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ABSTRACT 

 

Learning Approaches to Analog and Mixed Signal Verification and Analysis 

 

by 

 

Samantha Alice Alt 

 

 The increased integration and interaction of analog and digital components within a system 

has amplified the need for a fast, automated, combined analog, and digital verification 

methodology. There are many automated characterization, test, and verification methods used 

in practice for digital circuits, but analog and mixed signal circuits suffer from long simulation 

times brought on by transistor-level analysis. Due to the substantial amount of simulations 

required to properly characterize and verify an analog circuit, many undetected issues manifest 

themselves in the manufactured chips.  

 Creating behavioral models, a circuit abstraction of analog components assists in reducing 

simulation time which allows for faster exploration of the design space. Traditionally, creating 

behavioral models for non-linear circuits is a manual process which relies heavily on design 

knowledge for proper parameter extraction and circuit abstraction. Manual modeling requires 

a high level of circuit knowledge and often fails to capture critical effects stemming from block 

interactions and second order device effects. For this reason, it is of interest to extract the 

models directly from the SPICE level descriptions so that these effects and interactions can be 
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properly captured. As the devices are scaled, process variations have a more profound effect 

on the circuit behaviors and performances. Creating behavior models from the SPICE level 

descriptions, which include input parameters and a large process variation space, is a non-

trivial task.  

 In this dissertation, we focus on addressing various problems related to the design 

automation of analog and mixed signal circuits.  Analog circuits are typically highly 

specialized and fined tuned to fit the desired specifications for any given system reducing the 

reusability of circuits from design to design. This hinders the advancement of automating 

various aspects of analog design, test, and layout. At the core of many automation techniques, 

simulations, or data collection are required. Unfortunately, for some complex analog circuits, 

a single simulation may take many days. This prohibits performing any type of behavior 

characterization or verification of the circuit. This leads us to the first fundamental problem 

with the automation of analog devices. How can we reduce the simulation cost while 

maintaining the robustness of transistor level simulations? As analog circuits can vary vastly 

from one design to the next and are hardly ever comprised of standard library based building 

blocks, the second fundamental question is how to create automated processes that are general 

enough to be applied to all or most circuit types? Finally, what circuit characteristics can we 

utilize to enhance the automation procedures? 

 The objective of this dissertation is to explore these questions and provide suitable 

evidence that they can be answered. We begin by exploring machine learning techniques to 

model the design space using minimal simulation effort. Circuit partitioning is employed to 

reduce the complexity of the machine learning algorithms. Using the same partitioning 

algorithm we further explore the behavior characterization of analog circuits undergoing 
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process variation. The circuit partitioning is general enough to be used by any CMOS based 

analog circuit. The ideas and learning gained from behavioral modeling during behavior 

characterization are used to improve the simulation through event propagation, input space 

search, complexity and information measurements. The reduction of the input space and 

behavioral modeling of low complexity, low information primitive elements reduces the 

simulation time of large analog and mixed signal circuits by 50-75%. The method is extended 

and applied to assist in analyzing analog circuit layout. All of the proposed methods are 

implemented on analog circuits ranging from small benchmark circuits to large, highly 

complex and specialized circuits.  

 The proposed dependency based partitioning of large analog circuits in the time domain 

allows for fast identification of highly sensitive transistors as well as provides a natural division 

of circuit components. Modeling analog circuits in the time domain with this partitioning 

technique and SVM learning algorithms allows for very fast transient behavior predictions, 

three orders of magnitude faster than traditional simulators, while maintaining 95% accuracy. 

Analog verification can be explored through a reduction of simulation time by utilizing the 

partitions, information and complexity measures, and input space reduction. Behavioral 

models are created using supervised learning techniques for detected primitive elements. We 

will show the effectiveness of the method on four analog circuits where the simulation time is 

decreased by 55-75%. Utilizing the reduced simulation method, critical nodes can be found 

quickly and efficiently. The nodes found using this method match those found by an 

experienced layout engineer, but are detected automatically given the design and input 

specifications. The technique is further extended to find the tolerance of transistors to both 

process variation and power supply fluctuation. This information allows for corrections in 
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layout overdesign or guidance in placing noise reducing components such as guard rings or 

decoupling capacitors. The proposed approaches significantly reduce the simulation time 

required to perform the tasks traditionally, maintain high accuracy, and can be automated. 
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Chapter 1 

 

Introduction 

Designing analog circuits that are resilient to power supply noise require the adoption 

of fully balanced, differential topologies. With differential circuit elements, matching of the 

transistors is important for robust analog design. Traditional design approaches that aim to 

achieve fundamental device matching may result in over-design and sacrifice performance 

such as area, speed, and/or power.  One of the most important sources of mismatch within 

analog and mixed signal circuits is the variation in threshold voltage [1]. 

 

1.1 Analog and Mixed Signal Circuits  

Today's complex system-on-chip (SoC) designs consist of tight interactions between 

digital and analog cores in order to achieve higher degrees of performance. While the majority 

of SoC designs are digital and many analog functions have been replaced with digital 

counterparts, functions which interact with the world around us, which produces continuous 

time real value information, will always require analog circuitry. An analog, mixed signal, or 

RF (radio-frequency) circuit is associated with circuits that have a portion of their operating 

input, output or both consist of continuous time, continuous amplitude signals.  
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There are three main functionalities of analog circuits in SoC designs; input to the 

system, output of the system, and interface between analog and digital components [1]. On the 

input side of a design, signals are transmitted from components such as sensor, microphone, 

and antenna and must be sensed, received, amplified, or filtered. On the output side of the 

design, digital signals need to be converted back to continuous real-valued signals and boosted 

high enough to drive the external load, i.e. loud speaker. Interfacing between analog and digital 

components are considered mixed-signal components and provide means of converting 

continuous time signals to binary, binary to continuous time signals, signal sampling, and 

timing generation (phase-lock loops). For the three types mentioned, additional stabilization 

and reference circuitry is required for correct operation, i.e. voltage and current reference 

circuits or crystal oscillators. Due to the large number of devices we interact with on a day to 

day basis, i.e. smart phones, it is clear that analog circuits will always be prevalent in SoC 

designs. 

Analog components, while vital, only constitute a small part of the SoC, making up 

between 5-10% [2] of the design. Of this small percentage it has been reported in [3] that 40-

50% of the overall design time is spend on these components and of this time, 70-80% is spent 

on verification of the components.  

 

1.2 Challenges of Analog CAD 

Computer aided-design (CAD) is the use of computer systems to assist in the creation, 

modification, or analysis of a design [4]. For digital CAD many well developed commercial 

tools are widely available and have been used in practice for many years. On the other hand 

analog CAD has not had as much commercial support and/or success due to the complexity, 
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sensitivity, and continuous valued nature of the functionality. The most reliable CAD tools are 

the low level transistor simulators based on SPICE [5] and hardware description languages 

(HDL) like VHDL-AMS [6] and VERILOG-AMS[7]. Along with the simulators, there have 

been recent advances in analog topology selection and synthesis [8] as well as automatic 

generation of layout. While these areas have seen some success, verification methodologies 

for analog and mixed signal systems are costly due to the complexity and size of the circuits. 

Therefore it is imperative that efficient methods for verification are developed to reduce design 

development time and prevent errors that result in manufacturing re-spins. 

 

1.2.1 Simulation 

Simulation time of large analog circuits is the major bottle neck for design, verification, 

and test. As analog circuits are continuous in nature and not discrete like digital circuits, 

transient simulations are necessary to understand certain behaviors of the circuits. There have 

been many attempts to reduce the simulations time, but at the price of accuracy.  

Transistor level simulators incorporate transistor models and can perform transient, 

AC, DC, and steady-state analysis of a system. They are very accurate, but come at the cost of 

speed, which can be very long depending on the number of non-linear differential equations 

they must solve. HDLs provide an abstraction of the circuit which results in faster simulation 

times, but sacrifice accuracy. They are event driven simulators that are often used for 

functional, behavioral level analysis of the design and SoC. Though these tools are useful at 

various levels of design and verification, they are often used manually and the search of the 

state space may not be complete, missing critical behaviors. Symbolic simulators and adjoint 

network techniques are other methods of early design behavioral analysis; these techniques are 
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examined further in Chapter 5. Modeling based approaches use a subset of simulation data or 

circuit equations to alleviate some of the simulation time. Modeling is described in more detail 

in the following sections and in Chapter 3. 

 

1.2.2 Verification 

The verification of Analog and Mixed Signal (AMS) designs is concerned with the 

assurance of correct functionality. The AMS design must be robust with respect to different 

types of inaccuracies like parameter tolerances and nonlinearities. Variations that occur due to 

manufacturing and environment lead to incorrect operation of the circuit and therefore must be 

evaluated. The most common method for verifying correctness of a circuit is to use transistor 

level simulators. Due to the sheer number of combinations of variable parameters and the 

amount of time some complex analog circuits take to simulate, it may be impossible to simulate 

verify the entire space. Various methods have been employed to reduce the number of 

simulations and will be further discussed in the following chapters. 

Functional verification is employed in the early stages of a design to catch errors that 

arise due to wire or connection mismatches. In this type of verification transistor level 

simulators may not be the most efficient due to the high accuracy and long simulation times. 

In this type of verification higher level blocks can be simulated in a HDL language because 

the loss of accuracy is tolerable. 

Circuit types are affected by variation types in different ways. In Chapter 2 each circuit 

used within this thesis is analyzed and verification challenges for each circuit type are 

described. 
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1.2.3 Modeling 

Analog modeling, at its core, reduces simulation time while attempting to maintain a 

high level of accuracy. There are various levels of abstraction that models can be used; 

transistor, block, system. Each level of abstraction reduces the accuracy, sometimes by a 

significant amount. At the lowest level of abstraction sits SPICE or transistor model based 

simulators. The transistor models incorporate as much of the device physics and manufacturing 

behaviors as possible. This is the most accurate modeling available, is widely used, and 

considered the golden reference for simulations. Many modeling types that are simulation 

based utilize the transistor level data to build the models. 

There are two major types of modeling used for analog circuits: equation-based and 

simulation-based. Equation-based models mimic the transfer characteristics of the circuit and 

elements. This leads to substantial reduction in simulation time due to the highly efficient 

models.  Simulation-based approaches utilize transistor level simulation data to extract 

meaningful behavioral models. The most common of these approaches are black-box-based 

models which create input-output relationships without knowledge of the inner workings of 

the system. Both modeling approaches have their advantages and disadvantages and are further 

explored in Chapter 3.  

 

1.3 Motivation 

Analog circuits are notoriously difficult to automate compared to their digital 

counterparts. They are extremely complex because they are continuously valued, non-linear, 

and highly sensitive. Many analog circuits are time dependent or may vary over time. The 
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behavior of these circuits needs to be verified and simulated over time in order to ensure proper 

operation. Unfortunately, for large and complex circuits the simulation over time can take a 

very long time, on the orders of hours to days. It becomes infeasible when performing this 

analysis for many input combinations. Therefore we need a method to explore all the possible 

behaviors of the circuit without exhaustively testing all of the input combinations.  

Increasing the input space to include process variation adds extra levels of complexity 

to the behavior space. A standard and most simplistic method of estimating the behavior of a 

circuit is to perform corner case analysis. Each corner represents slow/slow, slow/fast, 

fast/slow, and fast/fast combinations of nfet/pfet devices. Along with the standard design 

conditions, these four combinations are simulated over time to estimate the worst case 

performance of a circuit. For verification purposes and capturing the entire output space, these 

simulations are not enough. While the number of simulations is low, the estimations are often 

pessimistic and lead to circuit overdesign. This type of analysis does not ensure that 

interactions between transistors of various variation combinations do not produce a behavior 

outside of the performance box created by the four corner case simulations. 

The following circuit, Figure 1.1, is used as an example throughout this work. It has 

two main characteristics of interest; feedback and multiple partitions. Feedback is when a 

signal at the output is fed back to the input of the system. The current and future events of these 

systems are influenced by previous events in time. This phenomenon implies circuit behavior 

analysis needs to be performed in the transient (time) domain as well as the standard frequency 

domain. 
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Figure 1.1: Feedback circuit schematic 

Most circuits can be broken down into sub-circuits for simpler analysis.  Partitioning 

decomposes a circuit into a set of sub-circuits based on some criteria. In this work we use the 

Channel Connected Graph-based (CCG) partitioning model. This partitioning scheme is 

described further in Chapter 3. Partitions of the circuit in Figure 1.1 are shown in Figure 1.2. 

 

Figure 1.2: Partitioning of feedback circuit using CCG model 

 

Typical behavior of this circuit is shown in Figure 1.3. Intermediate behaviors between 

partitions for Vin, Vout, and Vosc are also displayed. Vosc is the feedback signal which becomes 
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the input to Partition 1 and is also the final output of the circuit. This signal is the most 

important one because it will connect to external circuitry. For behavior analysis of the circuit, 

we only care about the final output. The nominal, or typical, behaviors shown here are 

propagated to the inputs of the next partition and simulated. The typical simulation flow for a 

transient SPICE simulation is as follows: 

1. Compute the initial operating point of the circuit 

2. Create linear companion models for non-linear elements such as capacitors 

3. Load the currents and conductance’s into the nodal matrix 

4. Solve the nodal equations 

5. Does it converge? 

a. Yes: select time step x(n) and calculate the next time point 

t(n+1)=t(n)+x(n+1) for all n 

b. No: Select new operating point and go back to step 2 

For transient analysis each time step is calculated for the entire circuit. For the circuit in Figure 

1.1, since there is feedback, each node is dependent on the previous calculated nodes values, 

i.e. time dependent. In this circuit the time step is 1nS over a 1000nS total simulation time. 

The circuit is solved 1000 times, once for each time step. 

When the circuit is simulated a single partition at a time, the feedback of the circuit is 

broken. It can still be solved time dependently by calculating a single time step at a time. For 

example, given an initial condition for Partition 1, calculate the value for Vin at time t. Apply 

Vin at t as an input to Partition 2 and solve for Vout. The same is done for Partition 3 and Vosc 

is calculated then feedback to Partition 1 for the calculation of the following time step t+1 
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Figure 1.3: Intermediate circuit behavior 

 

The partitioning schemes provide an opportunity to simplify the circuit simulation 

which in turn reduces the simulation time. Chapter 3 explores a method which utilizes the 

partitioning to create time based Support Vector Machine behavioral models. These models 
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are built using waveforms generated from full circuit simulation. Each model predicts a single 

time point at a time and each model is connected for continuous predictions until the entire 

waveform has been predicted. The models are further extended to include process variations. 

 There are a few obvious shortcomings to a learning based prediction scheme with 

respect to analog circuits. SVMs are extremely powerful and created automatically when 

applied to non-complex partitions which produce regular or not erratic behaviors. For partitions 

or circuits which are highly complex, creating a learning model requires user intervention and 

domain knowledge in order to tune the parameters of the learning model. The behavioral 

models generated are only as good as the data used to generate them. This notion implies that 

the behavioral models need to be adaptable especially when dealings with new behaviors which 

are caused by process variation. 

 With the method explored in Chapter 4 a more efficient way of performing time-based 

partition simulations was realized. Event-based simulation is a reduced simulation technique 

that only simulates changes in the waveform. For simplicity let us assume that a waveform can 

be classified as either repeating (oscillating) or non-repeating. Non-repeating behavior 

typically is reserved for analog behaviors with the exception being the always high or always 

low (stuck-at-1 or stuck-at-0 digital behaviors). Repeating waveforms can either be analog 

(sine wave) or digital (clock). This circuit, Figure 1.1, is a basic clock generator and all three 

partitions are repeating where only Partition 3 is a digital partition (inverter). The five events 

from Vosc in Figure 1.4 are extracted and modeled as digital events. Event decomposition based 

on wave type is explained in Chapter 2. 
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Figure 1.4: Digital event extraction from Vosc waveform 
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Figure 1.5: Response of partitions to input events (a) Partition 1 response from Partition 3 
output (b) Partition 2 response from Partition 1 output (c) Partition 3 response from Partition 

2 output. 
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Regardless of the type of event and how it is modeled, only the original event is 

propagated to the next partition. Instead of full circuit transient analysis we are now performing 

partition based transient event analysis. The response of the partition to the single transient 

event is captured. An example of the propagation of a single event is shown in Figure 1.5(a-

c). 

To avoid simulating the same event multiple times we need a method of removing 

similar events. How can we know if the output of Figure 1.5(c) is the same as the input event 

from Figure 1.5(a)? Similarity measurements between events are performed using a difference 

metric. The difference metric can be as simple as a pair-wise difference calculation or as 

complex as the squared correlation coefficient calculation. Two identical waveforms have a 

similarity measure of 1 or 100% while two complete opposite waveforms have a similarity 

measure of 0 or 0%. For analog waveforms it is rare that two events will be identical due to 

the continuous and real-valued nature of the signals. The difference between two values can 

be as little as 1e-9, but the resulting similarity calculation will never be 100%. These small 

noise differences can be removed by reducing the definition of similarity to 99%. If two events 

have a similarity of >99% they can be merged.  

 

 

Figure 1.6: Compounding events 
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Event based decomposition of waveforms and the concept of similarity measures 

facilitates part of the method described in Chapter 4. One part of the motivational force behind 

Chapter 4 is the reduction of the input space to contain only inputs which produce unique 

output behaviors. The concept of merging events based on similarity measures is the main 

mechanism behind clustering algorithms.   

A cluster is a group or set of objects that are similar to one another. The definition of 

similarity for clusters defines the number of clusters. If the similarity measure is high, meaning 

two objects need to be very similar in order to be in the same cluster, the more clusters there 

will be and vice versa. When clustering is performed on the input space a representative event 

from each cluster is chosen and simulated. These simulated events are the first to populate the 

output space. An iterative method of completely exploring the output space is in detailed 

Chapter 4.  

Reducing the input space is one way of reducing the simulation time for verification of 

analog circuits. Another is abstracting the circuit, i.e. behavioral models. From the findings in 

Chapter 3 it was observed that some partitions were much easier to learn then others. This was 

due to the complexity and information transfer of the partitions. Therefore a method needs to 

be developed in order to analyze whether or not the partition should be modeled. If the partition 

is deemed to be too complex then it is simulated, otherwise it is modeled. These non-complex 

partitions can also be extended to include process variation.  

Reducing the simulations speed for large analog circuits allows for various avenues for 

analysis to be performed which were otherwise prohibitive. For example, one may perform 

critical node analysis across wide ranges of inputs and process variation. Or analyze the 
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behavior when the circuit is supplied varying power sources. Chapter 5 expands on the methods 

developed in Chapter 4 to explore analysis and yield applications. 

 

1.4 Contributions of this Thesis 

 The work in this thesis addresses multiple issues surrounding analog analysis and 

verification in the transient domain. We proposed novel methodologies to address modeling, 

input space, compression, critical node analysis, and power analysis for analog and mixed 

signal systems. We first propose transient behavioral modeling scheme based on Support 

Vector Machines and Channel Connected Component Graphs. Circuits are partitioned based 

on their structure and intermediate behavioral models are built for high sensitivity nets. The 

models are obtained using Support Vector Machines (SVM), a data dependent black box 

modeling technique. We demonstrate the soundness of this approach by modeling large circuits 

such as Sigma-Delta ADC and Phase Lock Loop. Experimental results show that this 

methodology maintains 95% accuracy behavior predictions while achieving three orders of 

magnitude speedup over SPICE simulation time. 

 From the experiences gained in Chapter 3 a new methodology is developed in Chapter 

4 to more soundly reduce the simulation time and explore the behavioral output space for 

verification. A method based on iterative simulation, events, and clustering of the circuit is 

developed to reduce the input space to only the necessary events to fully capture and 

characterize the output space. Each partition is analyzed for complexity and information 

content to determine if the partition is suitable for behavioral modeling. Experimental results 

show that the methodology significantly reduces the input space and simplifies non-complex 
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portions of the circuit resulting in significant improvement in simulation time and allows for 

directed and effective circuit verification for very large analog and mixed signal circuits. 

 In the final chapter, the work is extended to address the critical transistor analysis and 

environmental variation analysis. Critical transistor analysis involves determining the location 

of transistors which affect the output of the circuit when perturbed by process variation. 

Environmental variation analysis is an extension of critical node analysis to include power 

variation. The analysis techniques utilize the partitioning and event decomposition scheme to 

initially prune a large number of non-sensitive transistors from the total set of transistors.  Each 

transistor is then simulated at various ranges of process and environment variation to find the 

sensitivities. The critical transistors found automatically by the tool are compared with those 

located by an expert designer. We show we can detect a few extra extremely sensitive 

transistors that need to be redesigned or resized. At the same time we remove some non-critical 

transistors which get masked by the operation of the circuit.  

 

1.5 Chapter 1 References 

[1] G.E. Gielen, R.A. Rutenbar, "Computer-aided design of analog and mixed-signal integrated 

circuits," Proceedings of the IEEE , vol.88, no.12, pp.1825,1854, Dec. 2000 

[2] S. Banerjee, D. Mukhopadhyay, D.R. Chowdhury. Computer Aided Test (CAT) Tool 

for Mixed Signal SOCs. In IEEE VLSI Design, pp. 787-790, 2005. 

[3] Cadence Design Systems. Using a SoC Functional Verification Kit to Improve 

Productivity, Reduce Risk, and Increase Quality. White Paper 

[4] K.L. Narayan, Computer Aided Design and Manufacturing, New Delhi: Prentice Hall of 

India, 2008 



17 
 

[5] L.W. Nagel, and D.O. Pederson, SPICE (Simulation Program with Integrated Circuit 

Emphasis), Memorandum No. ERL-M382, University of California, Berkeley, Apr. 1973 

[6] E. Christen and K. Bakalar, “VHDL-AMS-a hardware description language for analog and 

mixed-signal applications.” IEEE Transactions on Circuits and Systems II, vol. 46, no. 10, pp. 

1263–1272, 1999. 

[7] K. S. Kundert, The Designer’s Guide to Verliog-AMS, 1st ed. Boston, MA: Kluwer 

Academic Publishers, 2004. 

[8] R. A. Rutenbar, G. G. Gielen, and B. A. Antao, Computer-Aided Design of Analog 

Integrated Circuits and Systems, 1st ed. New York: IEEE Press, 2002. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

 

 

Chapter 2 

 

Overview of Analog Circuits 

This chapter focuses on the different circuits used throughout this dissertation. Each circuit 

discussed has been fabricated and verified by their respective designers. We will discuss the 

application, structure, and behavior. Each section will conclude with verification challenges 

for the circuit types. The final section discusses the types of variation applied to the circuits 

throughout this work. All circuits in this chapter, unless specified, use .13µm CMOS process 

technology. 

 

2.1 Phase Lock Loops 

A phase lock look (PLL) is a feedback system that compares the output phase with an 

input reference phase [1]. A basic PLL consists of a phase detector (PD), charge pump, and a 

voltage controlled oscillator (VCO), but also commonly include a divider. The phase detector 

(PD) is a circuit whose average output is linearly proportional to the phase difference between 

two inputs. A phase detector can be a XOR gate or a sample hold circuit. The filter receives 

the output of the phase detector and filters out the high frequency components and presents a 

DC voltage to the VCO. The filter can be as simple as a RC low pass filter or as complicated 
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as a charge pump. The VCO, ideally, is a circuit whose output frequency is a linear function 

of its control voltage. The lock term of a PLL implies that the input reference frequency is in 

exactly the same phase as the generated output frequency. This operation is widely used in 

both analog and digital systems for synchronization purposes. The main applications are 

frequency synthesis, clock recovery, and jitter reduction.  

 

2.1.1 Ultra Wide Band Phase Lock Loop 

The Ultra-Wideband Phase Lock Loop (UWB-PLL) in Figure 2.1 is used to tune the 

frequency of the impulse radio ultra wideband transmitter (IR-UWB) [2]. Ultra Wideband 

communication is based on transmission of very short pulses with relatively low energy over 

a large frequency bandwidth of several GHz. These devices are extremely useful for 

biomedical applications due to their low power consumption and can support high data rates.  

The UWB-PLL, Figure 2.1, is designed with an IR-UWB transmitter, phase frequency 

detector (PFD), charge pump (CP), divider, counter and digital to analog converter (DAC). 

The phase detector takes a reference frequency, Fref, of 31.25MHz and the feedback frequency 

after it has been divided. The phases are compared and UP/DN signals are generated whose 

duration is proportional to the phase difference. The CP which is fully differential receives the 

digital UP/DN signal and generates an analog voltage, Vcp. The CP is biased by Vctrl, whereas 

Vctrl decreases the CP current decreases. The output of the CP, Vcp, is fed into the 8-bit 

up/down/hold counter and then into a DAC to generate Vctrl for the regulator. 

The IR-UWB contains a VCO, regulator, pulse positioning modulator and a tunable pulse 

generator. The Data and Clock are fed into the pulse positioning modulator which triggers a 

tunable pulse on the rising edge of the clock. The pulse is connected to the enable of the VCO 



20 
 

to enable oscillation. Vctrl, is fed into a low dropout regulator, linear voltage regulator, which 

is biased by Vctrl. The regulator then feds the VCO which generates the frequency, Vout, based 

on the supplied voltage, eventually reaching 2.5GHz. Vout is distributed to the frequency 

divider which consists of seven total stages with two fast stages.  

The behavior of the UWB-PLL is shown in Figure 2.2 for 31.25MHz Fref and nominal 

operating conditions. The partitions CP, PFD, bias, regulator, and divider with signals Vcp, 

Vpfdup, Vpfddn, Vnbias, Vpbias, Fout, and Vf_fb show lock time at approximately1.3µS. The final 

simulation, Fout, shows the frequency generated as it approaches lock at 4.0GHz. The self-

biased voltage values, Vnbias and Vpbias, are feedback from the VCO and are proportional to the 

VCO’s oscillating frequency. The divider, Vf_fb, is 128 times slower than the Fout in order to 

compare against the Fref in the PFD. 

This circuit takes 16 minutes to simulate and contains 1600 components. With extracted 

parasitics the circuit contains 60k components and takes 7 hours to simulate. 

 

Figure 2.1: Block diagram [2] of the UWB-PLL with embedded digital tracking used to tune 

oscillation frequency of IR-UWB transmitter 
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Figure 2.2: Simulation results for PFD, CP, divider and VCO outputs of UWB-PLL over 

2µS. 
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2.1.2 Phase Lock Loop for Clock and Data Recovery 

The PLL, Figure 2.3, generates a 2.5GHz clock based on a 31.25MHz reference frequency 

for clock and data recovery applications [3]. The phase detector and charge pump are the same 

designs as in the UWB-PLL. On an UP pulse the loop filter is charged and vice versa for the 

DN pulse. The loop filter smoothes out the abrupt changes cause by the charge/discharge and 

delivers the signal to a regulator which buffers and regulates the signal. The regulated signal 

is sent to a pseudo differential ring VCO which creates the oscillation. The frequency is then 

divided by 16 and feedback to the phase detector for phase comparison. 

The behavior of the PLL is shown in Figure 2.4 for 31.25MHz Fref and nominal operating 

conditions. The partitions CP, PFD, and VCO with signals Vcp, Vup, Vdn, Vvco, Vvco’ and Fout 

show lock time at approximately1µS. The final simulation, Fout, shows the frequency generated 

as it approaches lock at 2.5GHz. The output of the CP, Vcp has some noise in the signal which 

is removed by the regulator and VCO buffers shown as Vvco’ and Vvco. 

This circuit takes 12 minutes to simulate and contains 2000 components.  

 

Figure 2.3: Block diagram [3] of a PLL used for clock recovery 
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Figure 2.4: Simulation results for PFD, CP, divider and VCO outputs in the PLL over 2µS. 
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2.1.3 Verification Challenges – PLL 

When considering only the external input to the system, Fref, the input space may seem 

extremely small. This quickly increases when considering various sources of variation. Each 

transistor can have a range of possible variations increasing the input space by a tremendous 

amount. Verifying all combinations of variation is obviously impossible due to the sheer 

number of simulations required. This is further compounded by extremely large and complex 

circuits which require transient behavioral analysis and take a very long time to simulate. 

Transient simulations are required to verify the lock time property of the circuit. Lock time is 

the time it takes to move from one specified frequency range to another specified frequency 

range within a given frequency tolerance [1]. Essentially the amount of time it takes for the 

PLL to match the input phase from Fref. The faster the lock time the sooner data can be 

transmitted.  

Jitter introduced by power supply noise or process variation directly affects the 

sensitivity of the components. Jitter with respect to PLLs is the temporal variation of the phase 

which is a critical performance metric where too much jitter results in synchronization failures 

[5]. 

The feedback nature of a PLL makes verification difficult. Traditionally each block or 

sub-circuit within the PLL is verified individually and only worst case, or corner case, 

simulations are done for the whole circuit. Block to block interactions are not typically verified 

extensively due to the time requirement. 
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2.2 Converters 

 There are two types of data converters; a digital to analog converter (DAC) and an 

analog to digital converter (ADC). A DAC converts a digital signal to an analog signal which 

is useful when interfacing digital components to analog components such as speakers or 

amplifiers. An ADC, on the other hand, performs the opposite operation converting analog 

signals to digital signals which is useful for inputting real world inherent analog signals like 

sound to be processed by digital components. Converting a continuous-time continuous-

amplitude signal to discrete-time discrete-amplitude signal requires a process called 

quantization which maps a large set of values to a much smaller set of values that introduces 

rounding errors called quantization errors.  

 

2.2.1 Sigma-Delta Analog to Digital Converter 

A low-power high-resolution analog-to-digital (ADC) converter is required to digitize 

neural data. These ADCs are well suited for low frequency high accuracy measurements. A 

2nd order over a 1st-order ∑∆-ADC, shown in Figure 2.5, is used because the 2nd order does 

not suffer from "idle-times" or "limit-cycles" for constant inputs and can provide the required 

6-bit resolution without consuming as much power [4]. The design consists of two fully-

differential self-biased amplifiers, two switched capacitor networks, a 1-bit quantizer, and a 

non-overlapping clock generator. A ∑∆-ADC receives an analog input signal and samples each 

point multiple times, a technique known as oversampling. The sampling is performed much 

faster than the rate at which the digital signal is outputted. The oversampled data is 

accumulated over time and averaged. The ∑∆ modulator within the ADC is responsible to the 
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digitalization and noise shaping which pushes low frequency noise up outside the frequency 

band of interest. 

One of the switch capacitor networks and an amplifier create a differential switch capacitor 

integrator. There are two operations which operate in a time-interleaved manner; the sampling 

mode and integration mode. The integration mode is active when the switches Φ2 are shut and 

sampling is when switches Φ1 are shut. The single bit quantizer which is inherently linear 

outputs a stream of digital bits. 

The behavior for the ∑∆-ADC is shown in Figure 2.6 with a sine wave input of 2KHz under 

nominal operating conditions. The signals shown are the differences between the outputs of 

each partition for the first 100µS. The simulation starts with the difference between the input 

sine wave, vin-vip, and propagates through the first switch capacitor network and amplifier, 

von1-vop1. The output of the first network is the input to the second where the output, von2-

vop2, is the input to the quantizer. The output of the quantizer, von-vop, is feedback through 

the system, but is also the final digital output of the circuit.  

This circuit contains 647 components and takes 4.8 minutes to simulate two clock periods 

using HSPICE.  

 

Figure 2.5: Schematic of the low power high-resolution second order ∑∆-ADC for digitizing 

neural data.  
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Figure 2.6: Simulation results for outputs in the ∑∆-ADC over 100µS. 
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2.2.2 Verification Challenges – Converters 

 The signal-to-noise-ratio (SNR) is the most important aspect to verify for a converter. 

SNR is the ratio between the signal and noise where the higher the ratio the less prominent the 

noise. Noise can be introduced from many sources like process variation, coupling, or power 

supply variation. The clock is a which source jitter can also effect the SNR in that the sampling 

duration of the signal may be shorter or longer. The more noise introduced into the circuit the 

least reliable the conversions are. Therefore converters are designed to be as noise tolerant as 

possible. 

 Some converters have the same issue with feedback as the PLLs. Incorect conversions 

can impact the following conversion stages. They can also be too large to simulate as an entire 

system and need to be verified by sub-circuits. 

   

2.3 Amplifiers 

 An amplifier is a device that increases the power of a signal. It is an essential 

component in almost all analog designs. For example, amplifiers can be used when a signal is 

too small to drive a load. There are many types of amplifiers which can be categorized as 

voltage or current amplifiers, transimpedance, and transconductance amplifiers. These are 

typically composed of single-stage amplifiers, differential amplifiers, or operational amplifiers 

(opamps). The differential amplifier and opamp are the most widely used amplifiers since 

differential inputs have higher environmental noise immunity. 

 Amplifiers are typically designed around a set of performance parameters, i.e. gain, 

bandwidth, and noise (SNR). Gain is the ratio of the output to input of power or amplitude. 
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Bandwidth of an amplifier is the difference between the low and upper bound of frequencies 

at which the amplifier produces acceptable outputs.  While there are other performance 

parameters, these are common throughout all amplifier design. 

 

2.3.1 Transimpedance Amplifier 

A transimpedance amplifier (TIA) receives current from the photo detector and 

converts it to an output voltage. In the circuit in Figure 2.9, the input source is a 5mA current 

and the output produces a frequency. The input current charges a capacitor which activates a 

series of inverters connected with negative feedback. The resulting output is an oscillating 

waveform which dependent on the amount of applied current.  

Typical design parameters for a TIA are noise, bandwidth, gain, overload response, 

and output impedance. The TIA in this section is designed with a frequency output behavior 

in mind; therefore we will analyze the amplifier in the transient domain. The behaviors of the 

TIA are shown in Figure 2.10 with an input current source of 5mA. The output of the TIA at 

the end of the inverter chain, Vinv, is shown in the top figure. After the first flip flop, Vdff1, 

shows a smoothed waveform in the middle graph. The final graph shows the final output 

after the second flip flop, Vout, at three different input current levels; 1mA, 5mA, and 10mA.  

 

Figure 2.7: Schematic of a feedback TIA 
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Figure 2.8: Behavior of TIA 
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2.3.2 Low-Noise Low-Power Neural Amplifier 

 The low-noise low-power neural amplifier design in Figure 2.11 is a fully differential 

self biased amplifier [2]. Self biasing is used to create a stable operating condition for the 

circuit. The bias voltages are generated using the average of two differential signals. The 

PMOS transistors level shift low voltages more than NMOS, while NMOS level shift high 

voltages more than PMOS. The input frequency has the range from 10Hz to 10MHz with a 

typical operating frequency of 1.6KHz.  

 The behavior in for the self biased differential amplifier is shown in Figure 2.12. The 

differential inputs are sine waves with amplitude .02V centered on .6V. The nbias and pbias 

signals show the time it takes for the circuit to settle into normal operating mode. This is also 

mimicked by the irregular amplified output. The bottom graph shows the difference between 

Von and Vop for an input frequency of 1KHz and 10KHz. 

 

Figure 2.9: Schematic of self biased differential amplifier 
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Figure 2.10: Behavior of self biased differential amplifier. 
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2.3.3 Verification Challenges – Amplifiers 

Gain is the major performance specification of an amplifier. It is defined as the ratio of 

the output to the input of power or amplitude. The gain can be affected by noise sources. Noise, 

just like with converters, has a significant impact on the performance of the amplifier. Circuits 

like amplifiers are typically small in scale and therefore all devices use the same power and 

ground (and possibly substrate in bulk CMOS process) making coupling a serious issue. For a 

TIA circuit the power supply variation shows up directly at the output, causing the signal to 

corrupt. Mismatched differential pairs due to process variation also contribute to the noise at 

the output. 

 

2.4 Voltage Regulator 

 A voltage regulator is a circuit that generates a fixed voltage of a predetermined 

magnitude. This voltage values remains constant regardless of the changes to the input voltage 

or load. There are two types of voltage regulators; switching and linear. Linear regulator 

consists of a transistor, acting as a pass device, controlled by a high gain differential amplifier. 

A constant voltage is maintained by comparing the output voltage with a reference voltage and 

adjusting the pass device accordingly. A switching voltage regulator in contrast uses a 

transistor as an active device which switches on or off to maintain the required output. Linear 

regulators are often more efficient in for low noise output, fast response to input changes, and 

have lower area requirement at low power. Switching regulators are typically more power 

efficient and at higher levels of power have a smaller area footprint. 
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2.4.1 Cascode Regulator 

 The self-biased folded cascade voltage regulator is shown in Figure 2.17 [3]. The circuit 

is self-biased and used a NMOS transistor as the output transistor which helps guarantee a 1.2V 

output. The power supply is 3.3V making the transistors think gate devices. This circuit is used 

as an alternative to a power supply which isolates the connecting circuits from power supply 

noise. The behavior in Figure 2.18 shows the noisy signal Vin and the smoothed signal Vout. 

 

Figure 2.11: Schematic for a self-biased folded cascode voltage regulator 

 

Figure 2.12: Simulated behavior of the voltage regulator.  
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2.4.2 Verification Challenges - Regulator 

 Regulators are required to produce a constant reliable voltage output. Any change to 

that output can cause errors in the connecting circuits. Therefore any large variation in the 

power supply or process will cause an unstable output voltage. 

 

2.5 Variation 

There are three main types of variation addressed in this work. The size of transistors 

is varied by 10% for the benchmark circuits. Process variation, in particular Vth variation, is 

applied to the transistors in the remaining circuits. Vth is varied by uniformly from -6σ to +6σ. 

We focus primarily on Vth variation because of its effect on speed and leakage power. It also 

has a strong correlation with temperature changes. Environmental variation, in particular, 

power variation is applied to all circuits in conjunction with Vth variation. The power supply 

is varied by ±15-20% of the optimal voltage.  
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Chapter 3 

 

General Hierarchical Behavioral Modeling of Analog 

and Mixed Signal Circuits 

 

This chapter focuses on the developed methodology for automatically creating transient 

voltage behavioral models of analog and mixed signal circuits utilizing circuit partitioning. 

The models are obtained using Support Vector Machines (SVM), a data dependent black box 

modeling technique. Larger circuits are partitioned based on their structure and intermediate 

behavioral models are built for high sensitivity nets. We demonstrate the soundness of this 

approach by modeling large circuits such as Sigma-Delta ADC and Phase Lock Loop. 

Experimental results show that this methodology maintains 95% accuracy behavior predictions 

while achieving three orders of magnitude speedup over SPICE simulation time. 

 

3.1 Introduction 

 Behavioral models have become a critical step in the analysis of analog and mixed signal 

circuits which traditionally suffer from long simulation times. In general, behavioral modeling 
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attempts to describe the circuit in a higher level of abstraction then transistor level, while 

maintaining transistor level simulation accuracy. Due to the critical effects between circuit 

blocks and second order device effects it is of interest to extract the behavioral models directly 

from the transistor level, SPICE, descriptions to ensure these interactions are properly 

incorporated within the behavioral models. 

 Many behavioral techniques model the circuit frequency domain response. The 

automation of linear models has been well established for simple circuits including linear time 

invariant [1-3] and linear time-varying systems [4]. Many fundamental non-linear effects are 

not captured in these equations and device models, since they are discarded by linear 

approximations. Addressing the need for non-linear analog macromodels, many modeling 

approaches have been introduced. For circuits whose non-linearity can be represented by 

polynomials, Volterra-based series expansions can be employed [5]. For strongly non-linear 

circuits, piece-wise linear models are used [6-8]. Such models divide the space into segments 

in which the function is linear or weakly non-linear. Each segment can be further reduced by 

employing model order reduction techniques. These techniques are practical for modeling 

transient behaviors, which is the focus of this work. Other black box modeling techniques 

utilizing various training-based algorithms, i.e. neural networks and support vector machines, 

have been proposed [9-12]. These algorithms create models by discovering the various 

relationships between the training data. The models can predict output values for new input 

values based on these relationships.  

 In this work, we focus on time-domain modeling for non-linear analog and mixed signal 

circuits which can be accomplished by equation fitting or black box modeling. Black box 

modeling describes a circuit or system in terms of its inputs and outputs without any knowledge 
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of its internal workings. For this work we focus on black box modeling because they can be 

derived strictly from data, measured or simulated, without having to fully understand the 

circuit. Since they are based strictly on data, they can be generally applied to known and 

unknown circuit types which equations may not have been developed for. 

 Time-domain black box behavioral modeling methods have been proposed in the past, but 

they suffer either from lack of automation, provide minimal speed-up over traditional methods, 

or they cannot be applied to larger circuits. In [13], the authors propose to extract behavioral 

models directly from the netlist by processing simulation results into transfer function 

trajectories; however the method was demonstrated on a small circuit with minimal speedup 

and the approach is not always automatable. The work in [14] presents a real-time neural-

network-based approach for microwave RF devices. The approach is demonstrated on small 

circuits and it is unclear if it can be applied to large and complex designs. 

 The methods proposed in this chapter build upon the work described in [15]. The authors 

use Gaussian Process Regression to build non-parametric models eliminating the need to use 

and understand complex device models and equations. Non-parametric behavior modeling is 

extremely attractive because there is no need to learn equations or set parameters since it 

predicts the device behavior based on similar known behaviors. Unfortunately, this method 

cannot be generally applied to large highly complex circuits, which is the inspiration for this 

work. For this reason we propose a partitioning method along with support vector machines 

(SVM) to create a hierarchy of behavioral models for large strongly non-linear analog circuits. 

The partitions are derived from a channel connected component graph and hierarchy graph 

which determines the input/output relationship and hierarchy of each partition. Simulations are 

run with SPICE on the full un-partitioned netlist in order to ensure continuity between 
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partitions. Once the data has been extracted from the simulations, the black box models are 

created based on the derived partitions. The models are connected to form a series of 

predictions that create the transient output waveform. Though we focus on SVM as the primary 

modeling algorithm, many other black box approaches can benefit from the reduced 

complexity associated with the proposed partitioning scheme. 

Analog circuits vary vastly in their complexity and behavior. For this reason a universal 

solution has not been developed for automating behavioral models. The existing modeling 

methods cannot be easily automated because they either (1) require design or designer 

knowledge to develop sub-circuit equations, (2) sub-circuits are used to speed up simulation 

of the model development thus the continuity between sub-blocks is difficult to maintain, and 

(3) input-output relationships of the functional blocks are often too complex or have one-to-

many relationship making black box modeling difficult or unachievable. Analog design is 

usually partitioned into well-known sub-block components like quantizers, VCOs, or charge 

pumps which can all be modeled by equations or have data fitted to equations. Unfortunately 

many of these methods fail to capture block to block interactions or they cannot be expanded 

to include process variation due to the increased complexity of the equations. Such equations 

will need to be developed for every type of a new circuit or new behavior type encountered.  

Building block based models can easily capture strongly correlated relationships of simple 

sub-circuits automatically, but fail when complex or weak relationships are encountered. To 

illustrate this point we analyzed a quantizer circuit defined as a single sub-block within a large 

sigma-delta analog-to-digital converter (ΣΔ-ADC) [16]. This circuit, (Fig.1.) contains 40 

transistors and has three inputs and a differential output. Taking two common BB approaches, 

the response surface modeling (RSM) and support vector machines (SVM), we build transient 
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behavioral models based on 1000 points of transient simulation data for a single period of the 

input frequency and test them with another set of 1000 points. Both methods predict output 

transient waveforms with low accuracy: RSM - 49.6% and SVM - 75.82%. This indicates that 

the input-output relationships are not highly correlated.  

To address weakly correlated relationships, we break the netlist into functionally-

independent, strongly correlated sub-circuits. Data capture for model building is done from 

simulations performed on the un-partitioned netlist in order to preserve the continuity between 

sub-circuits. The graph partitioning methodology and high sensitivity net detection removes 

the requirement for designer knowledge and allows for modeling unknown, flat netlists, or new 

circuit structures. 

This chapter is organized as follows. Section 3.2 provides background on SVM modeling 

and data capture techniques. Section 3.3 describes the circuit graph representation, net 

sensitivity calculations, and modeling-resistant circuit components. Section 3.4 describes 

circuits used in experiments. Section 3.5 shows experimental results for nominal behavior. 

Section 3.6 presents variation based models and modeling results. The key learnings are 

analyzed in Section 3.7 and the chapter is concluded in Section 3.8. 

 

3.2 SVM Background 

Within the domain of behaviors studied here, PWL or PWP (piece-wise polynomial), and 

SVM models are comparable in speed and accuracy. We choose to use SVM-based models 

because of their ability to handle a large number of model inputs and to discover trends based 

on small or irregular sample sets. Data mining and learning-based approaches have been 

developed to predict performance specifications of analog circuits [9-12]. These models use 
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simulation data and employ various techniques such as SVM or Neural Networks. We utilize 

such modeling techniques in this work, but apply them to transient behavioral modeling.  

Our models are built using the supervised learning algorithm, Support Vector Regression 

(SVR) [17]. The objective of supervised learning is to derive a function from a set of input 

samples (training set) and their associated outputs. Support Vector Machines (SVMs) are a 

family of algorithms for classification and regression applications. SVMs may require long 

training time for complex data sets, but there exist sampling and data partitioning methods that 

can be used to create smaller, more compact models which significantly reduces the training 

time. The work in [18] explores various methods for data sampling to achieve high SVM model 

accuracy with fewer simulation runs. 

 

3.2.1 SVM-R Theory 

Support vector regression [17] can predict real number values which are common in analog 

circuits. The digital values can be predicted using classification which will not be discussed in 

this work. Consider a set of training data points {(𝑥𝑖, 𝑦𝑖),𝑖=1
𝑛 }, where xi represents the input 

vector and yi represents the corresponding output value. The support vector regression function 

can be expressed as 

𝑦 = 𝑤 ∗ 𝛷(𝑥) +  𝑏  ,                                                          (2.1) 

where b is the bias, w is the weight, and Φ(x) denotes the feature of the inputs. The optimal 

regression function is obtained by minimizing the risk function, 
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2
||𝑤||

2
+ 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1                                          (2.2) 

Subject to     𝑦𝑖 − [(𝑤, 𝑥𝑖) + 𝑏] ≤  𝜀 +  𝜉𝑖 

[(𝑤, 𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤≤  𝜀 + 𝜉𝑖
∗ 

𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0 

 

where C is the regularization constant, ε denotes the ε-insensitive coefficient, 𝜉𝑖 , 𝜉𝑖
∗denote 

positive slack variations. By using Lagrange multiples 𝛽𝑖, 𝛽𝑖
∗ and kernel function k(xi,xj), the 

dual Lagrange form is given as: 

Max ∑ 𝑦𝑖(𝛽𝑖 − 𝛽𝑖
∗) − 𝜀 ∑(𝛽𝑖 − 𝛽𝑖

∗)

𝑛
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𝑛

𝑖=1

                                          (2.3) 

−
1

2
∑ ∑(𝛽𝑖 − 𝛽𝑖

∗)(𝛽𝑗 − 𝛽𝑗
∗)𝑘(𝑥𝑖, 𝑥𝑗)

𝑛

𝑖=1

𝑛

𝑖=1

 

Subject to ∑(𝛽𝑖 − 𝛽𝑖
∗)

𝑛

𝑖=1

= 0 

0 ≤ 𝛽𝑖, 𝛽𝑖
∗ ≤ 𝐶 

The regression function can now be expressed as, 

𝑦 = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝑛

𝑖=1 𝑘(𝑥𝑖 , 𝑥𝑗) + 𝑏.                                         (2.4) 

The kernel function, k, is used to measure similarity between two vectors in the given 

feature space. The kernel computes the vector distance between x and x' without ever explicitly 

mapping the vectors to the feature space 𝛷, reducing computational costs and allowing data to 

be linearly separable in the original space 

 𝑘(𝑥, 𝑥′) =< 𝛷(𝑥), 𝛷(𝑥′) > .                                                (2.5) 
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In this work we use the Gaussian kernel expressed as  

             k(x, x′) = exp (−
||x−x′||

2

2σ2 ) , where σ > 0 .                              (2.6) 

Other kernels, such as linear, polynomial, or sigmoid can be used, but experimentally, we 

found that the Gaussian kernel provides the most consistent positive results for the applications 

considered here. 

 

3.2.2 SVM Creation 

The SVM algorithm utilizes data obtained from low level models such as SPICE or 

differential equations to create a high level model abstraction that captures a specific behavior. 

A circuit can be completely described by a set of differential equations 

𝑑

𝑑𝑡
𝑞⃗(𝑢⃗⃗(𝑡)) + 𝑓(𝑢⃗⃗(𝑡)) + 𝐵⃗⃗(𝑥⃗(𝑡)) = 0,                                             (2)   

 𝑦⃗(𝑡) = 𝑙𝑇 𝑢⃗⃗(𝑡) + 𝑑𝑇𝑥⃗(𝑡), 

where 𝑢⃗⃗  ∈  ℝ𝑛 are state variables, i.e. capacitor current,  𝑥⃗ are top level inputs, and 𝑦⃗ are the 

top level outputs. Obtaining a unique output 𝑦⃗ requires access to the state and input variables. 

At a high level of abstraction, black box, the internal state variables are no longer accessible. 

Therefore unless the inputs 𝑥⃗ are highly correlated to the outputs 𝑦⃗ the models will produce 

very low accuracy results. Access to 𝑢⃗⃗ is required to produce high accuracy models. In order 

to determine which state variables are required we propose a heuristic which partitions the 

circuit and determines highly correlated intermediate behaviors to the top level output. 

Simulations are performed in order to capture the behavior relationships between inputs  𝑥⃗ and 
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the intermediate behaviors are captured in SVM models. The output 𝑦⃗ can be determined based 

on top level input 𝑥⃗ and intermediate models. 

 

3.3 Model Creation 

Given the design specifications, input operation ranges for the desired performance, and 

the circuit netlist, the required data for building behavioral models can be obtained. In this 

work, we only consider transient voltage behaviors. Before any partitioning is done the entire 

netlist is simulated as a single entity and the transient voltage behaviors are captured for each 

net at uniform intervals. We perform uniform sampling within the range of the design 

specifications and simulate to capture the behavior. For example, if the design should operate 

between 1V VDD and 1.5V VDD we would run simulations at 0.1V intervals. Once the data is 

captured, partitioning is performed in order to create a series of simple models to predict the 

behavioral operation at any VDD between 1V and 1.5V significantly faster than through 

simulation. 

The uniformity of samples may cause model inconsistencies around highly volatile areas 

which traditionally require increased sampling. It is not known beforehand whether more data 

is needed for specific areas or for intermediate behavior models.  To address this problem, data 

is captured at finer intervals then required in the design specifications, which does not increase 

simulation time. The models are initially built based on the original intervals. If testing step 

discovers inaccuracies in a specific model, the models are rebuilt based on the finer interval 

data. This data capture method is rarely required; it may be invoked when the output behavior 

is state dependent and highly volatile. When capturing smaller intervals, the waveform changes 
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become less extreme, making the behavior relationships easier for the SVM algorithm to 

discover. 

Probes are inserted at each edge defined by the partitions in Section III for voltage capture. 

This way the system level input and output relationships of each partition are maintained 

without any extra modeling for block coupling. This implies that our models are specific to the 

simulated design and cannot be utilized in a different design model unless the input and output 

relationships between the designs are maintained.  

 

3.3.1 SVM Model 

Due to the decomposition of the circuit each partition has a strong correlation between the 

input set and the output resulting in a weight vector having a non-zero value for each feature. 

The number of partitions per circuit is generally high for large analog circuits. The 

classification models for the digital partitions remove most of the real number errors in the 

regression models by predicting the digital values 0 or 1. 

State and feedback characteristics of the circuits can easily be incorporated into the vectors. 

The previous output value of the circuit being modeled is included as a feature in the vector 

describing the current output value. States are incorporated in the same way, as features within 

the vector. When applying test vectors to the model, the previous predicted output value is 

included within the current test vector. 

Parameter selection is a difficult problem for many learning algorithms and is crucial for 

creating a good model. In this work we use the υ-SVM-R algorithm which automatically fits 

the user-defined values ε and C based on the provided data. The only value the user defines is 
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the variable υ which determines the slack variables. The larger the υ value the more vectors 

with slack ξ may become support vectors. In this work we use υ=0.1 for all regression models. 

 

3.4 Partitions and Intermediate Behaviors 

A common approach to addressing slow transistor-level simulation times is to partition the 

circuit into its digital and analog components. A major challenge in this type of partitioning is 

to determine when the digital components are in analog modes of operation, which include 

detecting of the internal and negative feedbacks. The work in [18] provides an algorithm for 

such partitioning using channel-connected sub-circuits. In [19], the analog sub-circuits are 

simulated using nonlinear macromodels. The macromodels approximate the charging and 

discharging behavior of the circuit output nodes and provide one order of magnitude speedup 

over SPICE simulations for the analog subcircuits. The macromodeling using circuit 

partitioning proposed in [20-23] decomposes the circuit into a set of building blocks based on 

the netlist structure. Methods that use subcircuit or building block-based partitions assume that 

either the user declares the partitions or that there is a set of predefined building blocks. It is 

not always the case with highly complex or custom built circuits which makes modeling using 

these methods difficult. 

In our approach, the graph model of the circuit and sensitivity analysis of captured data are 

used for establishing the signal flow, hierarchy, and determining which inputs are essential to 

predict intermediate behaviors. In this Section we discuss the two types of graphs used in 

partitioning and explain how the intermediate nodes are determined based on net sensitivity. 

We then discuss circuits which are resistant to this type of partitioning and propose a method 

of handling them. Using the partitioning and intermediate nodes we show how accurate this 
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method is at predicting the final output as compared with generic modeling of the component 

which yielded 75% accuracy for SVM and 50% accuracy for PWL.  

3.4.1 Channel Connected Graph and Channel Connected 

Components 

A Channel Connected Graph (CCG) describes the source-drain dependencies within a 

circuit. It is defined as CCG=(V,E) where V are vertices which correspond to transistors, Vdd 

or GND, and E are edges which capture the source-drain connections. There is an edge between 

vertices v1 and v2 if their corresponding transistors have drains or sources connected or if one 

of them represents Vdd or GND and the other transistor connected to it. Once the VDD and GND 

nodes are removed, CCG is fractured into a set of smaller graphs. Each such a sub-graph with 

Vdd/GND and connections to them restored corresponds to a channel connected component 

graph (CCCG).  

Figure 3.1 shows the CCG graph of a basic two stage opamp. The labels on the graph nodes 

and their corresponding transistors match. The graph has two partitions. Partition 1 consists of 

nodes 1-6 while partition 2 consists of nodes 7-9. Both partitions include Vdd and GND nodes 

along with the corresponding edges.  

In analog circuits, when the VDD and GND nodes are removed to create the components, 

and later restored in sub-graphs, it is possible that some resulting components do not contain 

VDD or GND. Such sub-graphs are not CCCGs and may occur when a circuit contains floating 

nets, resistors, capacitors, or inductors that supply connections to the source or drain terminals. 

Partitions which are not CCCGs are discussed in part D of this Section.  
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Figure 3.1: Differential opamp schematic and its CCG 

3.4.2 Group Hierarchy and Feedback Detection 

Each partition within the CCG has an associated set of driving gate inputs which can be 

the top level inputs to the circuit, internal nets, or nets from other partitions. Referring to Figure 

3.1, partition1, containing nodes 1-6, has the associated input set {Vm,Vp,net1,Vbias1,Vbias2}; 

partition2, containing nodes 7-9, has the input set {Vout,Vbias1,Vbias2}. The inputs 

Vm,Vp,Vbias1,Vbias2 are top level inputs, net1 is an internal input, and net Vout is an external input. 

The relationships between partitions can be described by a directed graph HG=(N,L) where N 

is the set of partitions, top level inputs t, or primary outputs; and L are edges. An edge l(t,b) 

exists in HG, if there is an input to b from the top level t. An edge l(a,b) exists if the output of 

a partition a is an input to the partition b. Self-loops, edges with the same head and tail nodes, 

l(a,a), indicate internal inputs.  

The graph HG determines the circuit hierarchy. The first level of the hierarchy contains t 

and those nodes with no in-coming edges other than self-loop. The remaining hierarchical 

levels can be determined by performing breadth-first traversal of the graph HG. The partitions 
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containing self-loops indicate state dependency due to the feedback cycle between the gate-

drain or gate-source connection.  

Figure 3.2 depicts the hierarchy graph for the opamp in Figure 3.1. The internal input net1 

is shown as edge l(1,1). Vout is edge l(1,2) indicating an external input. Node 1 contains no 

external edges, only top and internal inputs, making it the top of the hierarchy. Node 2 is on 

the second level due to external edge l(1,2). 

 

Figure 3.2: Hierarchy graph of differential opamp in Fig. 1 

 

3.4.3 Intermediate Net Detection 

Intermediate behavioral nodes are determined based on CCCGs, hierarchy graph, and 

sensitivity analysis performed on initial simulation data. To determine if a partition contains 

any high sensitivity nets, the calculation of ∆Vnet/∆Vout is performed on the net voltage data 

generated from circuit simulation. If there are no high sensitivity nets within a specific CCCG, 

then that group is combined with the next group in the hierarchy. The exception is if the group 

contains an external edge to the top level output l(b,o). If a partition contains a high sensitivity 

net then the intermediate behaviors are the nets whose edges correspond to external inputs in 

the hierarchy graph. The opamp design contains one high sensitivity net based on the 
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simulation data, thus the intermediate behavior of Vout is modeled. If no high sensitivity nets 

were found then both partitions would be combined into a single node that utilizes previous 

state information, due to edge (1,1), and top level inputs. 

The high sensitivity nets are determined based on the high correlation to the output 

behavior where each partition’s inputs are highly correlated to the high sensitivity net. The 

model of each partition is based on simulation data which encompasses the behavior changes 

occurring due to internal variables 𝑢⃗⃗. Each model then captures behaviors due to internal 

variables and represents functions dependent on only previous model outputs or top level 

inputs. The top level output behavior is then predicted based on few highly correlated internal 

nodes and the top level inputs.  

 

3.4.4 Partition Resistant Components 

Analog circuits are composed of many different types of components, all combined into 

various configurations. In certain instances the circuit or subcircuit may not form a CCCG; 

such a partition may be missing the VDD or GND node. Such a circuit is considered resistant to 

partitioning and must be modeled based on the circuit inputs and outputs without any 

intermediate nodes. For example, a switch capacitor network does not form a CCCG because 

the source or drain terminals of the nodes are connected only via capacitors which are excluded 

from the construction of the CCG.  

The structures resistant to partitioning are components within a library. When at the netlist 

partitioning stage such circuits or subcircuits are detected, then no further partitioning is 

performed on them. Their models are created using the circuit inputs and outputs without any 

intermediate nodes. 
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The switch capacitor circuits need to be detected from the netlist during partitioning. There 

is a number of possible topologies that make up these components, Figure 3.3. 

 

Figure 3.3: Examples of switch capacitor (SC) topoglogies 
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Algorithm 1: Netlist to SVM Model methodology

Input: Circuit netlist, model files, design inputs D=[d1,...,dn], transient time T 

Output: SVM behavioral models 

1:  Check for known circuit topologies and set SC_flag to true if one or more exist, otherwise 

false 

2:  Create CCG=(V,E) 

 a. if SC_flag==true; all SC components are clustered in same group 

3:  Create hierarchy HG=(N,L) 

4: Modify netlist to include T, D, and data extraction statements for capturing all net voltage 

behaviors 

5:  Run SPICE simulation 

6:  Parse simulation output file into training and testing files based on hierarchy graph  

a: Starting from top level of hierarchy,  

b: For each level of hierarchy and top output accuracy <95% 

  i: If output net of hierarchy node is digital run SVM-Classification 

  ii: Else run SVM-Regression 

  iii: if current hierarchy <95% accuracy create intermediate node SVM model 

7:  Create dependent model  chain 

8:  Apply top level inputs 

9:  Analyze predicted top level output
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3.4.5 Quantizer Example 

Figure 3.4 shows the CCG for the quantizer circuit and highlights the sensitive nets and 

components. The top of the hierarchy, as shown in Figure 3.5a, is the input level to the circuit 

and leafs contain the outputs. In Figure 3.5b, we show the reduced hierarchy graph for the 

quantizer in which the levels labeled Group 1 and Group 2 are merged together. Group 1 does 

not contain any high sensitivity nets and it is combined with the next lowest level. Such 

modifications of the hierarchy graph reduce the number of models needed to be created. The 

high sensitivity nets are modeled and then used as input variables to the next group lower in 

the hierarchy.  

 

 

Figure 3.4: Channel Connected Compont Graph of the quantizer circuit. Six group partitions 

with intermediate behaviors 

By partitioning the circuit into a set of connected subcircuits we can predict the output 

using intermediate signals which leads to the final Von and Vop digital values. Table 3.1 shows 
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the six models created for the quantizer circuit and their prediction accuracy. The models were 

trained with 1000 vectors and tested with 1000 different vectors. For the intermediate nodes 

or final outputs producing real values, support vector regression was used. The input vector 

consists of circuit inputs and previous group outputs where applicable as shown in Figure 

3.5(a) and (b). Table 3.2 shows which outputs were predicted within each group whether high 

sensitivity nets or final outputs. Nets 286 and 252 are inputs to the groups predicting nets 134 

and 189 which are in turn used as inputs to the groups predicting Von and Vop. The resulting 

outputs have 100% prediction rate which is significantly better then the results prior to 

partitioning at 75.82%.  

 

 

Figure 3.5: (a) The initial hierarchy graph of the quantizer. (b) Hierarchy graph with combined 

non-sensitive groups  Group 5 and 6 contain output edges. 
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TABLE 3.1: RESULTS FOR THE QUANTIZER PARTITIONS  

 Training Time Prediction 
Accuracy 

Net286 .24s 99.4599% 

Net252 .234s 99.54% 

Net134 .18s 99.94% 

Net189 .18s 99.94% 

Von .18s 100% 

Vop .17s 100% 

 

3.5 Experiments 

The partitioning, data capture, and net sensitivity calculations described in the earlier 

sections of this chapter have been implemented as a fully automated tool and demonstrated on 

the UWB-PLL and the ∑∆-ADC described in Chapter 2. The data capture is done via HSPICE 

[23] and the SVM models are created using LIB-SVM [24]. Each circuit has an associated set 

of design specifications which indicate the input parameters correlated with the desired 

operational behavior. In each experiment, the transient voltage behavior is modeled. The model 

accuracy is determined by the predicted values compared to the actual simulated values. 

Each netlist is modified to include the transient statements and voltage capture for each 

net. In parallel with simulation, the hierarchy of the defined subcircuits is determined and 

partition graphs are created for each subcircuit. The data file generated from the simulation run 

is parsed and a subset of the data is used to quickly determine if the subcircuits require further 

partitioning starting from the topmost level of the hierarchy until the desired accuracy is 

achieved. Once the level is determined then the models are created using the full simulation 

data. The models are then chained together to form the full path to predict the final circuit 

outputs. Those models within the same level of hierarchy can be determined in parallel. 
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Table 3.2 shows the models created for the ∑∆-ADC and the amount of training time, 

number of support vectors, and the prediction accuracy when the models were tested 

independently and dependently (within the circuit). The models were trained with 50,000 

vectors, one input period, and tested with 50,000 different vectors. When the models are tested 

for their accuracy independently of any other models the desired accuracy is very high. When 

the models are chained together and are dependent on one another, there is some loss in 

accuracy due to miss-predictions being propagated through the chain. This error is minimized 

by the weights discussed in Section IIC. The total amount of time to perform 500,000 

predictions, 50,000 per model, is 184 seconds. The speedup over HSPICE is only 21X because 

of the high dimensionality of the amplifier models, with each model having 15 dimensions. 

Figure 3.6 shows a subset of the dependent predictions for the Amp_Vop2 model where Vop2A 

is the actual simulated waveform and Vop2 is the predicted waveform. 

Table 3.3 shows the models created for the PLL with the amount of training time, number 

of support vectors, and the prediction accuracy when tested independently and dependently. 

The models were trained with 10,000 vectors and tested with 20,000 different vectors. As with 

the ∑∆-ADC the independent model predictions are very high. The training time is 

significantly shorter for the PLL due to its continuous nature and smaller dimensionality. Each 

partition in the PLL contained fewer elements making the intermediate and input-output 

relationships less complex. The total amount of prediction time for 380,000 vectors is 15.76 

seconds which is a 445X speedup over HSPICE simulation. Figure 3.7 shows the waveform 

comparison between the simulated Fout and the predicted waveform Fout_P for the first 200 

predictions, 20ns. 
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Significant speedup can be observed when modeling designs that include layout parasitics. 

For this experiment the UWB-PLL in Figure 2.1 includes parasitics extracted from layout. The 

simulation time in HSPICE for this netlist with 60830 components took 7 hours and 8 minutes. 

Table 3.3 shows the model creation for the UWB-PLL data and the prediction accuracy for 

independent and dependent models. To perform all 380,000 predictions, 20,000 test vectors 

per model, the total prediction time was 14.54 seconds a 1766X speedup over HSPICE. Figure 

3.8 shows the waveform comparison between the simulated Fout and the predict waveform 

Fout_P 
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TABLE 3.2: BEHAVIOR MODELS FOR THE ∑∆-ADC 

Model 

Name 

# Support 

Vectors  

Training Time 

- Minutes 

Prediction Accuracy 

-Independent 

Prediction 

Accuracy -

Dependent 

Amp_Von1  10599 8 99.13% 98.01% 
Amp_Vop1  10793 8 99.15% 98% 
Amp_Von2  9383 8 99.21% 97.57% 
Amp_Vop2  9097 8 99.01% 97.53% 
Net286  683 2 99.67% 99.06% 
Net252  683 2 99.78% 99.01% 
Net134  43 1 99.48% 98.77% 
Net189  41 1 99.47% 98.98% 
Von  19 1 99.98% 98.82% 

Vop  20 1 99.98% 98.82% 

 

 

 

 

Figure 3.6 Waveform comparision between simulation waveform, Vop2A, and predicted 

waveform, Vop2. 
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TABLE 3.3: BEHAVIOR MODELS FOR THE UWB-PLL 

Model Name # Support 

Vectors  

Training Time 

-Seconds 

Prediction Accuracy 

-Independent 

Prediction 

Accuracy -

Dependent 

PFD_UP 115 .21 98.77 99.64% 
PFD_UPi 111 .28 99.19 99.63% 
PFD_DN 106 .18 99.677 99.19% 
PFD_DNi 107 .24 98.95 99.11% 
CP 489 2.65 99.9 95.31% 
DIVN_S1 180 .18 100 98.55% 
DIVN_S2 162 .17 100 99.3% 
DIVN_S3 1176 .81 94.02 98.86% 
DIVN_S4 1154 .78 95.2 99.42% 
DIVN_S5 490 .36 97.58 99.11% 
DIVN_S6 245 .21 99.24 99.12% 
DIVN_S7 131 .14 99.53 99.32% 
REG_VUWB 1003 6.99 99.9 94.95% 
VCO_NET41 639 2.7 98.7 96.17% 
VCO_Vn 1511 3.4 99.45 96.68% 
VCO_Vp 1512 3.3 99.48 96.68% 
VCO_Von 1512 3.3 98.6 97.56% 
VCO_Vop 1509 3.4 98.7 97.58% 
VCO_fout 1008 2.5 98.7 97.12% 

 

 

Figure 3.7: Waveform comparision between simulation waveform, Fout, and predicted 

waveform, Fout_P for the PLL_UWB 
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TABLE 3.4: BEHAVIOR MODELS FOR THE UWB-PLL WITH PARASITICS 

Model Name # Support 

Vectors  

Training Time 

-Seconds 

Prediction Accuracy 

-Independent 

Prediction 

Accuracy -

Dependent 

PFD_UP 88 .266 99.63 98.98 
PFD_UPi 94 .192 99.76 99.01 
PFD_DN 94 .186 99.64 98.78 
PFD_DNi 90 .185 99.79 98.78 
CP 518 4.41 99.8 96.8 
DIVN_S1 180 .18 100 98.66 
DIVN_S2 162 .162 100 99.23 
DIVN_S3 886 .637 96.16 99.33 
DIVN_S4 366 .294 98.5 99.63 
DIVN_S5 230 .203 99.32 99.47 
DIVN_S6 123 .137 99.27 99.48 
DIVN_S7 71 .103 99.63 99.45 
REG_VUWB 1018 6.7 99.8 98.7 
VCO_NET41 1027 6.81 99.5 98.66 
VCO_Vn 1519 4.33 99.35 96.2 
VCO_Vp 1523 4.32 99.32 96.2 
VCO_Von 1511 4.1 97.78 97.12 
VCO_Vop 1516 4.2 97.8 97.24 
VCO_fout 1012 .81 96.35 95.1 

 

 

Figure 3.8: Waveform comparision between simulation waveform, Fout, and predicted 

waveform, Fout_P for the UWB-PLL with parasitics 
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3.6 Variation Models 

Variation based behavioral models are an extension of the behavioral modeling 

algorithm described in the previous sections. Automatic decomposition and partitioning of the 

circuit remains the same, while the training set is expanded to include new variation data. The 

netlist file is altered to include Monte Carlo sweep statements for each process parameter being 

varied. For each combination of voltage supply and temperature values, 20 Monte Carlo 

simulations are performed. Supply voltage is varied from .9V to 1.4V with .1V increments and 

temperature is varied from 10°C to 40°C with 5°C increments. If voltage is being varied, 

temperature is being kept at the constant at the nominal 25°C and vice versa. The process 

parameters, Vth, Tox, Leff, are varied randomly by 3σ. Ten of the twenty Monte Carlo 

simulations are used as training data and the other ten simulations are used as testing data. 

To reduce the model building time it is essential that the number of training vectors is 

reduced as much as possible. Each single Monte Carlo simulation contains 20,000 training 

vectors and after removing all the duplicate vectors we run SVM to create a set of support 

vectors that describe the training set. These training sets are small so it takes just a total of 6 

minutes to create all the support vector sets. These sets are combined to form a single training 

set that describes the variation for a given temperature and voltage pair. This is repeated for 

each voltage and temperature pair. To create a single model, all the support vectors are 

extracted again to form a single training set which contains all simulated pairs of temperature 

and voltage and their corresponding sets of process variation. 

Reducing the size of the model also greatly impacts the amount of time performing 

predictions takes. The prediction time is proportional to the number of support vector 
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comparisons and number of elements therefore reducing the number of support vectors 

dramatically reduces the prediction time. 

Table 3.5 shows waveform prediction results for the PLL using the single model 

described above. For each temperature and voltage pair the table shows the number of 

waveforms predicted each with a random set of process variation, the average prediction 

accuracy, and average lock time and power prediction accuracy. The non-bolded entries 

represent pairs that have been trained, but the process variation is different. The bolded entries 

represent new pairings that were not used to train the model. Most of the waveforms can be 

predicted with at least 95% accuracy, where most of the inaccuracies occur at the peak and 

valley amplitudes. Figure 3.9 shows a sample period of two of the predicted waveforms which 

highlights the mis-prediction in amplitude. The dotted lines are the predicted waveforms and 

the solid lines are the simulated waveforms. The most important aspect, being that of the 

frequency generated, is still predicted with high accuracy. The lock time, which is extracted 

from each predicted waveform, represents the time (ns) that the PLL stabilizes the frequency. 

From the results in Table 3.5 for lock time prediction accuracy represent how accuracy the 

simulation lock is in comparison to the predicted lock time. Even if the waveform prediction 

shows about 95% accuracy, that accuracy is lost in the amplitude and not the frequency lock 

time which is why the lock time prediction is so accurate. 

The average time to predict each waveform is 28 seconds. Each waveform has 20,000 

prediction points spanning the full 20µS capture time. This is compared to the 26 minutes it 

takes to do a single Monte Carlo simulation of the same 20µS. The prediction time would take 

less time if the model file contained fewer support vectors, i.e. if the design range was more 
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refined. Since the design range is large the model file will in turn be large increasing the time 

it takes to perform predictions. 

A SVM model is created to predict the power for a given waveforms based on voltage, 

temperature, and lock time. Figure 3.10 shows the power predictions for the test data.  

Table 3.5: Predicted PLL waveform data 
Voltage Temperature Number of 

Waveforms 
Predicted 

Average 
Waveform 
Prediction 

Accuracy % 

Lock Time 
Prediction 
Accuracy 

0.9 25 10 94.8 99.89 
1.0 25 10 95.2 99.96 
1.1 25 10 95.3 99.97 
1.2 25 10 95.5 99.82 
1.3 25 10 96.3 99.97 
1.4 25 10 96.5 99.97 
1.2 10 10 94.95 99.94 
1.2 15 10 94.87 99.75 
1.2 20 10 94.96 99.76 
1.2 25 10 95.12 99.86 
1.2 30 10 95.31 99.92 
1.2 35 10 95.33 99.95 
1.2 40 10 95.53 99.91 
0.95 13 5 92.4 98.92 

0.95 32 5 93.3 99.11 

1.05 25 5 94.87 99.03 

1.15 25 5 97.63 99.62 

1.25 20 5 96.22 99.45 

1.2 18 5 95.54 99.57 

1.33 37 5 96.54 99.56 

1.5 50 5 97.79 99.66 

1.15 22.5 5 95.22 99.28 
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Figure 3.9: Two Monte Carlo simulations at 1.2 and 25°C (solid line) with the respective 
predicted waveforms (dashed line), shown is a snapshot of 100nS of simulation and prediction 
time for the waveforms. 

 

Figure 3.10: Predicted waveform for untrained pairs 1.33V and 37°C. Foutp is the predicted 
waveform and Fout is the simulated waveform. Snap shot of 100nS out of 20µS 
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3.6.1 Tradeoff Curves 

Waveforms quickly generated from the SVM models can provide a designer with a fast 

way to analyze tradeoffs and determine the ideal operating conditions. For example, from the 

predicted PLL waveforms we can extract the lock time given the set of inputs, voltage, 

temperature, and process variation. The lock time in combination with the power SVM model 

described above can be used to create a power verse stability graph. In this section we use the 

UWB-PLL for proof of concept. 

Figure 3.11 displays the tradeoff between power and lock time. The graph contains 

only simulated points where the red squares are fault free simulations while the X's represent 

simulations resulting in functional faults. The triangle represents the nominal simulation 

without any process variation. The line is the best fit boundary between the faulty and fault-

free simulations. The X's by the 0 points in the axis represent simulations that fail to lock within 

the required 20µS time frame. The simulations with lock times close to 20µS lock too late in 

the simulation to be considered fault-free because there was not enough time to the circuit to 

stabilize at the lock time. 
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Figure 3.11: Graph of simulations comparing power and lock time. Boundary separates the 
faulty from the fault free simulations. The triangle is the nominal design point without variation 

 

 

Figure 3.12: Graph of lock time verse power for simulated waveforms and predicted 

waveforms. 
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Creating more waveform data in order to fill out the graph in regions such as low power 

and fast lock time would be beneficial in determining where the design should be centered. 

More simulations can be performed in order to target key areas, but this can be time consuming. 

Using the variation models generated in the last section, we can create predicted waveform 

data quickly. Figure 3.12 shows 140 new waveform points generated by the SVM models. The 

new fault-free predictions points are represented as circuits and the faulty points are 

represented as pluses, +. As a result of the new data a new boundary line can be created 

separating the sets. There are some fault free predicted simulations in the faulty region and 

vice versa, these are outliers and ignored when creating the boundary. To create all 140 

waveforms took 53.2 minutes, averaging 22 seconds per waveform, compared to 61 hours it 

would take to run HSpice. 

 

3.7 Key Learnings 

 The method described in this chapter shows it is possible to create behavioral models 

in the time domain for analog circuits. For verification purposed it is difficult to ensure the 

soundness of the models, this is especially true for models with variation. A key component to 

learning methods is that the models are only as good as the data used to train them. With very 

large variation and input spaces it becomes difficult to ensure the model encapsulates enough 

behaviors in order to properly predict new behaviors. Another key issue is the complexity of 

some of the analog circuits. The switched capacitor network is a component which cannot 

easily be partitioned and predicted. With design/domain knowledge and user intervention the 
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models can be hand tuned in order to capture the desired accuracy. This abolishes the idea of 

a general automated behavioral modeling method.  

3.8 Conclusion 

In this chapter we have presented a new approach for creating behavioral models of analog 

and mixed signal circuits based on partitioning. This methodology addresses the need for an 

automatic approach for behavioral modeling of any type of analog and mixed signal circuits. 

We developed a tool that can automatically create a set of partitions and detect intermediate 

behaviors based on netlist and transistor level simulation behavior. SVM models are created 

to predict intermediate behaviors which lead to the prediction of the final output behavior. We 

have shown the generality and feasibility of this approach on large circuits such as a PLL and 

∑∆-ADC. Our results indicate that we can obtain three orders of magnitude speedup over 

transistor level simulations while maintaining over 95% accuracy. 
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Chapter 4 

 

Improving Circuit Verification Efficiency with 

Unsupervised and Supervised Learning 

 

Circuit simulation is a common approach for verifying the analog behavior of a circuit. 

This chapter studies the application of statistical learning techniques for improving the circuit 

verification efficiency. To enable the application, circuit simulation is modeled as an event 

propagation process through a system consisting of primitive elements.  Then, the efficiency 

improvements are achieved with two approaches. By assuming that the output space can be 

represented by a set of selected events, unsupervised learning is applied to search the input 

events that correspond to the selected output events.  Only the selected input events are 

simulated, resulting in saving of the simulation time. During the simulation, low-complexity 

primitive elements with low information content are modeled by supervised learning models. 

Event propagation through these primitive elements is achieved by model prediction rather 

than by actual simulation, resulting in further saving of the simulation time. This chapter 
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explains the statistical learning concepts and the techniques to implement the two approaches 

and demonstrates their effectiveness with experimental results in the context of voltage domain 

analysis of several analog circuit designs. 

 

4.1 Introduction  

Circuit simulation is indispensable for verifying the analog behavior of a design. For 

assessing the uncertainty of design behavior over process variations, Monte Carlo circuit 

simulation is one of the most popular approaches. However, circuit simulation can be time 

consuming. Hence for a large and complex design, Monte Carlo circuit simulation can become 

prohibitively expensive. 

 

 

Figure 4.1: Functional view of uncertainty analysis of a statistical system 

 

Figure 4.1 depicts a functional view for the underlying problem in uncertainty analysis 

of a statistical system. In this view, the circuit to verify is seen as a mapping function f().  Inputs 

to the function comprise two sets of random variables. First, there are variations on the input 

space X. Furthermore, there are variations on the components constituting the circuit. The 

component space is denoted as C. The function f() is a mapping from (X, C) to the output space 
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Y, i.e. f: (X,  C) → Y. In verification, there is a specification on the expected output behavior. 

Hence, the problem becomes, giving (X, C), is there any output behavior out of the 

specification? 

In a typical setting of Monte Carlo circuit simulation, a particular input x from the input 

space X is selected. Uncertainty analysis concerns the output behavior with respect to the 

component variations, i.e. assessing the output subspace   Yx=f(x, C). The idea of improving 

the efficiency of uncertainty analysis in this setting is not new.  

For example, one notable area of research is static statistical timing analysis (SSTA) 

[1][2]. For example, in SSTA each delay element is modeled as a random variable according 

to process variations. Circuit timing is a function of a set of delay random variables under the 

worst-case assumption on the input pattern space. The analysis is static because variation on 

the input pattern to the circuit is not considered.  In SSTA, efficiency is obtained by 

propagating the random variables directly through the circuit. It does not involve random 

sampling and hence avoids the high cost of Monte Carlo simulation.  Delay elements in SSTA 

are usually assumed to be pin-to-pin delays of a cell [2].  

The same idea of propagating random variables can be applied to lower-level circuit 

analysis where the random variables are based on basic circuit elements such as resistors and 

capacitors. In lower-level circuit analysis, the operators involved are no longer restricted to 

addition and maximization as used in SSTA. Hence, the problem becomes more complex. For 

example, the work in [3] applied Polynomial Chaos Theory (PCT) [4] to low-level circuit 

analysis. In a PCT framework, random variables are modeled by orthogonal polynomials to 

facilitate their propagation through circuit equations [3]. 
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In contrast, the work in [5] retains the idea of random sampling. To improve efficiency, 

supervised learning techniques are applied to identify the irrelevant subspace (in C) to ignore. 

Because the inputs to the circuit under analysis are well defined and limited, they are not 

required to be treated as coming from a random space.  In more recent works [6][7], advanced 

learning techniques are applied to develop an efficient statistical analysis framework for 

uncertainty analysis of circuit performance parameters.  Similarly, the underlying sources of 

uncertainty for the analysis are from the components C constituting the mapping function.  

 Because traditional Monte Carlo analysis is cost restricted to analyze small circuits, it 

is usually not required to explicitly treat the input space as a random variation space. Hence, 

from the objective of improving the efficiency of Monte Carlo analysis, the focus is usually on 

modeling the behavior with respect to the component variations C.  However, this view can 

change when the circuit to verify becomes large. 

An example to consider variation in the circuit input space X is in the context of delay 

testing. In delay testing, the mapping function f() is a gate-level circuit of n inputs. Hence, there 

can be up to 2n input patterns to apply.  For this problem, component variations in Figure 4.1 

are based on two sources: (1) variations on the delay elements due to process variations, similar 

to the setting of SSTA, and additionally (2) variations in the delay defect sizes and locations.  

The output behavior is divided into two classes: passing and failing.  

Since it is not feasible to apply all 2n input patterns, one crucial aspect of the uncertainty 

analysis is to identify the important input patterns such that the result of uncertainty analysis 

across all input patterns can be approximated by the result of uncertainty analysis across the 

important input patterns. Hence, the saving is obtained by avoiding the analysis on the 

unimportant input patterns.  
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The work in [8] is an example of how to approach this delay testing problem. However, 

the work relied on Monte Carlo simulation of the entire circuit to be analyzed and hence, no 

saving could be obtained with respect to the component random space C.  

In Figure 4.1 if one takes an extreme view that the mapping function is a processor or 

SoC, then the input space X becomes extremely large. In this case, considering component 

variations is no longer practical. Typically, for verifying a SoC, RTL simulation is used. 

Simulation cost is due to the large input space X to cover. In this context, an input pattern is a 

functional test, i.e. a sequence of input vectors. 

Suppose functional tests can be represented by n random variables each varying across 

a domain of values. Then, the input space X can be viewed as a n-dimensional random space. 

With such a view, the work in [9] proposed a framework for saving simulation time by 

identifying and simulating only the important functional tests. Unsupervised learning 

technique, the Support Vector Machine one-class [10], was applied to learn and model the 

unimportant input subspace to facilitate the selection of the important tests. The work in 

[11][13] extended the idea to the analysis where each functional test was an assembly program.  

In view of the prior works discussed above, observe that the idea of improving 

simulation efficiency with respect to either the X space or the C space is not new.  However, 

what has not been explored is to improve simulation efficiency in the context of Figure 4.1 

where both the input variations and component variations are considered in the uncertainty 

analysis. This motivates the study described in this work to develop a framework that tackles 

the new problem setting.  
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With respect to Figure 4.1, such a framework aims to obtain saving from two ends: (1) 

Simulation cost is reduced by avoiding the simulation of unimportant inputs sampled from X. 

This objective is similar to the works in [8][9][11][13].  

(2) Simulation cost is reduced by predicting a substantial number of events arising in the Monte 

Carlo simulation. In other words, instead of using the actual simulation to obtain those events, 

those events are predicted by learning models and hence, the total simulation time is reduced. 

This objective can be thought of as similar to the works [5][6][7] discussed above.  

It should be noted that the objective of this work is not to develop a framework that is 

more general than the prior works. The proposed framework is to be applied in a different 

application context in which the variations in both the X space and the C space in Figure 4.1 

need to be considered in the uncertainty analysis. Hence, the proposed framework should not 

be viewed as an alternative to the prior works in their respective application contexts. It can be 

viewed as an addition which addresses a different application context. 

The rest of the chapter is organized as the following. Section 4.2 explains the two 

essential problems to solve in this work, one for each objective just discussed. Section 4.3 

discusses basic machine learning concepts and keys to enable the application of statistical 

learning techniques in the respective two problem settings. Section 4.4 presents our approach 

to tackle the first problem where unsupervised learning is applied on the input space X to 

achieve the objective (1) mentioned above. Then, section 4.5 presents our approach to solve 

the second problem where supervised learning techniques are used to achieve the objective (2). 

Section 4.6 puts all pieces together into a unified framework. Section 4.7 demonstrates the 

effectiveness of this framework with experimental results. The experiments were conducted 
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based on a number of analog circuits with the focus on voltage domain analysis. Section 4.8 

concludes. 

 

4.2 Two Essential Problems to Solve 

4.2.1 The Underlying Question to Ask  

The problem stated with Figure 4.1 in theory can be thought of as a pre-image 

computation problem illustrated in Figure 4.2. Let the combined input space to the function f() 

be denoted as X∙C. Let the resulting output space be denoted as Y.  Typically, some portion of 

the Y space is considered acceptable while other portion is considered not acceptable. Let Y 

denote the acceptable subspace.  The theoretical problem of the verification can be thought of 

as computing the pre-image f-1(y). 

 

 

Figure 4.2: Theoretical view of the fundamental problem 

 

Figure 4.2, while theoretically simple to understand, is a practically difficult problem 

to solve. For example, while f() is computable with a simulator, f -1()  is usually not. Moreover, 
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input variation space X and the component variation space C are fundamentally two different 

spaces. For example, a sample in X can be a waveform over a simulation period [0,T]. A sample 

in C can be a sample vector (s1,...,sp) where each si is the size sampled for the transistor i in the 

circuit, according to a process variation model. Therefore, even assuming that one can formally 

model the acceptable space Y with a set of rules or equations, it remains difficult to compute 

the corresponding rules or equations in the combined X∙C space.  

More practically, the verification problem illustrated in Figure 4.2 is approached by 

asking a different question. This question is illustrated in Figure 4.3. 

 

Figure 4.3: Practical view of the problem 

 

In the setting of Figure 4.3, n samples x1,...,xn are drawn from the X space. For example, 

these can correspond to n different input waveforms over a simulation period [0,T].  Moreover, 

m samples c1,...,cm are drawn from the C space. For example, each ci is a vector capturing the 

sizes of p transistors and together, they represent m samples drawn from a process variation 

model for statistical Monte Carlo simulation. Every combination (xi, ci) is simulated to produce 

the output waveform y{i,j} over the period [0,T]. In verification, a checker is applied to these n 

X m outputs to decide which are acceptable and which are unacceptable.   

One key concern in Figure 4.3 is obviously the total simulation time over the n X m 

combined input samples.  Suppose every output y{i,j} is crucial for the checker to verify the 
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design correctness. In this case, there is not much one can do but simulating all the n X m input 

samples.   

Suppose, however, that in order for the checker to be used to prove correctness of a 

design, it does not need all the n X m output samples. Instead, a rather smaller set  𝒚̂ of k 

representative samples {𝑦̂1, 𝑦̂2,...,𝑦̂k} is sufficient, i.e. k << n X m. Then, given these k output 

samples, ideally one only needs to simulate the corresponding k samples in the combined input 

space. In this context, the underlying question becomes: How to avoid simulating the 

unimportant inputs that do not change the representative output set 𝒚̂? 

Suppose i represents the information contained in a representative output set 𝒚̂, which 

is used to prove correctness. Alternatively, one can ask a different question: How to select a 

minimal number of combined input samples to simulate and obtain an output set that contains 

an equal amount of the information as i and is sufficient to prove correctness?  

Conceptually, one can treat {xi, cj} as a single unified sample and try to solve the 

problem illustrated in Figure 4.3. However, this can be difficult because as mentioned above, 

xi and ci come from two fundamentally different domains. A more effective way is to consider 

these two domains separately. Below we will discuss how to approach the problem by solving 

two essential problems. 

 

4.2.2 First Essential Problem  

In the first essential problem, we consider a fixed cj. Figure 4.4 illustrates the problem. 

Given a particular cj, assuming that simulation of all input samples x1,...,xn results in coverage 

of a subset of l output samples, without loss of generality, denoted as 𝐿̂={𝑦̂1, 𝑦̂2,..., 𝑦̂l} for l≤k.  
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In Figure 4.4, these l output samples are colored red. There are other output samples colored 

green. They are output samples not reachable by simulating with the component sample cj.   

The l output samples correspond to partitioning the n input samples into l clusters. 

Therefore, ideally if at least one representative sample is selected from each cluster and 

simulated, all the l output samples would be covered.  

 

Figure 4.4: Discovery of representative input samples 

 

Let the set of l clusters be denoted as U={u1,...,ul}. Let the set of selected inputs to 

simulate be 𝑋̂={𝑥̂1,...,𝑥̂q}. We call them the representative input samples. We have q ≥ l. We 

say that U is covered by 𝑋̂ if for every cluster ui, there exists an input xj ∈ 𝑋̂ such that xj ∈ ui. 

With these definitions, the first essential problem can be stated as: How to discover a minimal-

size set 𝑋̂ that covers U without knowing the output sample set 𝐿̂ in advance? 

In the context of functional verification, the output set 𝐿̂ can be thought of as a set of 

coverage points while each input xi as an assembly program [13]. In this context, the work in 

[11] approaches the problem by assuming that the set of coverage points is known in advance. 

The learning approach takes advantage of this information to select representative inputs to 
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simulate. In contrast, the work in [12] approaches the same problem without assuming that the 

set of coverage points is known in advance. Consequently, the approach in [11] is more 

effective for a specific application task than the approach in [12] (e.g. see discussion in [13]).  

Both approaches follow an unsupervised learning paradigm. Although they are 

designed for a completely different context, conceptually they provide two hints to approach 

the first essential problem stated above: (1) The problem could be approached by unsupervised 

learning; and (2) Without knowing 𝐿̂ in advance is a harder problem than that with 𝐿̂ given.  

 

4.2.3 Considering Component Variations 

Suppose we have a method that can find a desired set of representative input samples. 

An intuitive question arises: Can the method be used to find a desired set of representative 

samples from the component variation space C as well? Figure 4.5 illustrates the difficulty 

following this thought.  

 

Figure 4.5: An intuitive way to consider component variations 
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Consider the outcome by simulating all inputs x1,...,xn  based on a component sample 

cj.  

The outcome is a subset of 𝑌̂.  Let f(∙, cj) denote this subset. To save simulation, one does not 

want to simulate all component samples c1,...,cm. Rather, a subset of component samples is 

selected for simulation.  

From this perspective, we see that the basic problem to solve is, to discover a minimal 

set from the m subsets f(∙, c1),...,f(∙, cm) such that a complete coverage of the output samples in 

𝑌̂ can be obtained. However, even with the m subsets and 𝑌̂ known in advance, finding a 

minimum set of subsets for the complete coverage is the same as the Set Cover Problem, a 

well-known NP-complete problem.  Hence, the problem illustrated in Figure 4.5 can be a very 

difficult problem because neither the m subsets nor the 𝑌̂ are known in advance.  

As pointed out in [14], statistical learning techniques do not make an NP-hard problem 

easier. Consider the well-known Boolean Satisfiability (SAT) problem. From the statistical 

learning perspective, SAT can be reduced to the problem of learning a Boolean function. As 

discussed in [14], although some Boolean functions can be learned with a good accuracy [15], 

learning a Boolean function in general can be a computationally difficult problem, i.e. the 

learning problem itself is NP-hard [16]. Therefore, the problem formulated with Figure 4.5 is 

not a problem suitable for application of statistical learning techniques. We need to pursue an 

alternative.  

 

4.2.4 Second Essential Problem 

The discussion with Figure 4.5 above assumes that the only decision that can be made 

to save simulation time is whether to skip the simulation based on each component sample ci 
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or not.  However, this is not the only way to save the total Monte Carlo simulation time.  An 

alternative to save simulation time can be based on a different set of decisions: whether to skip 

the simulation on some parts of the circuit. Figure 4.6 illustrates this alternative. 

Suppose the circuit under verification can be partitioned into a set of primitive elements 

(PEs).  Some PEs are simple. For example, an inverter is a simple PE. Some PEs are complex.  

Then, the basic idea is that simple PEs are replaced with statistical learning models and 

complex PEs are simulated.  Hence, the saving comes from skipping the simulation on the 

simple PEs.  

 

 

Figure 4.6: A more practical way to consider component variations 

 

Note that modeling a simple PE is not solving the traditional analog behavior modeling 

problem. First, in traditional behavior modeling, the component variations are usually not 

considered. In recent works [17][18] some experiments were conducted to pursue behavior 

modeling with  component variations. However, the attempts were to derive a model for the 

entire circuit. The works in [17][18] reached limited success because some aspects of circuit 



86 
 

behavior could be too complex to capture with a learning model.  For simple circuits, however, 

a learning model could work well [18]. 

Therefore, assuming that a learning method is given to model the behavior of a PE over 

the combined space X∙C, the essential problem illustrated with Figure 4.6 is to decide which 

PEs are simple enough that a learning model  can be used to predict their behavior. In other 

words, the focus of the problem is not on how to learn a model for a PE. The focus is on how 

to define what a simple PE is with respect to a learning method.  In other words, the focus is 

on deciding which PEs are learnable and which PEs are not.  Solving this problem requires (1) 

a method to partition a circuit into a set of PEs, and (2) a method to evaluate the complexity of 

learning the behavior of a PE.  

4.3 Keys to Learning Problem Formulations 

4.3.1 Basic Machine Learning Concepts 

 

 

Figure 4.7: Typical dataset seen by a learning algorithm [14] 
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Figure 4.7 illustrates a typical dataset seen by a machine learning algorithm (For more 

discussion, see e.g. [14]). When 𝑦⃗ is present and there is a label for every sample, it is called 

supervised learning. In supervised learning, if each yi is a categorized value, it is a classification 

problem. If each yi is modeled as a continuous value, it is a regression problem. 

When 𝑦⃗ is not present and only X is present, it is called unsupervised learning. When 

some (usually much fewer) samples are with labels and others have no label, the learning is 

then called semi-supervised [19].  

In Figure 4.7 each sample from X is encoded with n features f1,...,fn. Hence, the 

characteristics of each sample are described as a vector 𝑥𝑖⃗⃗⃗⃗ .  To apply a learning algorithm to 

analyze a set of samples, an intuitive way is to decide on a set of features to encode the samples.  

 

4.3.2 The Importance of Similarity Measure 

Many modern machine learning algorithms follow the paradigm of kernel-based 

learning [20][21].  Figure 4.8 illustrates the basic concept of kernel-based learning. 

 

 

Figure 4.8: Kernel function vs. learning machine 
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In kernel-based learning, the learning machine, i.e. the learning algorithm such as a 

Support Vector Machine (SVM) algorithm [20], is not required to access the samples 𝑥1⃗⃗ ⃗⃗ ,...,𝑥𝑚⃗⃗ ⃗⃗⃗⃗  

directly. Instead all the information required for the learning is coming from a kernel function 

k(). The kernel function measures the similarity between two samples based on some definition 

of what similarity means.  

Kernel-based learning provides great flexibility to apply learning techniques in EDA 

and test applications [14], especially when the samples to be analyzed are not provided in 

matrix form like Figure 4.8. This is because the representation of a sample is not important. 

What is important is to define a proper similarity measure function.  

 

4.3.3 Keys to Enable the Application of Learning Techniques 

While the concepts discussed up to this point are more general, for experimental 

purpose this work focuses on a rather specific application context. In this context, each input 

sample xi from the X space is an input waveform to a circuit over a period [0,T].  Each sample 

cj from the C space is a vector of transistor sizes sampled from a process variation model.  

Consider the first essential problem. In this problem, the input samples are waveforms. 

Hence, to enable learning, one has to devise a method to measure the similarity between two 

waveforms.  This is the key to apply unsupervised learning techniques to approach the first 

essential problem. 

Consider the second essential problem. This problem can be thought of as deciding the 

complexity of learning the function f()  in Figure 4.1 above, where f() is based on a PE 

(primitive element). From this perspective, we see that the input samples to the PE are still 

coming from the combined space X∙C. Hence, each sample can be represented as a 2-tuple (x'a, 
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c'b). Here, we use the notation (x'a, c'b) to emphasize the difference from the notation (x'i, c'j) 

used earlier.  Each x'a is a waveform to a PE. Each c'b is a vector of transistor sizes for the 

transistors in the PE. In contrast, each cj earlier is a vector of sizes for all transistors in the 

circuit. In other words, the dimensionality of c'b is much smaller than the dimensionality of cj.  

While defining a proper kernel function for samples (xi, cj) can be hard, it is more 

feasible to define a kernel function for samples (x'a, c'b) because of their reduced 

dimensionality.  It is important to note that in a 2-tuple (x'a, c'b), x'a is a waveform and the 2-

tuple is an object across two different domains. Therefore, to enable learning, one has to devise 

a method to measure the similarity between pairs of 2-tuple samples.  This is one of the keys 

to apply learning techniques for the second essential problem. 

For predicting the behavior of a PE, supervised learning techniques would be applied 

(explained later). In Figure 4.8, an output 𝑦𝑖⃗⃗⃗ ⃗ is a scalar value. In contrast, the output of a PE is 

a waveform. This raises another important question: How to apply supervised learning when 

the outputs to be predicted are not scalar values? Answering this question is another key for 

the second essential problem.  

 

4.4 Unsupervised Learning for Important Input Subspace 

Modeling 

Suppose n samples x1,...,xn are given.  Recall that the goal is to cover k representative 

output samples 𝑌̂={𝑦̂1,...,𝑦̂k}. Without loss of generality, the assumption is that these k output 

samples are dissimilar to each other. In other words, suppose ky() is a similarity measure 

function applicable to the output samples. We have 0 ≤ ky() ≤  1, and ky()=1 means the two 
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samples are most similar and ky()=0 means the two samples are least similar (or most 

dissimilar). Then, for any pair 𝑦̂i, 𝑦̂j, we have k(𝑦̂i, 𝑦̂j) ≤  δ for some δ. 

Suppose the simulation process is broken into iterations. In each iteration, l samples 

are applied. Figure 4.9 depicts what might happen from one iteration to the next.  In this 

example, there are 14 samples, i.e. n=14.  In each iteration, 3 samples are applied, i.e. l=3.   

For iteration i=0, no sample is applied yet. Hence, the coverage on the Y space is 

unknown.  For iteration i=1, 3 samples are selected and applied. The picture depicts that these 

3 samples are selected from three clusters of samples. In other words, a clustering algorithm is 

applied to group samples. Then, one sample is selected from each cluster.  Note that in order 

to apply a clustering algorithm, another similarity measure function kx() is needed to measure 

the similarity between two input samples.  Then, similar samples can be grouped together 

where the similarity is defined based on kx(). 

 

 

Figure 4.9: Iterative search for important inputs in X 

 

Application of three input samples x1, x2, x3 results in three output samples y1, y2, y3. 

Suppose based on a predefined method (e.g. k(𝑦̂i, 𝑦̂j) ≤  δ ),  y1 and y2 are determined to be 
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representative output samples, i.e. y1, y2 ∈ 𝒀̂,  but y3 is not. In the X space, x1 and x2 are marked 

as important samples (solid red) and x3 as unimportant samples (solid blue).  

The question is: for the next iteration, what would be a good strategy to select input 

samples?  

Suppose the input samples are distributed in such a way that if two samples are 

dissimilar in the X space, they both are likely to be important samples. In other words, kx()≈ky(). 

In this case, finding important input samples can be reduced to finding representative input 

samples by clustering. This is because conceptually two representative samples from two 

clusters are most dissimilar samples. Hence, in this case a simple clustering algorithm could 

solve most of the problem. In other words, the strategy would be to form k clusters in the input 

space and then, in each iteration, select k representative input samples, one from each cluster. 

Then, the process repeats by removing those samples that have been applied.  

A more realistic assumption is that kx() and ky() are very different, resulting in some 

input subspaces more important than others. In this case, a strategy is needed to direct the 

search to (1) identify the important subspaces and (2) select more samples from the important 

subspaces.  

Following this idea, for iteration i=2, the sample close to x3 is blacked out. Clustering 

is then applied to the rest of the samples. Three samples x4, x5, x6 are selected.  Samples x4 and 

x5 are selected from the same clusters as x1 and x2 before. This is because x1 and x2 are identified 

as important samples. Hence, regions close to them are treated as important subspaces in this 

iteration. Notice that x6 is at a distance from x3 and hence, it is not deemed unimportant because 

of x3.  In iteration i=2, x6 by itself forms a cluster and is selected.   
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The above example illustrates the search strategy. A known unimportant sample results 

in an unimportant subspace. A known important sample results in an important subspace. There 

can be other samples not in either of the subspaces. Clustering is applied in each iteration to 

find representative samples in the "adjusted" X space.   

 

4.4.1 Adaptive Similarity Measure 

Figure 4.10 illustrates how the idea discussed above can be accomplished without 

changing the clustering algorithm and the similarity measure function kx() from one iteration 

to the next. Suppose originally each input sample is encoded with two features f1 and f2. Hence, 

the samples are distributed in a 2-dimensional space defined by f1 and f2. This is shown as the 

left plot in the figure. 

 

 

Figure 4.10: Adaptive learning space for similarity measure 

 

Clustering is applied to form two clusters and two representative samples x1 and x2 are 

selected. The trick is that in the next iteration, a new space is created based on x1 and x2.  
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The coordinate of a sample x is calculated as (kx(x, x1),kx (x, x2)). Therefore, the samples close 

to x1 (and far from x2) will all be close to the point (1,0) and form a cluster.  This cluster is 

blacked out because x1 is not an important sample. The samples close to x2 (and far from x1) 

will be close to the point (0,1) and form another cluster. One representative sample is selected 

because x2 is an important sample. Furthermore, the remaining two samples form a cluster and 

another representative sample is selected.  

The simple example illustrates that without changing the similarity measure function 

kx() and without changing the clustering algorithm, by projecting the samples into a different 

space, the idea discussed above can be realized.  

 

4.4.2 Issue of Large Dimensionality 

The idea discussed above has one major drawback. As the number of the applied input 

samples grows, the dimensionality of the adjusted space grows accordingly.  To avoid this 

growth, the actual implementation can be the following.  Without loss of generality, assume 

that l samples x1,...,xl have been applied.  Samples x1,..., xi are deemed important samples while 

xi+1,..., xl  are deemed unimportant.  

 

1)  Start with all input samples not yet being applied.  

2) For an input sample x, for each j, i+1 ≤  j ≤  l, if kx(x, xj) is greater than max{kx(x,xh) | ∀h, 1 

≤  h ≤  i}, then x is removed from consideration in the current iteration. In other words, x is 

more similar (or "closer") to an unimportant sample than to any of the important samples. 

3) For all the input samples not removed, project them into the space defined by x1,...,xi. Run 

clustering in the new space to find representative samples.  
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In the above implementation, the dimensionality of the adjusted space is bounded by k, 

the number of representative output samples. A sample is removed from consideration in a 

particular iteration if the sample falls into an unimportant subspace. An unimportant subspace 

contains those samples closer to unimportant samples than to any of the important samples.  

 

4.4.3 Property on the Removed Samples 

It is important to note that a removed sample in one iteration can still have a chance to 

be selected in a future iteration. Figure 4.11 illustrates this point. Figure 4.11 depicts a selection 

process of three iterations (from left to right) for two cases.  In the iteration 1 of case 1, x1 is 

deemed important while x4 is deemed unimportant. Since x3 is closer to x4 than to x1, i.e. k(x3, 

x4)>k(x3, x1), x3 is removed in the next iteration. In contrast, x2 is kept.   In the next iteration, 

x2 is applied and deemed important. In iteration 3, since x3 is closer to x2 than to x4, i.e. k(x3, 

x4)<k(x3, x2), x3 is kept and selected.  

The case 2 depicts a different scenario where k(x3, x4)>k(x3, x2). In this case, the process 

stops at iteration 3 where x3 is not selected because it is closer to x4 than to x2.  

 

Figure 4.11: A removed sample in one iteration can be selected in the next 
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4.4.4 Implementation Considerations 

Suppose that given a set of output samples, the user has a method to determine the 

representative samples. Then, there are two remaining questions to consider for implementing 

the search strategy for finding important input samples. 

The first question is how to define the similarity measure function kx(). Because for the 

application discussed in this work, each input sample is a waveform over a period [0,T],  a 

sample x can be represented as a vector [x0,...,xT] assuming that time is incremented by 1 unit. 

Then, given two input sample vectors, the popular Gaussian kernel function [21] can be used 

as the similarity measure function.  

In general, the input waveforms can be digital or analog, periodic or non-periodic, 

stationary or non-stationary.  The user might have an idea what important characteristics are 

to be analyzed by the system under simulation.  For example, for analyzing periodic non-

stationary waveforms, the user might desire to encode waveforms with wavelet transform [22]. 

Hence, the user can apply a particular transform to the waveform before applying the Gaussian 

kernel. How to encode/transform waveforms to reflect the important characteristics under 

analysis is subjected to user choice. From the perspective of providing a tool, the assumption 

is that input waveforms are already encoded as vectors.  

The second question is how to choose a learning algorithm. As discussed in [14], from 

experience the learning algorithm is usually not as important as the methodology to utilize the 

learning approach.  In the above search strategy, the idea of re-projecting samples into a new 

space based on the important samples can be thought of as the methodology to utilize the 

clustering approach to solve the overall important input search problem.   For clustering, the 
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definition of the space to conduct the clustering impacts the clustering result more than the 

cluster algorithm. Hence, if the space re-projection idea does not work, then no clustering 

algorithm would be helpful. If the idea is viable, then while two algorithms might give different 

results, both results should show some effectiveness to indicate that the idea is working. 

 Because the focus of this work is on developing the search strategy, optimization of the 

learning algorithm is not discussed. Such optimization can also be application case dependent. 

One algorithm can be better for one case while another algorithm is better for another case. 

Unless a comprehensive set of test cases is determined, it is not really meaningful to discuss 

optimization of the learning algorithm.  

For clustering, the Python machine learning library [23] provides several options to 

choose from. We selected the Hierarchical clustering algorithm because it was easy to apply 

and from experience the result was usually more robust than the popular k-mean algorithm 

[23]. 

 

4.5 Supervised Learning for Event Prediction in Monte Carlo 

Simulation 

Recall the discussion with Figure 4.6 above. The idea can be summarized into two 

parts: (1) Partition a circuit into a set of primary elements (PEs) and (2) decide if a PE is 

predictable. 

 From a tool provider's perspective, partitioning a circuit can be subjected to the user. For 

example, suppose the circuit is given as a transistor netlist. The starting point can be to partition 

the circuit into a set of channel connected components. The user might want to merge certain 

components because conceptually, merging components result in a PE whose input-output 
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behavior is more intuitive to understand. Hence, while partitioning a circuit is a required step 

to run the tool, it is not the main focus for the tool development. The focus is on developing a 

methodology to determine the predictability of a PE, and if it is predictable, to construct a 

prediction model.  

Suppose a set of n PEs {g1,...,gN} is given.  Our goal is to develop a method to evaluate 

the predictability of each PE. There can be two approaches to pursue this development. 

First, predictability obviously depends on the power of the predictor, i.e. a model built 

by a learning machine by learning from a given dataset. For example, the learning machine can 

be the Support Vector Machine (SVM) regression called Support Vector Regression (SVR) 

[20].  The predictability of a learning machine can be evaluated experimentally by applying it 

to a set of PEs. In other words, the experimental approach starts with an idea to implement the 

learning machine and then determines the predictability of a PE based on a specific learning 

machine.  

The experimental approach is feasible when one has a good idea to implement an 

effective learning machine.  However, as pointed out in Section 4.3.3 before, traditional 

supervised learning algorithms assume that the outputs to be predicted are scalar values (refer 

to Figure 4.7). Hence, learning machines such as SVR are not readily applicable.   

The alternative approach is to develop a concept to capture the meaning of 

predictability. Then, a learning machine for constructing the predictor can be designed based 

on the concept. In this work, we take the second approach.  
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4.5.1 Intuition behind Predictability of a SVM 

Before considering the predictability of a PE, we first illustrate the intuition behind the 

predictability of a SVM learning model. Given a set of data points (x1, y1),...,(xn, yn) to be 

learned (note: each xi  can be a vector, and each yi  is a scalar value), a SVM model is of the 

form [20]: 

 

𝑓(𝑥) = (∑ 𝛼𝑖𝑥𝑖
𝑘(𝑥𝑖, 𝑥)) +  𝑏     (3.1) 

 

SV is a subset of the samples. Without loss of generality, let SV ={x1,...,xl}. Each xi ∈ 

SV is called a support vector.   The kernel function k() measures the similarity between a pair 

of x samples. Each k(xi,x) measures the similarity between a support vector xi  and the input 

vector x to be predicted.  The coefficient 𝛼i is the weight associated with k(xi,x). 

 

 

Figure 4.12: Intuition behind SVM predictability 

 

Because the non-support vectors xl+1,...,xn  are not used in the calculation of f(x), they 

can be seen as the samples used to validate the model f(x).  Figure 4.12 illustrates this point. 
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Suppose a prediction error function is given. For example the error function can be the 

sum of square errors: SSE = ∑ (𝑛
𝑖=1 yi - f(xi))2.  Then, with the optimization objective to minimize 

the SSE, an SVM algorithm determines the following three things: (a) the set SV, (b) the 

coefficients 𝛼's, and (c) the constant b in Equation (1) above.    

Conceptually, the quantity 𝑛−𝑙

𝑛
 can be thought of as a measure for the predictability of 

the model f(x) [24].  This is because the smaller the l (the size of the set SV) is, the larger the 

number of the validation samples is. In other words, if the model can predict more validation 

samples within a given error, then the dataset is more predictable.   

Therefore, we make two observations: (1) Learning is to decide which samples can be 

predicted by other samples. In a sense, it can be seen as a compression process. (2) The more 

samples that can be predicted by others, the higher the predictability is for the given dataset. 

 

4.5.2 Illustration of SVM Models 

Consider |SV|=1. The SVM model is simplified to f(x) = 𝛼1 k(x1, x)+b.  The learning 

problem is simple because one sample x1 is sufficient to predict the behavior of all other 

samples within a given error. 

Assume that the kernel k(x1,x) is a Gaussian kernel k(x1,x)=𝑒{−( 𝑥1−𝑥)2. Without loss of 

generality, also assume 𝛼1=1 and b=0. Figure 4.13 illustrates the model on a 2-dimensional 

plane. All points with the same distance (the quantity (x1-x)2 is the same) to x1 have the same 

predicted y value. This is illustrated in the figure with three circles where the points on those 

circles have the same predicted values ya, yb and yc, respectively.  
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Figure 4.13: SVM model based on one support vector x1 

 

 

Figure 4.14: SVM models based on two support vector x1, x2 

 

Now consider the case with two support vectors x1, x2. The model becomes 

f(x)= 𝛼1k(x1,x)+ 𝛼2 k(x2,x) (assuming b=0). Figure 4.14 shows three cases for x1=1, x2=2, and 

x=1.1,1.2,...,1.9.  Again, we use k(xi,x)=𝑒{−( 𝑥𝑖−𝑥)2
. 

In the first case f1(x), we have 𝛼1=4 and 𝛼2=4. The predicted y values are shown. 

Observe that the predicted y value of a xi is closer to f(x1) if xi is closer to x1. Similar observation 

can be made for x2.  For example, x=1.5 is the most dissimilar point to both x1=1 and x2 =2 and 

hence, f1(1.5) has the largest y value. 
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In the second case f2(x), we have 𝛼1=4 and 𝛼2=2. Notice that in this case the largest y 

value no longer occurs at x=1.4. This is due to the two non-equal weights 𝛼1, 𝛼2.  

Observe that by changing 𝛼1, 𝛼2,the model is capable to capture a variety of convex 

functions.  In the third case f3(x), we take f2(x) and normalize it with the similarity sum 

k(x1,x)+k(x2,x). This results in a linear function. Hence, if we desire to model a linear behavior 

between two samples, we can use the normalization method.  

Figure 4.14 illustrates that a variety of behavior, linear or non-linear, can be captured 

by a simple two-SV learning machine. Later, we will use this simple learning machine as the 

basis to implement a learning machine for PE behavior prediction.  

 

4.5.3 The Predictability of an Inverter 

Inverter perhaps is one of the simplest circuit elements. Therefore, we use an inverter 

to illustrate the intuition behind predictability of a PE.  

 

 

Figure 4.15: An inverter is simple for prediction 

 

Figure 4.15 depicts an inverter with two cases. In the first case, the inverter is fed with 

digital pulses at different times. In the second case, the inverter is fed with rising waveforms.  
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Consider the first case. Intuitively, the output pulse y2 of the input x2 can be easily 

predicted by the two samples (x1, y1) and (x3, y3). This is because the distance between y1 and 

y2 is almost the same as the distance between x1 and x2. Similar observation applies to x3 and 

x2 as well. Furthermore, the shape of y2 is almost the same as the shapes of y1 and y3.  

Suppose we have a kernel function k() that measures similarity between two pulses 

based on their time distance. Then, intuitively y2 can be predicted as: 

 

𝑦2 = 𝑓(𝑥2) =  
𝑦1𝑘(𝑥1,𝑥2) + 𝑦3 𝑘(𝑥3,𝑥2)

𝑘(𝑥1𝑥1,𝑥2)+𝑘(𝑥3,𝑥2)
    (4.2) 

 

If we refer to the discussion of the model f3() in Figure 4.14 earlier, we see that Equation 

4.2 essentially is doing linear interpolation. In other words, the inverter is simple and 

predictable because the output behavior of an input can be predicted by two samples with linear 

interpolation.  

Consider the second case in Figure 4.15. Observe that x2 is "between" x1, and x3 and  

y2 is also between y1 and y3. Intuitively, the linear interpolation of Equation 4.2 may still work. 

Or we can consider a more complex model: 

 

y2 = f(x2) = 𝛼1y1k(x1, x2) +  𝛼3y3k(x3, x2)    (4.3) 

 

Essentially, we can find the coefficient values 𝛼1, 𝛼3 to best fit the output waveform y2.  

Equation (3) is still following interpolation. 

Based on the discussion above, observe that there are two properties that make an 

inverter easy to predict by the equations: (1) the outputs follow the same "ordering" of the 
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inputs. (2) The similarity between two outputs is reflected in the similarity between the two 

corresponding inputs. The first property allows interpolation to work. The second property 

allows similarity-based prediction to work.  

In the following, we will use the first property to explain the notion of complexity and 

the second property to explain the notion of information. We want to define the notions of 

complexity and information in such ways that only a PE with low complexity and low 

information is considered predictable.  

 

4.5.4 Intuition Behind Complexity and Information Measures 

First, it is important to note that given a set of samples {(x1, y1),...,(xn, yn)} where xi  and 

yi  are waveforms, what we have is a kernel function k() that measures the similarity between 

a pair of inputs k(xi, xj). We assume that learning follows the kernel-based learning depicted in 

Figure 4.8 before. Hence, we do not need to know the actual representation of a waveform. All 

we need are the similarity measure values.  

 

Figure 4.16: Intuition behind complexity and information measures 
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Figure 4.16 depicts the intuitions behind the complexity and information measures to 

be developed later.  Keep in mind that although samples are shown along a 1-dimensional line, 

what we focus on is the similarity between them. Hence, those samples can reside in any space.  

For a kernel that is distance-based (such as the Gaussian kernel used in Figure 4.13 and 

Figure 4.14 above), when two samples are shorter in distance to each other, they have a larger 

similarity value, and vice versa. Hence, we can use the distance dist(xi,xj) in the discussion to 

make it more intuitive. 

The first case in Figure 4.16 illustrates the case of low complexity and low information.  

First, the ordering of five y outputs is the same as the ordering of the five x inputs. This gives 

low complexity. Second, the distance between any pair of outputs is proportional to the 

distance between the corresponding pair of inputs. This gives low information.  

In the second case of high complexity and low information, observe that the ordering 

changes among the y outputs. However, if we discard the y labels, the (relative) locations of 

the five inputs are almost the same as the (relative) locations of the five outputs.  In this case, 

we say the information content of the y outputs is almost the same as the information content 

of the x inputs.  

The reason that information measure discards sample labels is the following. If we view 

the samples as distributed in a space following a probability density function p(z), the 

information can be measured by the differential entropy h(Z) Z =-∫z p(z) log p(z)dz.  Basically, 

we view the samples in the x space following a density function px() and the samples in the y  

space following a density function py(). The low information means that the information 

content based on py() is not changed much from the information content based on px(). Hence, 

in this measure, labels are not required. 



105 
 

Given px() and py(), the relative information between the x space and the y space can be 

measured by the well-known Kullback-Leibler Information: 

 

 𝐼(𝑝𝑥(), 𝑝𝑦()) =  ∫ 𝑝𝑥()𝑙𝑜𝑔 (
𝑝𝑥()

𝑝𝑦()
) 𝑑𝑥    (4.4) 

which measures the information loss from the distribution in the x space to the distribution in 

the y space.  Hence, if we can estimate the two density functions px() and py() (this will be 

discussed later),  we can calculate this information loss. From this perspective, we say that a 

PE is with low information if the information loss is low.  

Consider the inverter example discussed above. The information loss by going through 

an inverter is low. This is because an inverter is simply inverting an input waveform to obtain 

its output waveform. This intuition can also be easily understood for an inverter operating in a 

binary space. For example, the information contained in a binary sequence fed into an inverter 

is the same as the information contained in the binary sequence output by the inverter.  

The third case in Figure 4.16 shows low complexity and high information. We see that 

the ordering does not change from x to y. However, the distribution (the relative locations of 

the five samples) changes from x to y. Hence, some information is lost. The fourth case then 

shows high complexity and high information where both the ordering and the distribution 

changes from x to y.  

 

4.5.5 Complexity Measure 

To measure complexity, the above discussion points to the idea of measuring how much 

the ordering is changed from the samples in x space to the samples in y space. While the 

concept of ordering is easy to perceive in Figure 4.16 because samples are projected on a 1-
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dimensional line, in general the ordering is not well defined if we are working in an unknown 

space where only similarity values between pairs of samples are available.  In fact, it is likely 

that a total ordering does not exist for a given set of samples.  

 

 

Figure 4.17: Intuition for complexity measure 

 

Figure 4.17 depicts the idea employed in this work to measure complexity of a PE. 

Suppose a set of samples are given (x1, y1),...,(xn, yn) for a PE.  For any three samples, for 

example (x1, y1),(x2, y2), (x3, y3), we check if their relative distances (or similarities) have 

changed from x to y. 

For example, on the left plot of Figure 4.17, we have d23>d13>d12 in the x space. The 

corresponding y space also has d23>d13>d12. In this case, we say the ordering has not changed 

for the three samples. On the right plot, we have d12>d13>d23 in the y space.  In this case we 

say the ordering has changed, or more specifically the relative positions among the three 

samples have changed.  

The check can be applied to all combinations of three samples (or a randomly selected 

number of combinations if n is too large) to estimate a total number of ordering changes. The 
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higher the number of changes, the higher the complexity of the PE is.  It is easy to see that if 

we apply the complexity measure to the low complexity cases in Figure 4.16, the number of 

changes would be zero.  

 

4.5.6 Information Measure 

Figure 4.18 illustrates the information measure in a 2-dimensional space.  The top case 

shows information unchanged.  The y space is obtained by flipping the x space vertically and 

horizontally, and by shrinking the scale of the image. If we view those dots as samples from a 

probability distribution, we see that the x space and y space depicts the same distribution. For 

example, there is a cluster (dense region) given by x1, x2, x3 in the x space. The same dense 

region is given by y1, y2, y3 in the y space.   

The bottom case shows that the distribution of samples in the x space is different from 

the distribution of samples in the y space. This is easy to see because the dense region given 

x1, x2, x3 in the x space is no longer there in the y space.  

Given a set of samples (x1, y1),...,(xn, yn) for a PE, to measure the information (loss) of 

the PE, we will perform the following three steps: 

 

1)  Estimate a probability density function px() based on samples x1,...,xn  and kernel function 

k(). 

2) Estimate a probability density function py() based on samples y1,...,yn  and kernel function 

k(). 

3) Measure the information loss using Kullback-Leibler Information in Equation 4.4. 
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To perform steps 1) and 2), we need a method to estimate density function from a set 

of samples based on their similarity values. This is a classical unsupervised learning problem. 

For example, we can use the SVM density estimation method proposed in [25]. Due to space 

limitation, the detailed discussion on SVM density estimation is omitted.  

Note that steps 1) and 2) use the same kernel function k(). In theory, this does not have 

to be the case. However, in this work we do not consider using two different kernels. We leave 

that consideration to future work.  

 

Figure 4.18: Intuition for information measure 

 

4.5.7 Supervising Learning Based on Local Prediction 

The complexity and information measures discussed above enables us to assess the 

predictability of a PE. Suppose a PE is deemed predictable after the evaluation. Next, we will 

discuss how to construct a predictor. 

Suppose a set of samples (x1, y1),...,(xn, yn) are available for learning. These samples 

are simulated samples obtained during the entire circuit simulation.  One can try to learn a 

single model f(x) → y but this would be difficult because both x and y are waveforms. Hence, 
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instead of learning a single model, we try to find predictable regions based on a pair of samples. 

Figure 4.19 illustrates our learning strategy.  

 

 

Figure 4.19: Supervised learning flow based on local predictability 

 

The general idea is based on the discussion in Section 4.5.1 before. Essentially, learning 

is to identify samples that can be predicted by other samples. In our learning, we restrict the 

prediction to be based on only two samples. This can result in many local predictors rather than 

a single global predictor for all samples.  When we do that, we need to define what a predictable 

region is based on a pair of two samples. This is because there can be multiple predictors and 

for a future sample, we need to decide (1) whether the future sample can be predicted by any 

of the predictors and (2) if yes, which predictor should be applied.  

 

4.5.8 Defining a Potential Predictable Region 

Figure 4.20 gives an example to define a potential predictable region based on two 

input samples xa, xb. The region is defined as: ∀x: k(xa,x) ≤ k(xa, xb) ∧ k(xb,x) ≤  k(xa, xb). 
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Suppose k() is distance-based, e.g. a Gaussian kernel as discussed before. On a 2-dimensional 

plane, the region can be visualized as the intersection of the two circles as shown in Figure 

4.20 (also refer to the discussion with Figure 4.13 before). 

 

Figure 4.20: An example of potential predictable region by two samples 

 

4.5.9 Deciding a Predictable Region 

 

Figure 4.21: Illustration of a learning dataset based on two samples xa, xb and j other samples 

falling into their potential predictable region 

 

Given two input samples xa, xb and their potential predictable region, Figure 4.21 illustrates 

the local learning problem to decide if the potential region is actually a predictable region. 
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Suppose there are i samples falling inside the potential region. Figure 4.21 shows how 

a dataset or learning can be constructed for this region.  Then, we can apply the simple models 

shown in Equation 4.2 and Equation 4.3 above to see if a predictor can be constructed to predict 

those i samples. If they can be predicted, then the potential region becomes a predictable 

region.  Observe that Figure 4.21 is a much easier learning problem than learning a global 

model to predict all samples. The dimensionality is restricted at 2 and typically if xa and xb are 

close, we do not expect that i is large.  

 

4.5.10 Learning and Model Application 

 

 

Figure 4.22: Illustration of learning phase and model application 

 

Figure 4.22 summarizes the learning and the model application. In learning a local 

predictor is based on two samples xa,xb. Three additional samples x1, x2, x3 are inside the 

potential predictable region defined by xa,xb.  If the three samples can be predicted by a model 

such as Equation 4.2 or Equation 4.3, a predictable region is obtained. In the model application 

phase, if a future sample falls inside the predictable region, it is predicted. If it is outside, the 
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sample is simulated. The simulated samples can then be used to learn local predictors in the 

next iteration. Figure 4.19 above also summarizes this iterative process of learning and model 

application.   

 

4.6 The Overall Framework 

 This section will outline how the theories developed in the previous sections can be 

applied to an example circuit. The circuit in Figure 1.1 is partitioned into three PEs using the 

channel connected component graph, CCG, Figure 1.2. The first step is to determine the input 

set from X to cover the output behaviors in Y. Throughout the remainder of this chapter the 

similarity function is the Gaussian distance measure between waveforms and the clustering 

algorithm is hierarchical clustering. Table 4.1 shows the similarity between the waveforms 

displayed in Figure 4.23 where 100% similarity means that the two waveforms are identical. 

For this section we assume that the waveforms are encoded in a vector form where each 

element in the vector is a voltage value representing the measurement at each time step. All 

waveforms are of the same size. 

Table 4.1: Similarity matrix between events 1-4 in Figure 4.23 
 Event 1 Event 2 Event 3 Event 4 
Event 1 100% 63.6% 59.6% 97.2% 

Event 2  100% 98.3% 69.9% 
Event 3   100% 65.3% 
Event 4    100% 
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Figure 4.23: Four analog events 

Hierarchical clustering is a tree clustering algorithm whose purpose is to join together 

objects into successively larger clusters based on a similarity measure. The similarity measure 

is often a distance measurement between pairs of objects. The algorithm begins with each 
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of the events are similar and can be grouped into significantly fewer clusters at 99%. The 

number of clusters steadily declines as the precision decreases as the allowable distance from 

the center is increased. The analog repeating partitions, 2 and 3, have a significant drop in 

events even at 99%. For Partition 2 when the precision is increased to 99.9% the number of 

clusters becomes 32 and at 100% the number of clusters is 2247. Similarly for Partition 3 at 

99.9% precision the number of clusters is 23 and for 100% the number of clusters is 215. Each 

of the input events to the partitions is unique which implies that there is very little noise 

generated from the partition. The number of clusters at 100% implies that no two events are 

exactly the same, but the dramatic decrease in clusters implies that they are very similar.  

Table 4.2: Number of Clusters per Partition and Precision 
 # Events 99% 95% 90% 80% 70% 
Partition 1 100 20 11 7 7 6 
Partition 2 2247 9 5 4 3 3 
Partition 3 215 8 4 2 2 2 
Partition 4 284 153 122 107 90 70 
Partition 5 2016 365 261 190 136 97 
Partition 6 184 21 21 20 15 15 
Partition 7 2648 578 455 455 374 353 
Partition 8 127653 1120 872 740 573 417 
Partition 9 11644 130 118 85 75 72 

 

4.6.1 Avoiding the Simulation of Unimportant Inputs 

 For the circuit in Figure 1.1 the set of input waveforms is 6000 where each waveform 

is 70pS. For a small circuit, 6000 simulations may not seem like very many and may take little 

time. When the circuits get much larger and the simulations are on the order of minute to hours, 

reducing the input set even by a fraction is crucial. Following the iterative approach from 

Section 4.4, hierarchical clustering is used to determine an initial set of input events to simulate 

through the whole circuit. The cluster is done with 90% similarity which results in 50 clusters. 
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A representative sample, nucleus of the cluster, from each cluster is chosen and simulated. The 

50 output events are clustered with the same similarity and 17 clusters are identified. The 

nucleus of each output cluster is mapped back to the respective input waveform where each is 

determined to be important waveform while the remaining 33 are deemed unimportant.  

 For the remaining iterations until there are no more unique output clusters, the input 

space clustering is not based on just the similarity of the time steps. A new set of features is 

created for each of the 6000 waveforms. Each feature is the similarity measure between the 

input waveform with the important input waveforms. The clustering is performed and 26 

clusters are identified. Of the 26 clusters 17 of those contain the important waveforms and do 

not need to be re-simulated, resulting in only 9 new simulations. The clustering at the output 

remains a comparison between the waveforms and 3 new clusters identified. This process 

repeats until there are no new output clusters, i.e. convergence. This circuit converges after 

two iterations where there are 21 output clusters. To generate a golden set of data for 

comparison, all 6000 waveforms were simulated. The number of output clusters is 21 which 

matches the number of clusters determined from just 68 simulations. 

Table 4.3: Overview to clustering in each iteration 
Iteration Input Clusters Output Clusters 
Initial 50 17 

1 26 20 
2 35 21 

Golden Results 6000 21 clusters 
 
 

4.6.2 Determining Primitive Elements 

 The next phase in simulation reduction is the abstraction of the circuit; determining and 

behaviorally modeling PEs. Simulation data from the input space reduction phase is 



116 
 

decomposed into input/output data for each partition. To determine the complexity of the PE 

the input and output data is clustered. If the output clusters number is more than the input 

clusters then the PE is complex. Table 4.4 shows the number of clusters for each PE in the 

circuit. At various similarity measures, the complexity of the circuit shows that Partitions 1 

and 3 are information reducers while Partition 2 is an information injector. We use 90% 

similarity measure in this work therefore Partition 1 and 3 are candidates for behavioral 

modeling 

 

Table 4.4: Information Measure of PEs  

Precision Partition 1 Partition 2 Partition 3 
Input Output Input Output Input Output 

99% 72 66 66 122 122 40 
98% 45 38 38 86 86 37 
97% 33 29 29 72 72 36 
96% 24 22 22 63 63 35 
95% 21 19 19 54 54 34 
94% 20 18 18 52 52 31 
93% 17 15 15 45 45 31 
92% 14 14 14 40 40 31 
91% 13 13 13 34 34 27 
90% 12 12 12 42 42 25 

 

  

 The complexity of the partitions are measured by the distance between three events, 

Figure 4.17. If the ordering distance between each event is maintained between all triples then 

the partitions is considered non-complex. Table 4.5 shows the complexity measure for each of 

the three partitions. The OUT column indicated how many of the samples have not had the 

distance maintained between all three events at the input and the output, i.e. input d1<d2<d3 
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and output d1<d3<d2. 50,000 random combinations of events are analyzed for each partitions. 

Even though Partition 2 is an information injector and removed from the behavioral modeling 

candidates, we show the complexity for reference. Of the mismatched events in Partition 1 and 

3, the difference for all the events is <<1%. For example given at the input {d1, d2, 

d3}={.00011387,.00011382,.9999} and at the out {d1,d1,d3}={.0375,.0376,.999} the change 

in order for the output is so insignificant. This is not the case for Partition 2. The column INS 

represents the insignificant events which have differences <<1%. 

 

Table 4.5: Complexity Measure of PEs 

50k Runs Partition 1 Partition 2 Partition 3 
 OUT INS OUT INS OUT INS 
1 11.42% 11.32% 26.31% 11.76% 10.03% 10.02% 
2 11.70% 11.58% 26.57% 11.98% 9.65% 9.65% 
3 11.95% 11.86% 26.41% 12.10% 9.86% 9.86% 
4 12.02% 11.90% 26.43% 11.77% 10.08% 10.07% 
5 11.86% 11.75% 26.89% 12.08% 10.11% 10.11% 
6 12.02% 11.93% 26.58% 12.06% 10.09% 10.08% 
7 11.64% 11.55% 26.37% 11.91% 10.28% 10.27% 
8 12.15% 12.04% 26.40% 11.99% 9.99% 9.90% 
9 11.80% 11.68% 26.22% 11.89% 9.99% 9.98% 
10 12.18% 12.05% 26.64% 11.81% 10.14% 10.13% 
Average 11.87% 11.77% 26.48% 11.94% 10.02% 10.01% 

 

Chapter 3 discussed an SVM transient based prediction method for modeling the 

behavior of analog circuits. As method earlier this method is not general and has various 

limitations. For non-complex partitions which have ordered input/output waveforms any 

behavioral modeling, even SVM, will be effective. In this work we will use a lookup table with 

interpolation to predict the output waveform. 
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 The initial table is built using the simulation data from the complexity analysis of the 

PE. Monte Carlo simulations are performed on the partition and simulated. For each input in 

the table 100 samples of variation data are collected. The events are analyzed for information 

measurements based on the discussion above. This reduces the table entries from 2121 to 27. 

This tells us that the variation data had little impact on the partitions behavior.   

Every new input waveform is applied to the lookup table behavioral model. If the 

output can be predicted by interpolation of the table data then no simulation is necessary. If 

the output cannot be predicted then the waveform is simulated with and without Monte Carlo 

variation sampling and added to the lookup table as a new entry. Figure 4.24 displays the 

number of waveforms added to the lookup table as more input waveforms and variation 

samples are applied. For all 6000 input waveforms only 77 are simulated which is 1.28% of 

the simulation time. These models are significantly faster the circuit simulation, on the order 

of two to three magnitudes depending on the PE size. 

 

 

Figure 4.24: Number of input waveforms verse the number of lookup table entries 
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4.7 Experimental Results 

The methods outlined in Section 4.6 are further extended to a number of individual 

partitions for PE analysis and large complex analog circuits, UWB-PLL. Nine partitions are 

used in the remaining chapter as a representative sub-set of the partitions. The partitions are as 

follows: 

1) Voltage Regulator Partition 3 

2) Voltage Regulator Partition 1 

3) Differential amplifier from ∑∆-SDM 

4) Charge Pump bias UWB-PLL 

5) Charge Pump differential down partition 

6) PFD Down from UWB-PLL 

7) PFD Up from PLL for Clock Recover 

8) Divider Partition 1 from UWB-PLL 

9) Divider Partition 3 PLL from Clock Recovery 

 

To determine which PEs are complex the input and output clustering is applied to 

Partition 1-9. The analysis results for the input (IN) and output (OUT) clusters are displayed 

in Table 4.6a and Table 4.6b. All events of the input and output are simulated over the same 

amount of time, 100nS. Partitions 1-5 are all non-complex PE and can be modeled using a 

lookup table. Partitions 6-9 on the other hand will need to be simulated. These partitions which 

are digital are highly sensitivity to changes at the input, in particular delay based events. 

Partitions 4 and 5 have a digital input and produce an analog output. The analog output 

responds slowly over time to changes in the digital input which is why so many are similar 
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while there are so many different combinations of digital inputs. Partitions 1-3 are partitions 

of circuits whose functionality is to transfer or amplify input waveforms which explains why 

the clustering of the input and output are very similar. Figure 4.25 displays the events of 

Partitions 1. The 100 input events over 100nS to the partitions are displayed in Figure 4.25(a) 

followed by the central event for each clusters for (b) 100%, (c) 99%, and (d) 90%. 
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Table 4.6a: Input Cluster Analysis 
 Partition 

1 IN 
Partition 
1 OUT 

Partition 
2 IN 

Partition 
2 OUT 

Partition 
3 IN 

Partition 
3 OUT 

Partition 
4 IN 

Partition 
4 OUT 

100% 100 100 100 100 100 100 200 200 
99% 20 15 11 7 21 15 10 2 
98% 16 15 8 5 15 11 7 2 
97% 12 11 7 4 12 9 7 2 
96% 11 11 7 4 11 8 6 2 
95% 11 9 6 4 10 8 6 2 
94% 10 8 6 4 9 8 6 2 
93% 9 7 6 4 8 7 6 2 
92% 9 7 5 3 8 7 5 2 
91% 7 7 5 3 8 7 5 2 
90% 7 7 5 3 8 6 5 2 
89% 7 7 5 3 8 6 5 2 
88% 7 7 5 3 7 6 5 2 
87% 7 6 5 2 7 6 5 2 
86% 7 5 4 2 6 6 5 2 
85% 7 5 4 2 6 6 4 2 

 
Table 4.6b: Input Cluster Analysis 

 Partition 
5 IN 

Partition 
5 OUT 

Partitions 
6-9 IN 

Partition 
6 OUT 

Partition 
7 OUT 

Partition 
8 OUT 

Partition 
9 OUT 

100% 300 300 300 300 300 300 300 
99% 269 2 125 269 131 198 202 
98% 266 2 93 266 131 198 201 
97% 261 2 71 261 131 198 201 
96% 251 2 59 251 120 198 201 
95% 244 2 52 244 103 197 201 
94% 236 2 52 236 96 197 201 
93% 231 2 43 231 92 197 201 
92% 223 2 41 223 86 197 201 
91% 215 2 39 215 82 197 201 
90% 207 2 38 207 80 197 201 
89% 197 2 33 197 77 196 201 
88% 192 2 32 192 74 196 201 
87% 187 2 31 187 69 196 201 
86% 179 2 30 179 68 195 201 
85% 169 2 29 169 68 195 201 
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Figure 4.25: Clustered events from Partition 1 output (a) input (b) 100%, (c) 99%, (d) 90% 
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Table 4.7: Complex Primitive Elements with Reduced Simulation Time 
Circuit Complex 

PE 
Time to 

Convergence 
Golden Simulation 

Time 
UWB-PLL 22 647.3h 1481.2h 
PLL CR 18 377.5h 1232.1h 
Regulator 2 20m 119.4m 
TIA 1 17.9m 16.5m 

 

The results in Table 4.7 present the applied methodology on 4 circuits from Chapter 2, 

the two PLLs are extremely large and complex. The time to convergence is the amount of time 

it takes to (1) converge on the input space, (2) create the behavioral models, and (3) apply 

Monte Carlo analysis. The golden simulation time is the amount of time to run 1,000 Monte 

Carlo simulations on the full circuit with 10 different frequencies (PLLs) and 10 different input 

combinations. Except the TIA, where the simulation is just as fast as the model predictions, 

the other circuits have 55-75% reduction in simulation time.  

 

4.8 Conclusion 

 This Chapter developed a methodology for applying statistical learning to the 

verification of analog circuits. The first methodology developed utilizes unsupervised learning, 

circuit partitioning, and event propagation to determine the minimal representative set of input 

events which describe the output space. A significant amount of simulation time is saved by 

only simulating the important inputs. The second methodology developed locates primitive 

elements with low complexity which can be modeled behaviorally instead of simulated. 

Unsupervised learning is used on the input and output of each cluster to determine if the 

primitive element increases, transfers, or decreases the information content. Distance 

calculations are used to determine the complexity of the events through the primitive element. 
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Low complexity primitive elements maintain the distance ordering of the events. Behavioral 

models are created using supervised learning techniques for primitive elements with 

transferring or decreasing information content. We have shown the effectiveness of the method 

on four analog circuits where the simulation time is decreased by 55-75%. 
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Chapter 5 

 

Efficient Method for Critical Node Identification 

Time Varying Large Analog and Mixed Signal 

Circuit with Process and Environment Variation 

 

 
Every transition to a new technology node increases the complexity of the process, 

resulting in larger numbers of process faults, greater parameter variations and more 

complicated descriptions of tolerances. This is especially true with nanometer technologies and 

low-power high-frequency circuits. Random and systematic process variations have a large 

influence on the quality, yield, and reliability of the analog, mixed signal, and RF circuits. This 

is a challenge for today's designs because varying parameters are usually uncorrelated and 

increasingly hard to capture. Undetected critical behaviors can result in many design re-spins 

and lower yield, increasing the time to market and production costs. It is important to detect 

critical transistors beforehand and determine their tolerance ranges so that critical behaviors 

can be analyzed before manufacturing the circuit. 

Circuits that are high-speed and low-power are highly susceptible to various reliability 

and yield concerns in CMOS technologies, and are also negatively impacted by various 

environmental effects.  For these reasons analyzing circuits under environment variation, 
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reliability effects, and manufacturing variation ensure the circuit maintains proper functionality 

over time out in the field. 

An example of concerns in reliability and yield is illustrated in high precision analog 

circuits, such as converters and comparators.  These require stable threshold voltages that can 

be disrupted by such effects as hot carrier injection (an effect within transistors where an 

electron or hole gains enough kinetic energy to break into the gate dielectric and become 

trapped), negative bias temperature instability (when positive oxide charge is generated in 

transistors under negative bias in increased temperatures) or process variation. Additionally, 

environmental effects, such as VDD fluctuation caused by high switching digital circuits, result 

in fluctuation of speed and functionality of transistor. Therefore it is important to analyze the 

circuit under environment variation, reliability effects, and manufacturing variation to ensure 

the circuit maintains proper functionality over time out in the field. 

This chapter provides a directed, simulation-based, sensitivity analysis of process 

variation of very large analog circuits for the purpose of critical transistors identification. The 

partitioning and input space methods discussed in Chapter 3 locates sensitive and non-sensitive 

partitions and provides an event comparison methodology based on waveform extraction and 

sensitivity analysis. Using these methods we will show that it is possible to locate high 

sensitivity transistors which cause critical behaviors due to a combination of process variation 

and waveform excitation. To our knowledge this has never been reported for circuits of this 

size.  

After locating the high sensitivity transistors, the method is extended in order to 

identify reliability and yield concerns. Using these methods we will show how we can quickly 

and automatically find transistors that pose reliability and yield concerns due to process 
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variation and power fluctuation for very large analog circuits. Due to the overtime nature of 

reliability concerns the analysis is performed in the transient domain. We will show that if both 

Vth and VDD change simultaneously, faulty behavior can be observed even though each source 

of variation has been verified for proper behavior independently. We will analyze how the 

variations and fluctuations affect the circuit behavior and provide trade-off between process 

variations and supply voltage resilience for the most sensitive transistors. Though we only 

focus on Vth and power fluctuation, the method can be extended to any number of parameters. 

The target uses of this tool is pre-layout and post-design syntheses, where the critical circuit 

elements and behaviors need to be identified taking into account process variation. There are 

three main applications for critical transistor analysis: 

1. Re-designing the circuit by resizing or adding dummy elements to reduce the critical 

transistors effect on the behavior. 

2. Reducing the parameter space of Monte Carlo simulations to just critical transistor 

parameters of the design. This is useful in Monte Carlo-based yield optimization 

methods or verification. 

3. Incorporating into an optimization loop for design or layout. 

This chapter is organized as follows. Section 5.1 provides a motivational example for 

power variation and circuit sensitivity. Section 5.2 provides background on sensitivity analysis 

techniques. Section 5.3 provides background on reliability and yield optimization. Section 5.4 

discusses critical elements and sensitivity. Section 5.5 outlines the automatic method for 

identifying critical transistors. Section 5.6 provides experimental results. Section 5.7 

concludes. 
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5.1 Motivational Example 

As the power supply voltage, VDD, gets closer to the threshold voltage, Vth, the 

transistor’s threshold voltage becomes more sensitive to variation. For low power high 

frequency components, power and process variations have a drastic effect on the performance 

and reliability of the device. In this motivational example we will first show the effects of 

varied power levels on the circuits from Chapter 2. We will then show the effect of process 

variation from -6σ to 6σ Vth on the lock time performance of three different transistors. Finally 

we will show the effect of combined power variation and process variation on the lock time. 

 

Figure 5.1: VDD effects on the lock time performance of UWB-PLL 

 

Figure 5.2: Vth variation from -6σ to +6σ for three transistors 
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Figure 5.1 shows the effect of VDD on the lock time of the UWB-PLL. VDD is varied 

from 0.9V to 1.5V where the nominal operating VDD is 1.2V. At 0.9V the circuit can never 

achieve lock and thus is not included in the graph. The supply power is held at a constant VDD 

for the entire transient simulation. As VDD decreases, the circuit becomes unstable and 

eventually is unable to lock. Figure 5.2 shows the effect of Vth variation of three individually 

varied transistors and their respective lock times. 

 

Figure 5.3: Simultaneous VDD and Vth variation simulations for (a) Transistor 1, (b) 

Transistor 2, and (c) Transistor 3 
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Each simulation contains only a single transistor varying at 13 different σ points. Values of σ 

that are not graphed for a transistor indicate that the PLL never achieves lock. Certain 

transistors affect the circuit behavior more drastically then others even if they are varied by the 

same amount and have similar functionality. The final Figure 5.3 presents the effect of both 

Vth variation and VDD changes and their combined effect on the lock time. As observed in the 

graphs, coupled Vth and VDD variation have drastic effects on the performance that may be 

otherwise unnoticed by performing the experiments independently. For example when 

combining VDD =1.0V and +3σ Vth for Transistor 1 the circuit no longer locks as compared to 

nominal VDD where the circuit locks almost at the ideal time. The effects of power supply and 

process variations are a source for serious reliability concerns and must be addressed before 

the device is manufactured 

 

5.2 Techniques for Sensitivity Analysis 

Over time circuit behavior is subject to change through ageing and environmental 

effects and sensitivity analysis is useful in locating the critical parameters and elements. 

Sensitivity analysis computes the effect of parameter variations on the circuit performance. 

The analysis provides quantitative insight into performance deviations due to process variation 

and their effects on design specifications.  

 

5.2.1 Adjoint Techniques  

The adjoint method [1] is a way to perform sensitivity analysis of a circuit in the 

transient domain. The method can be formulated as a convolution of circuit equations with a 
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carefully constructed function. Proper initial values have to be determined by a backward 

integration of time in the related differential algebraic equations. Aside from transient analysis, 

adjoint methods are useful in determining optimal reduced order models [2][3] in the case of a 

large number of parameters. 

Many works in this field are for linear circuits [1][4-6]. The method has been extended 

to incorporate nonlinear differential equations [7-9]. The works in [10-17] use adjoint linear 

analysis for AC, periodic AC, and AC steady state analysis for time-invariant or periodically 

time-varying systems. 

Though the adjoint method has the ability to perform sensitivity analysis in the transient 

domain, it is not robust enough to incorporate a very large number of parameters. When dealing 

with sensitivity of the circuit with process variation, the resulting differential equations become 

unrealistic to be solved efficiently.  

 

5.2.2 Symbolic Techniques 

The main purpose of symbolic simulators is to replace tasks that require repeated 

computations such as Monte Carlo simulations and design space exploration [18][19]. These 

techniques are applied in early design stages where fast analyses for quick re-designs are 

required. This stage often relies on designer’s knowledge, and is mainly done by hand. With 

the advancements of computers and their processing power on one hand and increased circuit 

complexity on the other hand, simulation-based techniques such as Monte Carlo-based 

methods are becoming more popular. Nonetheless, symbolic simulators are very fast and 

provide an early analysis of circuit sensitivities. 
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With the introduction of Binary Decision Diagram-based computation methods, 

symbolic simulators had been extended to handle opamp circuits containing over 20 transistors. 

If hierarchical methods are employed [20] more than twice as many transistors can be analyzed. 

Symbolic sensitivity analysis techniques are applicable to circuits on a scale of tens of 

transistors. Large analog blocks, with more than 20 transistors, need to be approached with 

either approximation [21] or hierarchical methods [22].  

Hierarchical methods [20][22-28] derive symbolic formulas for a sequence of 

expressions or nested symbolic expressions from the decomposition of circuit transfer 

functions. In topological hierarchical analysis [24] the circuit topology is represented as a 

directed graph whose edges and weights of the edges are circuit parameters. Decomposition is 

applied to the graph and analysis is performed to find disjoint paths and loops. In network 

formulation [22] decomposition is applied directly to the transfer functions and variables are 

eliminated one at a time for each sub circuit.  

Approximation methods [21][29-35] discard insignificant terms based on the relative 

numerical magnitudes of the symbolic parameters and the frequency defined at some nominal 

design point or range. These methods suffer with respect to accuracy, but make up for it with 

the reduced expression, which increases speed. Unfortunately the simplified expressions often 

lose certain information for sensitivities with respect to parasitic or process variation [26]. 

Determinant decision diagrams (DDDs) [36][37] exploit the sparsity and sharing of 

sub-expressions within the circuit matrix and create graph representations of the symbolic 

determinants, under the assumption that each element in the matrix is unique. In the worst case 

DDDs grow exponentially with the size of the circuit, but in practice show orders-of-magnitude 



136 
 

reduction in the number of elements. Element-Coefficient Diagrams [38][39] are an extension 

of determinant decision diagrams to include multiple roots. 

The Method of Moments (MoM) was first introduced in [40][41] and was used to solve 

the integral equations of the sensitivities of electrostatic problems for planar structures. The 

works in [42][43] introduced adjoint techniques with MoM for full-wave sensitivity analysis. 

Symbolic analysis MoM-based sensitivity scales exponentially with the circuit size. 

Sensitivity analysis has also been used in genetic circuits [44]. The work reported in [45] uses 

Random Sampling – High Dimensional Model Representation (RS-HDRM) algorithm which 

can provide reliable pre-experimental estimates on sensitivities of the circuit properties with 

respect to broad scale variations in the model parameters without knowing their precise values. 

The global sensitivity analysis technique can decompose the high-dimensional, nonlinear 

contributions of reaction rate constants to the network properties (represented by their total 

sensitivity) into a hierarchy of low-dimensional terms. Genetic circuit components are built 

from well-studied natural networks, therefore the ordinary differential equations, initial 

conditions, and tolerance ranges are all usually known beforehand. 

All of these symbolic techniques require that an efficiently solvable function can be 

derived. The main difficulty with symbolic analysis is that the number of product terms in an 

expression may increase exponentially with the size of the circuit. For a circuit with 15 nodes 

and 25 devices (transistors, resistors, etc.) the determinant of the circuit matrix contains more 

than 1011 product terms [46]. The above techniques have attempted to reduce the terms as much 

as possible, but even with the advancements in the field most state-of-the-art techniques can 

handle "large" analog circuits ranging from 20-40 transistors or are tailored specifically to a 

circuit type and not general enough to be used on other circuits. Many state-of-the-art works 
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using symbolic analysis are limited to linear analysis of the circuit [47-50]. In contrast the sizes 

of circuits in this thesis range from tens to thousands of transistors. The existing methods are 

impractical for circuits of such size. To the best of our knowledge there are no symbolic 

sensitivity analysis techniques able to handle circuits as large as a PLL.  

Another shortcoming of these methods is their inability to do analysis in the transient 

domain. Transient analysis provides the picture of the system as a whole and how its varied 

behavior over time may affect neighboring digital components, i.e. lock time of a PLL.  

 

5.2.3 Genetic Algorithms 

Genetic algorithms are very fast and very powerful global optimization techniques. 

Their goal is to find an optimum solution based on a set of objectives and parameters. For 

sensitivity analysis a genetic algorithm [51-54] is combined with some kind of numerical 

circuit simulator such as SPICE. The data from the simulator is analyzed and sensitivity is 

computed by the algorithm, which then provides a new set of optimized parameters for 

simulations. The loop and simulations continue until an optimized solution for the objectives 

is found.  

 

5.3 Techniques for Yield and Reliability 

 

5.3.1 Reliability 

Traditionally, reliability testing of a device is performed through stress testing at the 

device level. Designers are forced to use large design margins since the effect of device failures 
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at the circuit level are not considered, limiting performance [55]. Given a specific process 

technology, certain analog components can admit 10% parameter drift, while others as little as 

.1%. The Vth shift caused by process variation and reliability concerns has dramatic effects on 

the performance of analog circuits.  

There are four classes of reliability concerns; spatial stochastic unreliability effects, 

temporal deterministic unreliability effects, temporal stochastic unreliability effects, and 

dynamic unreliability effects [56]. Spatial stochastic reliability effects affect the yield of a 

circuit right after manufacturing. These effects include parametric process variation and time 

dependent wear out effects. Temporal deterministic reliability effects such as negative bias 

temperature instability and hot carrier degradation cause a shift in transistor parameters over 

time. These effects can be prevented by reducing the power supply [57], but the supply voltages 

can no longer be scaled at the same rate as in previous transistor generations due to the non-

scalability of the sub-threshold voltage [58-60] Therefore hot carrier injection is a major 

concern whose effects increase the number of interface and oxide traps resulting in shifts in 

threshold voltage, Vth, carrier mobility, β, and output conductance, go. Bias temperature 

instability is a shift in Vth after a bias voltage has been applied to the gate at elevated 

temperatures [61]. Temporal stochastic unreliability effects also cause a shift in transistor 

parameters, but can also result in circuit failure from time dependent transistor mismatch. 

Dynamic reliability effects are caused primarily by the environment in which the circuit is in 

[62].  
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5.3.2 Yield Optimization 

The goal of yield optimization of to find the design point of a circuit such that the 

maximum yield is achieved taking into account the manufacturing and environmental 

variations [63]. In contrast, the goal of design optimization is to determine design parameters 

such that the circuit performance is as close to the nominal as possible, taking into account 

process variation. In both cases the circuit needs to be analyzed for its sensitivities with respect 

to various parameters. This section will focus only on the analysis methods used in yield 

analysis and not on the optimization engines. 

The typical flow for circuit yield optimization analyses the effect of parameter values 

on a circuit and the optimization engine uses the analysis to produce a new set of parameter 

values. This cycle continues until an optimized set of parameters is found. There are four types 

of analysis methods that are used in yield optimization: corner methods [64][65], performance-

based worst case methods [66][67][68][77], response surface methods [69][70], and Monte 

Carlo methods [63][71-75]. A corner based method uses the fast/slow parameter sets of a 

device model as the worst-case parameters for all devices in a given circuit. The number of 

simulations is extremely low and they give a ballpark of the worst-case performances, but they 

are pessimistic and lead to potential overdesign. They do not consider every possible 

performance parameter that reduces the yield. The performance specific worst-case methods 

extract the worst-case parameters for each specific performance of the circuit in its nominal 

state, though the search for this state is difficult.  Response surface methods create macro 

models based on regression to estimate the yield based on design variables and process 

parameters. These models benefit from the low computational cost making exploration very 

fast, but they must trade-off between accuracy and complexity of the model and require a large 
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number of samples for higher accuracy. Monte Carlo is the most commonly used and reliable 

technique due to its generality and high accuracy, but cannot be used within an iterative 

optimization loop due to the number of simulations required. 

Corner case and worst-case performance methods are generally pessimistic and do not 

test the full range of the circuit which reduces the yield. The method in [67] linearizes the 

performance at the worst-case point even though the search for this point uses nonlinear 

optimization, which introduces errors. [68] Builds a response surface model relating the 

performance to intra-die parameters that are correlated to the design parameters. The method 

in [77] utilizes the Box-Behnken Design which is an independent quadratic as it does not 

contain an embedded factorial or fractional factorial [78]. Each factor has three levels that form 

a box around the design space and samples are taken on the midpoint on each edge of the box. 

Response Surface techniques model the circuit performances as a function of the 

parameters around the nominal design point. This model is then used to estimate the yield and 

provides insight into the design, which potentially may produce a more efficient solution. [69] 

Uses genetic algorithms to mine data from simulations to find the best-fit model automatically 

without an a-priori template. Performance based macro-modeling technique [70] employs a 

quasi-random sampling scheme using Halton Sequence Generation [81] that uniformly 

samples the design space. With any response surface modeling or macro-modeling technique, 

the accuracy of the models is largely dependent on the sampling of the space and 

dimensionality of the problem. 

The Monte Carlo algorithm takes random combinations of values chosen from within 

a specified tolerance range of each parameter. For large number of parameters and dimensions, 

the number of simulations could be very high if the application requires some kind of space 
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exploration. Therefore, various sampling methods have been introduced in order to reduce the 

number of simulations while still maintaining robustness of Monte Carlo. 

Latin hypercube sampling [63][72][73][76] is the most common method to reduce the 

number of evaluations required while still enduring reasonable accuracy in computing the 

performance distribution function with multiple variables. It is used in conjunction with Monte 

Carlo to reduce the number of simulations and achieve a reasonably accurate random 

distribution. The key to sampling is stratification of input probability distributions, which 

divides the cumulative curve into equal intervals on the cumulative probability scale. A sample 

is randomly taken from each interval and that sample represents the interval. All of the samples 

are combined to recreate the probability distribution.  

Quasi-Monte Carlo [74][75] requires a careful mapping of important statistical 

variables to the individual dimensions of the sampling process for effective use in higher 

dimensions. The work in [79] recommends either providing designer expertise or rank 

correlation coefficients for the mapping. If neither is available then the Karhunen Loéve 

Expansion (KLE) can be employed [80]. The KLE of a random field model of intra-die 

statistical variation can take an extremely large model with many random variations and reduce 

them to just a few uncorrelated random variables. 

All of the above sampling techniques suffer from large dimensional spaces. Though 

there are techniques to reduce the dimensionality, they either require a knowledge-based guide 

or do not reduce the dimensionality enough for the scale of the circuits considered in this thesis. 

It was reported in [63] that while the Quasi-Monte Carlo and Latin Hypercube samplings are 

significant speed ups over traditional Monte Carlo, their computational load is too high for 

large analog circuits. 
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5.4 Critical Elements and Sensitivity 

Sensitivity is defined as the amount the circuit behavior changes with respect to 

particular circuit elements. In this work the circuit behavior is the output waveform over time 

with respect to changes in Vth. Equation 1 defines sensitivity as  

 

𝑆𝑥
𝑦

=  lim
∆𝑥→0

(

∆𝑦

𝑦
∆𝑥

𝑥

) =
𝑥

𝑦
 

𝑑𝑦

𝑑𝑥
        (5.1) 

 

Where S is the sensitivity, x is the changing circuit component, and y is the circuit behavior 

we wish to evaluate as x changes. The equation simply evaluates the dependent variable ∆y/y 

changes with respect to the change in the independent variable ∆x/x. The limit as ∆x goes to 0 

evaluates the expression for small changes. As described in Chapter 4 each waveform is 

decomposed into events where each event is a vector of length n. Each event is based on the 

type of waveform detected; analog, digital, analog oscillating. Each vector is compared using 

the sum of squares. 

A critical transistor is a highly sensitive circuit component. High sensitivity is 

determined by ranking all of the sensitive components by the level of sensitivity. The levels 

are determined by percentages of the varied component. For example, Vth of a transistor 

component is varied at ten different levels of sigma, where the lowest level corresponds to 

small changes and the highest level to large changes. Components that fall into the lowest ranks 

affect the circuit behavior with just small changes in sigma, making them the most sensitive 

components. In this work, we consider 20% of the ranking levels to be highly sensitive as 
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default - the lowest two ranks will contain all the highly sensitive transistors. This value can 

be changed depending on how conservative the user is. The higher the percentage of the 

ranking, the more highly sensitive transistors there will be. The number of ranks depends on 

the distribution and uniform sampling of the component being varied. If the sampling steps are 

small there will be more ranks and vice versa.  

 

5.5 Automatic Critical Transistor Identification 

While the goal in Chapter 4 was to determine the minimum set of inputs of X (input events) 

and C (transistor variation) to completely verify a large analog feedback circuit, here we want 

to use the output clusters to determine the subset of C which has the lowest tolerance to 

variation and has the largest impact on the output behavior. Figure 5.4 represents the behavioral 

output space where X is a held constant and C is varying. The star symbol represents the 

nominal output behaviors and the clusters represent similar behaviors. The cause of each of the 

behaviors within the clusters that do not contain the nominal output is analyzed to determine 

the location of the varied transistor and its tolerance ranges. 
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Figure 5.4: Clustering of the behavioral output space. Nominal behavior is the star symbol 

and each cluster represents a group of similar output behaviors. 

 

The circuit is first partitioned into primitive elements (PEs) using CCG. Stage one is to 

remove non-critical nodes at the PE level. An input event is applied to the PE and each 

transistor is varied and simulated independently by the maximum, i.e. σ=6. If the similarity 

between the non-varied output event and the varied output event is >99% then the transistor is 

considered non-critical. A large portion of the transistors are pruned from the critical set with 

only performing simulation on a PE. These non-critical transistors can be removed since the 

variation did not affect the output of the PE it will not affect the output of the whole circuit. 

Performing the pruning of transistors at the PE level in Stage 1 drastically reduces the space 

C. Stage 2 is to locate transistors which affect the final output behavior and not just the PE 

output behavior. This will provide us with two things (1) how the transistor variation behavior 

affects the entire circuit, and (2) if the transistor variation is masked or corrected by the normal 

operation of the circuit. The transistors that fall into category (2) are pruned early in the 

parameter sweeps. Instead of full circuit simulation, the simulation reduction method in 

Chapter 3 is used. All PEs classified as non-critical are replaced with behavioral models for 

faster simulation while critical PEs are simulated. Instead of performing Monte Carlo in C, 

sweeps are performed on a single transistor at a time. The transistors not pruned from Stage 1 

are swept from the next largest variation, i.e. σ=5, until the circuit output behavior is clustered 

in the same cluster as the nominal output response of the circuit. When transistor variation is 

being swept on non-critical PEs, the behavioral models are replaced with circuit simulation for 

more accurate responses; otherwise they are replaced with behavior models.  
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It is true that transistors can interact with one another to form new behaviors and together 

become critical. It would require an extensive amount of simulations and time in order to locate 

these combinations, especially in a very large circuit. The goal of this chapter is to quickly 

locate the most critical transistors within the design in order to help facilitate and guide layout. 

Therefore we are only looking for the independently critical transistors. Each simulation will 

have independent analysis for each transistor, they can be run in parallel reducing the amount 

of time to find the transistors. 

The following example is performed on the circuit in Figure 1.1. The transistor set contains 

all of the transistors in the design and partition analysis at 6σ is performed on each transistor. 

At 6σ all of the transistors are very sensitive. To find the tolerance range for each sensitive 

transistor we perform a greedy search which splits the max σ range in half at the specified 

uniform intervals. If the max range is 6σ, then the transistor is simulated next at 3σ. Partitioning 

with behavioral modeling and simulation is performed at 5σ thru .1σ and the results are 

displayed in Table 1 where S stands for sensitive, NS represents non-sensitive circuit responses 

and NT represents variation levels not tested. For Transistor 7 the variation simulations are 

±6σ partition simulation and {±3σ, ±1σ, ±.1σ, +.5σ} circuit simulations. The total number of 

transistors for each rank is shown in the bar graph Figure 5.5. The highly sensitive critical 

transistors which are within Rank 1 and 2 (±.1σ and ±.5σ) are displayed in Figure 5.6(a). 
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Table 5.1: Sensitivity for each transistor with specified variation. S=Sensitive, NS=Non-
Sensitive, NT=Not Tested 

Transistor -5 σ -4σ -3σ -2σ -1σ -.5σ -.1σ +.1σ +.5σ +1σ +2σ +3σ +4σ +5σ 

1 S NT S NT S S S S S S NT S NT S 

2 S NT S NT S S S NS NS S NT S NT S 

3 NS NT NS NT NS NT NS NS NT NS NT NS NT NS 

4 S S NS NT NS NT NS NS NS S NT S NT S 

5 S NT S NT S NS NS NS NS S NT S NT S 

6 S NT S NT S NS NS NS NS S NT S NT S 

7 S NT S NT S NT S NS NS S NT S NT S 

8 S NT S NT S NT S S S S NT S NT S 

9 S NT S NT S NS NS NS NS S NT S NT S 

10 S NT S NT S NS NS NS NS S NT S NT S 

11 S NT S NT S NS NS NS NS NS S S NT S 

12 NS NT NS NT NS NT NS NS NT NS NT NS NT NS 

 

 

Figure 5.5: Bar graph of sensitive variation distribution of transistors 
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Figure 5.6: Critical transistor comparison between (a) Rank 1 with (b) expert design analysis  

 

Figure 5.6 displays the critical transistor locations found through the ranking systems. 

Rank 1 and 2 critical transistors are encapsulated in a red box in (a) while the designer nodes 

locations (b) are within a blue box. The designer located the critical nodes which reside on nets 

Vin, Vout and Vctrl, therefore the critical transistors are those which directly feed those nodes. 

Vctrl is held constant through these simulations so we have removed Vctrl from the critical node 

list. Transistors 6 and 8 are within Rank 3 at σ=1 which is close to being critical. Transistor 3 

on the other hand is not critical and hardly sensitive during full circuit simulation while 

Transistor 1 which was not located by the designer is highly sensitive. We were able to prune 

one transistor from the critical list while adding another.  

 

5.6 Experiments 

The experiments were run on the circuits with variations described in Chapter 2. 

Sensitivities that are less the 99% are added to each rank. In this work extremely small 

perturbation in the waveforms are not considered sensitive enough for analysis. For a transistor 

to be critical it needs to be in ranks 1 or 2 and be at least 95% sensitive for a given power level. 
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95% is the sensitivity measure for the output behavior clustering which can be changed based 

on the user need. The power is varied in a range from ±20% of the nominal VDD. The range 

is uniformly sampled and simulated in combination with Vth variation. Each circuit will be 

analyzed by the number of sensitive transistors per rank and the highest ranked transistors are 

compared against an expert analog designers hand done critical node predictions. 

 

5.6.1 Cascode Regulator 

The distribution of sensitive transistors for the regulator is shown in Figure 5.7(a). The 

number of sensitive transistors is slightly deceiving because most the sensitivities fall within 

97-99% range. Of the highest sensitivity transistors, 2 of the 3 are highly critical, resulting in 

catastrophic failures for low levels of variation, Figure 5.7(b). The third transistor shows 

decreased amplitude with respect to the nominal waveform, but still results in an oscillation. 

Each transistor location is marked in Figure 5.8(a), where the red boxes are the two highly 

sensitive transistors in Rank 1 and the green box is the Rank 2 transistor. As compared with 

the designers critical node analysis in Figure X(b) where nodes 8 and 9 are the most critical, 

then 1-5, and finally 6 and 7. In comparison we detect that the most critical nodes in the design 

with be nodes 8 and 9 which are labeled red and 5 which is labeled green. The remaining nodes 

are in Ranks 3 and 5. The most critical transistors are within the biasing portion of the circuit. 

The distribution in Figure 5.9(a) depicts the total number of sensitive transistors for 

each σ variation level at different power levels. While there may appear to be a large number 

of sensitive transistors in σ=5, this is slightly misleading since the majority of those 

sensitivities fall into the high end of the 95-99% category. Aside from two critical transistors 

and one mildly sensitive transistor, all three sensitive in both the ±σ direction, any sensitive 
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transistor within the 95-99% range typically is much closer to the high end of the distribution, 

Figure 5.9(b). 

Aside from the two critical transistors this is a highly stable design. Figure 5.10 shows 

the distribution of the number of sensitive transistors to the respective sensitivity for VDD and 

σ variation. Figure 5.10(c) shows that at high levels of variation for σ and VDD the sensitivity 

rarely falls below 90% threshold.  

 

          (a)               (b) 

Figure 5.7: (a) Bar graph for the number of sensitive transistors per rank, (b) waveforms 

generated from three transistors: T1 and T2 from Rank 1 and T3 from Rank 2 
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      (a) 

 

      (b) 

Figure 5.8: (a) Circuit diagram with sensitive transistors enclosed; red=rank 1, green=rank 2 
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Figure 5.9: (a) Bar graph depicting the total number of sensitive transistors for each σ and VDD 

for the Cascode Regulator (b) The distribution of sensitive transistors within the 95-99% 

bracket vs. the ratio between the number of transistors within each sensitivity to all the sensitive 

transistors  

 

Figure 5.10: Regulator relationship between Voltage (x-axis), Number of Transistors (Y-axis), 

and Sensitivity Value (Z-axis), for (a) σ=1 (b) σ=3 (c) σ=5 
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5.6.2 Differential Amplifier 

 The differential amplifier design is a fairly sensitive design with the rankings spanning 

from .1σ to 1σ, Figure 5.11(a). As differential pairs require identical matching, injecting 

process variation into only a single element of those pairs causes a deviation in the output, 

Figure 5.11(b). Though most of the transistors are sensitive the most sensitive critical 

transistors are those within Ranks1-3, Figure 5.12(a). As compared with the designers analysis, 

Figure 5.12(b) we can see that the predictions are completely opposite. The bias points M8 and 

M7 are contained in rank 5. The transistors identified in Figure 5.12(a) are identified as critical 

due to the mismatch occurring between the inputs. The circuit connecting to the amplifier will 

dictate how much noise can be tolerated and which ranks need to be re-sized, re-designed, or 

require specific layout techniques. 

  

   (a)       (b) 

Figure 5.11: (a) Bar graph for the number of sensitive transistors per rank (b) Difference 

between the output for nominal simulations and Rank 3 variation for Transistor 5 
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    (a)      (b) 

Figure 5.12: (a) Circuit diagram with sensitive transistors enclosed; red=rank 1, green=rank 2, 

purple=rank 3 (b) Circled critical nodes from designer 

 

Figure 5.13: Total  number of sensitive transistors for each σ and VDD for Differential 

Amplifier 
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variation at the lower end of VDD. As the voltage increases above the nominal, more 

transistors become sensitive. This is because of the differential self-biasing of the circuit. Vth 

effects the mismatch while VDD effects the current amplifying the effects of the mismatch. 

Figure 5.14(a-e) show the effects of VDD variation on the sensitive transistors with respect to 

the sensitivity level.   

 

 

Figure 5.14: Differential amplifier relationship between Voltage (x-axis), Number of 

Transistors (Y-axis), and Sensitivity Value (Z-axis), for (a) σ=.1 (b) σ=.25 (c) σ=.5 (d) σ=.75 
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5.6.3 UWB-PLL 

 Due to the size and complexity of this circuit, for display purposes, only the transistors 

which cause catastrophic failures or unreliable waveforms will be discussed. The sensitivity 

level for the discussed transistors will be when the sensitivity<95%. In this section we will 

consider only failure to lock as the failure conditions. Due to the self correcting nature of this 

circuit, small variations at the partition level are corrected for within the next few cycles. Figure 

5.15(b) shows the Vcp behavior for nominal, a shifted but locking, and a non-locking behavior. 

While the sensitivity of the phase shifted behavior is <95%, it still locks at the same time as 

the nominal behavior.  

Figure 5.15 shows the number of transistors which cause failing or unreliable behaviors 

in this circuit. Out of the 1000+ transistors in the design only 643 were sensitive during 

partition level 6σ simulations. This reduced the number of simulations by more than half. In a 

circuit of this size where the time to simulate the entire circuit is long, this saves approximately 

100 hours of simulation time. Of those 643 transistors only 111 were sensitive at the full circuit 

level at 5σ and 84 at 3σ. Most of the variation injected into the logic partitions of the circuit 

was not sensitive past 3σ leaving only the analog partitions with Rank 1 and 2 variations.  

The analog partition of the circuit we show in Figure 5.16 is the charge pump. The 

circuits in Figure 5.16(a) are the critical transistors found through the tool where Rank 1 is red 

and Rank 2 is green. The corresponding designer nodes and transistors Figure 5.16(b) are 

marked in blue where the blue circles are the predicted critical nodes and boxes are critical 

transistors. For the charge pump we calculate that there will be extra critical transistors in the 

bias portion of the circuit while fewer transistors in matched pairs will be critical. For the other 

sensitive analog partitions the results are similar. Some of the differential pairs which would 
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originally be considered sensitive are not critically sensitive while more transistors in the 

biasing regions are sensitive.  

Due to the nature of the circuit behavior under the influence of variation, which exhibits 

primarily large deviations from the nominal, the analysis in this section will be on the 

sensitivity with respect to the lock time instead of the entire transient waveform. The lock time 

for the nominal circuit is around 12nS. The sensitivity categories will be broken down into 

locking {<9nS, 10-14nS, 15-20nS, >20nS} and never locking {high, low, oscillating}. The 

three types of behaviors are there to distinguish between the types of non-locking behavior; 

Figure 5.17. High indicates the frequency is maxed due to the inability to decrease frequency 

while low indicates the opposite. Oscillating indicates that the circuit never stabilizes on a 

frequency. The distribution for the total number of sensitive transistors is shown in Figure 5.18. 

As VDD increases the circuit becomes less sensitive especially at higher ranges of σ. The 

graphs of Figure 5.19 show the distribution of the sensitivities with respect to VDD and the 

sensitivity categories. 

  

  (a)       (b) 

Figure 5.15 (a) Circuit Bar graph of the failing and unreliable waveforms (b) Graph of Vcp for 

nominal operating conditaions, phase shift due to variation, non-locking behavior due to 

process variation 
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Figure 5.16: Circuit diagram with sensitive transistors enclosed; red=Rank 1, green=Rank 2, 

blue=designer 

 

Figure 5.17: Non-Locking behavior catagorites of the UWB-PLL 

 

Figure 5.18: Total  number of sensitive transistors for each σ and VDD for UWB-PLL 
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Figure 5.19: UWB-PLL relationship between number of transistors and sensitivity category 

for each voltage and (a) σ=5 (b) σ=3 (c) σ=1 
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5.6.4 TIA 

 The TIA circuit is not very sensitive and does not contain any critical transistors. Due 

to the way we compare waveforms and events, phase shifted events do not constitute a unique 

event or behavior. Figure 5.20 shows the (a) nominal waveform (b) 5σ transistor shifted 

waveforms. The behavior always oscillated at the expected frequency where the worst 

variation only causes a shift in the phase. This is because of the inverter chain which adjusts 

for variations by converting the analog signal to a discrete digital signal and always oscillates. 

 

Figure 5.20: Phase shifted behavior introduced by 5σ variation on transistor 16 

The circuit never fails in terms of generating a frequency, similarly to the critical 

transistor evaluation where the process variation causes a shift in the phase. When VDD varies 

the frequency is changed based on the variation level. The effect of VDD variation is shown 

in Figure 5.21. A change in the supply voltage directly impacts the frequency generated due to 

the impact on the supply current. In this circuit the combination of variation types do not 

produce new unexpected behaviors. For each VDD level there are variations that cause a phase 

shift, but the frequency generated is always the same at a given level. 
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Figure 5.21: Frequency and phase sensitivity of TIA with respect to power supply variation 

 

5.7 Conclusion 
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sensitivity analysis. We have shown the validity of this technique on multiple large and 

complex analog and mixed signal circuits. 
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Chapter 6 

 

Conclusion 

In this work we have presented a new approach for creating behavioral models of 

analog and mixed signal circuits based on partitioning. This methodology addresses the need 

for an automatic approach for behavioral modeling of any type of analog and mixed signal 

circuits. We developed a tool that can automatically create a set of partitions and detect 

intermediate behaviors based on netlist and transistor level simulation behavior. SVM models 

are created to predict intermediate behaviors which lead to the prediction of the final output 

behavior. We have shown the generality and feasibility of this approach on large circuits such 

as a PLL and ∑∆-ADC. Our results indicate that we can obtain three orders of magnitude 

speedup over transistor level simulations while maintaining over 95% accuracy. 

 We then developed a methodology for applying statistical learning to the 

verification of analog circuits. The first methodology developed utilizes unsupervised learning, 

circuit partitioning, and event propagation to determine the minimal representative set of input 

events which describe the output space. A significant amount of simulation time is saved by 

only simulating the important inputs. The second methodology developed locates primitive 
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elements with low complexity which can be modeled behaviorally instead of simulated. 

Unsupervised learning is used on the input and output of each cluster to determine if the 

primitive element increases, transfers, or decreases the information content. Distance 

calculations are used to determine the complexity of the events through the primitive element. 

Low complexity primitive elements maintain the distance ordering of the events. Behavioral 

models are created using supervised learning techniques for primitive elements with 

transferring or decreasing information content. We have shown the effectiveness of the method 

on four analog circuits where the simulation time is decreased by 55-75%. 

Finally, we have shown that we can automatically detect critical transistors of a design 

in a quick and efficient way. This chapter addresses the need for an automated tool to assist a 

designer in understanding and identifying critical transistors within a design. The result of the 

tool is compared to an expert’s critical node analysis. We have shown that we can produce a 

set of critical nodes based on sensitivity levels to the entire circuit. Each transistor identified 

by the expert designer was identified by the tool. The most sensitive of the transistors were 

identified and the results generated by the tool which supplies the designer with feedback based 

on the circuits’ sensitivity or overdesign. 

We have been able to show that we can efficiently and automatically produce tradeoff 

data for environmental and process variation. The method provides a designer or layout 

engineer with the power and variation sensitivities for specific transistors so that they can 

adjust the design or layout accordingly. This method can be incorporated into a feedback 

optimization or simulation sizing algorithms to automatically adjust the design based on 

sensitivity analysis. We have shown the validity of this technique on multiple large and 

complex analog and mixed signal circuits. 
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Chapter 7 

 

Future Work 

The work in Chapter 4 can be extended in multiple areas. The first of these areas is the modeling 

of the primitive elements. In the current form the modeling is done simply by creating lookup tables 

and applying linear interpolation. Time sensitive modeling of the behavior is a challenging problem 

which may be solved with polynomial chaotic models. In current literature, these chaotic models have 

been applied to simple analog circuits which may be conducive for primitive element modeling. 

Event and waveforms parsing is done using simple evaluations of the waveforms. If the 

waveform is repeating, then each period is considered an event, otherwise the entire waveform is an 

event. This can be reevaluated to extract key information from each waveform by way of advanced 

signal analysis, both digital and analog. Instead of predicting the event, the attributes and be predicted 

and the waveform can be reconstructed based on the predicted attributes. 

Input space clustering can be extended to include redundancy calculations for better sampling 

of complex regions. The redundancy measure will ensure that each cluster in the input space maps to 

the output space in a similar cluster. 

The use of Kernel Density Estimation (KDE) can be employed to calculation information loss 

for information and complexity measures of primitive elements. Analyzing the soundness of the data 

for building behavioral models enhances the confidence in the behavioral model predictions.  




