
UC Irvine
ICS Technical Reports

Title
EXEL : a language for interactive behavioral synthesis

Permalink
https://escholarship.org/uc/item/1rj4r40q

Authors
Dutt, Nikil D.
Gajski, Daniel D.

Publication Date
1988-10-13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rj4r40q
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(llt:le 17 U.S.C.)

EXEL:

A Language for Interactive Behavioral Synthesis

Nikil D. Dutt
Daniel D. :Ciajski

Technical Report 88-21

Department of Information & Computer Science
University of California at Irvine

Irvine, CA 92717.
tel: (714) 856 7063; e-mail: dutt@ics.uci.edu

Keywords: Design Languages, Behavioral Specification with Timing, High Level
Synthesis.

ABSTRACT

This paper describes a new input language for behavioral synthesis called EXEL.
EXEL is a powerful language that permits the user to specify partially designed
structures in the language. It employs a mixed graphic/textual user interface to
enhance user interactivity. EXEL's design model is comprehensive: it permits
specification of synchronous and asynchronous behavior, and allows specification
of general timing constraints. A flexible type construct permits the user to
define operators and components to be used in the description. Finally, it
simplifies compilation by using a small set of constructs for specifying timing and
asynchronous behavior. The compiler for EXEL runs on SUN-3 workstations
and is written in C and SUNVIEW.

/l

'.·' ;,_

['··
!

TABLE OF CONTENTS

1. Problem Description and Contributions 1

2. Existing Input Languages ... 4

3. Features of EXEL ... 6

4. The Language 7

4.1. Definitions .. 8

4.2. Process Behavior 11

4.2.1. Flow of Control .. 12

4.2.1.1. Synchronous Icons .. 13

4.2.1.2. Asynchronous Icons ... 15

4.2.2. Data Operations 15

4.2.3. Binding Operators and Variables 16

4.2.4. Timing Specification 17

5. Compiler .. 22

6. Example 23

6.1. .. 24

6.1.1. Principles of Operation .. 24

6.1.1.1. .. 25

6.1.1.2. Behavior .. 26

6.1.1.3. Structure Generated .. 29

7. Conclusions 29

8. REFERENCES .. 31

October 13, 1988 EXEL LANGUAGE Page i

UST OF FIGURES

Figure 1: SAMPLE EXEL DEFINITIONS

Figure 2: SYNCHRONOUS CONTROL FLOW ICONS

Figure 3: ASYNCHRONOUS CONTROL FLOW ICON

Figure 4: BLOCK DIAGRAM OF CONTROLLED COUNTER

Figure 5: CONTROLLED COUNTER OPERATIONAL PRINCIPLES

Figure 6: CONTROLLED COUNTER DEFINITIONS

Figure 7: ASYNCHRONOUS CHART FOR CONTROLLED COUNTER

Figure 8: CONTROLLED COUNTER SYNCHRONOUS CHART

Figure 9: CONTROLLED COUNTER: GENERATED STRUCTURE

8

14

16

23

24

25

28
28

30

October 13, 1988 EXEL LANGUAGE Page ii

1. Problem Description and Contributions

The task of high level synthesis spans the continuum from automatic

generation of a design from a purely behavioral specification, down to compiling

a completely specified structural design consisting of a set of components from a

given library and their connections. In the first case, the behavior is specified as

a set of assignment statements to variables, possibly with total timing

constraints for input-output pairs. There is no binding of operations to time or

to functional units, no binding of variables to storage elements, and the

description does not have any connectivity specified between storage and

functional units. At the other extreme, compilation of structure consists of

mapping generic components (or components from one library) to components

derived from another library. The main objective here is optimization of that

mapping to satisfy technology constraints such as time, area, power, testability,

etc.

Existing systems and their corresponding input languages straddle either

end of this design spectrum: they either automatically synthesize structure from

the abstract behavior, or require the user to perform all the behavioral synthesis

and input a structural description. There is a lack of tools that fill this gap in

the continuum. There are three major requirements for a synthesis tool that

meets this need: interactivity, general models and modification of compiled

October 13, 1988 EXEL LANGUAGE Page 1

design.

An interactive system permits the user to participate m the iterative

process of design planning, synthesis and evaluation. An input language

supporting this feature must have a user-friendly interface which permits the

user to specify a portion of the design, with the synthesis tools completing the

rest of the design. This makes designers more willing to accept synthesis tools

since they have control over the design process. The level of input description

can thus be gradually elevated from fully structural (when the designer performs

all of the design), to fully behavioral (when the designers feel comfortable with

using automatic synthesis tools).

The underlying models behind the synthesis system must be general

enough to handle a variety of abstraction levels and applications. The design

process encompasses several abstraction levels: boolean equations, register

transfers, algorithms, interface specifications, etc. The model must permit

specification of behavior at several intermixed levels. Current synthesis systems

are normally limited to one abstraction level only, for instance the algorithmic

level. The model must also permit the description of a variety of applications,

not limited to only instruction-set processors or digital signal processing designs.

For this, the model must permit description of synchronous and asynchronous

behavior, and allow various types of timing constraints to be specified. This

October 13, 1988 EXEL LANGUAGE Page2

allows a broad range of designs to be described, including application specific

designs.

Finally, the system must allow modification of compiled design. Modifying

compiled design allows the user to try different alternatives on the generated

design without having to rewrite and recompile the input description. With

systems like MacPitts (Sout83), the user has to rewrite the description every

time the resulting design did not meet the constraints. With these systems, the

lack of a prediction capability requires the user to understand the assumptions

and intricacies of the synthesis tool. Modification of compiled design gives the

user control over the generated design; if it does not meet the requirements, the

user can use his design expertise to improve on the design. Finally, it permits

incremental upgrade of automatic synthesis tools: we can start with an

incomplete synthesis system that performs only some of the synthesis tasks

automatically, leaving the rest to the user; synthesis algorithms can be added at

a later time.

This paper summarizes the features of a new input language, EXEL, for a

system that meets these needs. This new language

(1) is powerful: the user can specify any level of detail, from fully bound
structural designs to purely behavioral specifications;

(2) enhances interaction: employs a mixed graphic/textual interface for ease of
use;

October 13, 1988 EXEL LANGUAGE Page3

(3) has a general model: permits combined specification of synchronous and
asynchronous behavior in a convenient fashion and handles general timing
constraints.

(4) simplifies compilation: uses a small set of constructs for specifying timing
and asynchronous behavior.

(5) is extensible: allows user-defined types, operators and components to be
used.

2. Existing Input Languages

Several input languages have been used for automatic behavioral synthesis,

including ISPS [Barb81], Pascal [Camp85] [PaGa87], ADA [GiBK85] and SILC

[BlFR85]. These input languages exhibit a high level of input, where the

behavior is described using abstract variables and operators; synthesis

algorithms are used to automatically generate a structure. On the other end of

the spectrum, commercial schematic capture systems require the user to perform

the complete synthesis task; the input is essentially a netlist of register-transfer

level modules or logic equations. Both of these types of languages are limited to

a particular level of design: algorithms for the first kind and register transfers

for the second. For describing a large range of designs, the input language must

allow specification of a mixture of levels, such as algorithms with register

transfers. The languages also do not permit the user to specify partial bindings

(such as variables to registers, operations to functional units) or partial

structure (eg. two buses and an ALU) which is input to the synthesis tools.

This lack of intermediate descriptions limits user-interaction and the range of

October 13, 1988 EXEL LANGUAGE Page4

synthesizable designs.

Most of the existing input languages are purely textual. Textual languages

tend to be verbose and require the user to learn and understand the syntax of

the language. Moreover, a design description written in a textual language does

not convey much information to a user who is unfamiliar with the textual input

language. Graphical design languages have recently begun receiving more

attention [DBRI88] [OTH088]. These input languages enhance user interaction

and ease the task of design entry. However, existing graphical languages are

primarily a front end for tools that are at the structural level of input.

The underlying model in most existing behavioral languages are limited.

They are targeted to a specific application which describe instruction sets or

particular algorithms. They lack a comprehensive model which includes timing

specification, busing, clocking and asynchrony. Simulation languages like VHDL

[VHDL87] and Verilog [Gate86] have been proposed as input vehicles for

behavioral synthesis. However, the model used by these simulation languages

does not have good constructs for register transfer descriptions; the behavior is

written with the implicit notion of a simulation clock. Several constructs in

these languages (such as events indicating signal changes) do not have feasible

or efficient realizations in hardware.

October 13, 1988 EXEL LANGUAGE Page 5

3. Features of EXEL

The strengths of EXEL are in its interactivity and adequate models. These

are briefly described below:

Mixed graphic/text entry. EXEL is a flowchart-like language. This provides

a natural user interface and enhances designer interactivity.

Designer controlled bindings and partial structure. The user can specify

bindings in the EXEL description, thereby allowing specification of partial

design structure. These bindings may be redone by automatic synthesis

algorithms in the design system. This allows for a gradual evolution towards

automatic synthesis, where designers gain confidence in the synthesis tools and

become comfortable with the idea of automatic synthesis. Hence EXEL covers a

larger range of specifications, from completely user-bound (structural) to

completely behavioral.

Combined specification of synchronous and asynchronous behavior. Using

EXEL, the user partitions the design into processes which exhibit asynchronous,

synchronous and mixed behavior.

Adequate timing model. EXEL has a succinct construct which permits

specification of general timing constraints. Using this construct, the key

t f II t 11
II 1 t' 't It d 11d t' II 11 t f h concep s o even , re a 1v1 y an ura ion a ow cap ure o · sync ronous

and asynchronous timing constraints uniformly.

October 13, 1988 EXEL LANGUAGE Page6

Comprehensive design model. EXEL's design model allows for specification

of abstract behavior, register transfers, interface operations and logic.

4. The Language

The EXEL input language [DuGa88] is modeled after software flowcharts

and state machine flowcharts [Clar73] [Tred81] [DrHa87]. Its intent is to provide

a mixed graphic/textual interface to the user so that it facilitates the designer's

thought process. A design entity in EXEL is described with the input

definitions and the behavior as a set of communicating processes which operate

on the defined structures and variables.

Both the definitions and the behavior of a design to be synthesized are

specified in a mixed graphic/textual input form. For each design, a set of

declarations specify the inputs, outputs and variables to be used. Optionally,

the user may specify structural information such as the type and number of

components and buses. Process behavior is specified using a graphical control

flow format, along with textual expressions for operations. The control flow of

the process is captured through an interconnection of graphic icons. This

control flow specifies the states and their transitions for the process.

Corresponding to each control flow template, dCJ,.ta operations are expressed in a

textual form. This section describes the salient features of EXEL; the reader is

directed to [DuGa88] for the syntax and other details of the language.

October 13, 1988 EXEL LANGUAGE Page 7

4.1. Definitions

The definitions may be broadly categorized into four classes: type,

structural, behavioral and bindings. Figure 1 shows some sample definitions

using EXEL which will be used as a running example for this section.

October 13, 1988

type
BOOLEAN
EIGHTJ3IT
MEM_lK
CMP _EIGHT

= {o};
= {7 .. 0},
= [0 .. 1023] ofEIGHT_J3IT;
= COMPAR(8,EQ,GT,LT);

component

port

clock

var

const

operator:

bind

REG_l =
COMP

REGISTER(8,LOAD,RESET,ENABLE);
CMP _EIGHT;

DPORT
EPORT

: output tristate buffered of EIGHT_J3IT;
: input_output buffered of EIGHT_J3IT;

CLK : port;

A, B : EIGHTJ3IT;
D : MEM_lK;

SEVEN of EIGHTJ3IT = 7;

LT_GT (inputs:

(outputs:

(operation:

LT_GT to CMP _EIGHT;
A to REG_l;

A of EIGHTJ3IT;
B of EIGHT_J3IT);

LT of BOOLEAN;
GT of BOOLEAN;)

LT:= A< B;
GT:= A> B;)

Figure 1: SA1\.1PLE EXEL DEFINITIONS

EXEL LANGUAGE Page8

Type definitions allow the user to define new data types and component

types for the rest of the description. Sample type definitions would include bit-

type, array-type, component type, etc. For example, MEM_lK in Figure 1 is a

type denoting an array of size 1024, with each element being eight bits wide.

CMP _EIGHT is an eight bit comparator component type specified to have the

th f t . "EQ" "GT" d "LT" e unc ions , an .

Structural definitions allow the user to prespecify some or all of the

structural components such as registers, function units, ports and buses to be

used in the design. This creates a partial structural design on which further

synthesis is performed. Each component is instantiated from the GENUS

generic component library (Dutt88a] by specifying a call to the generic

component name with its instantiation parameters. Components may be

instantiated directly (eg. REG_l) with an instantiation call, or indirectly (eg.

COMP) through a previously defined "type". During synthesis, additional

components are automatically synthesized as and when they are required.

Port definitions specify the locations through which the process

communicates with the other processes. Typical port attributes include mode

(input/output/input-output), gating (tristate, wired, etc.) and storage

(buffered/unbuffered).

October 13, 1988 EXEL LANGUAGE Page9

Behavioral definitions allow the user to specify abstract data carriers such

as variables, constants and special types of operators. Strong typing permits

various attributes to be associated with the variables and signals. Typical

attributes would include the size, type and representation for data carriers and

structural units. This information is necessary during synthesis to generate a

consistent structure. In Figure 1, "A", "B" and "D" are defined as variables

while "SEVEN" is defined to be a constant whose value is 7.

The operator definition shows the capability of defining new operators in

EXEL. For instance, LT_GT in Figure 1 is an operator that accepts two eight

bit inputs and produces two boolean outputs simultaneously.

The process of mapping behavioral elements (such as variables) to

structural components in synthesis is called binding. A unique feature of EXEL

is that these bindings can be performed by the user in the definitions or in the

description of the behavior. This allows the user to further specify some partial

structure for the synthesis task. The rest of the bindings are performed by the

synthesis system. The bind definitions specify "static" bindings which are valid

through the EXEL description of the behavior. Variables and operators may be

mapped to components (eg. "A" is bound to "REG_l" and "LT_GT" is bound to

"CMP _EIGHT").

October 13, 1988 EXEL LANGUAGE Page 10

4.2. Process Behavior

EXEL is a language designed to allow the user considerable control over the

synthesis process. The user decides how the behavior is to be partitioned (into

synchronous/asynchronous processes), defines global "states" of each process,

decides if conditionals are to be implemented in the control or data path, and

performs structural bindings to specify a partial structure. Synchronous

processes are described using the synchronous state chart, while asynchronous

processes are described using the asynchronous event chart. Within each chart,

the user can further specify state, unit, register and connection binding.

A synchronous state chart describes the behavior of a process on a global

state by state basis, assuming a fixed clocking scheme (as defined in the

declarations). Asynchronous operations such as sets, resets and latching

controlled by any signal can also be expressed with a special construct as

described later. This permits latching of a storage element in a particular state

under a signal different from the synchronous clock.

The asynchronous behavior is expressed as a sequence of event-states in an

event chart. Each event-state is triggered by a specified event (which is often a

change in the value of an external signal). Within an event-state, the behavior

is captured with a set of of operations on variables. A synchronous clock can

also be considered to be an event, and thus may be described in an

October 13, 1988 EXEL LANGUAGE Page 11

asynchronous event chart by explicitly specifying clock events.

When there is a fair amount of both synchronous and asynchronous

behavior, and if these are somewhat orthogonal, it is convenient to describe the

asynchronous behavior separately from the synchronous behavior. Semantically,

the asynchronous specification for a variable or structure overrides the

synchronous behavior (for example, a reset-dominant flip-fl.op). However, there

are cases when some synchronous behavior is exhibited in a particular event

state. In this case, the notion of a synchronous sub-machine [Holl82] is used to

describe the behavior hierarchically. Thus the user has the option of

partitioning the design in a variety of ways which fit the description at hand.

4.2.1. Flow of Control

Control fl.ow captures the sequencmg of the design over time at the

granularity of user-defined global-states. For asynchronous charts, the duration

of a global-state ends when the event for the successor global-state is triggered.

For synchronous state charts, the user determines the meaning of a global-state.

A global-state could be at the granularity of a single clock (in which case the

user has performed state binding), or could represent a block of statements that

can be further scheduled into clocked states (like a VT block (McFa78]).

Both synchronous and asynchronous behavior can be described with the

control fl.ow chart by interconnecting the appropriate EXEL graphic icons.

October 13, 1988 EXEL LANGUAGE Page 12

Synchronous descriptions use clocked-state icons, while asynchronous

descriptions use event-state icons. Unlike textual languages, the interconnection

of these graphic icons determines the sequencing of the behavior. This allows

the user to visualize the flow of control through the description and is thus a

natural means of design entry, much like flowcharting.

4.2.1.1. Synchronous Icons

Four symbols are used to specify the synchronous control flow chart: the

unconditional icon, the conditional test icon, the conditional output icon and the

conditional join icon as shown in Figure 2. The unconditional icon specifies

actions that are to occur unconditionally in that global state. The conditional

test icon performs a test of some expression (written as a data flow sequence in

the icon), which will determine which conditional branch is to be executed. A

conditional output icon exists as an immediate output of a conditional test icon.

It specifies the actions to be performed only when the conditional value matches

that of the output branch of the conditional test icon. The conditional join

icon indicates a merging of several conditional paths.

These symbols are connected by the user in an unambiguous manner to

specify the sequencing of the intended algorithm into global states of the

synchronous process.

October 13, 1988 EXEL LANGUAGE Page 13

Unconditional
Box

Conditional
Box

ondition
Test

filgure2: SYNCHRONOUSCONTROLFLOWICONS

As mentioned before, the user decides if a conditional (such as an "if" or

"case" construct) is to be implemented as control or data. A conditional

specified by the user in a graphical conditional test icon is implemented in

control, while conditionals expressed in the textual EXEL language constructs

"if" and "case" are implemented in the data path. This gives the user the

flexibility of experimenting with control/ data tradeoffs.

October 13, 1988 EXEL LANGUAGE Page 14

4.2.1.2. Asynchronous Icons

A major weakness of many existing input languages is that they do not

permit specification of asynchronous behavior. EXEL allows asynchronous

behavior to be expressed in an asynchronous chart by specifying operations

performed in each event-state.

Two concepts are of importance here: an event and an event-state. An

event is defined by a change in an input signal (port), and forces the process to

enter a new event-state. An event-state lasts from the time the event occurs

until the occurrence of the next event. Within an event-state, the operations to

be performed are described with EXEL's textual statements. Figure 3 shows a

sample asynchronous event-state icon which indicates that a new state is

entered on the rising edge of A. The variable B is incremented in this event

state.

4.2.2. Data Operations

Data transfers and transformations in the design are performed by various

types of operators. Broa~ly, the operators may be classified into arithmetic

operators, comparison operators, shift/rotate operators, logical operators, bit

manipulation (concatenation/selection) operators, array references and

assignment operators. Since each data carrier is strongly typed, it is not

necessary to have special operators to be used with variables, ports and buses of

October 13, 1988 EXEL LANGUAGE Page 15

A= RISING?

B := B + 1;

Figure 3: ASYNCHRONOUS CONTROL FLOW ICON

different types. Type mismatches are handled according to predefined rules.

When a mismatch. cannot be resolved, or is erroneous, the system can flag an

error to inform the user. Textual conditional statement constructs such as "if"

and "case" are used to perform conditional assignments.

4.2.3. Binding Operators and Variables

Operators and variables in EXEL may be bound to components defined by

the user. This gives the user control over selective binding of certain parts of

October 13, 1988 EXEL LANGUAGE Page 16

the behavioral description. For instance, if the user has identified the critical

path, he can bind components and connections along the path to meet the

critical constraints, while leaving the rest of the bindings to the synthesis

system.

The pair "{" and "}" is used for specifying bindings in the textual

expressions. For instance, if ALU_l is defined to be an ALU component, REG_l

is defined to be a register, and A, B are defined to be variables, the following

statement:

A{REG_l} := B +{ALU_l} 1;

binds the variable A to REG_l, and the "+" operation to the component

ALU_l.

4.2.4. Timing Specification

Several issues relating to specification of timing for synthesis have not been

resolved in previous synthesis systems. [NeTh86) and [BoKa87) describe two

attempts which try to rectify this situation, but the timing models are not

satisfactory. EXEL has a single, concise construct for expressing general timing

constraints. This section describes EXEL's model of timing and its specification.

Two types of timing specification are supported by EXEL. The first is a

path-relative delay which expresses the delay from one point in the structural

implementation to another. This delay is the sum of the transmission delays on

October 13, 1988 EXEL LANGUAGE Page 17

the wires, the operation times for components and the set-up and hold times for

registers that exist on the physical path between the two points.

The second is event-relative delay which expresses the delay for one event

with respect to another. An event corresponds to the change in the value of a

particular signal (or of a set of signals). Since two events may be logically

unrelated, event-relative timing specifies the exact sequencing of the two signal

waveforms. This is often used in describing protocols which involve two or more

signals that are not data dependent, but which must follow a particular

sequence over time to ensure correct behavior.

In synchronous systems, the major event is the system clock. All actions

are performed on a state-by-state basis where the rising or falling edge of the

system clock initiates a new state. Hence, event-relative delays in the

synchronous case refer to delays specified with respect to the rising or falling

edge of the system clock.

The three notions of relativity, duration and event-cause permit general

timing specifications. &lativity specifies the change of one signal with respect

to another. If the two signals are data dependent, we call this delay

specification a path constraint and use the keyword from to indicate the

relativity of the delay. If the two signals are data independent, we call this

delay an event constraint delay and use the keywords before or after to specify

October 13, 1988 EXEL LANGUAGE Page 18

event-relativity.

Duration specifies the length of the delay to be mininrum, maximum or

nominal. A nominal duration is an "average" value with a certain tolerance. A

delay not specified to be of a particular duration type defaults to maximum for

path-relative delays, and minimum for event-relative delays.

Event-cause specifies the characteristics of the event as being of type rising,

falling or changing.

A general form of the assignment statement permits the user to express

both kinds of event and path constraints in a concise notation. The general

form is:

where:

carrier I event-constraint := expression I path-constraint;

expression is a standard expression using the EXEL operators;

path-constraint is a delay specified from some input (of the expression

or port) to the carrier on the left hand side;

and

event-constraint is a set of delays which specify when the signal on the

left hand side should receive the computed value on the right hand

side, with respect to the specified event.

October 13, 1988 EXEL LANGUAGE Page 19

The versatility of this assignment construct permits the designer to specify

timing at various levels: combinatorial delays, delays relative to clock phases,

delays relative to latching signals, and asynchronous assignments. The following

examples describe different types of timing.

A general path constraint can specify delays from inputs to outputs over

several assignments, encompassing one or several states. However, if state

binding has already been performed, this delay is used to capture the

combinatorial delay on the path from the input to the output of the expression.

The syntax of each path constraint is:

delay delay-value from input

For instance, if A and B are registers and INPORT 1s an input port, the

statement

B := INPORT + A, delay 80 ns from INPORT, 40 - 60 ns from A;

specifies a delay of 80 ns maximum (by default) from the input port INPORT to

the register B, and a delay of 40 ns minimum, 60 ns maximum from the output

of register A to the register B. These delay constraints may be passed on to the

generator for the component which performs the '+' operation. Note that

simulation languages such as VHDL do not allow specification of delay from

specific inputs -- they lump all the inputs together and permit specification of

only one delay value for the output. This ambiguity makes it hard to synthesize

for timing with respect to each input.

October 13, 1988 EXEL LANGUAGE Page 20

The syntax of an event-constraint is:

delay delay-value {after or before} event-cause

where delay, as before, is a minimwn, maxirrrum or nominal delay, and event­

cause is a signal rising, falling or changing. This type of timing constraint is

most often used to capture timing chains from a timing chart, which specifies

the change of one signal with respect to another over time.

For example, if A is an output port and B is an input port, the statement

A I (delay 100-1500 ns after B = rising) : = X + 1;

specifies that the port A be assigned the value "X + 1" with a delay of 100 to

.1500 ns after the value on port B rises.

Clock phase assignment and signal latching is also achieved with this

construct. For example, if R and Q are registers, and the system clock is 2-

phase (with names phase-1 and phase-2), the statement:

R I (after phase-2 = rising) := Q;

assigns the value in register Q to register R in phase 2 of the system clock.

Asynchronous assignments to variables are described using the special

assignment operator '< = '. Semantically, the asynchronous assignment implies

the use of an asynchronous input on the structure bound to the variable, to

achieve the assignment. Most often, this type of assignment is used to clear or

set a register asynchronously. For instance, if R is a variable bound to a

October 13, 1988 EXEL LANGUAGE Page 21

register and RESET is defined to be an input port, the statement

R I (RESET = rising) < := O;

ties the RESET line to the 'clear' input of the register R.

For further details on the exact syntax and semantics of the EXEL

language, the reader is directed to [DuGa88].

5. Compiler

A compiler for EXEL has been developed on SUN-3 workstations running

UNIX. The EXEL compiler is written in 'C', with the graphic routines

implemented in SUNVIEW. EXEL is input to EXTEND, the synthesis

environment. EXTEND currently performs connectivity binding and some

register and unit binding, given a description where the user has performed state

binding. The output of the compiler consists of symbolic control (for both

synchronous and asynchronous parts), and a netlist of generic RTL components

[Dutt88a]. This may be passed as input to existing technology mappers such as

MILO [VaGa88] or MIS [BrRu87] (for combinatorial logic), where further

optimizations may be performed. For further details on the compiler, the reader

is directed to [Dutt88b].

October 13, 1988 EXEL LANGUAGE Page 22

6. Example

We illustrate the use of EXEL to describe a simple application which

exhibits both synchronous and asynchronous behavior. Figure 4 shows the block

diagram of a process that we will call a controlled counter, adapted from

[Arms89]. Although this example does not illustrate the complete power of

EXEL language, it highlights several of its salient features.

STROBE RUN CLK

DON~

-CBU

Figure 4: BLOCK DIAGRAM OF CONTROLLED COUNTER

October 13, 1988 EXEL LANGUAGE Page 23

6.1. Controlled Counter

6.1.1. Principles of Operation

The basic operation of the controlled counter is sketched in Figure 5. On

the rising edge of the signal STROBE, an internal control register is loaded with

the value on CBUS. The value in the internal control register is decoded to

perform one of four functions: clear the counter, load a limit register, count up

till limit, or count down till limit. The counter runs synchronously under the

input clock, and the counting functions are performed only when RUN is high.

When STROBE rises, load OREG with CBUS

while RUN is asserted,

if OREG= 'OO', clear COUNT

if OREG= '01', load LIM with DBUS

on falling edge of STROBE

if OREG = '10', count up until LIM reached

if OREG= '11', count down until LIM reached

set DONE to 1 when count is finished

Figure 5: CONTROLLED COUNTER OPERATIONAL PRINCIPLE.5

October 13, 1988 EXEL LANGUAGE Page 24

6.1.1.1. Declarations

Figure 6 shows the definitions for the process. Two registers, LIMIT and

CREG, are defined. The input ports consist of STROBE, RUN, CLK, DBUS

and CBUS, while the output port is DONE. The port definitions specify the

width, type and direction of the ports for the process. ·. For synchronous

operation, the clock has to be defined explicitly. In this example, the system

type
BOOLEAN
TWO_BIT
FOURJHT
REG_TWO
REG_FOUR
DEC_TWO
CMP_FOUR
CNT_FOUR

= {o};
= {1..0};
= {3 .. 0};

= REGISTER(2,LOAD,,,,RESET,ENABLE);
= REGISTER(4,LOAD,,,,RESET,ENABLE);

= DEC(2,4);
= CMP(4,,GT,LT);
=UP _DWN_CNT(4,UP,DOWN,LOAD,RESET,SET,ENABLE);

component

port

clock

var

const

CREG
LIMIT
COUNT
COMP
DECODER

CBUS
STROBE, RUN
DBUS
DONE

CLK

: REG_TWO;
: REG_FOUR;
: CNT_FOUR;
: CMP_FOUR;

: DEC_TWO;

: input of TWO_BIT;
: input of BOOLEAN;
: input of FOUR_BIT;
: output of BOOLEAN;

: port;

LOADJ,IM, UP, DOWN : BOOLEAN;

ZERO of FOUR_BIT = O;
B_ONE of BOOLEAN = 1;
ONE of FOUR_BIT = 1;

Figure 6: CONTROLLED COUNTER DEFINITIONS

October 13, 1988 EXEL LANGUAGE Page 25

clock is defined to be 1 ph;!e;e, with the source being the input port CLK. Two

variables, COUNT and LIM_EN, are also defined.

6.1.1.2. Behavior

The behavior of the controlled counter can be expressed in many ways,

depending on how the user partitions it. For illustration, we choose to describe

the behavior by partitioning it into an asynchronous process (driven by the

STROBE signal), and a synchronous process (clocked by CLK). Figure 7 shows

the asynchronous chart. Two main events can be recognized in this example:

STROBE .rising and STROBE falling. We therefore describe the behavior in

each of these event-states.

When STROBE rises, CREG is asynchronously loaded with the value on

CBUS. Next, based on the value in CREG, either COUNT is cleared, the limit

register is enabled, or the count-up/count-down sequence is initiated by setting

the signals UP or DOWN high.

When STROBE falls, if the LIM_EN signal is high, the LIMIT register is

loaded asynchronously with the value on DBUS.

The synchronous behavior is described by the synchronous chart, shown in

Figure 8. "COUNT_UP" is a one state loop with several synchronous control

icons. First, based on the concatenated value of the signals RUN, UP and

DOWN, one of three branches is taken: if RUN and UP are high, the counter

October 13, 1988 EXEL LANGUAGE Page 26

CREG I (STROBE = RISING) := CBUS;

Case (CREG) of:

00: COUNT I (CREG = 00) < := O;

10: UP:= 1;

01: LIM_EN := 1

11: DOWN := 1;

IF (LIM_EN = 1) THEN .
LIMIT I (STROBE=FALLING) = DBUS;

Figure 7: ASYNCHRONOUS CHART FOR CONTROLLED COUNTER

October 13, 1988 EXEL LANGUAGE Page 27

counts up; if RUN and DOWN are high, the counter counts down; in all other

cases, the counter busy-waits. When either the count-up or count-down

sequence is completed, the DONE signal is set to 1 to indicate completion of the

counting task.

clock: OLK

DONE:= 1;

~gure8: CONTROLLEDCOUNTERSYNCHRONOUSCHART

October 13, 1988 EXEL LANGUAGE Page 28

6.1.1.3. Structure Generated

Figure 9 shows the structure that is generated after synthesis from the

description. Note how the EXEL asynchronous and synchronous charts

operated on a common set of defined variables and structures to produce a final

design.

This example shows the power of the input description: synchronous and

asynchronous behavior is described together in a natural fashion; the resulting

description is quite concise and easy to compile. The user can see the behavior

at a glance and make any modifications easily.

In contrast, the same example would require several pages of VHDL text to

describe [Arms89]. The VHDL description is bulky and cumbersome. The user

does not have an immediate .feel for the design just by looking at the VHDL

description. Most of the existing high-level synthesis languages are not capable

of describing this kind of mixed behavior (synchronous and asynchronous), and

do not permit mixed behavioral and structural descriptions with partial

bindings.

7. Conclusions

In this paper, we introduced EXEL, a language designed for interactive and

extensible . behavioral synthesis. EXEL has several features that enhance user­

interaction: the graphic/textual input, user defined types and operations and

October 13, 1988 EXEL LANGUAGE Page 29

CBUS IN
CREG

STROBE

LIM N

CLK

RUN

DECODER
00 01 10 11

p

WNcoUNT

DONE __..,.

Figure 9: CONTROLLED COUNTER: GENERATED STRUc:ruRE

partial structural bindings by the user. Its general model permits the

specification of both synchronous and asynchronous behavior. EXEL has a small

but comprehensive set of constructs for specifying various kinds of timing and

assignments. It fills the gap between behavioral and structural representations,

October 13, 1988 EXEL LANGUAGE Page 30

and can be used as input to a VHDL synthesis system, smce it is easily

translatable to VHDL. EXEL has a working compiler which is input to

EXTEND, a behavioral synthesis system.

8. REFERENCES

[Arms89]
J. R. Armstrong, "Chip Level Modeling with VHDL," Prentice Hall, 1988.

[BRSW87] R. K. Brayton et al., "MIS: A Multiple Level Logic Optimization
System," IEEE Trans. on Computer-Aided Design, Vol. CAD-6,
Number 6, Nov. 1987.

[Barb81] M. R. Barbacci, "Instruction Set Processor Specification (ISPS),"
IEEE Transactions on Computers, vol. c-30, no. 1, January 1981.

[B1FR85] T. Blackman, J. Fox, and C. Rosebrugh, "The SILC Silicon Compiler:
Language and Features," Proc. 22nd Design Automation Conf., June
1985.

[BoKa87] G. Borriello and R. H. Katz, "Synthesis and Optimization of Interface
Transducer Logic," Proc. ICCAD, Nov. 1987.

[Clar73] C. R. Clare, "Designing Logic Systems using State Machines,"
McGraw-Hill Inc., 1973.

[Camp85] R. Camposano, "Synthesis Techniques for Digital System Design,"
Proc. 22nd Design Automation Conf., June, 1985.

[DBRI88] P. J. Drongowski et al., "A Graphical Hardware Design Language,"
Proc. 25th ACM/ IEEE Design Automation Conference, Anaheim,
CA, June 1988.

[DrHa87] D. Druzinsky and D. Harel, "Using Statecharts for Hardware
Description," Proc. ICCAD, Nov. 1987.

[DuGa88] N. D. Dutt and D. D. Gajski, "EXEL: An Input Language for
Extensible Register Transfer Compilation," Technical &port 88-11,
U.C. Irvine, April, 1988.

[Dutt88a] N. D. Dutt, "GENUS: A Generic Component Library for High Level
Synthesis," Technical &port 88-22, University of California at Irvine,
September, 1988.

[Dutt88b] N. D. Dutt, "Behavioral Synthesis from Partial Descriptions," Ph.D.
Dissertation, University of Illinois at Urbana-Champaign, December,

October 13, 1988 EXEL LANGUAGE Page 31

1988.

[Gate86] Gateway Design Automation Corporation, "Verilog: A Digital Logic
Design Language and Simulator," Gateway Design Automation
Corporation, Westford, MA, 1986 .. '

[GiBK85] E. F. Girczyk, R. J. Buhr, and J. P. Knight, "Applicability of a
Subset of Ada as an Algorithmic Hardware Description Language for
Graph-Based Hardware Compilation," IEEE Trans. on Computer­
Aided Design, Vol. CAD-4, No. 2, April 1985.

[Holl82] L. A. Hollaar, "Direct Implementation of Asynchronous Control
Units," IEEE Transactions on Computers, Vol. c-31, Number 12,
December 1982.

[McFa78] M. C. MacFarland, S. J., "The Value Trace: A Data Base for
Automated Digital Design," .Technical Report DRC-01-04-80,
Carnegie Mellon University, Dec. 1978.

[NeTh86] J. A. Nestor and D. E. Thomas, "Behavioral Synthesis with
Interfaces," Proc. ICCAD, Nov. 1986.

[OTH088] G. Odawara et al., "A Human Machine Interface for Silicon
Compilation," 25th Design Automation Conference, (June 1988).

[PaGa87] B. M. Pangrle and D. D. Gajski, "Design Tools for Intelligent Silicon
Compilation," IEEE Transactions on CAD, Vol. CAD-6, Number 6,
Nov. 1987.

[Sout83] J. R. Southard, "MacPitts: An Approach to Silicon Compilation,"
IEEE Computer, vol. 16, no. 12, (Dec, 1983).

[Tred81] N. Tredennick, "How to Flowchart for Hardware," IEEE Computer,
December 1981.

[VHDL87] VHDL Tutorial for IEEE Standard 1076 VHDL, CAD Language
Systems Inc., June 1987.

[VaGa88] N. Vander Zanden and D. D. Gajski, "MILO: A Microarchitecture
and Logic Optimizer," 25th Design Automation Conference,
Anaheim, CA, June 1988.

October 13, 1988 EXEL LANGUAGE

