and step size parameter. Therefore, devising an opti-

mization strategy to achieve the fastest convergence possible is desirable and is an

active area of research in our lab.

4.2.7 Computing the free energy along the Fourier path

Given a Fourier path in the generalized multi-dimensional coordinate space and

the corresponding free energy gradients, we can compute the free energy profile along

that path via the generalized line integral formalism. To achieve the highest accuracy,

we Fourier transform both the evolved beads (1.5) and the corresponding free energy

gradients (1.6) along the path. With the continuous Fourier representations of the

forces and the path, we could then analytically evaluate the corresponding reversible

work line integral passing through the evolved beads:

W u (α) =
S∑
i=1

∫ α

0

[
∂W u (α)

∂qi
q′i (α)

]
dα (4.14)

In practice, we evaluate the generalized line integral of the second order in

equation (1.14) on a fine uniform grid with L >> K quadrature points.

This procedure provides the free energy or the potential of mean force (PMF)

profile as an analytical function of the progress variable. Unlike umbrella sampling

with WHAM, the interpolation-based ggaHFB free energy integration procedure does

not require overlap between the windows. Furthermore, the ggaHFB integration

procedure allows natural decomposition of the free energy into contributions from

individual coordinates.

The analytical form of the energy profile and that of the corresponding path

provided by the ggaHFB method renders pinpointing the energy extrema and their

accurate RCS coordinates particularly trivial. One can easily find the values of the

progress variable α corresponding to extrema on the energy profile and then substitute

these values into equation (1.12) to get the matching structures.
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4.2.8 Summary of the ggaHFB methodology

In summary, the ggaHFB method finds the Fukui’s IRC curves on the adia-

batic potential energy surfaces and further generalizes this approach to Cartesian free

energy surfaces. Thus, the ggaHFB method finds either minimum adiabatic poten-

tial energy paths or minimum free energy transition path ensembles via a gradient

driven optimization procedure. Optimizing the transition paths and path ensem-

bles in Cartesian coordinates bypasses the need to calculate the corresponding metric

tensors. The optimized transition paths provide structural and energetic informa-

tion about all the intermediates and transition states connecting given reactants and

products at once. Furthermore, the global Fourier representation of the path and the

forces provide useful means to control various aspects of the path optimization and

ultimately makes the ggaHFB optimization extremely robust.

Independent from the path optimization, the ggaHFB method is a practi-

cal alternative to the conventional approach to free energy calculations via umbrella

sampling with WHAM. Advantageously, the ggaHFB method is histogram-free, which

makes it applicable to cases with arbitrary many dimensions. Even though ggaHFB

uses somewhat stiff springs, it does not require the overlap between the windows to

integrate the free energy profile. Additionally, the Cartesian version of the ggaHFB

method avoids the need to compute the logarithmic Jacobian correction that is re-

quired if either WHAM or ggaHFB is used with nonlinear coordinates such as bond

distances, angles, dihedrals etc to compute free energy profiles. [74, 139] Finally,

the energy profiles can be straightforwardly decomposed into contributions from the

individual degrees of freedom that could be useful for analysis and design purposes.

4.2.9 Results

4.2.10 Minimum free energy transition path ensembles

To explore the free energy of the αL to pII backbone transition of a TATTV-

GYG signature peptide in water and the effect of the V76 sidechain rotation, we use

the ggaHFB method with two reactive coordinate spaces (RCSs) of different dimen-

sionalities. Specifically, we include all heavy atoms of the peptide into RCS1, and
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derive RCS2 from RCS1 by excluding sidechain atoms. The RCS1 surface provides

the free energy of the backbone configuration subject to a particular sidechain ori-

entation. In contrast, the RCS2 surface provides the free energy of the backbone

configuration irrespective of the sidechains. Unless otherwise stated, throughout this

work we employ molecular dynamics in the isothermal isobaric NPT ensemble at 298

K and 1 atm using CHARMM22 molecular mechanical force field [109, 110] with the

CHARMM-modified TIP3P explicit water model [140, 141, 142, 143, 144] to derive

all the required free energy gradients.

Our preliminary free-energy optimization runs revealed that both the αL and

pII states at position 77 are local free-energy minima of the isolated peptide in water.

Interestingly, the partially flipped, non-conducting conformation observed by X-ray

crystallography at low K+ concentration (PDB code 1R3K) is unstable by itself in

water despite the rotation of the V76 sidechain away from the high K+ concentration,

conducting conformation (PDB code 1R3J). During optimization of the peptide from

the partially flipped state its backbone, but not the V76 sidechain, collapses to the

conducting state conformation.

Therefore, to study the full range of the peptide flip, we have constructed an

initial path that includes both αL and pII states of G77 backbone. To assess the

effect of the V76 sidechain rotation, we have included two such rotations by requiring

that the endpoints have the same V76 sidechain orientation, matching that of the

conducting state. Furthermore, we have inserted the crystallographic non-conducting

state with partially flipped backbone and rotated V76 in the middle of the path (refer

to Supporting Information for details).

Performing thorough optimization on the RCS1 free energy surface (see Sup-

porting Information), we obtain an intrinsic transition path ensemble for the G77

backbone conformational transition from αL to pII state in the TATTVGYG peptide

in water. Using the RCS1-optimized path ensemble as the reference we then compute

the final free-energy profile, both coupled with (RCS1) and uncoupled from (RCS2)

the V76 sidechain rotation. To elaborate on the energetics of the backbone transition

further, we compute an analogous optimal path and the free-energy information for

a GYG to AYA mutant. The resulting cumulative PMFs at different collection times

are depicted in Figure 1.1 and the representative structures of the wild type peptide
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are shown in Figure 1.2.

The PMFs at the RCS1 level display two events involving the V76 rotation as

two sharp peaks with barrier heights ranging from 5 to 8 kcal/mol in both directions.

Interestingly, the V76 sidechain rotation from the conducting into non-conducting

orientation destabilizes αL state by 2 to 3 kcal/mol, indicating that the hydrophobic

interaction between the V76 and Y78 sidechains provides additional stabilization of

the αL state in the conducting conformation. The αL to pII backbone transition at

position 77 follows the second, restoring V76 sidechain rotation. In the wild type,

the free energy barrier for the backbone transition given a specific orientation of the

sidechains (the RCS1 PMF) has a forward barrier of 6.0 kcal/mol. The pII state is

2.2 kcal/mol less favorable than the αL state, and converts back with a barrier of 3.8

kcal/mol. In sharp contrast, in the mutant the forward barrier is only 0.7 kcal/mol

and the pII state is 6.3 kcal/mol more favorable than the α-strand. Restoring the

α-strand state in the mutant requires surmounting a high 7.0 kcal/mol free-energy

barrier.

Setting the sidechains free (the RCS2 PMF) permits evaluating the free energy

of the backbone transition alone. As is seen from Figure 1.1, switching to RCS2 space

collapses the sharp peaks (labeled with arrows) corresponding to the V76 sidechain

rotations, but leaves the portion of the PMF underlying the backbone transition from

the αL to the pII state virtually unchanged. In particular, for the wild type peptide

the forward activation barrier is 5.9 kcal/mol, and the pII state is still less stable

than the αL by slightly smaller 1.7 kcal/mol. Restoring the conducting state requires

overcoming a slightly higher barrier of 4.2 kcal/mol. In contrast, the mutant exhibits

a forward barrier of 0.9 kcal/mol and the relative pII state stabilization energy of 7.0

kcal/mol that makes the reverse barrier increase to 7.9 kcal/mol.

Minimum adiabatic potential energy paths

To explicitly evaluate the effect water has on the conformational transitions

of the signature peptide and to further demonstrate the capabilities of the ggaHFB

method, we have computed the minimum adiabatic potential energy paths for the wild
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Figure 4.1: Cumulative PMFs for the conformational transition of the signature
TATTVGYG KcsA peptide and its AYA mutant from the αL to pII state in explicit
water on RCS1 and RCS2 free-energy surfaces at different collection times. The
ggaHFB method employed 89 beads to integrate the free energy profile. Arrows
point to the V76 sidechain rotations.
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Figure 4.2: Representative structures from the free energy transition path ensemble
of the wild type TATTVGYG signature peptide of the KcsA selectivity filter in explicit
water. The values of the progress variable α provided relate structures to the free
energy profile of the wild type peptide in Figure 1.1.

type TATTVGYG peptide and its GYG to AYA mutant in gas phase. Both peptides

have three threonine and one tyrosine residues with rotatable OH bonds that were

averaged over in the minimum free energy transition path ensembles computed in

water. The orientation of these hydrogens significantly perturbs the overall potential

energy, therefore we include these four hydrogen atoms into the reactive coordinate

space. Thus, by adding the polar hydrogen atoms to the all-heavy-atom RCS1 we

derive the RCS1h for adiabatic potential energy path optimization.

We have to assign some initial values to the tyrosine and threonine OH groups,

which have two and three rotameric states, respectively, in order to compute the adia-

batic potential energy paths. The total number of possible initial path configurations

is therefore 21x33 = 54. To control the configurations, we follow the Protein Data

Bank atom naming convention and use dihedral angles Cε1-Cς-Oη-Hη and Cα-Cβ-

Oγ-Hγ for the tyrosine and the threonines, respectively. Here, we arbitrarily choose

dihedral angles of 180, 180, -30 and 0 degrees for the T72, T74, T75 and Y78, respec-

tively, as the initial conditions for the path optimization. To prepare the initial path
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with these conditions, we fix the RCS1 coordinates and apply stiff harmonic restraints

of 1000 kcal/(mol·rad2) on the corresponding dihedral angles during an optimization

of the hydrogen positions.

Because the optimization on adiabatic potential energy surfaces with the bare

CHARMM22 molecular mechanical forcefield is relatively inexpensive, we have ini-

tiated the ggaHFB optimization using 89 beads. Using 89 beads is sufficient to

integrate the adiabatic potential energy, given the initial orientation of the four OH

bonds. Nevertheless, optimization of the OH groups requires increasing the number

of beads further to correctly integrate the adiabatic potential energy. The increase

reflects the fact that rotations of the OH groups correspond to small changes in the

RCS1h, resulting in very sharp transitions along the path. Although, proper inte-

gration could be achieved by locally increasing the number of beads at the sharp

transitions leading to non-uniform bead distributions, [74] in the present work we use

uniform grid for simplicity. Thorough path optimization increases the overall path

length dramatically, in the end requiring 705 beads to properly integrate the adiabatic

potential energy along the path.

The final paths in the gas phase have little if any resemblance with the paths

optimized in water and exhibit a greater number of local minima and transition states.

For the wild type peptide, the α-strand disappears almost completely. First, the G79

residue spontaneously flips into the C5 conformation and then converts into the C7ax

conformation. In the flipped configuration on the reactant side of the path G79 forms

a hydrogen bond with the OH group of T71 using its carbonyl oxygen. The G79

residue flip significantly perturbs the rest of the α-strand, which quickly collapses

further residue-by-residue along the path.

In the mutant, the α-strand is annihilated completely in the reactant basin,

where the A79 along with the A77 residues flip into the C7ax conformation. The four

residues V76, A77, Y78 and A79 surround the T71 residue like a belt, with alternating

axial and equatorial configurations, namely C7ax, C7eq, C7ax and C7eq, respectively.

During the optimization the mutant pathway deviates substantially from that of the

wild type.

Figure 1.3 depicts the corresponding adiabatic energy profiles that underscore

the complexity of the changes in the gas phase. It also provides the benchmarks for the
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adiabatic potential energy integration via the generalized line integral formalism. In

particular, comparison of the line integral energies with the exact adiabatic potential

energies from the CHARMM22 forcefield show the accumulated errors of 0.07 and

0.12 kcal/mol for the wild type and mutant adiabatic energy profiles, respectively.

We consider this a very good agreement between the generalized line integral energy

and the exact energy profiles.

The V76 sidechain rotations (labeled with arrows) have been preserved in

both wild type and mutant paths, although in some cases have been coupled with

other structural rearrangement as seen in Figure 1.3. The forward and reverse barrier

heights for the V76 sidechain rotation vary, but are similar to those in water.

Overall the gas phase structures are more compact than the ones in water and

establish as many intra-molecular hydrogen bonds as possible. Given the complexity

of the adiabatic paths and their divergence from the structures obtained by either

the X-ray crystallography or by the free energy optimization in water, we omit de-

tailed description of the structural changes along the path and simply provide the

corresponding trajectories in Supporting Information.

4.2.11 Comparison of the MM and QM energy profiles

Gas Phase Because the present paper investigates an important conformational

transition of the TATTVGYG signature peptide from the KcsA potassium channel,

it might be useful to assess the molecular mechanical (MM) forcefield employed. Of

particular interest is evaluating the energetics of the signature peptide and its mutant

along the path optimized in water. To establish useful benchmarks, we first compute

the gas phase adiabatic energy profiles along the minimum free energy transition path

ensembles in the RCS1. In particular, we compare the MM energy profiles with one

of the most popular density functional theory models, namely B3LYP, with 6-31G(d)

basis set as a high-level quantum mechanical (QM) model (see Supporting Information

for details). This model is not expected to produce accurate energy profiles when it

comes to dispersion interactions between the Y78 residue and the V76 sidechains and

hence should be used with caution. [145, 146, 147, 148]

Figure 1.4 shows the corresponding adiabatic potential energy profiles for the
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Figure 4.3: Adiabatic potential energy profiles along the optimized reaction paths
of the signature TATTVGYG KcsA peptide and its AYA mutant in gas phase. The
ggaHFBmethod employed 705 beads to integrate the potential energy with the RCS1h
(see text for details) âĂŞ solid lines; the CHARMM22 exact energies are shown in
dashed lines. Arrows point to the rotations of the V76 sidechain.
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peptides with the rotatable OH bonds fixed at the conformation used as initial con-

dition for the path re-optimization in gas phase. Interestingly, the energy profiles

obtained with MM and the QM models for the same path differ substantially. The

V76 sidechain rotation barriers appear reduced in the QM model.

Both the MM and QM models favor the pII state over the α-strand. The QM

model predicts the α-strand to be much less stable than the pII state in the wild

type, but relatively more stable in the mutant peptide. In contrast, the MM model

suggests that the α-strand is much more stable in the wild type peptide, not the

mutant. It is likely that the gas phase adiabatic energy surfaces of the MM and QM

models are significantly different in the gas phase and such single point energy profile

comparisons should be taken with caution.

Implicit Solvent As mentioned above, we are primarily interested in the energetics

of the peptides in water and not in the gas phase. After all, the transition path

ensembles for the functional conformational transitions of the peptides have been

optimized using the MM model in the explicit water. To compare the MM with

QM models in water, we choose the Generalized Born Molecular Volume (GBMV)

[97, 114] and Polarizable Continuum Model (PCM) [115, 116, 117, 118] implemented

in Gaussian 03 [149] implicit solvent models, respectively. Using the free-energy

optimized transition path ensembles in explicit water as reference profiles, we have

performed optimization of all the degrees of freedom orthogonal to the RCS1 and

subject to the same dihedral restraints on the rotatable OH bonds as discussed above

with MM-GBMV model and then computed single point QM-PCM energies for all

the beads along the path (see Supporting Information for details). The results are

provided in Figure 1.5.

The MM-GBMV model yields the free-energy profiles that are in very good

agreement with the explicit solvent calculations (Figure 1.1), thus further validating

the intrinsic free energy profiles. We cannot expect better agreement between the

two profiles given the fixed conformations of the rotatable OH bonds necessary to

compute the adiabatic energy profile with GBMV.

The QM-PCM model produces energy profiles very different from those of the
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Figure 4.4: Gas phase single point energy profile along the α-strand to pII state
conformational transition of the signature TATTVGYG KcsA peptide and its AYA
mutant in water. MM is the CHARMM22 forcefield, and QM is the B3LYP/6-31G(d)
Density Functional Theory model. Arrows point to the rotations of the V76 sidechain.
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Figure 4.5: Implicit solvent single point energy profile along the α-strand to pII
state conformational transition of the signature TATTVGYG KcsA peptide and its
AYA mutant in water. MM-GBMV âĂŞ uses the CHARMM22 forcefield with the
Generalized Born Molecular Volume implicit solvent model, QM-PCM âĂŞ B3LYP/6-
31G(d) Density Functional Theory with the Polarizable Continuum Model implicit
solvent model. Arrows point to the rotations of the V76 sidechain.
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MM-GBMV model, and most importantly does not favor the αL state over the pII

state in the wild-type peptide. In the mutant, on the other hand, the αL state remains

unstable with the QM-PCM model.

Because we have performed optimization on the water modified RCS1 free

energy surfaces of the peptides with the MM model and explicit water any comparison

with other surfaces that have not been optimized do not warrant good agreement,

unless the surfaces are exactly the same. This conflict could in principle be resolved

by the QM-PCM optimization of the product, reactant, and a few key intermediates,

which unfortunately presents a significant challenge at present.

4.3 Discussion

The finding that the signature peptide taken from the partially flipped non-

conducting state (PDB code 1R3K) collapses back into the conducting state in water

despite the V76 sidechain rotation shows the intrinsic width of the peptide αL basin.

Furthermore, it suggests that either the channel provides additional interactions to

stabilize partially flipped backbone structure or that only one of the four strands of

the tetrameric channel undergoes the full transition. If the latter symmetry breaking

were to occur, the apparent configuration observed by X-ray crystallography would

correspond to the average over four strands, thus artificially reducing the extent of

the transition in a single peptide.

The fact that the free energy profiles for the αL to the pII transition are rela-

tively insensitive to the position of the sidechains (see Figure 1) reflects the robustness

of the backbone transition. The forward and reverse free energy activation barriers

in the wild type peptide are 5.9 and 4.2 kcal/mol. Interestingly, previous calculations

of an even lower dimensional PMF for a similar transition inside the wild type KcsA

channel in the presence of two ions gave a rough estimate of the free energy bar-

rier between 0.5 and 4.0 kcal/mol.8 In sharp contrast, the mutant exhibits a forward

barrier of 0.9 kcal/mol and the reverse barrier of 7.9 kcal/mol.

The width of the αL basin in the intrinsic free energy profile of a single pep-

tide might determine the range of a local dilation/contraction of the tetrameric KcsA

channel at the V76 carbonyl ring. If the V76 carbonyl were pushed away from the
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channel axis beyond the limits of the αL basin, the peptide would go over the tran-

sition barrier and into the non-conducting pII state. We emphasize that by local

dilation/contraction of the channel we imply the change in the distance between the

V76 carbonyls associated with the backbone motions within the bounds of the αL

basin, and not with the transition from αL to pII or back.

The full αL to pII transition has been demonstrated to be unnecessary for the

ion selectivity, at least in a synthetic channel with the D-Ala residue in place of G77.

[56] Note that the wild type KcsA channel, in addition to K+, permits ions of larger

size, namely Cs+ and Rb+, which are expected to pass the V76 carbonyl ring without

triggering the transition from αL to pII. [55] Such a wide range of dilation/contraction

would not have been possible if G77 was substituted for regular Ala, as the width and

the depth of the αL basin would have been dramatically reduced as seen from the

PMFs for the mutant depicted in Figure 1.1. Note however, that the AYA mutant

would be sterically prevented from forming the conducting α-strand conformation in

the tetrameric channel. [56]

In an effort to validate the results obtained with the MM force field in explicit

water we have profiled the energetics along the paths using MM and QMmethods both

in gas phase and in implicit solvent. The results of these calculations are summarized

in Figures 1.4 and 1.5 that highlight the stark disagreement between the MM and

QM models. Although QM models usually have higher fidelity than MM models,

the particular DFT method used in this work, namely the B3LYP functional, is well

known to fail to account for short-range dispersion interactions necessary to properly

describe the energetics of the hydrophobic interactions such as those between V76 and

Y78 sidechains. [145, 146, 147, 148] Higher level, more expensive ab initio methods

that properly account for the dispersion suggest that the interactions between the

CH bonds of the V76 and the phenol ring of the Y78 could favor the α-strand by

about 1 kcal/mol.101, 103 Additional discrepancies between the MM and QM in this

work may arise due to the fact that no optimization has been performed at the QM

level of theory. Therefore, the differences between the QM and MM models should

be interpreted with caution.

It appears that the stability of the pII state in the wild type peptide might be

overestimated by the QM model with implicit water, because it would require at least
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20 kcal/mol to assume the conducting conformation in the tetrameric channel. On the

other hand the MM model with implicit water predicts the αL and pII configurations

to be nearly degenerate. If the QM-PCM model more accurately reproduced the

energetics of the solvated peptide even without optimization, the ground or resting

state of the wild type KcsA channel would be the non-conducting pII state. Thus

the channel would have to be activated by a conformational change from the pII

resting state into the α-strand state to conduct ions. This would only be possible

due to a strong perturbation such as strong attraction of the ions in the lumen of the

tetrameric channel to its carbonyl oxygens.

The switching between the non-conducting and conducting state and the func-

tional contraction/dilation of the tetrameric KcsA channel would require a certain

balance between the electrostatic repulsion of the V76 carbonyls and the free energy

of the backbone rotation of the residue at position 77. Because the electrostatic re-

pulsion can be relaxed by transiently flipping one or more of the carbonyls out from

the αL into pII state, the filter must also ensure to favor the αL over the pII state

at least in the presence of ions in the lumen of the filter. The potassium channel

seems to have achieved the α-strand stabilization by using a G residue that has high

propensity for the αL configuration at position 77, and in addition by the hydropho-

bic interaction between V76 and Y78 sidechains. The importance of the hydrophobic

interaction is supported by the experimental observation that the V76A mutant abro-

gates tetrameric assembly of the channel. [108] Taking the above into consideration,

it appears that the free energy profiles computed with the MM model in explicit wa-

ter agree better with the proposal than the corresponding single point energy profiles

obtained with B3LYP/6-31G(d)-PCM QM model.

In the absence of the actual tetrameric channel in our model, the bulk water

better reproduces the environment of the KcsA selectivity filter than the gas phase

and therefore provides useful insights into the channel function. In particular, the

differences between the adiabatic energy maps of the peptide residues in water and

gas phase suggest that the gas phase transition pathways must deviate strongly from

those of the transition path ensembles optimized in water. This is particularly true

of the αL region that is forbidden in gas phase. [98, 99] The ggaHFB optimization

of the adiabatic paths in gas phase explicitly demonstrates that water plays active



69

and important role in defining the intrinsic path and the energetics of the peptide

backbone transition.

The outcome of the gas phase optimization can be predicted based on the

previous studies of the glycine and alanine dipeptides. [98, 99] In particular, the

referred work demonstrated that the αL configurations collapse into the C7ax, while

pII configurations collapse into the C7eq. [98, 99] These are the exact changes we

observe upon the adiabatic potential energy optimization in gas phase. The final

optimized paths in gas phase are rather complex (see Figure 1.4) and seem irrelevant

for the functional transition of the selectivity peptide in the KcsA channel. On the

other hand the pathways in water show very good qualitative agreement with the

peptide conformations observed in the tetrameric channel.

Finally, based on the present findings, we are able to propose a novel hypothesis

for the mechanism of ion selectivity in the tetrameric KcsA channel. Specifically, we

conjecture that in its conducting α-strand state the carbonyl rings should contract

around the ion entering the channel and that this contraction would propagate to

the nearby carbonyl rings along the channel axis (see Figure S1.1 in Supporting

Information for an illustration). Because ions are believed to pass the KcsA filter

stripped of all but two water molecules that co-translate with the ion while hydrogen

bonding to the carbonyls, these water molecules will experience greater difficulty to

pass neighboring carbonyl rings due to the contraction, in turn impeding the ion

movements along the channel.

This hypothesis could explain why the channel selects larger K+ over smaller

Na+ ions. Specifically, we anticipate that smaller Na+ ions would contract the car-

bonyl rings to a greater extent than the larger K+ ions thus impeding the passage of

the co-translating water molecules to a greater degree. With water passage impeded

the ions themselves must in turn slow down.

Our hypothesis suggests that in the absence of ions the KcsA channel should

stay open to water permeation unless one of the four V76 carbonyls flips out pinch-

shutting the channel. Indeed, the KcsA channel has been experimentally demon-

strated to conduct water in the absence of permeating ions. [101] The partial flipping

of the carbonyls (while still within the ÎśL basin) might serve selectivity purpose,

whereas complete flip (transition into the pII basin) can be used to gate the channel.
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[60] To provide further support of this hypothesis we are currently performing an op-

timization of several transition path ensembles for ion-water co-permeation through

the tetrameric KcsA selectivity filter. The results of this work will be reported in a

forthcoming publication.

To conclude, we have explored an intrinsic free energy landscape of an im-

portant functional transition of the signature peptide from the KcsA selectivity filter

that is responsible for locally dilating/contracting the channel at the V76 carbonyl

ring, in addition to switching the channel between conducting and non-conducting

states. We have found that the wild type peptide intrinsically favors the conducting

state due to the combination of the high G77 backbone propensity for the ÎśL config-

uration and the stabilizing hydrophobic interaction between V76 and Y78 sidechains.

In sharp contrast, the mutant strongly favors the non-conducting state. However,

additional steric effects in the tetrameric channel that are absent in the present study

are expected to prevent formation of the conducting conformation in the mutant.

We have found the ÎśL to pII transition to be exceptionally robust and intrin-

sically funneled toward the conducting state in the wild type KcsA peptide at the

MM level with explicit water. Although the intrinsic free energy profiles have been

validated using the MM with implicit water model, efforts to gauge performance of

the MM model against QM model indicated that our results should be interpreted

with caution. Based on the QM-PCM model it may be possible that the ground state

of the channel in the absence of ions could in fact be the non-conducting state and

that the conducting state would only form upon ion entrance into the lumen of the

channel. Nevertheless, the present study has allowed us to propose a novel hypothesis

for the ion selectivity within the KcsA channel in which local contraction of the chan-

nel interior in response to the ion presence regulates co-permeation of water through

the channel to a degree that inversly proportional to the ion size. Work is currently

underway in our lab to test the proposed hypothesis in the tetrameric KcsA channel

model. We hope that the present work will stimulate future transition path ensemble

studies of rare events in complex molecular systems.
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Supporting Information

Model setup

The model of the wild type ion selectivity signature peptide was derived from

the KcsA structures obtained in the presence of Tl+ ions in place of K+ ions. There

are two such crystallographic structures: 1R3J that corresponds to high Tl+ con-

centration, and 1R3K that corresponds to low Tl+ concentration. [53] We extracted

the following sequence from the monomer: THR72(1)-ALA73(2)-THR74(3)-THR75(4)-

VAL76(5)-GLY77(6)-TYR78(7)-GLY79(8). Superscript numbering corresponds to the

original KcsA numbering in the PDB files, whereas numbers in parenthesis correspond

to the model. In a single letter aminoacid code the sequence is T72-A73-T74-T75-

V76-G77-Y78-G79 or TATTVGYG for short.

The corresponding double ala-mutant was generated by replacing the two

glycine residues namely GLY77 and GLY79 with alanine, resulting in THR(1)-ALA(2)-

THR(3)-THR(4)-VAL(5)-ALA(6)-TYR(7)-ALA(8) sequence or TATTVAYA for short.

Because the peptide model was derived by truncating the KcsA peptide we

mended the ends of the chain with the standard neutral capping groups, namely

Acetyl and N-methyl amide for the N- and C-termini, respectively. In the following

we use the standard definitions of atom types from the CHARMM22 forcefield.
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Methods

Molecular Dynamics

We use CHARMM22 TIP3P water model (CTIP3P) and peptide parameters.

[109] Initial simulations were performed using GBMV implicit solvent model to ex-

pedite path optimization. The following parameters of the GBMV model were used

(see charm c32b1 documentation for explanation of the parameters):

With the GBMV implicit solvent model we employed the following MD proto-

col. The electrostatic and vdW non-bonded interactions were truncated by switching

functions between 12 and 13 Å. Langevin dynamics (LD) was performed with leap

frog integrator using a 1.5 fs time step at 298 K and with a friction coefficient of 10

ps-1 for all heavy atoms. All bonds involving hydrogen atoms were constrained using

SHAKE [150, 131, 151] with tolerance of 10-8 Å. Each evolution step involved 5,000

equilibration steps and 25,000 production steps. Coordinates from production runs

were recorded every 50 steps for subsequent averaging.

The results of the GBMV simulations have been refined using explicit CTIP3P

solvent model. The explicit water simulations were performed in the NPT ensemble

using truncated octahedron box. For the wild type peptide the water box contained

1155 water molecules, whereas for the mutant the box contained 1222 water molecules.

The nearest image distance was approximately 36 and 37 Åfor the wild type and mu-

tant peptides, respectively. The temperature was maintained with the Nose-Hoover

thermostat at 298 K using a thermal piston of mass 250 (kcal/mol) · ps, [152, 153]
whereas the pressure was maintained at 1 atm by the Langevin piston method with

the piston mass of 250 amu and Langevin collision frequency of 20 ps-1. [154, 155]

Electrostatic interactions were computed using particle mesh Ewald method7 with 12

Åreal space cutoff. The vdW non-bonded interactions were truncated by switching

functions between 10 and 12 Å. The covalent bonds between the hydrogen and the

heavy atom were constrained using the SHAKE [150, 131, 151] algorithm with a tol-

erance in the bond length deviations of 10-10 Å. The MD integration step size was 2

fs. For the evolution runs we performed short MD runs including 5,000 steps of equi-

libration and 25,000 steps of production. The solute coordinates from the production
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Table S4.1: GBMV Parameters

BETA -20

EPSILON 80

DN 1.0

WATR 1.4

GEOM

TOL 1e-8

BUFR 0.5

MEM 10

CUTA 20

HSX1 -0.125

HSX2 0.25

ALFRQ 1

EMP 1.5

P4 0.0

P6 8.0

P3 0.70

ONX 1.9

OFFX 2.1

WTYP 2

NPHI 38

SHIFT -0.102

SLOPE 0.9085

CORR 1
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runs were recorded for subsequent averaging every 50 MD steps.

Transition Path Ensemble Optimization with ggaHFB

Initial path for optimization was prepared as follows. Starting from the X-ray

structure corresponding to high Tl+ concentrations (PDB code 1R3J), we gradually

rotate its atoms into pII-like state producing three more states. Specifically, we rotate

all the atoms of residues 1 through 5 along with the HN atom of residue 6 by -35.0

degrees about the N-CA bond of residue 6 (ÏŢ(6) angle). In addition, we rotate atoms

of residues 7 through 8 along with atom O of residue 6 by -20.0 degrees about the

CA-C bond of residue 6 (ÏĹ(6) angle). Overall we perform three such rotations to

produce intermediates int1, int2 and int3.

We then take the low Tl+ concentration structure (PDB code 1R3K) as yet

another intermediate to seed the path produced by the rotation described above. This

structure introduces the VAL sidechain rotation. The reason this structure cannot

be used as the product is that its backbone atoms collapse during the free energy

optimization back to the high Tl+ concentration structure, while leaving the VAL

sidechain in the conformation found in 1R3K structure. Therefore, the 1r3k structure

is placed right after the 1r3j but before the int1. Thus, the following sequence of

structures 1r3j, 1r3k, int1, int2, int3 are fed to the ggaHFB interpolation procedure

to generate 12 beads using the Fourier series truncation parameter of 4.

In constructing the Reactive Coordinate Space (RCS), we setup the following

subspaces or levels:

Only heavy (non hydrogen) atoms of the peptide are included into the RCS.

Using these levels we define RCS1 and RCS2 as follows. RCS1 combines levels

1 through 7, whereas RCS2 only includes the base level 1.

Throughout the path optimization we used uniform step size parameter beta.

Slightly different protocols were used for the wild type and mutant optimization with

the details provided in the following tables.
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Table S4.2: RCS vectors for different levels

Level Atom Types Comments

1 C, N, CA, NT, CY, CAY and CAT base of the polypeptide chain

2 additionally O, CB and OY base + one bond

3 additionally CG, CG1, CG2 and OG1 base + two bonds

4 additionally CD1 and CD2 base + three bonds

5 additionally CE1 and CE2 base + four bonds

6 additionally CZ base + five bonds

7 additionally OH base + six bonds

Table S4.3: The optimization protocol for the wild type.

Beads ggaHFB Steps Force Constant Beta Trunc

GBMV Implicit

12 1-100 10.0 0.000 8

101-199 5.0 0.004 8

23 200-201 1.0 0.000 18

202-499 5.0 0.005 18

500-599 10.0 0.002 18

CTIP3P Explicit

23 600-609 10.0 0.000 18

610-1099 10.0 0.002-0.004 18

45 1100-1199 10.0 0.0035 42

89 1200-1209 10.0 0.0035 86
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Table S4.4: The optimization protocol for the mutant.

Beads ggaHFB Steps Force Constant Beta Trunc

GBMV Implicit

12 1-9 10.0 0.000 8

10-20 10.0 0.001 8

21-199 10.0 0.002 8

23 200-209 1.0 0.000 18

210-599 5.0 0.005 18

600-799 10.0 0.003 18

CTIP3P Explicit

23 800-804 10.0 0.000 18

805-1199 10.0 0.002-0.004 18

45 1200-1299 10.0 0.0035 42

89 1300-1309 10.0 0.0035 86

PMF Integration with ggaHFB

Once the optimization was completed as determined by cessation of the changes

in the coordinates of the RCS atoms a collection procedure was initiated. Note, that

we only performed path optimizations on the RCS1 free energy surface and not RCS2.

However, we used the subset of the atoms from the optimized RCS1 transition path

ensemble as a reference to compute the PMF for the RCS2 level.

The final PMFs were collected using the averaged positions of the RCS atoms

from 1 ns long batches of MD simulations using the final 89âĂŞbead path optimized

at the RCS1 level as a reference. To restrain the atoms to the reference positions we

used the force constant of 10.0 kcal ·g−1 ·Å−2. To compute the RCS1 level PMFs only

five batches were necessary to achieve high convergence, whereas for the RCS2 level

we needed 13 batches. The averages were combined into the final cumulative averages

over the whole simulation time using the standard procedure described earlier.

During the final integration procedure we used the Fourier series truncation

parameter of 88 with 1024 quadrature points for the reversible work line integral.
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Comments on the PMF Validity

Keeping the RCS1 path and releasing the sidechains for the RCS2 PMF cal-

culations substantially expands the SCS space. Unfortunately, proper averaging over

all possible configurations of the sidechains necessitates overcoming barriers as high

as 5-8 kcal/mol as we have seen on the V76 example. Therefore, a complete averaging

cannot be achieved for the RCS2 PMF within the limited simulation time of regu-

lar MD. We could improve sampling by using parallel tempering or replica exchange

MD, [156, 157, 45, 158] but that would increase the cost of the computed PMFs by a

factor equal to the number of replicas. Therefore, in this paper we limit ourselves to

regular MD simulations. We still get apparently well-converged PMFs without hav-

ing properly sampled alternative configurations of the sidechains. As expected the

RCS2 PMFs take significantly longer to converge to the accuracy comparable to that

of the RCS1 PMFs. Nevertheless, the RCS2 ensemble contains the discontinuities

in the regions of the V76 transitions inherited from the preceding RCS1 path even

after 13 ns. In particular, the sharp peaks corresponding to the V76 rotations at

RCS1 level collapse at the RCS2 level creating the discontinuities in the SCS space.

Strictly speaking such discontinuities invalidate the portion of the RCS2 PMFs in

that region. Therefore, these PMFs should only be considered as tentative until more

extensive sampling of the sidechain conformations is achieved. Work along those lines

is currently in progress in our lab.

Nevertheless, the portion of the PMF underlying the important backbone tran-

sition from the α-strand to the pII state remains virtually unchanged upon going from

RCS1 to RCS2 level. Thus, for the wild type peptide the forward activation barrier is

5.9 kcal/mol and the pII state is still less stable than the α-strand by slightly smaller

1.7 kcal/mol. Restoring the conducting state requires overcoming a slightly higher

barrier of 4.2 kcal/mol. For the mutant we find the forward barrier of 0.9 kcal/mol

and the relative pII state stabilization energy of 7.0 kcal/mol that makes the reverse

barrier increase slightly to 7.9 kcal/mol. The differences between RCS1 and RCS2

PMFs are quite small in the backbone transition region. Thus, we conclude that struc-

tural details of the sidechains have very little effect on this functionally important

backbone transition making it extremely robust.
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The PMFs for the wild type peptide indicate that the free energy landscape

is funneled toward the α-strand, whereas the mutation changes direction of transi-

tion opposing the α-strand formation. Changes in the PMFs due to mutation are

consistent with the Hammond postulate. [159] Further examination of the optimized

transition path ensembles reveals that formation of the α-strand is coupled with the

hydrophobic collapse between the V76 and Y78 residues. Such hydrophobic inter-

actions are often considered the driving force in protein folding. Nevertheless, the

strength of this particular interaction is not sufficient to stabilize the α-strand in the

mutant.

Minimum Adiabatic Potential Energy Transition Path Opti-

mization with ggaHFB

To optimize the paths in gas phase using the bare CHARMM22 forcefield we

start from the minimum free energy transition path ensembles optimized on RCS1

surface in water. These paths have 89 beads. We first rebuild all the hydrogen

positions by potential energy optimization with the fixed RCS1 atoms for all the

beads. Because tyrosine and threonine OH groups have two and three rotameric

states, we have to initialize their dihedral angles Cε1-Cς-Oη-Hη and Cα-Cβ-Oγ-Hγ,

respectively. Thus, we assign 180, 180, -30 and 0 degrees for the T72, T74, T75

and Y78, dihedral angles, correspondingly. Adding tyrosine and threonine hydrogen

atoms from the OH groups to the RCS1 we create the new reactive coordinate space

RCS1h that is sufficient to integrate the adiabatic potential energy along the path.

Initially we performed ggaHFB optimization using 89 beads. With 89 beads

we used 76 basis functions, the force constant of 20.0 kcal · g−1 · −2 and step size

parameter of 0.0025. We did not attempt to find the optimal optimization conditions

and executed on the order of 2000 ggaHFB optimization steps. For each bead we

used the mass weighted harmonic restraints in Cartesian coordinates, and tandem

Steepest Descent/Adaptive Basis Newton Raphson optimizer with up to 200/1000

optimization steps. Because bead optimizations are very fast they were done for each

bead consecutively within a single CHARMM input script, which was run on a single

CPU. The optimization was set to exit once the average gradient change was less than
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10−5kcal ·mol−1−1. Throughout this work we truncated the electrostatic interactions

with 16 Åcutoff, switching the interactions off between 16 and 18 Å. The non-bonded

list cutoff was 21 Å.

As the ggaHFB optimization continues the path length increases and the OH

groups rotate to different optimal positions. Soon the forces between the beads be-

come discontinuous and adiabatic potential energy profile integration via the gener-

alized line integral formalism no longer gives correct result. Despite that the opti-

mization can be continued further and the progress of the path optimization can be

followed by the path RMSD or by plotting a two-dimensional projection of the path

onto the reactant and product vectors (not shown).

We started the optimization with 89 beads and then subsequently increased

the number of beads to 177, 353, and finally 705 beads until the energy profile could

be integrated precisely again. With 177 beads we performed on the order of 1000

ggaHFB optimization steps using up to 168 basis functions and the step size parameter

of 0.0025. With 353 beads we performed on the order of 100 ggaHFB steps with up to

324 basis functions and we also changed the force constant of the harmonic restraint

from 20.0 to 40.0 kcal · g−1 ·−2, and turned of the steepest descent optimization boost

by setting the step size parameter to 0.0000. Finally with 705 beads we performed

on the order of 100 ggaHFB steps with up to 695 basis functions keeping the rest of

the parameters the same as in the case of 353 beads.

Computing the Final Adiabatic Potential Energy Profile with

ggaHFB

In the end of optimization we performed a single ggaHFB step with 705 beads

and 705 basis functions (for the highest accuracy) in the Fourier series, using the force

constant of 40.0 kcal · g−1 · −2. To evaluate the generalized line integral we used 2820

quadrature points. Finally, we have computed the exact energies along the structures

at each of the 2820 quadrature points. The highest deviations must be observed at

the progress variable value of 1.0. We find the accumulated errors with respect to the

exact CHARMM22 energies of 0.07 and 0.12 kcal/mol for the wild type and mutant

adiabatic energy profiles, respectively. These numbers could be improved even further
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with additional beads, because the onsets of the deviations between the exact and

the ggaHFB profiles appear at the sharp peaks.

Energy Profiling of the Minimum Free-energy Transition Path

Ensembles

Gas Phase Energy

We used Density Functional Theory model, namely B3LYP with 6-31G(d)

basis set to compute the single point Quantum Mechanical energies along the path.

To do that we optimized all the degrees of freedom orthogonal to RCS1 except for the

four dihedral angles mentioned above that were kept restrained at the 180, 180, -30

and 0 degrees for the T72, T74, T75 and Y78, respectively using the CHARMM22

Molecular Mechanical forcefield. The B3LYP/6-31G(d) energies were then compared

to the corresponding CHARMM22 energies.

Implicit Solvent Energy

To compare the Quantum Mechanical and Molecular Mechanical energies in

water, we employed Polarizable Continuum Model. For the QM-PCM model we used

B3LYP/6-31G(d) with scrf=(pcm,solvent=water,read) keywords in the Gaussian G03

input file with additional parameters pcmdoc, radii=uaks, scfvac, ofac=0.8, rmin=0.5.

For the MM we used GBMV implicit solvent model with the exact same parameters

as has been described above. Prior to computing single point QM-PCM energies we

optimized all the degrees of freedom orthogonal to the RCS1 except the four dihedral

angles mentioned above at the MM-GBMV level.

Conclusion

The present work demonstrates the utility of the novel ggaHFB method in

studying complex processes on multidimensional free energy surfaces on the example

of the important functional transition of the selectivity filter of KcsA ion channel.

Other important questions that require exploring multidimensional free-energy sur-
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Figure S4.1: An illustration of the ion selectivity hypothesis. Thick black lines
represent the signature peptide of the selectivity filter connected with springs to the
outer barrel of the channel. In this model, smaller ions will impede co-translating
water passage to a greater degree than larger ions by contracting the carbonyl rings
of the channel. The ion sizes are not drawn to scale, but exaggerated to demonstrate
the point.

faces can now be addressed. Work is now in progress in our lab to verify the hypothesis

for the ion selectivity (see Figure S1.1) within the tetrameric KcsA channel.



Chapter 5

Calculation of Absolute Binding Free

Energies by Thermodynamic

Integration in AMBER12

Abstract

5.1 Introduction

Prior to AMBER12 the implementations of thermodynamic integration in the

sander program were intended for relative binding free energy computation only.

[160, 161] Two states must be well defined in order to compute a free energy difference

between them, and in relative binding free energy calculations this is generally trivial

since only unique components of the ligands are altered. The unperturbed portions

of the ligand are assumed to keep the ligand in the correct bound pose. Absolute

binding free energies must define the bound state more rigorously [162], for example

by applying translational and sometimes rotational restraints to the ligand. [23, 163]

This communication outlines an update to the sander program in AMBER12

that correctly handles restraints during thermodynamic integration. We also imple-

mented the ability to run at arbitrary lambda points in the range of 0 ≤ λ ≤ 1. This

feature becomes important when calculating absolute binding free energies, or when

no preliminary knowledge of the 〈∂U
∂λ
〉λ vs. λ curve is available. The new features of

82
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these implementations are presented and described through an illustrative example.

5.2 Theory

Absolute binding free energies for receptor-ligand binding can be estimated us-

ing the double decoupling method, outlined in figure 1.1. [23] Restraints are used to de-

fine the bound state of the ligand in the ∆Gc leg of the alchemical cycle. [164, 165, 35]

In order to properly treat the restraint forces on perturbed atoms we must decom-

pose the perturbed potential energy function V (q, λ), where q is a vector containing

the atomic positions of the system and λ is the alchemical coupling parameter. For

each leg of the alchemical cycle the two endpoints are denoted with subscripts of 0

or 1. The endpoints are further divided into perturbed and unperturbed portions,

with p and u subscripts, respectively. A final separation between the covalent plus re-

straint and non-bonded energy terms lets us completely describe which energy terms

are scaled, as shown in equation 1.1. The Vu↔u term is encompasses all of the in-

teractions including only unperturbed atoms. The V0,u↔p,cov+rest and V1,u↔p,cov+rest

terms are the covalent and restraint forces between the unperturbed and perturbed

atoms for the initial and final endpoints, respectively. The V0,p↔p and V1,p↔p terms

encompass all of the interactions including only perturbed atoms for the initial and

final endpoints, respectively. The only terms that are scaled by λ are V0,u↔p,nb and

V1,u↔p,nb terms, which are the non-bonded interactions between the non-perturbed

atoms and the perturbed atoms for the initial and final endpoints, respectively.

V (q, λ) =Vu↔u (q) + V0,u↔p,cov+rest (q) + V1,u↔p,cov+rest (q)

+ V0,p↔p (q) + V1,p↔p (q) + (1− λ)V0,u↔p,nb (q, λ)

+ λV1,u↔p,nb (q, λ) (5.1)
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Figure 5.1: Schematic of the double-decoupling method taken from [2]. The closed
and dashed circles refer to the coupled and decoupled ligand, respectively, and (wt)
refers to the water solvent. The alchemical free energy to decouple the ligand from
bulk solvent (∆Ga) and from the protein (∆Gc) are computed through simulations.
The contribution from moving the decoupled ligand from bulk solvent to the protein
(∆Gb) is zero.
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5.3 Methods

The bicyclo[2.2.2]octane compounds are putative binders to the seven-unit

cucurbitural host system. [166] We parameterized 1,4-dimethyl alcohol

ginbicyclo[2.2.2]octane, referred to as B2, using the AMBER GAFF parameters and

the RESP charge fitting procedure.

Simulations were run using the sander program from AMBER10 [167] and a

pre-release version of AMBER12. In order to emphasize the modifications we only

looked at the soft-core Lennard-Jones decoupling [25] of an uncharged B2 molecule

in a 36x35x36 Å box of TIP4P water [143]. A Langevin thermostat with a target

temperature of 300 Kelvin and a collision frequency of 20 ps−1 and weak-coupling

pressure control with a relaxation time of 0.5 ps was used to enforce a NPT ensem-

ble. [168] The conformational space of the ligand was restricted by a harmonic force

applied to one of the core atoms with a force constant of 2.5 kcal/mol/Å2. The sim-

ulations were run for 5 ns each, and the first nanosecond discarded as equilibration.

The λ endpoints had to be 0.01 and 0.99 for AMBER10. The AMBER12 endpoints

were also run at 0.01 and 0.99 for comparison with AMBER10, and additional runs

at λ of 0.00 and 1.00 to determine the numerical integration error.

5.4 Results

The first thing to establish is that the restraint forces are properly treated

during the Hamiltonian perturbation. The displacement of the restrained atom from

its average position at λ = 0.99 is shown Figure 1.2. The restraint force in the

AMBER10 simulation is scaled improperly and samples a larger volume than in the

AMBER12 simulation. The average displacement during the AMBER12 simulation

is also independent of λ (Figure S1.1), showing that the state is well defined during

the alchemical perturbation.

The 〈∂U
∂λ
〉λ vs. λ curves for the AMBER10 and AMBER12 codes are shown in

Figure 1.3. The scaling of the restraint forces in the AMBER10 simulation creates

the offset between the two curves. The contribution to ∂V/∂λ from the restraint can

be removed from the TI curve, but there is another problem that cannot be so easily
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addressed. The soft-core potential allows atoms to overlap with an energy penalty

that decreases inversely proportional to λ. In the case of a protein-ligand system

there is a value of λ at which the unrestrained ligand can begin overlapping with

the protein atoms, and eventually travel through the protein into bulk solvent. The

∂V/∂λ term will change as the environment changes, and thus if the ligand is not

properly restrained to the binding site the 〈∂V/∂λ〉 will have a complex offset. To

emphasize the role of the restraint potential we presented a simple example of the

perturbation of B2 in water. There is an example of the dependence of ∂V/∂λ on the

environment in the supplementary materials.

5.5 Conclusion

The theoretical and practical importance of restraining a ligand to a well-

defined state during the course of absolute binding free energy computation was

summarized. We presented the results of modifications to the AMBER12 sander

program that addressed the proper handling of restraints. The changes were validated

with a Cartesian restraint and showed that the ligand can be restrained to a well-

defined volume as is necessary in absolute binding free energy calculations.

Acknowledgement

Chapter 1, in full, is a minimally modified manuscript that is being submitted.

The dissertation author was the principal investigator and the first author of this

paper.

Supplementary Material

Displacement during Alchemical Perturbation

The bound state is well defined during the entire absolute binding alchemical

perturbation for AMBER12, which was not the case in AMBER10. This is shown
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Figure 5.2: The mean displacement (Å) of the restraint atom from its average
position. The displacement corresponding to 3/2 · kBT at 300K is 0.85 Å.
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Figure 5.3: Thermodynamic integration curve for the perturbation of van der Waals
interactions between B2 and water.
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with the mean displacement of the B2 restraint atom as a function of λ in Figure

S1.1).

Dependence of ∂V/∂λ on Environment

The complex of B2 with CB[7] has a more restricted conformational space

than most protein-ligand complexes. The decoupled λ = 0.99 linear-mixing soft-core

Hamiltonian used the same simulation parameters outlined in the paper. The major

difference was to replace the Cartesian restraint with a center-of-mass distance re-

straint applied between CB[7] and B2. In order to show the dependence of ∂V/∂λ

on the center-of-mass distance between ligand and host a series of six 100-ps simu-

lations were performed with flat-bottomed harmonic potentials. The flat portions of

the simulations were 0-2, 2-4, 4-6, 6-8, 8-10, and 10-12 Å for each of the simulations,

and the force constant was 2.5 kcal/mol/Å2. The simulations were started consecu-

tively starting from 0-2, and each simulation starting from the last structure of its

predecessor.

Figure S1.2 shows the correlation between ∂V/∂λ and the center-of-mass dis-

placement of CB[7] and B2. This highlights how important it is to properly define

and restrain the ligand to the bound state.
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Figure S5.1: The mean displacement (Å) of the restraint atom as a function of λ.



91

Figure S5.2: The instantaneous ∂V/∂λ at various intermolecular displacements.
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