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ABSTRACT 

This paper describes a new input language for behavioral synthesis called EXEL. 
EXEL is a powerful language that permits the user to specify partially designed 
structures in the language. It employs a mixed graphic/textual user interface to 
enhance user interactivity. EXEL's design model is comprehensive: it permits 
specification of synchronous and asynchronous behavior, and allows specification 
of general timing constraints. A flexible type construct permits the user to 
define operators and components to be used in the description. Finally, it 
simplifies compilation by using a small set of constructs for specifying timing and 
asynchronous behavior. The compiler for EXEL runs on SUN-3 workstations 
and is written in C and SUNVIEW. 
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1. Problem Description and Contributions 

The task of high level synthesis spans the continuum from automatic 

generation of a design from a purely behavioral specification, down to compiling 

a completely specified structural design consisting of a set of components from a 

given library and their connections. In the first case, the behavior is specified as 

a set of assignment statements to variables, possibly with total timing 

constraints for input-output pairs. There is no binding of operations to time or 

to functional units, no binding of variables to storage elements, and the 

description does not have any connectivity specified between storage and 

functional units. At the other extreme, compilation of structure consists of 

mapping generic components (or components from one library) to components 

derived from another library. The main objective here is optimization of that 

mapping to satisfy technology constraints such as time, area, power, testability, 

etc. 

Existing systems and their corresponding input languages straddle either 

end of this design spectrum: they either automatically synthesize structure from 

the abstract behavior, or require the user to perform all the behavioral synthesis 

and input a structural description. There is a lack of tools that fill this gap in 

the continuum. There are three major requirements for a synthesis tool that 

meets this need: interactivity, general models and modification of compiled 
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design. 

An interactive system permits the user to participate m the iterative 

process of design planning, synthesis and evaluation. An input language 

supporting this feature must have a user-friendly interface which permits the 

user to specify a portion of the design, with the synthesis tools completing the 

rest of the design. This makes designers more willing to accept synthesis tools 

since they have control over the design process. The level of input description 

can thus be gradually elevated from fully structural (when the designer performs 

all of the design), to fully behavioral (when the designers feel comfortable with 

using automatic synthesis tools). 

The underlying models behind the synthesis system must be general 

enough to handle a variety of abstraction levels and applications. The design 

process encompasses several abstraction levels: boolean equations, register 

transfers, algorithms, interface specifications, etc. The model must permit 

specification of behavior at several intermixed levels. Current synthesis systems 

are normally limited to one abstraction level only, for instance the algorithmic 

level. The model must also permit the description of a variety of applications, 

not limited to only instruction-set processors or digital signal processing designs. 

For this, the model must permit description of synchronous and asynchronous 

behavior, and allow various types of timing constraints to be specified. This 
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allows a broad range of designs to be described, including application specific 

designs. 

Finally, the system must allow modification of compiled design. Modifying 

compiled design allows the user to try different alternatives on the generated 

design without having to rewrite and recompile the input description. With 

systems like MacPitts (Sout83), the user has to rewrite the description every 

time the resulting design did not meet the constraints. With these systems, the 

lack of a prediction capability requires the user to understand the assumptions 

and intricacies of the synthesis tool. Modification of compiled design gives the 

user control over the generated design; if it does not meet the requirements, the 

user can use his design expertise to improve on the design. Finally, it permits 

incremental upgrade of automatic synthesis tools: we can start with an 

incomplete synthesis system that performs only some of the synthesis tasks 

automatically, leaving the rest to the user; synthesis algorithms can be added at 

a later time. 

This paper summarizes the features of a new input language, EXEL, for a 

system that meets these needs. This new language 

(1) is powerful: the user can specify any level of detail, from fully bound 
structural designs to purely behavioral specifications; 

(2) enhances interaction: employs a mixed graphic/textual interface for ease of 
use; 
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(3) has a general model: permits combined specification of synchronous and 
asynchronous behavior in a convenient fashion and handles general timing 
constraints. 

( 4) simplifies compilation: uses a small set of constructs for specifying timing 
and asynchronous behavior. 

(5) is extensible: allows user-defined types, operators and components to be 
used. 

2. Existing Input Languages 

Several input languages have been used for automatic behavioral synthesis, 

including ISPS [Barb81], Pascal [Camp85] [PaGa87], ADA [GiBK85] and SILC 

[BlFR85]. These input languages exhibit a high level of input, where the 

behavior is described using abstract variables and operators; synthesis 

algorithms are used to automatically generate a structure. On the other end of 

the spectrum, commercial schematic capture systems require the user to perform 

the complete synthesis task; the input is essentially a netlist of register-transfer 

level modules or logic equations. Both of these types of languages are limited to 

a particular level of design: algorithms for the first kind and register transfers 

for the second. For describing a large range of designs, the input language must 

allow specification of a mixture of levels, such as algorithms with register 

transfers. The languages also do not permit the user to specify partial bindings 

(such as variables to registers, operations to functional units) or partial 

structure ( eg. two buses and an ALU) which is input to the synthesis tools. 

This lack of intermediate descriptions limits user-interaction and the range of 
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synthesizable designs. 

Most of the existing input languages are purely textual. Textual languages 

tend to be verbose and require the user to learn and understand the syntax of 

the language. Moreover, a design description written in a textual language does 

not convey much information to a user who is unfamiliar with the textual input 

language. Graphical design languages have recently begun receiving more 

attention [DBRI88] [OTH088]. These input languages enhance user interaction 

and ease the task of design entry. However, existing graphical languages are 

primarily a front end for tools that are at the structural level of input. 

The underlying model in most existing behavioral languages are limited. 

They are targeted to a specific application which describe instruction sets or 

particular algorithms. They lack a comprehensive model which includes timing 

specification, busing, clocking and asynchrony. Simulation languages like VHDL 

[VHDL87] and Verilog [Gate86] have been proposed as input vehicles for 

behavioral synthesis. However, the model used by these simulation languages 

does not have good constructs for register transfer descriptions; the behavior is 

written with the implicit notion of a simulation clock. Several constructs in 

these languages (such as events indicating signal changes) do not have feasible 

or efficient realizations in hardware. 
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3. Features of EXEL 

The strengths of EXEL are in its interactivity and adequate models. These 

are briefly described below: 

Mixed graphic/text entry. EXEL is a flowchart-like language. This provides 

a natural user interface and enhances designer interactivity. 

Designer controlled bindings and partial structure. The user can specify 

bindings in the EXEL description, thereby allowing specification of partial 

design structure. These bindings may be redone by automatic synthesis 

algorithms in the design system. This allows for a gradual evolution towards 

automatic synthesis, where designers gain confidence in the synthesis tools and 

become comfortable with the idea of automatic synthesis. Hence EXEL covers a 

larger range of specifications, from completely user-bound (structural) to 

completely behavioral. 

Combined specification of synchronous and asynchronous behavior. Using 

EXEL, the user partitions the design into processes which exhibit asynchronous, 

synchronous and mixed behavior. 

Adequate timing model. EXEL has a succinct construct which permits 

specification of general timing constraints. Using this construct, the key 

t f II t 11 
II 1 t' 't It d 11d t' II 11 t f h concep s o even , re a 1v1 y an ura ion a ow cap ure o · sync ronous 

and asynchronous timing constraints uniformly. 
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Comprehensive design model. EXEL's design model allows for specification 

of abstract behavior, register transfers, interface operations and logic. 

4. The Language 

The EXEL input language [DuGa88] is modeled after software flowcharts 

and state machine flowcharts [Clar73] [Tred81] [DrHa87]. Its intent is to provide 

a mixed graphic/textual interface to the user so that it facilitates the designer's 

thought process. A design entity in EXEL is described with the input 

definitions and the behavior as a set of communicating processes which operate 

on the defined structures and variables. 

Both the definitions and the behavior of a design to be synthesized are 

specified in a mixed graphic/textual input form. For each design, a set of 

declarations specify the inputs, outputs and variables to be used. Optionally, 

the user may specify structural information such as the type and number of 

components and buses. Process behavior is specified using a graphical control 

flow format, along with textual expressions for operations. The control flow of 

the process is captured through an interconnection of graphic icons. This 

control flow specifies the states and their transitions for the process. 

Corresponding to each control flow template, dCJ,.ta operations are expressed in a 

textual form. This section describes the salient features of EXEL; the reader is 

directed to [DuGa88] for the syntax and other details of the language. 
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4.1. Definitions 

The definitions may be broadly categorized into four classes: type, 

structural, behavioral and bindings. Figure 1 shows some sample definitions 

using EXEL which will be used as a running example for this section. 

October 13, 1988 

type 
BOOLEAN 
EIGHTJ3IT 
MEM_lK 
CMP _EIGHT 

= {o}; 
= {7 .. 0}, 
= [0 .. 1023] ofEIGHT_J3IT; 
= COMPAR(8,EQ,GT,LT); 

component 

port 

clock 

var 

const 

operator: 

bind 

REG_l = 
COMP 

REGISTER(8,LOAD,RESET,ENABLE); 
CMP _EIGHT; 

DPORT 
EPORT 

: output tristate buffered of EIGHT_J3IT; 
: input_output buffered of EIGHT_J3IT; 

CLK : port; 

A, B : EIGHTJ3IT; 
D : MEM_lK; 

SEVEN of EIGHTJ3IT = 7; 

LT_GT (inputs: 

(outputs: 

(operation: 

LT_GT to CMP _EIGHT; 
A to REG_l; 

A of EIGHTJ3IT; 
B of EIGHT_J3IT); 

LT of BOOLEAN; 
GT of BOOLEAN;) 

LT:= A< B; 
GT:= A> B;) 

Figure 1: SA1\.1PLE EXEL DEFINITIONS 
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Type definitions allow the user to define new data types and component 

types for the rest of the description. Sample type definitions would include bit-

type, array-type, component type, etc. For example, MEM_lK in Figure 1 is a 

type denoting an array of size 1024, with each element being eight bits wide. 

CMP _EIGHT is an eight bit comparator component type specified to have the 

th f t . "EQ" "GT" d "LT" e unc ions , an . 

Structural definitions allow the user to prespecify some or all of the 

structural components such as registers, function units, ports and buses to be 

used in the design. This creates a partial structural design on which further 

synthesis is performed. Each component is instantiated from the GENUS 

generic component library (Dutt88a] by specifying a call to the generic 

component name with its instantiation parameters. Components may be 

instantiated directly ( eg. REG_l) with an instantiation call, or indirectly ( eg. 

COMP) through a previously defined "type". During synthesis, additional 

components are automatically synthesized as and when they are required. 

Port definitions specify the locations through which the process 

communicates with the other processes. Typical port attributes include mode 

(input/output/input-output), gating (tristate, wired, etc.) and storage 

(buffered/unbuffered). 
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Behavioral definitions allow the user to specify abstract data carriers such 

as variables, constants and special types of operators. Strong typing permits 

various attributes to be associated with the variables and signals. Typical 

attributes would include the size, type and representation for data carriers and 

structural units. This information is necessary during synthesis to generate a 

consistent structure. In Figure 1, "A", "B" and "D" are defined as variables 

while "SEVEN" is defined to be a constant whose value is 7. 

The operator definition shows the capability of defining new operators in 

EXEL. For instance, LT_GT in Figure 1 is an operator that accepts two eight 

bit inputs and produces two boolean outputs simultaneously. 

The process of mapping behavioral elements (such as variables) to 

structural components in synthesis is called binding. A unique feature of EXEL 

is that these bindings can be performed by the user in the definitions or in the 

description of the behavior. This allows the user to further specify some partial 

structure for the synthesis task. The rest of the bindings are performed by the 

synthesis system. The bind definitions specify "static" bindings which are valid 

through the EXEL description of the behavior. Variables and operators may be 

mapped to components (eg. "A" is bound to "REG_l" and "LT_GT" is bound to 

"CMP _EIGHT"). 
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4.2. Process Behavior 

EXEL is a language designed to allow the user considerable control over the 

synthesis process. The user decides how the behavior is to be partitioned (into 

synchronous/asynchronous processes), defines global "states" of each process, 

decides if conditionals are to be implemented in the control or data path, and 

performs structural bindings to specify a partial structure. Synchronous 

processes are described using the synchronous state chart, while asynchronous 

processes are described using the asynchronous event chart. Within each chart, 

the user can further specify state, unit, register and connection binding. 

A synchronous state chart describes the behavior of a process on a global 

state by state basis, assuming a fixed clocking scheme (as defined in the 

declarations). Asynchronous operations such as sets, resets and latching 

controlled by any signal can also be expressed with a special construct as 

described later. This permits latching of a storage element in a particular state 

under a signal different from the synchronous clock. 

The asynchronous behavior is expressed as a sequence of event-states in an 

event chart. Each event-state is triggered by a specified event (which is often a 

change in the value of an external signal). Within an event-state, the behavior 

is captured with a set of of operations on variables. A synchronous clock can 

also be considered to be an event, and thus may be described in an 
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asynchronous event chart by explicitly specifying clock events. 

When there is a fair amount of both synchronous and asynchronous 

behavior, and if these are somewhat orthogonal, it is convenient to describe the 

asynchronous behavior separately from the synchronous behavior. Semantically, 

the asynchronous specification for a variable or structure overrides the 

synchronous behavior (for example, a reset-dominant flip-fl.op). However, there 

are cases when some synchronous behavior is exhibited in a particular event 

state. In this case, the notion of a synchronous sub-machine [Holl82] is used to 

describe the behavior hierarchically. Thus the user has the option of 

partitioning the design in a variety of ways which fit the description at hand. 

4.2.1. Flow of Control 

Control fl.ow captures the sequencmg of the design over time at the 

granularity of user-defined global-states. For asynchronous charts, the duration 

of a global-state ends when the event for the successor global-state is triggered. 

For synchronous state charts, the user determines the meaning of a global-state. 

A global-state could be at the granularity of a single clock (in which case the 

user has performed state binding), or could represent a block of statements that 

can be further scheduled into clocked states (like a VT block (McFa78]). 

Both synchronous and asynchronous behavior can be described with the 

control fl.ow chart by interconnecting the appropriate EXEL graphic icons. 

October 13, 1988 EXEL LANGUAGE Page 12 



Synchronous descriptions use clocked-state icons, while asynchronous 

descriptions use event-state icons. Unlike textual languages, the interconnection 

of these graphic icons determines the sequencing of the behavior. This allows 

the user to visualize the flow of control through the description and is thus a 

natural means of design entry, much like flowcharting. 

4.2.1.1. Synchronous Icons 

Four symbols are used to specify the synchronous control flow chart: the 

unconditional icon, the conditional test icon, the conditional output icon and the 

conditional join icon as shown in Figure 2. The unconditional icon specifies 

actions that are to occur unconditionally in that global state. The conditional 

test icon performs a test of some expression (written as a data flow sequence in 

the icon), which will determine which conditional branch is to be executed. A 

conditional output icon exists as an immediate output of a conditional test icon. 

It specifies the actions to be performed only when the conditional value matches 

that of the output branch of the conditional test icon. The conditional join 

icon indicates a merging of several conditional paths. 

These symbols are connected by the user in an unambiguous manner to 

specify the sequencing of the intended algorithm into global states of the 

synchronous process. 
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Unconditional 
Box 

Conditional 
Box 

ondition 
Test 

filgure2: SYNCHRONOUSCONTROLFLOWICONS 

As mentioned before, the user decides if a conditional (such as an "if" or 

"case" construct) is to be implemented as control or data. A conditional 

specified by the user in a graphical conditional test icon is implemented in 

control, while conditionals expressed in the textual EXEL language constructs 

"if" and "case" are implemented in the data path. This gives the user the 

flexibility of experimenting with control/ data tradeoffs. 
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4.2.1.2. Asynchronous Icons 

A major weakness of many existing input languages is that they do not 

permit specification of asynchronous behavior. EXEL allows asynchronous 

behavior to be expressed in an asynchronous chart by specifying operations 

performed in each event-state. 

Two concepts are of importance here: an event and an event-state. An 

event is defined by a change in an input signal (port), and forces the process to 

enter a new event-state. An event-state lasts from the time the event occurs 

until the occurrence of the next event. Within an event-state, the operations to 

be performed are described with EXEL's textual statements. Figure 3 shows a 

sample asynchronous event-state icon which indicates that a new state is 

entered on the rising edge of A. The variable B is incremented in this event 

state. 

4.2.2. Data Operations 

Data transfers and transformations in the design are performed by various 

types of operators. Broa~ly, the operators may be classified into arithmetic 

operators, comparison operators, shift/rotate operators, logical operators, bit 

manipulation (concatenation/selection) operators, array references and 

assignment operators. Since each data carrier is strongly typed, it is not 

necessary to have special operators to be used with variables, ports and buses of 
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A= RISING? 

B := B + 1; 

Figure 3: ASYNCHRONOUS CONTROL FLOW ICON 

different types. Type mismatches are handled according to predefined rules. 

When a mismatch. cannot be resolved, or is erroneous, the system can flag an 

error to inform the user. Textual conditional statement constructs such as "if" 

and "case" are used to perform conditional assignments. 

4.2.3. Binding Operators and Variables 

Operators and variables in EXEL may be bound to components defined by 

the user. This gives the user control over selective binding of certain parts of 
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the behavioral description. For instance, if the user has identified the critical 

path, he can bind components and connections along the path to meet the 

critical constraints, while leaving the rest of the bindings to the synthesis 

system. 

The pair "{" and "}" is used for specifying bindings in the textual 

expressions. For instance, if ALU_l is defined to be an ALU component, REG_l 

is defined to be a register, and A, B are defined to be variables, the following 

statement: 

A{REG_l} := B +{ALU_l} 1; 

binds the variable A to REG_l, and the "+" operation to the component 

ALU_l. 

4.2.4. Timing Specification 

Several issues relating to specification of timing for synthesis have not been 

resolved in previous synthesis systems. [NeTh86) and [BoKa87) describe two 

attempts which try to rectify this situation, but the timing models are not 

satisfactory. EXEL has a single, concise construct for expressing general timing 

constraints. This section describes EXEL's model of timing and its specification. 

Two types of timing specification are supported by EXEL. The first is a 

path-relative delay which expresses the delay from one point in the structural 

implementation to another. This delay is the sum of the transmission delays on 
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the wires, the operation times for components and the set-up and hold times for 

registers that exist on the physical path between the two points. 

The second is event-relative delay which expresses the delay for one event 

with respect to another. An event corresponds to the change in the value of a 

particular signal (or of a set of signals). Since two events may be logically 

unrelated, event-relative timing specifies the exact sequencing of the two signal 

waveforms. This is often used in describing protocols which involve two or more 

signals that are not data dependent, but which must follow a particular 

sequence over time to ensure correct behavior. 

In synchronous systems, the major event is the system clock. All actions 

are performed on a state-by-state basis where the rising or falling edge of the 

system clock initiates a new state. Hence, event-relative delays in the 

synchronous case refer to delays specified with respect to the rising or falling 

edge of the system clock. 

The three notions of relativity, duration and event-cause permit general 

timing specifications. &lativity specifies the change of one signal with respect 

to another. If the two signals are data dependent, we call this delay 

specification a path constraint and use the keyword from to indicate the 

relativity of the delay. If the two signals are data independent, we call this 

delay an event constraint delay and use the keywords before or after to specify 
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event-relativity. 

Duration specifies the length of the delay to be mininrum, maximum or 

nominal. A nominal duration is an "average" value with a certain tolerance. A 

delay not specified to be of a particular duration type defaults to maximum for 

path-relative delays, and minimum for event-relative delays. 

Event-cause specifies the characteristics of the event as being of type rising, 

falling or changing. 

A general form of the assignment statement permits the user to express 

both kinds of event and path constraints in a concise notation. The general 

form is: 

where: 

carrier I event-constraint := expression I path-constraint; 

expression is a standard expression using the EXEL operators; 

path-constraint is a delay specified from some input (of the expression 

or port) to the carrier on the left hand side; 

and 

event-constraint is a set of delays which specify when the signal on the 

left hand side should receive the computed value on the right hand 

side, with respect to the specified event. 
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The versatility of this assignment construct permits the designer to specify 

timing at various levels: combinatorial delays, delays relative to clock phases, 

delays relative to latching signals, and asynchronous assignments. The following 

examples describe different types of timing. 

A general path constraint can specify delays from inputs to outputs over 

several assignments, encompassing one or several states. However, if state 

binding has already been performed, this delay is used to capture the 

combinatorial delay on the path from the input to the output of the expression. 

The syntax of each path constraint is: 

delay delay-value from input 

For instance, if A and B are registers and INPORT 1s an input port, the 

statement 

B := INPORT + A, delay 80 ns from INPORT, 40 - 60 ns from A; 

specifies a delay of 80 ns maximum (by default) from the input port INPORT to 

the register B, and a delay of 40 ns minimum, 60 ns maximum from the output 

of register A to the register B. These delay constraints may be passed on to the 

generator for the component which performs the '+' operation. Note that 

simulation languages such as VHDL do not allow specification of delay from 

specific inputs -- they lump all the inputs together and permit specification of 

only one delay value for the output. This ambiguity makes it hard to synthesize 

for timing with respect to each input. 
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The syntax of an event-constraint is: 

delay delay-value {after or before} event-cause 

where delay, as before, is a minimwn, maxirrrum or nominal delay, and event­

cause is a signal rising, falling or changing. This type of timing constraint is 

most often used to capture timing chains from a timing chart, which specifies 

the change of one signal with respect to another over time. 

For example, if A is an output port and B is an input port, the statement 

A I (delay 100-1500 ns after B = rising) : = X + 1; 

specifies that the port A be assigned the value "X + 1" with a delay of 100 to 

.1500 ns after the value on port B rises. 

Clock phase assignment and signal latching is also achieved with this 

construct. For example, if R and Q are registers, and the system clock is 2-

phase (with names phase-1 and phase-2), the statement: 

R I (after phase-2 = rising) := Q; 

assigns the value in register Q to register R in phase 2 of the system clock. 

Asynchronous assignments to variables are described using the special 

assignment operator '< = '. Semantically, the asynchronous assignment implies 

the use of an asynchronous input on the structure bound to the variable, to 

achieve the assignment. Most often, this type of assignment is used to clear or 

set a register asynchronously. For instance, if R is a variable bound to a 
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register and RESET is defined to be an input port, the statement 

R I (RESET = rising) < := O; 

ties the RESET line to the 'clear' input of the register R. 

For further details on the exact syntax and semantics of the EXEL 

language, the reader is directed to [DuGa88]. 

5. Compiler 

A compiler for EXEL has been developed on SUN-3 workstations running 

UNIX. The EXEL compiler is written in 'C', with the graphic routines 

implemented in SUNVIEW. EXEL is input to EXTEND, the synthesis 

environment. EXTEND currently performs connectivity binding and some 

register and unit binding, given a description where the user has performed state 

binding. The output of the compiler consists of symbolic control (for both 

synchronous and asynchronous parts), and a netlist of generic RTL components 

[Dutt88a]. This may be passed as input to existing technology mappers such as 

MILO [VaGa88] or MIS [BrRu87] (for combinatorial logic), where further 

optimizations may be performed. For further details on the compiler, the reader 

is directed to [Dutt88b]. 
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6. Example 

We illustrate the use of EXEL to describe a simple application which 

exhibits both synchronous and asynchronous behavior. Figure 4 shows the block 

diagram of a process that we will call a controlled counter, adapted from 

[Arms89]. Although this example does not illustrate the complete power of 

EXEL language, it highlights several of its salient features. 

STROBE RUN CLK 

DON~ 

-CBU 

Figure 4: BLOCK DIAGRAM OF CONTROLLED COUNTER 
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6.1. Controlled Counter 

6.1.1. Principles of Operation 

The basic operation of the controlled counter is sketched in Figure 5. On 

the rising edge of the signal STROBE, an internal control register is loaded with 

the value on CBUS. The value in the internal control register is decoded to 

perform one of four functions: clear the counter, load a limit register, count up 

till limit, or count down till limit. The counter runs synchronously under the 

input clock, and the counting functions are performed only when RUN is high. 

When STROBE rises, load OREG with CBUS 

while RUN is asserted, 

if OREG= 'OO', clear COUNT 

if OREG= '01', load LIM with DBUS 

on falling edge of STROBE 

if OREG = '10', count up until LIM reached 

if OREG= '11', count down until LIM reached 

set DONE to 1 when count is finished 

Figure 5: CONTROLLED COUNTER OPERATIONAL PRINCIPLE.5 
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6.1.1.1. Declarations 

Figure 6 shows the definitions for the process. Two registers, LIMIT and 

CREG, are defined. The input ports consist of STROBE, RUN, CLK, DBUS 

and CBUS, while the output port is DONE. The port definitions specify the 

width, type and direction of the ports for the process. ·. For synchronous 

operation, the clock has to be defined explicitly. In this example, the system 

type 
BOOLEAN 
TWO_BIT 
FOURJHT 
REG_TWO 
REG_FOUR 
DEC_TWO 
CMP_FOUR 
CNT_FOUR 

= {o}; 
= {1..0}; 
= {3 .. 0}; 

= REGISTER(2,LOAD,,,,RESET,ENABLE); 
= REGISTER( 4,LOAD,,,,RESET,ENABLE); 

= DEC(2,4); 
= CMP(4,,GT,LT); 
=UP _DWN_CNT(4,UP,DOWN,LOAD,RESET,SET,ENABLE); 

component 

port 

clock 

var 

const 

CREG 
LIMIT 
COUNT 
COMP 
DECODER 

CBUS 
STROBE, RUN 
DBUS 
DONE 

CLK 

: REG_TWO; 
: REG_FOUR; 
: CNT_FOUR; 
: CMP_FOUR; 

: DEC_TWO; 

: input of TWO_BIT; 
: input of BOOLEAN; 
: input of FOUR_BIT; 
: output of BOOLEAN; 

: port; 

LOADJ,IM, UP, DOWN : BOOLEAN; 

ZERO of FOUR_BIT = O; 
B_ONE of BOOLEAN = 1; 
ONE of FOUR_BIT = 1; 

Figure 6: CONTROLLED COUNTER DEFINITIONS 
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clock is defined to be 1 ph;!e;e, with the source being the input port CLK. Two 

variables, COUNT and LIM_EN, are also defined. 

6.1.1.2. Behavior 

The behavior of the controlled counter can be expressed in many ways, 

depending on how the user partitions it. For illustration, we choose to describe 

the behavior by partitioning it into an asynchronous process (driven by the 

STROBE signal), and a synchronous process (clocked by CLK). Figure 7 shows 

the asynchronous chart. Two main events can be recognized in this example: 

STROBE .rising and STROBE falling. We therefore describe the behavior in 

each of these event-states. 

When STROBE rises, CREG is asynchronously loaded with the value on 

CBUS. Next, based on the value in CREG, either COUNT is cleared, the limit 

register is enabled, or the count-up/count-down sequence is initiated by setting 

the signals UP or DOWN high. 

When STROBE falls, if the LIM_EN signal is high, the LIMIT register is 

loaded asynchronously with the value on DBUS. 

The synchronous behavior is described by the synchronous chart, shown in 

Figure 8. "COUNT_UP" is a one state loop with several synchronous control 

icons. First, based on the concatenated value of the signals RUN, UP and 

DOWN, one of three branches is taken: if RUN and UP are high, the counter 
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CREG I (STROBE = RISING) := CBUS; 

Case ( CREG) of: 

00: COUNT I (CREG = 00) < := O; 

10: UP:= 1; 

01: LIM_EN := 1 

11: DOWN := 1; 

IF ( LIM_EN = 1) THEN . 
LIMIT I (STROBE=FALLING) = DBUS; 

Figure 7: ASYNCHRONOUS CHART FOR CONTROLLED COUNTER 
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counts up; if RUN and DOWN are high, the counter counts down; in all other 

cases, the counter busy-waits. When either the count-up or count-down 

sequence is completed, the DONE signal is set to 1 to indicate completion of the 

counting task. 

clock: OLK 

DONE:= 1; 

~gure8: CONTROLLEDCOUNTERSYNCHRONOUSCHART 
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6.1.1.3. Structure Generated 

Figure 9 shows the structure that is generated after synthesis from the 

description. Note how the EXEL asynchronous and synchronous charts 

operated on a common set of defined variables and structures to produce a final 

design. 

This example shows the power of the input description: synchronous and 

asynchronous behavior is described together in a natural fashion; the resulting 

description is quite concise and easy to compile. The user can see the behavior 

at a glance and make any modifications easily. 

In contrast, the same example would require several pages of VHDL text to 

describe [Arms89]. The VHDL description is bulky and cumbersome. The user 

does not have an immediate .feel for the design just by looking at the VHDL 

description. Most of the existing high-level synthesis languages are not capable 

of describing this kind of mixed behavior (synchronous and asynchronous), and 

do not permit mixed behavioral and structural descriptions with partial 

bindings. 

7. Conclusions 

In this paper, we introduced EXEL, a language designed for interactive and 

extensible . behavioral synthesis. EXEL has several features that enhance user­

interaction: the graphic/textual input, user defined types and operations and 
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CBUS IN 
CREG 

STROBE 

LIM N 

CLK 

RUN 

DECODER 
00 01 10 11 

p 

WNcoUNT 

DONE __..,. 

Figure 9: CONTROLLED COUNTER: GENERATED STRUc:ruRE 

partial structural bindings by the user. Its general model permits the 

specification of both synchronous and asynchronous behavior. EXEL has a small 

but comprehensive set of constructs for specifying various kinds of timing and 

assignments. It fills the gap between behavioral and structural representations, 

October 13, 1988 EXEL LANGUAGE Page 30 



and can be used as input to a VHDL synthesis system, smce it is easily 

translatable to VHDL. EXEL has a working compiler which is input to 

EXTEND, a behavioral synthesis system. 
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