
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Learning Approaches to Analog and Mixed Signal Verification and Analysis

Permalink
https://escholarship.org/uc/item/1rj898j8

Author
Alt, Samantha

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rj898j8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Santa Barbara

Learning Approaches to Analog and Mixed Signal Verification and Analysis

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Samantha Alice Alt

Committee in charge:

Professor Malgorzata Marek-Sadowska, Co-chair

Professor Li-C. Wang, Co-chair

Professor Luke Theogarajan

Dr. Chandramouli Kashyap

March 2015

The dissertation of Samantha Alice Alt is approved.

 __

Malgorzata Marek-Sadowska , Committee Co-chair

 __

Li-C. Wang, Committee Co-chair

 __

 Luke Theogarajan

 __

 Chandramouli Kashyap

December 2014

Learning Approaches to Analog and Mixed Signal Verification and Analysis

Copyright © 2015

by

Samantha Alice Alt

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors Prof. Malgorzata Marek-

Sadowska and Prof. Li-C. Wang for believing in me and constantly challenging me. Each day

I am inspired by their dedication and deep knowledge in their respective fields. My aspiration

is to reach their level as mentor, researcher, and teacher. Thank you for your consistent support

and your guidance on the amazing journey that you have lead me on.

 I would like to thank Prof. Luke Theogarajan and Dr. Chandramouli Kashyap for their

time and kindness in serving on my thesis committee. The knowledge I have gained from their

insights into analog design and industrial practices I would not have been able to comprehend

the full impact of this work.

 In addition, I would also like to acknowledge Prof. Luke Theogarajan’s lab group. In

particular, Le Wang, Mohamed Elzeftawi, and Luis Chen, for without their circuit design and

support this project would not have been possible.

I would like to acknowledge Semi-Conductor Research Corporation and Intel

Corporation for choosing me to be a recipient of their SRCEA Fellowship which supported me

through most of my masters and all of my Ph.D studies. In particular, I would like to thank

Shirley Maier and Jeff Parkhurst for providing me with their invaluable guidance which I will

continue to cherish for the remainder of my career.

 I am truly grateful to the ECE department at the University of California, Santa Barbara

for offering me various teaching assistant positions. I would also like to thank Val de Verya

v

and many others in the department for their steadfast assistance through my undergraduate and

graduate career at UCSB.

 Words cannot express my gratitude to my boyfriend for his constant love, support, and

understanding. Without him I would have never been able to complete this journey. I would

also like to express my enormous thanks to my family. Without their boundless love and belief

in me, I would never have had the strength and courage to pursue my dreams. For that, I

dedicate this thesis to them.

vi

VITA OF SAMANTHA ALICE ALT

December 2014

EDUCATION

Bachelor of Science in Electrical and Computer Engineering, University of California, Santa
Barbara, June 2007
Master of Science in Electrical and Computer Engineering, University of California, Santa
Barbara, June 2011
Doctor of Philosophy in Electrical and Computer Engineering, University of California, Santa
Barbara, December 2014 (expected)

PROFESSIONAL EMPLOYMENT

September 2014: Intel Corporation; Rotational Engineering Program

Summer 2012: Intel Corporation; Waveform analysis project (Wavecomp) for analog circuit
simulation. Tools were written in TCL and performed provided numerical analysis for
verification of the system.

Summer 2011: Intel Corporation; Fault emulation project to utilize a logic emulation system
for fault grading purposes. Developed a RTL fault lister and fault partitioner which generates
a set of initial faults and partitions then into independent sets based on scanout nodes and
primary inputs. Tools were written in C++.

June-December 2010: Intel Corporation; First project: Automatic test generation for
architecture simulator validation. Using a SMT solver we were able to get high coverage on
virtual instructions. Second project: Test point insertion at the RTL level to increase
observability of the design.

June-December 2009: Intel Corporation; I worked with Intel on virtual DUT generation for
test program validation. We used pre-Silicon data to automatically generate these vDUT in
hope to get full coverage of the post-Silicon test program.

Summer 2007 and 2008: Mentor Graphics; Research on improving the diagnosability of the
transition fault using a minimal pattern set. The work resulted in a paper that is currently in
submission to ITC '09. The paper focuses on using clock manipulation and a small passing
pattern set to greatly increase the diagnostic resolution.

2008-2009: Teaching Assistant, Department of Electrical and Computer Engineering,
University of California, Santa Barbara

vii

2006-07: Junior Engineer at Multiplex Engineering. Engineer in charge of product support
software. Write and maintain open source software used for testing of automotive computer
interfaces which is also used in automotive test software. Other tasks included programming
and testing of components and assembly technician.

Summer 2003, 2004, 2005: Provided computer operations support to the Research Aircraft
Intergration Facility at NASA Dryden, (RAIF) under contract with Lockheed Martin.
Responsibilities included system and network management, system administration and
support.

PUBLICATIONS

S. Alt, M. Marek-Sadowska, L-C. Wang, "Circuit Partitioning for Behavioral Full Chip
Simulation Modeling of Analog and Mixed Signal Circuits," International Journal of
Modeling and Optimization, Vol. 4, Feb 2014.

S. Alt, M. Marek-Sadowska, L-C. Wang, "Circuit Partitioning for Behavioral Full Chip
Simulation Modeling of Analog and Mixed Signal Circuits," ICSMO, 2014.

 S. Alt, M. Marek-Sadowska, L-C. Wang, "On Analog Behavioral Modeling For System-
Level Simulation," Techcon 2012.

S. Alt, M. Marek-Sadowska, K-H. Tsai , J. Rajski, "Frequency Manipulation to Maximize the
Diagnostic Resolution of Delay Faults," Techcon 2009.

AWARDS

Recipient of the SRCEA/Intel Foundation Fellowship
Recipient of the Semiconductor Research Corporation Masters Scholarship

viii

ABSTRACT

Learning Approaches to Analog and Mixed Signal Verification and Analysis

by

Samantha Alice Alt

 The increased integration and interaction of analog and digital components within a system

has amplified the need for a fast, automated, combined analog, and digital verification

methodology. There are many automated characterization, test, and verification methods used

in practice for digital circuits, but analog and mixed signal circuits suffer from long simulation

times brought on by transistor-level analysis. Due to the substantial amount of simulations

required to properly characterize and verify an analog circuit, many undetected issues manifest

themselves in the manufactured chips.

 Creating behavioral models, a circuit abstraction of analog components assists in reducing

simulation time which allows for faster exploration of the design space. Traditionally, creating

behavioral models for non-linear circuits is a manual process which relies heavily on design

knowledge for proper parameter extraction and circuit abstraction. Manual modeling requires

a high level of circuit knowledge and often fails to capture critical effects stemming from block

interactions and second order device effects. For this reason, it is of interest to extract the

models directly from the SPICE level descriptions so that these effects and interactions can be

ix

properly captured. As the devices are scaled, process variations have a more profound effect

on the circuit behaviors and performances. Creating behavior models from the SPICE level

descriptions, which include input parameters and a large process variation space, is a non-

trivial task.

 In this dissertation, we focus on addressing various problems related to the design

automation of analog and mixed signal circuits. Analog circuits are typically highly

specialized and fined tuned to fit the desired specifications for any given system reducing the

reusability of circuits from design to design. This hinders the advancement of automating

various aspects of analog design, test, and layout. At the core of many automation techniques,

simulations, or data collection are required. Unfortunately, for some complex analog circuits,

a single simulation may take many days. This prohibits performing any type of behavior

characterization or verification of the circuit. This leads us to the first fundamental problem

with the automation of analog devices. How can we reduce the simulation cost while

maintaining the robustness of transistor level simulations? As analog circuits can vary vastly

from one design to the next and are hardly ever comprised of standard library based building

blocks, the second fundamental question is how to create automated processes that are general

enough to be applied to all or most circuit types? Finally, what circuit characteristics can we

utilize to enhance the automation procedures?

 The objective of this dissertation is to explore these questions and provide suitable

evidence that they can be answered. We begin by exploring machine learning techniques to

model the design space using minimal simulation effort. Circuit partitioning is employed to

reduce the complexity of the machine learning algorithms. Using the same partitioning

algorithm we further explore the behavior characterization of analog circuits undergoing

x

process variation. The circuit partitioning is general enough to be used by any CMOS based

analog circuit. The ideas and learning gained from behavioral modeling during behavior

characterization are used to improve the simulation through event propagation, input space

search, complexity and information measurements. The reduction of the input space and

behavioral modeling of low complexity, low information primitive elements reduces the

simulation time of large analog and mixed signal circuits by 50-75%. The method is extended

and applied to assist in analyzing analog circuit layout. All of the proposed methods are

implemented on analog circuits ranging from small benchmark circuits to large, highly

complex and specialized circuits.

 The proposed dependency based partitioning of large analog circuits in the time domain

allows for fast identification of highly sensitive transistors as well as provides a natural division

of circuit components. Modeling analog circuits in the time domain with this partitioning

technique and SVM learning algorithms allows for very fast transient behavior predictions,

three orders of magnitude faster than traditional simulators, while maintaining 95% accuracy.

Analog verification can be explored through a reduction of simulation time by utilizing the

partitions, information and complexity measures, and input space reduction. Behavioral

models are created using supervised learning techniques for detected primitive elements. We

will show the effectiveness of the method on four analog circuits where the simulation time is

decreased by 55-75%. Utilizing the reduced simulation method, critical nodes can be found

quickly and efficiently. The nodes found using this method match those found by an

experienced layout engineer, but are detected automatically given the design and input

specifications. The technique is further extended to find the tolerance of transistors to both

process variation and power supply fluctuation. This information allows for corrections in

xi

layout overdesign or guidance in placing noise reducing components such as guard rings or

decoupling capacitors. The proposed approaches significantly reduce the simulation time

required to perform the tasks traditionally, maintain high accuracy, and can be automated.

xii

TABLE OF CONTENTS

Acknowledgements…………………………………………………………….......................iv

Abstract…………………………………………………………….......................................viii

List of Figures……………………………………………………………............................xvii

List of Tables……………………………………………………………............................xxiii

1. Introduction……………………………………………………………................................1

1.1 Analog and Mixed Signal Circuits ……………………………………….……….1

1.2 Challenges of Analog CAD ……………………………………………..………...2

 1.2.1 Simulation……………………………………………………………….3

 1.2.2 Verification……………………………………………………..……….4

 1.2.3 Modeling………………………………………………………...………5

 1.3 Motivation…………………………………………………………………............5

1.4 Contributions of this Thesis………………………………………………..……..15

1.5 Chapter 1 References………………………………………………………..……16

2. Overview of Analog Circuits………………………………………………………………18

 2.1 Phase Lock Loop…………………………………………………………………18

 2.1.1 Ultra Wide Band Phase Lock Loop……………………………………..19

 2.1.2 Phase Lock Loop for Clock and Data Recovery………………………...22

 2.1.3 Verification Challenges - PLL…………………………………….……24

 2.2 Converters……………………………………………………………….….........24

2.2.1 Sigma-Delta Analog to Digital Converter……………………….…..…25

2.2.2 Verification Challenges - Converters…………………………….….…28

xiii

 2.3 Amplifiers…………………………………………………………………..........28

 2.3.1 Transimpedance Amplifier……………………………………..………29

 2.3.2 Low-Noise Low-Power Neural Amplifier…………………..…….……31

 2.3.3 Verification Challenges - Amplifiers…………………………..….……33

 2.4 Voltage Regulator………………………………………………………..…….…33

 2.4.1 Cascode Regulator…………………………………………….…..……34

 2.4.2 Verification Challenges – Regulator…………………………..…..……35

 2.5 Variation………………………………………………………………….............35

 2.6 Chapter 2 References………………………………………………………..……35

3. General Hierarchical Behavioral Modeling of Analog and Mixed Signal Circuits……….37

 3.1 Introduction…………………………………………………………………........37

 3.2 SVM Background………………………………………………………..……….41

 3.2.1 SVM-R Theory…………………………………………………....……42

 3.2.2 SVM Creation……………………………………………………..……44

 3.3 Model Creation………………………………………………………...………....45

 3.3.1 SVM Model………………………………………………………..…...46

 3.4 Partitions and Intermediate Behaviors………………………………………..….46

 3.4.1 Channel Connected Graph and Channel Connected Components….….47

 3.4.2 Group Hierarchy and Feedback Detection………………………….….49

 3.4.3 Intermediate Net Detection…………………………………..…………50

 3.4.4 Partition Resistant Components………………………………...………51

 3.4.5 Quantizer Example……………………………………………..………53

 3.5 Experiments……………………………………………………………..……......56

xiv

 3.6 Variation Models………………………………………………………...……….62

 3.6.1 Tradeoff Curves………………………………………….……..………64

 3.7 Key Learnings……………………………………………………………….…...68

 3.8 Conclusion…………………………………………………………………..........69

 3.9 Chapter 3 References……………………………………………………..………69

4. Improving Circuit Verification Efficiency with Unsupervised and Supervised Learning…73

 4.1 Introduction…………………………………………………………………........74

 4.2 Two Essential Problems to Solve………………………………………..……….79

 4.2.1 The Underlying Problem to Ask………………………………..………79

 4.2.2 First Essential Problem………………………………………..…..……81

 4.2.3 Considering Component Variation……………………………..………83

 4.2.4 Second Essential Problem……………………………………..….……84

 4.3 Keys to Learning Problem Formulations………………………………..……..…86

 4.3.1 Basic Machine Learning Concepts………………………………..……86

 4.3.2 The Importance of Similarity Measure………………………..………..87

 4.3.3 Keys to Enable the Application of Learning Techniques……….…...…88

 4.4 Unsupervised Learning for Important Input Subspace Modeling………….…….89

 4.4.1 Adaptive Similarity Measure……………………………………..…….91

 4.4.2 Issue of Large Dimensionality…………………………………..…...…92

 4.4.3 Property on the Removed Samples………………………………..……93

 4.4.4 Implementation Considerations…………………………………...……94

 4.5 Supervised Learning for Event Prediction in Monte Carlo Simulation………..…96

 4.5.1 Intuition Behind Predictability of a SVM………………………..……..98

xv

 4.5.2 Illustration of SVM Models……………………………………..…...…99

 4.5.3 The Predictability of an Inverter………………………………………101

 4.5.4 Intuition Behind Complexity and Information Measures………..……103

 4.5.5 Complexity Measure……………………………………………….…105

 4.5.6 Information Measure………………………………………………….107

 4.5.7 Supervised Learning Based on Local Prediction………………..……108

 4.5.8 Defining a Potential Predictable Region………………………………109

 4.5.9 Deciding a Predicable Region……………………………………..…..110

 4.5.10 Learning and Model Application…………………………………….111

 4.6 The Overall Framework…………………………………………………..……..112

 4.6.1 Avoiding the Simulation of Unimportant Inputs……………….…..…114

 4.6.2 Determining Primitive Elements……………………………..…….…115

 4.7 Experimental Results……………………………………………………..…..…119

 4.8 Conclusion…………………………………………………………………........123

 4.9 Chapter 4 References……………………………………………………..…..…124

5. Efficient Method for Critical Node Identification Time Varying Large Analog and Mixed

Signal Circuit with Process and Environment Variation……………………………………128

 5.1 Motivational Example………………………………………………………..…131

 5.2 Techniques for Sensitivity Analysis……………………………………..……...133

 5.2.1 Adjoint Techniques…………………………………………..…….…133

 5.2.2 Symbolic Techniques………………………………………...……….134

 5.2.3 Genetic Algorithms…………………………………………..…….…137

 5.3 Techniques for Yield and Reliability…………………………………..………..137

xvi

 5.3.1 Reliability……………………………………………………..………137

 5.3.2 Yield Optimization…………………………………………..……..…139

 5.4 Critical Elements and Sensitivity………………………………………..………142

 5.5 Automatic Critical Transistor Identification…………………………………….143

 5.6 Experiments…………………………………………………………………......147

 5.6.1 Cascode Regulator…………………………………………………….148

 5.6.2 Differential Amplifier…………………………………………....……152

 5.6.3 UWB-PLL………………………………………………...…..………155

 5.6.4 TIA…………………………………………………………………....159

 5.7 Conclusion……………………………………………………………………....160

 5.8 Chapter 5 References………………………………………………...……...…..161

6. Conclusion…………………………………………………………………......................174

7. Future Work…………………………………………………………………...................176

xvii

LIST OF FIGURES

Figure 1.1: Feedback circuit schematic…………………………………………..…………...7

Figure 1.2: Partitioning of feedback circuit using CCG model……………………………….7

Figure 1.3: Intermediate circuit behavior……………………………………...………………9

Figure 1.4: Digital event extraction from Vosc waveform……………………..……………11

Figure 1.5: Response of partitions to input events (a) Partition 1 response from Partition 3

output (b) Partition 2 response from Partition 1 output (c) Partition 3 response from

Partition 2 output. ……………………………………………………………………12

Figure 1.6: Compounding events…………………………………………….………………13

Figure 2.1: Block diagram [2] of the UWB-PLL with embedded digital tracking used to tune

oscillation frequency of IR-UWB transmitter……………………………………...…20

Figure 2.2: Simulation results for PFD, CP, divider and VCO outputs of UWB-PLL over

2µS…………………………………………………………………………………...21

Figure 2.3: Block diagram [3] of a PLL used for clock recovery……………………………22

Figure 2.4: Simulation results for PFD, CP, divider and VCO outputs in the PLL over

2µS.…………………………………………………………………………………..23

Figure 2.5: Schematic of the low power high-resolution second order ∑∆-ADC for digitizing

neural data..…………………………………………………………………………..26

Figure 2.6: Simulation results for outputs in the ∑∆-ADC over 100µS………………………27

Figure 2.7: Schematic of a feedback TIA……………………………………………….……29

Figure 2.8: Behavior of TIA……………………………………………………………..…...30

Figure 2.9: Schematic of self biased differential amplifier……………………………..……31

Figure 2.10: Behavior of self biased differential amplifier……………………………..…….32

xviii

Figure 2.11: Schematic for a self biased folded cascode voltage regulator….…………….…34

Figure 2.12: Simulated behavior of the voltage regulator. …………………..……….………34

Figure 3.1: Differential opamp schematic and its CCG……………………………..……..…49

Figure 3.2: Hierarchy graph of differential opamp in Fig. 1…………………………………50

Figure 3.3: Examples of switch capacitor (SC) topoglogies…………………………...…..…52

Figure 3.4: Channel Connected Compont Graph of the quantizer circuit. Six group partitions

with intermediate behaviors………………………………………………….………54

Figure 3.5: (a) The initial hierarchy graph of the quantizer. (b) Hierarchy graph with combined

non-sensitive groups Group 5 and 6 contain output edges………………………..…55

Figure 3.6 Waveform comparision between simulation waveform, Vop2A, and predicted

waveform, Vop2. ……………………………………………………………….....…59

Figure 3.7: Waveform comparision between simulation waveform, Fout, and predicted

waveform, Fout_P for the PLL_UWB…………………………………………..……60

Figure 3.8: Waveform comparision between simulation waveform, Fout, and predicted

waveform, Fout_P for the PLL-UWB with parasitics……………………………...…61

Figure 3.9: Two Monte Carlo simulations at 1.2 and 25°C (solid line) with the respective

predicted waveforms (dashed line), shown is a snapshot of 100nS of simulation and

prediction time for the waveforms.……………………………………………...……65

Figure 3.10: Predicted waveform for untrained pairs 1.33V and 37°C. Foutp is the predicted

waveform and Fout is the simulated waveform. Snap shot of 100nS out of 20µS…….65

Figure 3.11: Graph of simulations comparing power and lock time. Boundary separates the

faulty from the fault free simulations. The triangle is the nominal design point without

variation……………………………………………………………………..……….67

xix

Figure 3.12: Graph of lock time verse power for simulated waveforms and predicted

waveforms……………………………………………………………………..……..67

Figure 4.1: Functional view of uncertainty analysis of a statistical system……………..……74

Figure 4.2: Theoretical view of the fundamental problem……………………………………79

Figure 4.3: Practical view of the problem…………………………………..………..……….80

Figure 4.4: Discovery of representative input samples………………………………….……82

Figure 4.5: An intuitive way to consider component variations………………………………83

Figure 4.6: A more practical way to consider component variations…………………………85

Figure 4.7: Typical dataset seen by a learning algorithm [14]……………………..…………86

Figure 4.8: Kernel function vs. learning machine………………………………….…………87

Figure 4.9: Iterative search for important inputs in X……………………………….………..90

Figure 4.10: Adaptive learning space for similarity measure…………………………………92

Figure 4.11: A removed sample in one iteration can be selected in the next……….………….94

Figure 4.12: Intuition behind SVM predictability……………………………………..…...…98

Figure 4.13: SVM model based on one support vector x1…………………………..……..…100

Figure 4.14: SVM models based on two support vector x1, x2……………………….………100

Figure 4.15: An inverter is simple for prediction……………………………………………101

Figure 4.16: Intuition behind complexity and information measures……………….………103

Figure 4.17: Intuition for complexity measure…….………………………………...…...…106

Figure 4.18: Intuition for information measure……………………………………...………109

Figure 4.19: Supervised learning flow based on local predictability………………………...109

Figure 4.20: An example of potential predictable region by two samples……………..……110

xx

Figure 4.21: Illustration of a learning dataset based on two samples xa, xb and j other samples

falling into their potential predictable region………………………………………..110

Figure 4.22: Illustration of learning phase and model application……………………..……111

Figure 4.23: Four analog events………………………………………………………...…...113

Figure 4.24: Number of input waveforms verse the number of lookup table entries……...…118

Figure 4.25: Clustered events from Partition 1 output (a) input (b) 100%, (c) 99%,

 (d) 90%...122

Figure 5.1: VDD effects on the lock time performance of UWB-PLL………………………131

Figure 5.2: Vth variation from -6σ to +6σ for three transistors……………………..………131

Figure 5.3: Simultaneous VDD and Vth variation simulations for (a) Transistor 1, (b)

Transistor 2, and (c) Transistor 3……………………………………………………132

Figure 5.4: Clustering of the behavioral output space. Nominal behavior is the star symbol and

each cluster represents a group of similar output behaviors. ……………….………144

Figure 5.5: Bar graph of sensitive variation distribution of transistors……………………..146

Figure 5.6: Critical transistor comparison between (a) Rank 1 with (b) expert design

analysis……………………………………………………………………………...147

Figure 5.7: (a) Bar graph for the number of sensitive transistors per rank, (b) waveforms

generated from three transistors: T1 and T2 from Rank 1 and T3 from Rank 2……149

Figure 5.8: Circuit diagram with sensitive transistors enclosed; red=rank 1, green=rank 2…150

Figure 5.9: (a) Bar graph depicting the total number of sensitive transistors for each σ and VDD

for the Folded Cascode Regulator (b) The distribution of sensitive transistors within

xxi

the 95-99% bracket vs. the ratio between the number of transistors within each

sensitivity to all the sensitive transistors in the range 95-99%………………………151

Figure 5.10: Regulator relationship between Voltage (x-axis), Number of Transistors (Y-axis),

and Sensitivity Value (Z-axis), for (a) σ=1 (b) σ=3 (c) σ=5…………………………151

Figure 5.11: (a) Bar graph for the number of sensitive transistors per rank (b) Difference

between the output for nominal simulations and Rank 3 variation for Transistor 5…152

Figure 5.12: (a) Circuit diagram with sensitive transistors enclosed; red=rank 1, green=rank 2,

purple=rank 3 (b) Circled critical nodes from designer………………………..……153

Figure 5.13: Total number of sensitive transistors for each σ and VDD for Differential

 Amplifier……………………………………………………………………….……153

Figure 5.14: Differential amplifier relationship between Voltage (x-axis), Number of

Transistors (Y-axis), and Sensitivity Value (Z-axis), for (a) σ=.1 (b) σ=.25 (c) σ=.5 (d)

σ=.75 (e) σ=1………………………………………………………………..………154

Figure 5.15 (a) Circuit Bar graph of the failing and unreliable waveforms (b) Graph of Vcp for

nominal operating conditaions, phase shift due to variation, non-locking behavior due

to process variation…………………………………………………………..…...…156

Figure 5.16: Circuit diagram with sensitive transistors enclosed; red=Rank 1, green=Rank 2,

blue=designer……………………………………………………………….....……157

Figure 5.17: Non-Locking behavior catagorites of the UWB-PLL……………………....…157

Figure 5.18: Total number of sensitive transistors for each σ and VDD for UWB-PLL…….157

Figure 5.19: UWB-PLL relationship between number of transistors and sensitivity category

for each voltage and (a) σ=5 (b) σ=3 (c) σ=1…………………………………..……158

Figure 5.20: Phase shifted behavior introduced by 5σ variation on transistor 16…………..159

xxii

Figure 5.21: Frequency and phase sensitivity of TIA with respect to power supply

variation…………………………………………………………………………….160

xxiii

LIST OF TABLES

Table 3.1: Results for the Quantizer Partitions…………………………………..……...……56

Table 3.2: Behavior Models for the ∑∆-ADC…………………………………..……………59

Table 3.3: Behavior Models for the UWB-PLL………………………………………………60

Table 3.4: Behavior Models for the UWB-PLL with Parasitics………………...………….…61

Table 3.5: Predicted PLL Waveform Data……………………………………….…………..64

Table 4.1: Similarity matrix between events 1-4 in Figure 4.23……………………………112

Table 4.2: Number of Clusters per Partition and Precision………………………..……...…113

Table 4.3: Overview to clustering in each iteration………………………………….…...…115

Table 4.4: Information Measure of PEs……………………………………………..………116

Table 4.5: Complexity Measure of PEs……………………………………………..………117

Table 4.6a: Input Cluster Analysis………………………………………………….………121

Table 4.6b: Input Cluster Analysis………………………………………………….....……121

Table 4.7: Complex Primitive Elements with Reduced Simulation Time……………..……123

Table 5.1: Sensitivity for each transistor with specified variation. S=Sensitive, NS=Non-

Sensitive, NT=Not Tested……………………………………………………..……146

1

Chapter 1

Introduction

Designing analog circuits that are resilient to power supply noise require the adoption

of fully balanced, differential topologies. With differential circuit elements, matching of the

transistors is important for robust analog design. Traditional design approaches that aim to

achieve fundamental device matching may result in over-design and sacrifice performance

such as area, speed, and/or power. One of the most important sources of mismatch within

analog and mixed signal circuits is the variation in threshold voltage [1].

1.1 Analog and Mixed Signal Circuits

Today's complex system-on-chip (SoC) designs consist of tight interactions between

digital and analog cores in order to achieve higher degrees of performance. While the majority

of SoC designs are digital and many analog functions have been replaced with digital

counterparts, functions which interact with the world around us, which produces continuous

time real value information, will always require analog circuitry. An analog, mixed signal, or

RF (radio-frequency) circuit is associated with circuits that have a portion of their operating

input, output or both consist of continuous time, continuous amplitude signals.

2

There are three main functionalities of analog circuits in SoC designs; input to the

system, output of the system, and interface between analog and digital components [1]. On the

input side of a design, signals are transmitted from components such as sensor, microphone,

and antenna and must be sensed, received, amplified, or filtered. On the output side of the

design, digital signals need to be converted back to continuous real-valued signals and boosted

high enough to drive the external load, i.e. loud speaker. Interfacing between analog and digital

components are considered mixed-signal components and provide means of converting

continuous time signals to binary, binary to continuous time signals, signal sampling, and

timing generation (phase-lock loops). For the three types mentioned, additional stabilization

and reference circuitry is required for correct operation, i.e. voltage and current reference

circuits or crystal oscillators. Due to the large number of devices we interact with on a day to

day basis, i.e. smart phones, it is clear that analog circuits will always be prevalent in SoC

designs.

Analog components, while vital, only constitute a small part of the SoC, making up

between 5-10% [2] of the design. Of this small percentage it has been reported in [3] that 40-

50% of the overall design time is spend on these components and of this time, 70-80% is spent

on verification of the components.

1.2 Challenges of Analog CAD

Computer aided-design (CAD) is the use of computer systems to assist in the creation,

modification, or analysis of a design [4]. For digital CAD many well developed commercial

tools are widely available and have been used in practice for many years. On the other hand

analog CAD has not had as much commercial support and/or success due to the complexity,

3

sensitivity, and continuous valued nature of the functionality. The most reliable CAD tools are

the low level transistor simulators based on SPICE [5] and hardware description languages

(HDL) like VHDL-AMS [6] and VERILOG-AMS[7]. Along with the simulators, there have

been recent advances in analog topology selection and synthesis [8] as well as automatic

generation of layout. While these areas have seen some success, verification methodologies

for analog and mixed signal systems are costly due to the complexity and size of the circuits.

Therefore it is imperative that efficient methods for verification are developed to reduce design

development time and prevent errors that result in manufacturing re-spins.

1.2.1 Simulation

Simulation time of large analog circuits is the major bottle neck for design, verification,

and test. As analog circuits are continuous in nature and not discrete like digital circuits,

transient simulations are necessary to understand certain behaviors of the circuits. There have

been many attempts to reduce the simulations time, but at the price of accuracy.

Transistor level simulators incorporate transistor models and can perform transient,

AC, DC, and steady-state analysis of a system. They are very accurate, but come at the cost of

speed, which can be very long depending on the number of non-linear differential equations

they must solve. HDLs provide an abstraction of the circuit which results in faster simulation

times, but sacrifice accuracy. They are event driven simulators that are often used for

functional, behavioral level analysis of the design and SoC. Though these tools are useful at

various levels of design and verification, they are often used manually and the search of the

state space may not be complete, missing critical behaviors. Symbolic simulators and adjoint

network techniques are other methods of early design behavioral analysis; these techniques are

4

examined further in Chapter 5. Modeling based approaches use a subset of simulation data or

circuit equations to alleviate some of the simulation time. Modeling is described in more detail

in the following sections and in Chapter 3.

1.2.2 Verification

The verification of Analog and Mixed Signal (AMS) designs is concerned with the

assurance of correct functionality. The AMS design must be robust with respect to different

types of inaccuracies like parameter tolerances and nonlinearities. Variations that occur due to

manufacturing and environment lead to incorrect operation of the circuit and therefore must be

evaluated. The most common method for verifying correctness of a circuit is to use transistor

level simulators. Due to the sheer number of combinations of variable parameters and the

amount of time some complex analog circuits take to simulate, it may be impossible to simulate

verify the entire space. Various methods have been employed to reduce the number of

simulations and will be further discussed in the following chapters.

Functional verification is employed in the early stages of a design to catch errors that

arise due to wire or connection mismatches. In this type of verification transistor level

simulators may not be the most efficient due to the high accuracy and long simulation times.

In this type of verification higher level blocks can be simulated in a HDL language because

the loss of accuracy is tolerable.

Circuit types are affected by variation types in different ways. In Chapter 2 each circuit

used within this thesis is analyzed and verification challenges for each circuit type are

described.

5

1.2.3 Modeling

Analog modeling, at its core, reduces simulation time while attempting to maintain a

high level of accuracy. There are various levels of abstraction that models can be used;

transistor, block, system. Each level of abstraction reduces the accuracy, sometimes by a

significant amount. At the lowest level of abstraction sits SPICE or transistor model based

simulators. The transistor models incorporate as much of the device physics and manufacturing

behaviors as possible. This is the most accurate modeling available, is widely used, and

considered the golden reference for simulations. Many modeling types that are simulation

based utilize the transistor level data to build the models.

There are two major types of modeling used for analog circuits: equation-based and

simulation-based. Equation-based models mimic the transfer characteristics of the circuit and

elements. This leads to substantial reduction in simulation time due to the highly efficient

models. Simulation-based approaches utilize transistor level simulation data to extract

meaningful behavioral models. The most common of these approaches are black-box-based

models which create input-output relationships without knowledge of the inner workings of

the system. Both modeling approaches have their advantages and disadvantages and are further

explored in Chapter 3.

1.3 Motivation

Analog circuits are notoriously difficult to automate compared to their digital

counterparts. They are extremely complex because they are continuously valued, non-linear,

and highly sensitive. Many analog circuits are time dependent or may vary over time. The

6

behavior of these circuits needs to be verified and simulated over time in order to ensure proper

operation. Unfortunately, for large and complex circuits the simulation over time can take a

very long time, on the orders of hours to days. It becomes infeasible when performing this

analysis for many input combinations. Therefore we need a method to explore all the possible

behaviors of the circuit without exhaustively testing all of the input combinations.

Increasing the input space to include process variation adds extra levels of complexity

to the behavior space. A standard and most simplistic method of estimating the behavior of a

circuit is to perform corner case analysis. Each corner represents slow/slow, slow/fast,

fast/slow, and fast/fast combinations of nfet/pfet devices. Along with the standard design

conditions, these four combinations are simulated over time to estimate the worst case

performance of a circuit. For verification purposes and capturing the entire output space, these

simulations are not enough. While the number of simulations is low, the estimations are often

pessimistic and lead to circuit overdesign. This type of analysis does not ensure that

interactions between transistors of various variation combinations do not produce a behavior

outside of the performance box created by the four corner case simulations.

The following circuit, Figure 1.1, is used as an example throughout this work. It has

two main characteristics of interest; feedback and multiple partitions. Feedback is when a

signal at the output is fed back to the input of the system. The current and future events of these

systems are influenced by previous events in time. This phenomenon implies circuit behavior

analysis needs to be performed in the transient (time) domain as well as the standard frequency

domain.

7

Figure 1.1: Feedback circuit schematic

Most circuits can be broken down into sub-circuits for simpler analysis. Partitioning

decomposes a circuit into a set of sub-circuits based on some criteria. In this work we use the

Channel Connected Graph-based (CCG) partitioning model. This partitioning scheme is

described further in Chapter 3. Partitions of the circuit in Figure 1.1 are shown in Figure 1.2.

Figure 1.2: Partitioning of feedback circuit using CCG model

Typical behavior of this circuit is shown in Figure 1.3. Intermediate behaviors between

partitions for Vin, Vout, and Vosc are also displayed. Vosc is the feedback signal which becomes

8

the input to Partition 1 and is also the final output of the circuit. This signal is the most

important one because it will connect to external circuitry. For behavior analysis of the circuit,

we only care about the final output. The nominal, or typical, behaviors shown here are

propagated to the inputs of the next partition and simulated. The typical simulation flow for a

transient SPICE simulation is as follows:

1. Compute the initial operating point of the circuit

2. Create linear companion models for non-linear elements such as capacitors

3. Load the currents and conductance’s into the nodal matrix

4. Solve the nodal equations

5. Does it converge?

a. Yes: select time step x(n) and calculate the next time point

t(n+1)=t(n)+x(n+1) for all n

b. No: Select new operating point and go back to step 2

For transient analysis each time step is calculated for the entire circuit. For the circuit in Figure

1.1, since there is feedback, each node is dependent on the previous calculated nodes values,

i.e. time dependent. In this circuit the time step is 1nS over a 1000nS total simulation time.

The circuit is solved 1000 times, once for each time step.

When the circuit is simulated a single partition at a time, the feedback of the circuit is

broken. It can still be solved time dependently by calculating a single time step at a time. For

example, given an initial condition for Partition 1, calculate the value for Vin at time t. Apply

Vin at t as an input to Partition 2 and solve for Vout. The same is done for Partition 3 and Vosc

is calculated then feedback to Partition 1 for the calculation of the following time step t+1

9

Figure 1.3: Intermediate circuit behavior

The partitioning schemes provide an opportunity to simplify the circuit simulation

which in turn reduces the simulation time. Chapter 3 explores a method which utilizes the

partitioning to create time based Support Vector Machine behavioral models. These models

10

are built using waveforms generated from full circuit simulation. Each model predicts a single

time point at a time and each model is connected for continuous predictions until the entire

waveform has been predicted. The models are further extended to include process variations.

 There are a few obvious shortcomings to a learning based prediction scheme with

respect to analog circuits. SVMs are extremely powerful and created automatically when

applied to non-complex partitions which produce regular or not erratic behaviors. For partitions

or circuits which are highly complex, creating a learning model requires user intervention and

domain knowledge in order to tune the parameters of the learning model. The behavioral

models generated are only as good as the data used to generate them. This notion implies that

the behavioral models need to be adaptable especially when dealings with new behaviors which

are caused by process variation.

 With the method explored in Chapter 4 a more efficient way of performing time-based

partition simulations was realized. Event-based simulation is a reduced simulation technique

that only simulates changes in the waveform. For simplicity let us assume that a waveform can

be classified as either repeating (oscillating) or non-repeating. Non-repeating behavior

typically is reserved for analog behaviors with the exception being the always high or always

low (stuck-at-1 or stuck-at-0 digital behaviors). Repeating waveforms can either be analog

(sine wave) or digital (clock). This circuit, Figure 1.1, is a basic clock generator and all three

partitions are repeating where only Partition 3 is a digital partition (inverter). The five events

from Vosc in Figure 1.4 are extracted and modeled as digital events. Event decomposition based

on wave type is explained in Chapter 2.

11

Figure 1.4: Digital event extraction from Vosc waveform

12

Figure 1.5: Response of partitions to input events (a) Partition 1 response from Partition 3
output (b) Partition 2 response from Partition 1 output (c) Partition 3 response from Partition

2 output.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100

0

0.2

0.4

0.6

0.8

1

0 50 100 -0.5

0

0.5

1

1.5

0 50

-0.5

0

0.5

1

1.5

0 50

-0.5

0

0.5

1

1.5

0 20 40 60 80

(a)

(b)

(c)

13

Regardless of the type of event and how it is modeled, only the original event is

propagated to the next partition. Instead of full circuit transient analysis we are now performing

partition based transient event analysis. The response of the partition to the single transient

event is captured. An example of the propagation of a single event is shown in Figure 1.5(a-

c).

To avoid simulating the same event multiple times we need a method of removing

similar events. How can we know if the output of Figure 1.5(c) is the same as the input event

from Figure 1.5(a)? Similarity measurements between events are performed using a difference

metric. The difference metric can be as simple as a pair-wise difference calculation or as

complex as the squared correlation coefficient calculation. Two identical waveforms have a

similarity measure of 1 or 100% while two complete opposite waveforms have a similarity

measure of 0 or 0%. For analog waveforms it is rare that two events will be identical due to

the continuous and real-valued nature of the signals. The difference between two values can

be as little as 1e-9, but the resulting similarity calculation will never be 100%. These small

noise differences can be removed by reducing the definition of similarity to 99%. If two events

have a similarity of >99% they can be merged.

Figure 1.6: Compounding events

14

Event based decomposition of waveforms and the concept of similarity measures

facilitates part of the method described in Chapter 4. One part of the motivational force behind

Chapter 4 is the reduction of the input space to contain only inputs which produce unique

output behaviors. The concept of merging events based on similarity measures is the main

mechanism behind clustering algorithms.

A cluster is a group or set of objects that are similar to one another. The definition of

similarity for clusters defines the number of clusters. If the similarity measure is high, meaning

two objects need to be very similar in order to be in the same cluster, the more clusters there

will be and vice versa. When clustering is performed on the input space a representative event

from each cluster is chosen and simulated. These simulated events are the first to populate the

output space. An iterative method of completely exploring the output space is in detailed

Chapter 4.

Reducing the input space is one way of reducing the simulation time for verification of

analog circuits. Another is abstracting the circuit, i.e. behavioral models. From the findings in

Chapter 3 it was observed that some partitions were much easier to learn then others. This was

due to the complexity and information transfer of the partitions. Therefore a method needs to

be developed in order to analyze whether or not the partition should be modeled. If the partition

is deemed to be too complex then it is simulated, otherwise it is modeled. These non-complex

partitions can also be extended to include process variation.

Reducing the simulations speed for large analog circuits allows for various avenues for

analysis to be performed which were otherwise prohibitive. For example, one may perform

critical node analysis across wide ranges of inputs and process variation. Or analyze the

15

behavior when the circuit is supplied varying power sources. Chapter 5 expands on the methods

developed in Chapter 4 to explore analysis and yield applications.

1.4 Contributions of this Thesis

 The work in this thesis addresses multiple issues surrounding analog analysis and

verification in the transient domain. We proposed novel methodologies to address modeling,

input space, compression, critical node analysis, and power analysis for analog and mixed

signal systems. We first propose transient behavioral modeling scheme based on Support

Vector Machines and Channel Connected Component Graphs. Circuits are partitioned based

on their structure and intermediate behavioral models are built for high sensitivity nets. The

models are obtained using Support Vector Machines (SVM), a data dependent black box

modeling technique. We demonstrate the soundness of this approach by modeling large circuits

such as Sigma-Delta ADC and Phase Lock Loop. Experimental results show that this

methodology maintains 95% accuracy behavior predictions while achieving three orders of

magnitude speedup over SPICE simulation time.

 From the experiences gained in Chapter 3 a new methodology is developed in Chapter

4 to more soundly reduce the simulation time and explore the behavioral output space for

verification. A method based on iterative simulation, events, and clustering of the circuit is

developed to reduce the input space to only the necessary events to fully capture and

characterize the output space. Each partition is analyzed for complexity and information

content to determine if the partition is suitable for behavioral modeling. Experimental results

show that the methodology significantly reduces the input space and simplifies non-complex

16

portions of the circuit resulting in significant improvement in simulation time and allows for

directed and effective circuit verification for very large analog and mixed signal circuits.

 In the final chapter, the work is extended to address the critical transistor analysis and

environmental variation analysis. Critical transistor analysis involves determining the location

of transistors which affect the output of the circuit when perturbed by process variation.

Environmental variation analysis is an extension of critical node analysis to include power

variation. The analysis techniques utilize the partitioning and event decomposition scheme to

initially prune a large number of non-sensitive transistors from the total set of transistors. Each

transistor is then simulated at various ranges of process and environment variation to find the

sensitivities. The critical transistors found automatically by the tool are compared with those

located by an expert designer. We show we can detect a few extra extremely sensitive

transistors that need to be redesigned or resized. At the same time we remove some non-critical

transistors which get masked by the operation of the circuit.

1.5 Chapter 1 References

[1] G.E. Gielen, R.A. Rutenbar, "Computer-aided design of analog and mixed-signal integrated

circuits," Proceedings of the IEEE , vol.88, no.12, pp.1825,1854, Dec. 2000

[2] S. Banerjee, D. Mukhopadhyay, D.R. Chowdhury. Computer Aided Test (CAT) Tool

for Mixed Signal SOCs. In IEEE VLSI Design, pp. 787-790, 2005.

[3] Cadence Design Systems. Using a SoC Functional Verification Kit to Improve

Productivity, Reduce Risk, and Increase Quality. White Paper

[4] K.L. Narayan, Computer Aided Design and Manufacturing, New Delhi: Prentice Hall of

India, 2008

17

[5] L.W. Nagel, and D.O. Pederson, SPICE (Simulation Program with Integrated Circuit

Emphasis), Memorandum No. ERL-M382, University of California, Berkeley, Apr. 1973

[6] E. Christen and K. Bakalar, “VHDL-AMS-a hardware description language for analog and

mixed-signal applications.” IEEE Transactions on Circuits and Systems II, vol. 46, no. 10, pp.

1263–1272, 1999.

[7] K. S. Kundert, The Designer’s Guide to Verliog-AMS, 1st ed. Boston, MA: Kluwer

Academic Publishers, 2004.

[8] R. A. Rutenbar, G. G. Gielen, and B. A. Antao, Computer-Aided Design of Analog

Integrated Circuits and Systems, 1st ed. New York: IEEE Press, 2002.

18

Chapter 2

Overview of Analog Circuits

This chapter focuses on the different circuits used throughout this dissertation. Each circuit

discussed has been fabricated and verified by their respective designers. We will discuss the

application, structure, and behavior. Each section will conclude with verification challenges

for the circuit types. The final section discusses the types of variation applied to the circuits

throughout this work. All circuits in this chapter, unless specified, use .13µm CMOS process

technology.

2.1 Phase Lock Loops

A phase lock look (PLL) is a feedback system that compares the output phase with an

input reference phase [1]. A basic PLL consists of a phase detector (PD), charge pump, and a

voltage controlled oscillator (VCO), but also commonly include a divider. The phase detector

(PD) is a circuit whose average output is linearly proportional to the phase difference between

two inputs. A phase detector can be a XOR gate or a sample hold circuit. The filter receives

the output of the phase detector and filters out the high frequency components and presents a

DC voltage to the VCO. The filter can be as simple as a RC low pass filter or as complicated

19

as a charge pump. The VCO, ideally, is a circuit whose output frequency is a linear function

of its control voltage. The lock term of a PLL implies that the input reference frequency is in

exactly the same phase as the generated output frequency. This operation is widely used in

both analog and digital systems for synchronization purposes. The main applications are

frequency synthesis, clock recovery, and jitter reduction.

2.1.1 Ultra Wide Band Phase Lock Loop

The Ultra-Wideband Phase Lock Loop (UWB-PLL) in Figure 2.1 is used to tune the

frequency of the impulse radio ultra wideband transmitter (IR-UWB) [2]. Ultra Wideband

communication is based on transmission of very short pulses with relatively low energy over

a large frequency bandwidth of several GHz. These devices are extremely useful for

biomedical applications due to their low power consumption and can support high data rates.

The UWB-PLL, Figure 2.1, is designed with an IR-UWB transmitter, phase frequency

detector (PFD), charge pump (CP), divider, counter and digital to analog converter (DAC).

The phase detector takes a reference frequency, Fref, of 31.25MHz and the feedback frequency

after it has been divided. The phases are compared and UP/DN signals are generated whose

duration is proportional to the phase difference. The CP which is fully differential receives the

digital UP/DN signal and generates an analog voltage, Vcp. The CP is biased by Vctrl, whereas

Vctrl decreases the CP current decreases. The output of the CP, Vcp, is fed into the 8-bit

up/down/hold counter and then into a DAC to generate Vctrl for the regulator.

The IR-UWB contains a VCO, regulator, pulse positioning modulator and a tunable pulse

generator. The Data and Clock are fed into the pulse positioning modulator which triggers a

tunable pulse on the rising edge of the clock. The pulse is connected to the enable of the VCO

20

to enable oscillation. Vctrl, is fed into a low dropout regulator, linear voltage regulator, which

is biased by Vctrl. The regulator then feds the VCO which generates the frequency, Vout, based

on the supplied voltage, eventually reaching 2.5GHz. Vout is distributed to the frequency

divider which consists of seven total stages with two fast stages.

The behavior of the UWB-PLL is shown in Figure 2.2 for 31.25MHz Fref and nominal

operating conditions. The partitions CP, PFD, bias, regulator, and divider with signals Vcp,

Vpfdup, Vpfddn, Vnbias, Vpbias, Fout, and Vf_fb show lock time at approximately1.3µS. The final

simulation, Fout, shows the frequency generated as it approaches lock at 4.0GHz. The self-

biased voltage values, Vnbias and Vpbias, are feedback from the VCO and are proportional to the

VCO’s oscillating frequency. The divider, Vf_fb, is 128 times slower than the Fout in order to

compare against the Fref in the PFD.

This circuit takes 16 minutes to simulate and contains 1600 components. With extracted

parasitics the circuit contains 60k components and takes 7 hours to simulate.

Figure 2.1: Block diagram [2] of the UWB-PLL with embedded digital tracking used to tune

oscillation frequency of IR-UWB transmitter

21

Figure 2.2: Simulation results for PFD, CP, divider and VCO outputs of UWB-PLL over

2µS.

-0.5

0

0.5

1

1.5

V
o

lt
a

g
e
 (

V
)

Vpfdup

-0.5

0

0.5

1

1.5

V
o

lt
a

g
e
 (

V
)

Vpfddn

0.5

0.7

0.9

1.1

1.3

V
o

lt
a

g
e
 (

V
) Vcp

0

0.5

1

1.5

V
o

lt
a

g
e
 (

V
) Vnbias Vpbias

-0.5

0

0.5

1

1.5

V
o

lt
a

g
e
 (

V
)

Vf_fb

0

5

10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000Fo
u

t
Fr

e
q

u
e

n
cy

(G

H
z)

Time (.1nS)

22

2.1.2 Phase Lock Loop for Clock and Data Recovery

The PLL, Figure 2.3, generates a 2.5GHz clock based on a 31.25MHz reference frequency

for clock and data recovery applications [3]. The phase detector and charge pump are the same

designs as in the UWB-PLL. On an UP pulse the loop filter is charged and vice versa for the

DN pulse. The loop filter smoothes out the abrupt changes cause by the charge/discharge and

delivers the signal to a regulator which buffers and regulates the signal. The regulated signal

is sent to a pseudo differential ring VCO which creates the oscillation. The frequency is then

divided by 16 and feedback to the phase detector for phase comparison.

The behavior of the PLL is shown in Figure 2.4 for 31.25MHz Fref and nominal operating

conditions. The partitions CP, PFD, and VCO with signals Vcp, Vup, Vdn, Vvco, Vvco’ and Fout

show lock time at approximately1µS. The final simulation, Fout, shows the frequency generated

as it approaches lock at 2.5GHz. The output of the CP, Vcp has some noise in the signal which

is removed by the regulator and VCO buffers shown as Vvco’ and Vvco.

This circuit takes 12 minutes to simulate and contains 2000 components.

Figure 2.3: Block diagram [3] of a PLL used for clock recovery

23

Figure 2.4: Simulation results for PFD, CP, divider and VCO outputs in the PLL over 2µS.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
o

lt
a

g
e
 (

V
)

Vdn

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
o

lt
a

g
e
 (

V
)

Vup

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

V
o

lt
a

g
e
 (

V
)

Vcp

Vvco

Vvco'

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
o

u
t

(G
H

z
)

Time (nS)

24

2.1.3 Verification Challenges – PLL

When considering only the external input to the system, Fref, the input space may seem

extremely small. This quickly increases when considering various sources of variation. Each

transistor can have a range of possible variations increasing the input space by a tremendous

amount. Verifying all combinations of variation is obviously impossible due to the sheer

number of simulations required. This is further compounded by extremely large and complex

circuits which require transient behavioral analysis and take a very long time to simulate.

Transient simulations are required to verify the lock time property of the circuit. Lock time is

the time it takes to move from one specified frequency range to another specified frequency

range within a given frequency tolerance [1]. Essentially the amount of time it takes for the

PLL to match the input phase from Fref. The faster the lock time the sooner data can be

transmitted.

Jitter introduced by power supply noise or process variation directly affects the

sensitivity of the components. Jitter with respect to PLLs is the temporal variation of the phase

which is a critical performance metric where too much jitter results in synchronization failures

[5].

The feedback nature of a PLL makes verification difficult. Traditionally each block or

sub-circuit within the PLL is verified individually and only worst case, or corner case,

simulations are done for the whole circuit. Block to block interactions are not typically verified

extensively due to the time requirement.

25

2.2 Converters

 There are two types of data converters; a digital to analog converter (DAC) and an

analog to digital converter (ADC). A DAC converts a digital signal to an analog signal which

is useful when interfacing digital components to analog components such as speakers or

amplifiers. An ADC, on the other hand, performs the opposite operation converting analog

signals to digital signals which is useful for inputting real world inherent analog signals like

sound to be processed by digital components. Converting a continuous-time continuous-

amplitude signal to discrete-time discrete-amplitude signal requires a process called

quantization which maps a large set of values to a much smaller set of values that introduces

rounding errors called quantization errors.

2.2.1 Sigma-Delta Analog to Digital Converter

A low-power high-resolution analog-to-digital (ADC) converter is required to digitize

neural data. These ADCs are well suited for low frequency high accuracy measurements. A

2nd order over a 1st-order ∑∆-ADC, shown in Figure 2.5, is used because the 2nd order does

not suffer from "idle-times" or "limit-cycles" for constant inputs and can provide the required

6-bit resolution without consuming as much power [4]. The design consists of two fully-

differential self-biased amplifiers, two switched capacitor networks, a 1-bit quantizer, and a

non-overlapping clock generator. A ∑∆-ADC receives an analog input signal and samples each

point multiple times, a technique known as oversampling. The sampling is performed much

faster than the rate at which the digital signal is outputted. The oversampled data is

accumulated over time and averaged. The ∑∆ modulator within the ADC is responsible to the

26

digitalization and noise shaping which pushes low frequency noise up outside the frequency

band of interest.

One of the switch capacitor networks and an amplifier create a differential switch capacitor

integrator. There are two operations which operate in a time-interleaved manner; the sampling

mode and integration mode. The integration mode is active when the switches Φ2 are shut and

sampling is when switches Φ1 are shut. The single bit quantizer which is inherently linear

outputs a stream of digital bits.

The behavior for the ∑∆-ADC is shown in Figure 2.6 with a sine wave input of 2KHz under

nominal operating conditions. The signals shown are the differences between the outputs of

each partition for the first 100µS. The simulation starts with the difference between the input

sine wave, vin-vip, and propagates through the first switch capacitor network and amplifier,

von1-vop1. The output of the first network is the input to the second where the output, von2-

vop2, is the input to the quantizer. The output of the quantizer, von-vop, is feedback through

the system, but is also the final digital output of the circuit.

This circuit contains 647 components and takes 4.8 minutes to simulate two clock periods

using HSPICE.

Figure 2.5: Schematic of the low power high-resolution second order ∑∆-ADC for digitizing

neural data.

27

Figure 2.6: Simulation results for outputs in the ∑∆-ADC over 100µS.

-0.02

-0.015

-0.01

-0.005

0
0 100 200 300 400 500 600 700 800 900 1000

V
o

lt
a

g
e
 (

V
)

Time (.1µS)

vin-vip

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
o

lt
a

g
e
 (

V
)

von1-vop1

-0.6

-0.4

-0.2

-1E-15

0.2

0.4

0.6

V
o

lt
a

g
e
 (

V
)

von2-vop2

-1.5

-1

-0.5

0

0.5

1

1.5

V
o

lt
a

g
e
 (

V
)

von-vop

28

2.2.2 Verification Challenges – Converters

 The signal-to-noise-ratio (SNR) is the most important aspect to verify for a converter.

SNR is the ratio between the signal and noise where the higher the ratio the less prominent the

noise. Noise can be introduced from many sources like process variation, coupling, or power

supply variation. The clock is a which source jitter can also effect the SNR in that the sampling

duration of the signal may be shorter or longer. The more noise introduced into the circuit the

least reliable the conversions are. Therefore converters are designed to be as noise tolerant as

possible.

 Some converters have the same issue with feedback as the PLLs. Incorect conversions

can impact the following conversion stages. They can also be too large to simulate as an entire

system and need to be verified by sub-circuits.

2.3 Amplifiers

 An amplifier is a device that increases the power of a signal. It is an essential

component in almost all analog designs. For example, amplifiers can be used when a signal is

too small to drive a load. There are many types of amplifiers which can be categorized as

voltage or current amplifiers, transimpedance, and transconductance amplifiers. These are

typically composed of single-stage amplifiers, differential amplifiers, or operational amplifiers

(opamps). The differential amplifier and opamp are the most widely used amplifiers since

differential inputs have higher environmental noise immunity.

 Amplifiers are typically designed around a set of performance parameters, i.e. gain,

bandwidth, and noise (SNR). Gain is the ratio of the output to input of power or amplitude.

29

Bandwidth of an amplifier is the difference between the low and upper bound of frequencies

at which the amplifier produces acceptable outputs. While there are other performance

parameters, these are common throughout all amplifier design.

2.3.1 Transimpedance Amplifier

A transimpedance amplifier (TIA) receives current from the photo detector and

converts it to an output voltage. In the circuit in Figure 2.9, the input source is a 5mA current

and the output produces a frequency. The input current charges a capacitor which activates a

series of inverters connected with negative feedback. The resulting output is an oscillating

waveform which dependent on the amount of applied current.

Typical design parameters for a TIA are noise, bandwidth, gain, overload response,

and output impedance. The TIA in this section is designed with a frequency output behavior

in mind; therefore we will analyze the amplifier in the transient domain. The behaviors of the

TIA are shown in Figure 2.10 with an input current source of 5mA. The output of the TIA at

the end of the inverter chain, Vinv, is shown in the top figure. After the first flip flop, Vdff1,

shows a smoothed waveform in the middle graph. The final graph shows the final output

after the second flip flop, Vout, at three different input current levels; 1mA, 5mA, and 10mA.

Figure 2.7: Schematic of a feedback TIA

30

Figure 2.8: Behavior of TIA

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
o

lt
ag

e
 (

V
)

Vinv

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
o

lt
ag

e
 (

V
)

Vdff1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450 500

V
o

lt
ag

e
 (

V
)

Time (.1nS)

Vout5mA Vout1mA

31

2.3.2 Low-Noise Low-Power Neural Amplifier

 The low-noise low-power neural amplifier design in Figure 2.11 is a fully differential

self biased amplifier [2]. Self biasing is used to create a stable operating condition for the

circuit. The bias voltages are generated using the average of two differential signals. The

PMOS transistors level shift low voltages more than NMOS, while NMOS level shift high

voltages more than PMOS. The input frequency has the range from 10Hz to 10MHz with a

typical operating frequency of 1.6KHz.

 The behavior in for the self biased differential amplifier is shown in Figure 2.12. The

differential inputs are sine waves with amplitude .02V centered on .6V. The nbias and pbias

signals show the time it takes for the circuit to settle into normal operating mode. This is also

mimicked by the irregular amplified output. The bottom graph shows the difference between

Von and Vop for an input frequency of 1KHz and 10KHz.

Figure 2.9: Schematic of self biased differential amplifier

32

Figure 2.10: Behavior of self biased differential amplifier.

0.585

0.59

0.595

0.6

0.605

0.61

0.615

V
o

lt
ag

e
 (

V
)

Vin_1KHz Vip_1KHz

0

0.2

0.4

0.6

0.8

1

V
O

lt
ag

e
 (

V
)

nbias pbias

0

0.2

0.4

0.6

0.8

1

1.2

V
o

lt
ag

e
 (

V
)

Von_1KHz Vop_1KHz

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 5000 10000 15000 20000 25000 30000

V
o

lt
ag

e
 (

V
)

Time (.1nS)

Diff_10KHz Diff_1KHz

33

2.3.3 Verification Challenges – Amplifiers

Gain is the major performance specification of an amplifier. It is defined as the ratio of

the output to the input of power or amplitude. The gain can be affected by noise sources. Noise,

just like with converters, has a significant impact on the performance of the amplifier. Circuits

like amplifiers are typically small in scale and therefore all devices use the same power and

ground (and possibly substrate in bulk CMOS process) making coupling a serious issue. For a

TIA circuit the power supply variation shows up directly at the output, causing the signal to

corrupt. Mismatched differential pairs due to process variation also contribute to the noise at

the output.

2.4 Voltage Regulator

 A voltage regulator is a circuit that generates a fixed voltage of a predetermined

magnitude. This voltage values remains constant regardless of the changes to the input voltage

or load. There are two types of voltage regulators; switching and linear. Linear regulator

consists of a transistor, acting as a pass device, controlled by a high gain differential amplifier.

A constant voltage is maintained by comparing the output voltage with a reference voltage and

adjusting the pass device accordingly. A switching voltage regulator in contrast uses a

transistor as an active device which switches on or off to maintain the required output. Linear

regulators are often more efficient in for low noise output, fast response to input changes, and

have lower area requirement at low power. Switching regulators are typically more power

efficient and at higher levels of power have a smaller area footprint.

34

2.4.1 Cascode Regulator

 The self-biased folded cascade voltage regulator is shown in Figure 2.17 [3]. The circuit

is self-biased and used a NMOS transistor as the output transistor which helps guarantee a 1.2V

output. The power supply is 3.3V making the transistors think gate devices. This circuit is used

as an alternative to a power supply which isolates the connecting circuits from power supply

noise. The behavior in Figure 2.18 shows the noisy signal Vin and the smoothed signal Vout.

Figure 2.11: Schematic for a self-biased folded cascode voltage regulator

Figure 2.12: Simulated behavior of the voltage regulator.

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0 50 100 150 200 250 300

V
o

lt
ag

e
 (

V
)

Time (.1nS)

Vout Vin

35

2.4.2 Verification Challenges - Regulator

 Regulators are required to produce a constant reliable voltage output. Any change to

that output can cause errors in the connecting circuits. Therefore any large variation in the

power supply or process will cause an unstable output voltage.

2.5 Variation

There are three main types of variation addressed in this work. The size of transistors

is varied by 10% for the benchmark circuits. Process variation, in particular Vth variation, is

applied to the transistors in the remaining circuits. Vth is varied by uniformly from -6σ to +6σ.

We focus primarily on Vth variation because of its effect on speed and leakage power. It also

has a strong correlation with temperature changes. Environmental variation, in particular,

power variation is applied to all circuits in conjunction with Vth variation. The power supply

is varied by ±15-20% of the optimal voltage.

2.6 Chapter 2 References

[1] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, McGraw-Hill, 2001.

[2] M. Elzeftawi, Compact Low-Power Low-Noise Neural Recording Wireless Channel for

High Density Neural Implants (HDNIs), PhD Dissertation, University of California, Santa

Barbara, December 2012

[3] L. Chen, Integrated CMOS Controller For Fast Optical Switching, PhD Dissertation,

University of California, Santa Barbara, June 2013

36

[4] L. Wang, Micro Power Delta-Sigma Analog-to-Digital Converters based on Novel Self-

Biased Inverter Amplifiers, PhD Dissertation, University of California, Santa Barbara, June

2013

[5] B. Razavi. In Phase-Locking in High-Performance Systems: From Devices to

Architectures. New York: Wiley-Interscience, 2003

[6] B. Kaminska, K. Arabi, I. Bell, P. Goteti, J.L. Heurtas, B. Kim, A. Rueda, and M. Soma,

Analog and Mixed-Signal Benchmark Circuits - First Release, IEEE International Test

Conference, Washington DC, November 1997.

37

Chapter 3

General Hierarchical Behavioral Modeling of Analog

and Mixed Signal Circuits

This chapter focuses on the developed methodology for automatically creating transient

voltage behavioral models of analog and mixed signal circuits utilizing circuit partitioning.

The models are obtained using Support Vector Machines (SVM), a data dependent black box

modeling technique. Larger circuits are partitioned based on their structure and intermediate

behavioral models are built for high sensitivity nets. We demonstrate the soundness of this

approach by modeling large circuits such as Sigma-Delta ADC and Phase Lock Loop.

Experimental results show that this methodology maintains 95% accuracy behavior predictions

while achieving three orders of magnitude speedup over SPICE simulation time.

3.1 Introduction

 Behavioral models have become a critical step in the analysis of analog and mixed signal

circuits which traditionally suffer from long simulation times. In general, behavioral modeling

38

attempts to describe the circuit in a higher level of abstraction then transistor level, while

maintaining transistor level simulation accuracy. Due to the critical effects between circuit

blocks and second order device effects it is of interest to extract the behavioral models directly

from the transistor level, SPICE, descriptions to ensure these interactions are properly

incorporated within the behavioral models.

 Many behavioral techniques model the circuit frequency domain response. The

automation of linear models has been well established for simple circuits including linear time

invariant [1-3] and linear time-varying systems [4]. Many fundamental non-linear effects are

not captured in these equations and device models, since they are discarded by linear

approximations. Addressing the need for non-linear analog macromodels, many modeling

approaches have been introduced. For circuits whose non-linearity can be represented by

polynomials, Volterra-based series expansions can be employed [5]. For strongly non-linear

circuits, piece-wise linear models are used [6-8]. Such models divide the space into segments

in which the function is linear or weakly non-linear. Each segment can be further reduced by

employing model order reduction techniques. These techniques are practical for modeling

transient behaviors, which is the focus of this work. Other black box modeling techniques

utilizing various training-based algorithms, i.e. neural networks and support vector machines,

have been proposed [9-12]. These algorithms create models by discovering the various

relationships between the training data. The models can predict output values for new input

values based on these relationships.

 In this work, we focus on time-domain modeling for non-linear analog and mixed signal

circuits which can be accomplished by equation fitting or black box modeling. Black box

modeling describes a circuit or system in terms of its inputs and outputs without any knowledge

39

of its internal workings. For this work we focus on black box modeling because they can be

derived strictly from data, measured or simulated, without having to fully understand the

circuit. Since they are based strictly on data, they can be generally applied to known and

unknown circuit types which equations may not have been developed for.

 Time-domain black box behavioral modeling methods have been proposed in the past, but

they suffer either from lack of automation, provide minimal speed-up over traditional methods,

or they cannot be applied to larger circuits. In [13], the authors propose to extract behavioral

models directly from the netlist by processing simulation results into transfer function

trajectories; however the method was demonstrated on a small circuit with minimal speedup

and the approach is not always automatable. The work in [14] presents a real-time neural-

network-based approach for microwave RF devices. The approach is demonstrated on small

circuits and it is unclear if it can be applied to large and complex designs.

 The methods proposed in this chapter build upon the work described in [15]. The authors

use Gaussian Process Regression to build non-parametric models eliminating the need to use

and understand complex device models and equations. Non-parametric behavior modeling is

extremely attractive because there is no need to learn equations or set parameters since it

predicts the device behavior based on similar known behaviors. Unfortunately, this method

cannot be generally applied to large highly complex circuits, which is the inspiration for this

work. For this reason we propose a partitioning method along with support vector machines

(SVM) to create a hierarchy of behavioral models for large strongly non-linear analog circuits.

The partitions are derived from a channel connected component graph and hierarchy graph

which determines the input/output relationship and hierarchy of each partition. Simulations are

run with SPICE on the full un-partitioned netlist in order to ensure continuity between

40

partitions. Once the data has been extracted from the simulations, the black box models are

created based on the derived partitions. The models are connected to form a series of

predictions that create the transient output waveform. Though we focus on SVM as the primary

modeling algorithm, many other black box approaches can benefit from the reduced

complexity associated with the proposed partitioning scheme.

Analog circuits vary vastly in their complexity and behavior. For this reason a universal

solution has not been developed for automating behavioral models. The existing modeling

methods cannot be easily automated because they either (1) require design or designer

knowledge to develop sub-circuit equations, (2) sub-circuits are used to speed up simulation

of the model development thus the continuity between sub-blocks is difficult to maintain, and

(3) input-output relationships of the functional blocks are often too complex or have one-to-

many relationship making black box modeling difficult or unachievable. Analog design is

usually partitioned into well-known sub-block components like quantizers, VCOs, or charge

pumps which can all be modeled by equations or have data fitted to equations. Unfortunately

many of these methods fail to capture block to block interactions or they cannot be expanded

to include process variation due to the increased complexity of the equations. Such equations

will need to be developed for every type of a new circuit or new behavior type encountered.

Building block based models can easily capture strongly correlated relationships of simple

sub-circuits automatically, but fail when complex or weak relationships are encountered. To

illustrate this point we analyzed a quantizer circuit defined as a single sub-block within a large

sigma-delta analog-to-digital converter (ΣΔ-ADC) [16]. This circuit, (Fig.1.) contains 40

transistors and has three inputs and a differential output. Taking two common BB approaches,

the response surface modeling (RSM) and support vector machines (SVM), we build transient

41

behavioral models based on 1000 points of transient simulation data for a single period of the

input frequency and test them with another set of 1000 points. Both methods predict output

transient waveforms with low accuracy: RSM - 49.6% and SVM - 75.82%. This indicates that

the input-output relationships are not highly correlated.

To address weakly correlated relationships, we break the netlist into functionally-

independent, strongly correlated sub-circuits. Data capture for model building is done from

simulations performed on the un-partitioned netlist in order to preserve the continuity between

sub-circuits. The graph partitioning methodology and high sensitivity net detection removes

the requirement for designer knowledge and allows for modeling unknown, flat netlists, or new

circuit structures.

This chapter is organized as follows. Section 3.2 provides background on SVM modeling

and data capture techniques. Section 3.3 describes the circuit graph representation, net

sensitivity calculations, and modeling-resistant circuit components. Section 3.4 describes

circuits used in experiments. Section 3.5 shows experimental results for nominal behavior.

Section 3.6 presents variation based models and modeling results. The key learnings are

analyzed in Section 3.7 and the chapter is concluded in Section 3.8.

3.2 SVM Background

Within the domain of behaviors studied here, PWL or PWP (piece-wise polynomial), and

SVM models are comparable in speed and accuracy. We choose to use SVM-based models

because of their ability to handle a large number of model inputs and to discover trends based

on small or irregular sample sets. Data mining and learning-based approaches have been

developed to predict performance specifications of analog circuits [9-12]. These models use

42

simulation data and employ various techniques such as SVM or Neural Networks. We utilize

such modeling techniques in this work, but apply them to transient behavioral modeling.

Our models are built using the supervised learning algorithm, Support Vector Regression

(SVR) [17]. The objective of supervised learning is to derive a function from a set of input

samples (training set) and their associated outputs. Support Vector Machines (SVMs) are a

family of algorithms for classification and regression applications. SVMs may require long

training time for complex data sets, but there exist sampling and data partitioning methods that

can be used to create smaller, more compact models which significantly reduces the training

time. The work in [18] explores various methods for data sampling to achieve high SVM model

accuracy with fewer simulation runs.

3.2.1 SVM-R Theory

Support vector regression [17] can predict real number values which are common in analog

circuits. The digital values can be predicted using classification which will not be discussed in

this work. Consider a set of training data points {(𝑥𝑖, 𝑦𝑖),𝑖=1
𝑛 }, where xi represents the input

vector and yi represents the corresponding output value. The support vector regression function

can be expressed as

𝑦 = 𝑤 ∗ 𝛷(𝑥) + 𝑏 , (2.1)

where b is the bias, w is the weight, and Φ(x) denotes the feature of the inputs. The optimal

regression function is obtained by minimizing the risk function,

43

1

2
||𝑤||

2
+ 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1 (2.2)

Subject to 𝑦𝑖 − [(𝑤, 𝑥𝑖) + 𝑏] ≤ 𝜀 + 𝜉𝑖

[(𝑤, 𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0

where C is the regularization constant, ε denotes the ε-insensitive coefficient, 𝜉𝑖 , 𝜉𝑖
∗denote

positive slack variations. By using Lagrange multiples 𝛽𝑖, 𝛽𝑖
∗ and kernel function k(xi,xj), the

dual Lagrange form is given as:

Max ∑ 𝑦𝑖(𝛽𝑖 − 𝛽𝑖
∗) − 𝜀 ∑(𝛽𝑖 − 𝛽𝑖

∗)

𝑛

𝑖=1

𝑛

𝑖=1

 (2.3)

−
1

2
∑ ∑(𝛽𝑖 − 𝛽𝑖

∗)(𝛽𝑗 − 𝛽𝑗
∗)𝑘(𝑥𝑖, 𝑥𝑗)

𝑛

𝑖=1

𝑛

𝑖=1

Subject to ∑(𝛽𝑖 − 𝛽𝑖
∗)

𝑛

𝑖=1

= 0

0 ≤ 𝛽𝑖, 𝛽𝑖
∗ ≤ 𝐶

The regression function can now be expressed as,

𝑦 = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝑛

𝑖=1 𝑘(𝑥𝑖 , 𝑥𝑗) + 𝑏. (2.4)

The kernel function, k, is used to measure similarity between two vectors in the given

feature space. The kernel computes the vector distance between x and x' without ever explicitly

mapping the vectors to the feature space 𝛷, reducing computational costs and allowing data to

be linearly separable in the original space

 𝑘(𝑥, 𝑥′) =< 𝛷(𝑥), 𝛷(𝑥′) > . (2.5)

44

In this work we use the Gaussian kernel expressed as

 k(x, x′) = exp (−
||x−x′||

2

2σ2) , where σ > 0 . (2.6)

Other kernels, such as linear, polynomial, or sigmoid can be used, but experimentally, we

found that the Gaussian kernel provides the most consistent positive results for the applications

considered here.

3.2.2 SVM Creation

The SVM algorithm utilizes data obtained from low level models such as SPICE or

differential equations to create a high level model abstraction that captures a specific behavior.

A circuit can be completely described by a set of differential equations

𝑑

𝑑𝑡
𝑞⃗(𝑢⃗⃗(𝑡)) + 𝑓(𝑢⃗⃗(𝑡)) + 𝐵⃗⃗(𝑥⃗(𝑡)) = 0, (2)

 𝑦⃗(𝑡) = 𝑙𝑇 𝑢⃗⃗(𝑡) + 𝑑𝑇𝑥⃗(𝑡),

where 𝑢⃗⃗ ∈ ℝ𝑛 are state variables, i.e. capacitor current, 𝑥⃗ are top level inputs, and 𝑦⃗ are the

top level outputs. Obtaining a unique output 𝑦⃗ requires access to the state and input variables.

At a high level of abstraction, black box, the internal state variables are no longer accessible.

Therefore unless the inputs 𝑥⃗ are highly correlated to the outputs 𝑦⃗ the models will produce

very low accuracy results. Access to 𝑢⃗⃗ is required to produce high accuracy models. In order

to determine which state variables are required we propose a heuristic which partitions the

circuit and determines highly correlated intermediate behaviors to the top level output.

Simulations are performed in order to capture the behavior relationships between inputs 𝑥⃗ and

45

the intermediate behaviors are captured in SVM models. The output 𝑦⃗ can be determined based

on top level input 𝑥⃗ and intermediate models.

3.3 Model Creation

Given the design specifications, input operation ranges for the desired performance, and

the circuit netlist, the required data for building behavioral models can be obtained. In this

work, we only consider transient voltage behaviors. Before any partitioning is done the entire

netlist is simulated as a single entity and the transient voltage behaviors are captured for each

net at uniform intervals. We perform uniform sampling within the range of the design

specifications and simulate to capture the behavior. For example, if the design should operate

between 1V VDD and 1.5V VDD we would run simulations at 0.1V intervals. Once the data is

captured, partitioning is performed in order to create a series of simple models to predict the

behavioral operation at any VDD between 1V and 1.5V significantly faster than through

simulation.

The uniformity of samples may cause model inconsistencies around highly volatile areas

which traditionally require increased sampling. It is not known beforehand whether more data

is needed for specific areas or for intermediate behavior models. To address this problem, data

is captured at finer intervals then required in the design specifications, which does not increase

simulation time. The models are initially built based on the original intervals. If testing step

discovers inaccuracies in a specific model, the models are rebuilt based on the finer interval

data. This data capture method is rarely required; it may be invoked when the output behavior

is state dependent and highly volatile. When capturing smaller intervals, the waveform changes

46

become less extreme, making the behavior relationships easier for the SVM algorithm to

discover.

Probes are inserted at each edge defined by the partitions in Section III for voltage capture.

This way the system level input and output relationships of each partition are maintained

without any extra modeling for block coupling. This implies that our models are specific to the

simulated design and cannot be utilized in a different design model unless the input and output

relationships between the designs are maintained.

3.3.1 SVM Model

Due to the decomposition of the circuit each partition has a strong correlation between the

input set and the output resulting in a weight vector having a non-zero value for each feature.

The number of partitions per circuit is generally high for large analog circuits. The

classification models for the digital partitions remove most of the real number errors in the

regression models by predicting the digital values 0 or 1.

State and feedback characteristics of the circuits can easily be incorporated into the vectors.

The previous output value of the circuit being modeled is included as a feature in the vector

describing the current output value. States are incorporated in the same way, as features within

the vector. When applying test vectors to the model, the previous predicted output value is

included within the current test vector.

Parameter selection is a difficult problem for many learning algorithms and is crucial for

creating a good model. In this work we use the υ-SVM-R algorithm which automatically fits

the user-defined values ε and C based on the provided data. The only value the user defines is

47

the variable υ which determines the slack variables. The larger the υ value the more vectors

with slack ξ may become support vectors. In this work we use υ=0.1 for all regression models.

3.4 Partitions and Intermediate Behaviors

A common approach to addressing slow transistor-level simulation times is to partition the

circuit into its digital and analog components. A major challenge in this type of partitioning is

to determine when the digital components are in analog modes of operation, which include

detecting of the internal and negative feedbacks. The work in [18] provides an algorithm for

such partitioning using channel-connected sub-circuits. In [19], the analog sub-circuits are

simulated using nonlinear macromodels. The macromodels approximate the charging and

discharging behavior of the circuit output nodes and provide one order of magnitude speedup

over SPICE simulations for the analog subcircuits. The macromodeling using circuit

partitioning proposed in [20-23] decomposes the circuit into a set of building blocks based on

the netlist structure. Methods that use subcircuit or building block-based partitions assume that

either the user declares the partitions or that there is a set of predefined building blocks. It is

not always the case with highly complex or custom built circuits which makes modeling using

these methods difficult.

In our approach, the graph model of the circuit and sensitivity analysis of captured data are

used for establishing the signal flow, hierarchy, and determining which inputs are essential to

predict intermediate behaviors. In this Section we discuss the two types of graphs used in

partitioning and explain how the intermediate nodes are determined based on net sensitivity.

We then discuss circuits which are resistant to this type of partitioning and propose a method

of handling them. Using the partitioning and intermediate nodes we show how accurate this

48

method is at predicting the final output as compared with generic modeling of the component

which yielded 75% accuracy for SVM and 50% accuracy for PWL.

3.4.1 Channel Connected Graph and Channel Connected

Components

A Channel Connected Graph (CCG) describes the source-drain dependencies within a

circuit. It is defined as CCG=(V,E) where V are vertices which correspond to transistors, Vdd

or GND, and E are edges which capture the source-drain connections. There is an edge between

vertices v1 and v2 if their corresponding transistors have drains or sources connected or if one

of them represents Vdd or GND and the other transistor connected to it. Once the VDD and GND

nodes are removed, CCG is fractured into a set of smaller graphs. Each such a sub-graph with

Vdd/GND and connections to them restored corresponds to a channel connected component

graph (CCCG).

Figure 3.1 shows the CCG graph of a basic two stage opamp. The labels on the graph nodes

and their corresponding transistors match. The graph has two partitions. Partition 1 consists of

nodes 1-6 while partition 2 consists of nodes 7-9. Both partitions include Vdd and GND nodes

along with the corresponding edges.

In analog circuits, when the VDD and GND nodes are removed to create the components,

and later restored in sub-graphs, it is possible that some resulting components do not contain

VDD or GND. Such sub-graphs are not CCCGs and may occur when a circuit contains floating

nets, resistors, capacitors, or inductors that supply connections to the source or drain terminals.

Partitions which are not CCCGs are discussed in part D of this Section.

49

Figure 3.1: Differential opamp schematic and its CCG

3.4.2 Group Hierarchy and Feedback Detection

Each partition within the CCG has an associated set of driving gate inputs which can be

the top level inputs to the circuit, internal nets, or nets from other partitions. Referring to Figure

3.1, partition1, containing nodes 1-6, has the associated input set {Vm,Vp,net1,Vbias1,Vbias2};

partition2, containing nodes 7-9, has the input set {Vout,Vbias1,Vbias2}. The inputs

Vm,Vp,Vbias1,Vbias2 are top level inputs, net1 is an internal input, and net Vout is an external input.

The relationships between partitions can be described by a directed graph HG=(N,L) where N

is the set of partitions, top level inputs t, or primary outputs; and L are edges. An edge l(t,b)

exists in HG, if there is an input to b from the top level t. An edge l(a,b) exists if the output of

a partition a is an input to the partition b. Self-loops, edges with the same head and tail nodes,

l(a,a), indicate internal inputs.

The graph HG determines the circuit hierarchy. The first level of the hierarchy contains t

and those nodes with no in-coming edges other than self-loop. The remaining hierarchical

levels can be determined by performing breadth-first traversal of the graph HG. The partitions

50

containing self-loops indicate state dependency due to the feedback cycle between the gate-

drain or gate-source connection.

Figure 3.2 depicts the hierarchy graph for the opamp in Figure 3.1. The internal input net1

is shown as edge l(1,1). Vout is edge l(1,2) indicating an external input. Node 1 contains no

external edges, only top and internal inputs, making it the top of the hierarchy. Node 2 is on

the second level due to external edge l(1,2).

Figure 3.2: Hierarchy graph of differential opamp in Fig. 1

3.4.3 Intermediate Net Detection

Intermediate behavioral nodes are determined based on CCCGs, hierarchy graph, and

sensitivity analysis performed on initial simulation data. To determine if a partition contains

any high sensitivity nets, the calculation of ∆Vnet/∆Vout is performed on the net voltage data

generated from circuit simulation. If there are no high sensitivity nets within a specific CCCG,

then that group is combined with the next group in the hierarchy. The exception is if the group

contains an external edge to the top level output l(b,o). If a partition contains a high sensitivity

net then the intermediate behaviors are the nets whose edges correspond to external inputs in

the hierarchy graph. The opamp design contains one high sensitivity net based on the

51

simulation data, thus the intermediate behavior of Vout is modeled. If no high sensitivity nets

were found then both partitions would be combined into a single node that utilizes previous

state information, due to edge (1,1), and top level inputs.

The high sensitivity nets are determined based on the high correlation to the output

behavior where each partition’s inputs are highly correlated to the high sensitivity net. The

model of each partition is based on simulation data which encompasses the behavior changes

occurring due to internal variables 𝑢⃗⃗. Each model then captures behaviors due to internal

variables and represents functions dependent on only previous model outputs or top level

inputs. The top level output behavior is then predicted based on few highly correlated internal

nodes and the top level inputs.

3.4.4 Partition Resistant Components

Analog circuits are composed of many different types of components, all combined into

various configurations. In certain instances the circuit or subcircuit may not form a CCCG;

such a partition may be missing the VDD or GND node. Such a circuit is considered resistant to

partitioning and must be modeled based on the circuit inputs and outputs without any

intermediate nodes. For example, a switch capacitor network does not form a CCCG because

the source or drain terminals of the nodes are connected only via capacitors which are excluded

from the construction of the CCG.

The structures resistant to partitioning are components within a library. When at the netlist

partitioning stage such circuits or subcircuits are detected, then no further partitioning is

performed on them. Their models are created using the circuit inputs and outputs without any

intermediate nodes.

52

The switch capacitor circuits need to be detected from the netlist during partitioning. There

is a number of possible topologies that make up these components, Figure 3.3.

Figure 3.3: Examples of switch capacitor (SC) topoglogies

53

Algorithm 1: Netlist to SVM Model methodology

Input: Circuit netlist, model files, design inputs D=[d1,...,dn], transient time T

Output: SVM behavioral models

1: Check for known circuit topologies and set SC_flag to true if one or more exist, otherwise

false

2: Create CCG=(V,E)

 a. if SC_flag==true; all SC components are clustered in same group

3: Create hierarchy HG=(N,L)

4: Modify netlist to include T, D, and data extraction statements for capturing all net voltage

behaviors

5: Run SPICE simulation

6: Parse simulation output file into training and testing files based on hierarchy graph

a: Starting from top level of hierarchy,

b: For each level of hierarchy and top output accuracy <95%

 i: If output net of hierarchy node is digital run SVM-Classification

 ii: Else run SVM-Regression

 iii: if current hierarchy <95% accuracy create intermediate node SVM model

7: Create dependent model chain

8: Apply top level inputs

9: Analyze predicted top level output

54

3.4.5 Quantizer Example

Figure 3.4 shows the CCG for the quantizer circuit and highlights the sensitive nets and

components. The top of the hierarchy, as shown in Figure 3.5a, is the input level to the circuit

and leafs contain the outputs. In Figure 3.5b, we show the reduced hierarchy graph for the

quantizer in which the levels labeled Group 1 and Group 2 are merged together. Group 1 does

not contain any high sensitivity nets and it is combined with the next lowest level. Such

modifications of the hierarchy graph reduce the number of models needed to be created. The

high sensitivity nets are modeled and then used as input variables to the next group lower in

the hierarchy.

Figure 3.4: Channel Connected Compont Graph of the quantizer circuit. Six group partitions

with intermediate behaviors

By partitioning the circuit into a set of connected subcircuits we can predict the output

using intermediate signals which leads to the final Von and Vop digital values. Table 3.1 shows

55

the six models created for the quantizer circuit and their prediction accuracy. The models were

trained with 1000 vectors and tested with 1000 different vectors. For the intermediate nodes

or final outputs producing real values, support vector regression was used. The input vector

consists of circuit inputs and previous group outputs where applicable as shown in Figure

3.5(a) and (b). Table 3.2 shows which outputs were predicted within each group whether high

sensitivity nets or final outputs. Nets 286 and 252 are inputs to the groups predicting nets 134

and 189 which are in turn used as inputs to the groups predicting Von and Vop. The resulting

outputs have 100% prediction rate which is significantly better then the results prior to

partitioning at 75.82%.

Figure 3.5: (a) The initial hierarchy graph of the quantizer. (b) Hierarchy graph with combined

non-sensitive groups Group 5 and 6 contain output edges.

56

TABLE 3.1: RESULTS FOR THE QUANTIZER PARTITIONS

 Training Time Prediction
Accuracy

Net286 .24s 99.4599%

Net252 .234s 99.54%

Net134 .18s 99.94%

Net189 .18s 99.94%

Von .18s 100%

Vop .17s 100%

3.5 Experiments

The partitioning, data capture, and net sensitivity calculations described in the earlier

sections of this chapter have been implemented as a fully automated tool and demonstrated on

the UWB-PLL and the ∑∆-ADC described in Chapter 2. The data capture is done via HSPICE

[23] and the SVM models are created using LIB-SVM [24]. Each circuit has an associated set

of design specifications which indicate the input parameters correlated with the desired

operational behavior. In each experiment, the transient voltage behavior is modeled. The model

accuracy is determined by the predicted values compared to the actual simulated values.

Each netlist is modified to include the transient statements and voltage capture for each

net. In parallel with simulation, the hierarchy of the defined subcircuits is determined and

partition graphs are created for each subcircuit. The data file generated from the simulation run

is parsed and a subset of the data is used to quickly determine if the subcircuits require further

partitioning starting from the topmost level of the hierarchy until the desired accuracy is

achieved. Once the level is determined then the models are created using the full simulation

data. The models are then chained together to form the full path to predict the final circuit

outputs. Those models within the same level of hierarchy can be determined in parallel.

57

Table 3.2 shows the models created for the ∑∆-ADC and the amount of training time,

number of support vectors, and the prediction accuracy when the models were tested

independently and dependently (within the circuit). The models were trained with 50,000

vectors, one input period, and tested with 50,000 different vectors. When the models are tested

for their accuracy independently of any other models the desired accuracy is very high. When

the models are chained together and are dependent on one another, there is some loss in

accuracy due to miss-predictions being propagated through the chain. This error is minimized

by the weights discussed in Section IIC. The total amount of time to perform 500,000

predictions, 50,000 per model, is 184 seconds. The speedup over HSPICE is only 21X because

of the high dimensionality of the amplifier models, with each model having 15 dimensions.

Figure 3.6 shows a subset of the dependent predictions for the Amp_Vop2 model where Vop2A

is the actual simulated waveform and Vop2 is the predicted waveform.

Table 3.3 shows the models created for the PLL with the amount of training time, number

of support vectors, and the prediction accuracy when tested independently and dependently.

The models were trained with 10,000 vectors and tested with 20,000 different vectors. As with

the ∑∆-ADC the independent model predictions are very high. The training time is

significantly shorter for the PLL due to its continuous nature and smaller dimensionality. Each

partition in the PLL contained fewer elements making the intermediate and input-output

relationships less complex. The total amount of prediction time for 380,000 vectors is 15.76

seconds which is a 445X speedup over HSPICE simulation. Figure 3.7 shows the waveform

comparison between the simulated Fout and the predicted waveform Fout_P for the first 200

predictions, 20ns.

58

Significant speedup can be observed when modeling designs that include layout parasitics.

For this experiment the UWB-PLL in Figure 2.1 includes parasitics extracted from layout. The

simulation time in HSPICE for this netlist with 60830 components took 7 hours and 8 minutes.

Table 3.3 shows the model creation for the UWB-PLL data and the prediction accuracy for

independent and dependent models. To perform all 380,000 predictions, 20,000 test vectors

per model, the total prediction time was 14.54 seconds a 1766X speedup over HSPICE. Figure

3.8 shows the waveform comparison between the simulated Fout and the predict waveform

Fout_P

59

TABLE 3.2: BEHAVIOR MODELS FOR THE ∑∆-ADC

Model

Name

Support

Vectors

Training Time

- Minutes

Prediction Accuracy

-Independent

Prediction

Accuracy -

Dependent

Amp_Von1 10599 8 99.13% 98.01%
Amp_Vop1 10793 8 99.15% 98%
Amp_Von2 9383 8 99.21% 97.57%
Amp_Vop2 9097 8 99.01% 97.53%
Net286 683 2 99.67% 99.06%
Net252 683 2 99.78% 99.01%
Net134 43 1 99.48% 98.77%
Net189 41 1 99.47% 98.98%
Von 19 1 99.98% 98.82%

Vop 20 1 99.98% 98.82%

Figure 3.6 Waveform comparision between simulation waveform, Vop2A, and predicted

waveform, Vop2.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901

V
o

lt
a

g
e
 (

V
)

Time (ns)

Vop2A Vop2

60

TABLE 3.3: BEHAVIOR MODELS FOR THE UWB-PLL

Model Name # Support

Vectors

Training Time

-Seconds

Prediction Accuracy

-Independent

Prediction

Accuracy -

Dependent

PFD_UP 115 .21 98.77 99.64%
PFD_UPi 111 .28 99.19 99.63%
PFD_DN 106 .18 99.677 99.19%
PFD_DNi 107 .24 98.95 99.11%
CP 489 2.65 99.9 95.31%
DIVN_S1 180 .18 100 98.55%
DIVN_S2 162 .17 100 99.3%
DIVN_S3 1176 .81 94.02 98.86%
DIVN_S4 1154 .78 95.2 99.42%
DIVN_S5 490 .36 97.58 99.11%
DIVN_S6 245 .21 99.24 99.12%
DIVN_S7 131 .14 99.53 99.32%
REG_VUWB 1003 6.99 99.9 94.95%
VCO_NET41 639 2.7 98.7 96.17%
VCO_Vn 1511 3.4 99.45 96.68%
VCO_Vp 1512 3.3 99.48 96.68%
VCO_Von 1512 3.3 98.6 97.56%
VCO_Vop 1509 3.4 98.7 97.58%
VCO_fout 1008 2.5 98.7 97.12%

Figure 3.7: Waveform comparision between simulation waveform, Fout, and predicted

waveform, Fout_P for the PLL_UWB

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

V
o

lt
a

g
e
 (

V
)

Time (100ps)

Fout Fout_p

61

TABLE 3.4: BEHAVIOR MODELS FOR THE UWB-PLL WITH PARASITICS

Model Name # Support

Vectors

Training Time

-Seconds

Prediction Accuracy

-Independent

Prediction

Accuracy -

Dependent

PFD_UP 88 .266 99.63 98.98
PFD_UPi 94 .192 99.76 99.01
PFD_DN 94 .186 99.64 98.78
PFD_DNi 90 .185 99.79 98.78
CP 518 4.41 99.8 96.8
DIVN_S1 180 .18 100 98.66
DIVN_S2 162 .162 100 99.23
DIVN_S3 886 .637 96.16 99.33
DIVN_S4 366 .294 98.5 99.63
DIVN_S5 230 .203 99.32 99.47
DIVN_S6 123 .137 99.27 99.48
DIVN_S7 71 .103 99.63 99.45
REG_VUWB 1018 6.7 99.8 98.7
VCO_NET41 1027 6.81 99.5 98.66
VCO_Vn 1519 4.33 99.35 96.2
VCO_Vp 1523 4.32 99.32 96.2
VCO_Von 1511 4.1 97.78 97.12
VCO_Vop 1516 4.2 97.8 97.24
VCO_fout 1012 .81 96.35 95.1

Figure 3.8: Waveform comparision between simulation waveform, Fout, and predicted

waveform, Fout_P for the UWB-PLL with parasitics

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 11 21 31 41 51 61 71 81 91

V
o

lt
a

g
e
 (

V
)

Time (100ps)

Fout Fout_p

62

3.6 Variation Models

Variation based behavioral models are an extension of the behavioral modeling

algorithm described in the previous sections. Automatic decomposition and partitioning of the

circuit remains the same, while the training set is expanded to include new variation data. The

netlist file is altered to include Monte Carlo sweep statements for each process parameter being

varied. For each combination of voltage supply and temperature values, 20 Monte Carlo

simulations are performed. Supply voltage is varied from .9V to 1.4V with .1V increments and

temperature is varied from 10°C to 40°C with 5°C increments. If voltage is being varied,

temperature is being kept at the constant at the nominal 25°C and vice versa. The process

parameters, Vth, Tox, Leff, are varied randomly by 3σ. Ten of the twenty Monte Carlo

simulations are used as training data and the other ten simulations are used as testing data.

To reduce the model building time it is essential that the number of training vectors is

reduced as much as possible. Each single Monte Carlo simulation contains 20,000 training

vectors and after removing all the duplicate vectors we run SVM to create a set of support

vectors that describe the training set. These training sets are small so it takes just a total of 6

minutes to create all the support vector sets. These sets are combined to form a single training

set that describes the variation for a given temperature and voltage pair. This is repeated for

each voltage and temperature pair. To create a single model, all the support vectors are

extracted again to form a single training set which contains all simulated pairs of temperature

and voltage and their corresponding sets of process variation.

Reducing the size of the model also greatly impacts the amount of time performing

predictions takes. The prediction time is proportional to the number of support vector

63

comparisons and number of elements therefore reducing the number of support vectors

dramatically reduces the prediction time.

Table 3.5 shows waveform prediction results for the PLL using the single model

described above. For each temperature and voltage pair the table shows the number of

waveforms predicted each with a random set of process variation, the average prediction

accuracy, and average lock time and power prediction accuracy. The non-bolded entries

represent pairs that have been trained, but the process variation is different. The bolded entries

represent new pairings that were not used to train the model. Most of the waveforms can be

predicted with at least 95% accuracy, where most of the inaccuracies occur at the peak and

valley amplitudes. Figure 3.9 shows a sample period of two of the predicted waveforms which

highlights the mis-prediction in amplitude. The dotted lines are the predicted waveforms and

the solid lines are the simulated waveforms. The most important aspect, being that of the

frequency generated, is still predicted with high accuracy. The lock time, which is extracted

from each predicted waveform, represents the time (ns) that the PLL stabilizes the frequency.

From the results in Table 3.5 for lock time prediction accuracy represent how accuracy the

simulation lock is in comparison to the predicted lock time. Even if the waveform prediction

shows about 95% accuracy, that accuracy is lost in the amplitude and not the frequency lock

time which is why the lock time prediction is so accurate.

The average time to predict each waveform is 28 seconds. Each waveform has 20,000

prediction points spanning the full 20µS capture time. This is compared to the 26 minutes it

takes to do a single Monte Carlo simulation of the same 20µS. The prediction time would take

less time if the model file contained fewer support vectors, i.e. if the design range was more

64

refined. Since the design range is large the model file will in turn be large increasing the time

it takes to perform predictions.

A SVM model is created to predict the power for a given waveforms based on voltage,

temperature, and lock time. Figure 3.10 shows the power predictions for the test data.

Table 3.5: Predicted PLL waveform data
Voltage Temperature Number of

Waveforms
Predicted

Average
Waveform
Prediction

Accuracy %

Lock Time
Prediction
Accuracy

0.9 25 10 94.8 99.89
1.0 25 10 95.2 99.96
1.1 25 10 95.3 99.97
1.2 25 10 95.5 99.82
1.3 25 10 96.3 99.97
1.4 25 10 96.5 99.97
1.2 10 10 94.95 99.94
1.2 15 10 94.87 99.75
1.2 20 10 94.96 99.76
1.2 25 10 95.12 99.86
1.2 30 10 95.31 99.92
1.2 35 10 95.33 99.95
1.2 40 10 95.53 99.91
0.95 13 5 92.4 98.92

0.95 32 5 93.3 99.11

1.05 25 5 94.87 99.03

1.15 25 5 97.63 99.62

1.25 20 5 96.22 99.45

1.2 18 5 95.54 99.57

1.33 37 5 96.54 99.56

1.5 50 5 97.79 99.66

1.15 22.5 5 95.22 99.28

65

Figure 3.9: Two Monte Carlo simulations at 1.2 and 25°C (solid line) with the respective
predicted waveforms (dashed line), shown is a snapshot of 100nS of simulation and prediction
time for the waveforms.

Figure 3.10: Predicted waveform for untrained pairs 1.33V and 37°C. Foutp is the predicted
waveform and Fout is the simulated waveform. Snap shot of 100nS out of 20µS

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 11 21 31 41 51 61 71 81 91 101

V
o

lt
a

g
e
 (

V
)

Time (nS)

Fout1 Fout1_p

Fout2 Fout2_p

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

V
o

lt
a

g
e
 (

V
)

Time (nS)

Fout

Foutp

66

3.6.1 Tradeoff Curves

Waveforms quickly generated from the SVM models can provide a designer with a fast

way to analyze tradeoffs and determine the ideal operating conditions. For example, from the

predicted PLL waveforms we can extract the lock time given the set of inputs, voltage,

temperature, and process variation. The lock time in combination with the power SVM model

described above can be used to create a power verse stability graph. In this section we use the

UWB-PLL for proof of concept.

Figure 3.11 displays the tradeoff between power and lock time. The graph contains

only simulated points where the red squares are fault free simulations while the X's represent

simulations resulting in functional faults. The triangle represents the nominal simulation

without any process variation. The line is the best fit boundary between the faulty and fault-

free simulations. The X's by the 0 points in the axis represent simulations that fail to lock within

the required 20µS time frame. The simulations with lock times close to 20µS lock too late in

the simulation to be considered fault-free because there was not enough time to the circuit to

stabilize at the lock time.

67

Figure 3.11: Graph of simulations comparing power and lock time. Boundary separates the
faulty from the fault free simulations. The triangle is the nominal design point without variation

Figure 3.12: Graph of lock time verse power for simulated waveforms and predicted

waveforms.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
o

w
e
r
 (

W
)

Lock Time (nS)

Faulty Simulations

Fault-Free
Simulations
Nominal Simulation

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
o

w
e
r
 (

W
)

Lock Time (nS)
Fauly Simulation Fault-Free Simulations Nominal Simulation
Boundry Points Fault-Free Prediction Faulty Prediction
New Boundry Points

68

Creating more waveform data in order to fill out the graph in regions such as low power

and fast lock time would be beneficial in determining where the design should be centered.

More simulations can be performed in order to target key areas, but this can be time consuming.

Using the variation models generated in the last section, we can create predicted waveform

data quickly. Figure 3.12 shows 140 new waveform points generated by the SVM models. The

new fault-free predictions points are represented as circuits and the faulty points are

represented as pluses, +. As a result of the new data a new boundary line can be created

separating the sets. There are some fault free predicted simulations in the faulty region and

vice versa, these are outliers and ignored when creating the boundary. To create all 140

waveforms took 53.2 minutes, averaging 22 seconds per waveform, compared to 61 hours it

would take to run HSpice.

3.7 Key Learnings

 The method described in this chapter shows it is possible to create behavioral models

in the time domain for analog circuits. For verification purposed it is difficult to ensure the

soundness of the models, this is especially true for models with variation. A key component to

learning methods is that the models are only as good as the data used to train them. With very

large variation and input spaces it becomes difficult to ensure the model encapsulates enough

behaviors in order to properly predict new behaviors. Another key issue is the complexity of

some of the analog circuits. The switched capacitor network is a component which cannot

easily be partitioned and predicted. With design/domain knowledge and user intervention the

69

models can be hand tuned in order to capture the desired accuracy. This abolishes the idea of

a general automated behavioral modeling method.

3.8 Conclusion

In this chapter we have presented a new approach for creating behavioral models of analog

and mixed signal circuits based on partitioning. This methodology addresses the need for an

automatic approach for behavioral modeling of any type of analog and mixed signal circuits.

We developed a tool that can automatically create a set of partitions and detect intermediate

behaviors based on netlist and transistor level simulation behavior. SVM models are created

to predict intermediate behaviors which lead to the prediction of the final output behavior. We

have shown the generality and feasibility of this approach on large circuits such as a PLL and

∑∆-ADC. Our results indicate that we can obtain three orders of magnitude speedup over

transistor level simulations while maintaining over 95% accuracy.

3.9 Chapter 3 References

[1] L. Pillage and R. Rohrer, “Asymptotic Waveform Evaluation for Timing Analysis,” IEEE

Trans. Comp.-Aided Design Integr. Circuits Syst., vol. 9, no. 4, pp. 352–366, Apr. 1990.

[2] R. W. Freund, “Krylov-Subspace Methods for Reduced-Order Modeling in Circuit

Simulation,” J. Comp. Appl. Math., vol. 123, no. 1/2, pp. 395–421, Nov. 2000.

[3] A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive Reduced Order Interconnect

Macromodeling Algorithm,” in Proc. Int. Conf. Comp.-Aided Des., Nov. 1997, pp. 58–65.

[4] J. Roychowdhury, “Reduced-Order Modelling of Time-Varying Systems,” IEEE Trans.

Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 10, pp. 1273–1288, Nov. 1999.

70

[5] J. R. Phillips, “Automated Extraction of Nonlinear Circuit Macromodels,” in Proc. IEEE

Custom Integr. Circuits Conf., 2000, pp. 451–454.

[6] P. Li and L. T. Pileggi, “NORM: Compact Model Order Reduction of Weakly Nonlinear

Systems,” in Proc. IEEE Des. Autom. Conf., 2003, pp. 472–477.

[7] M. Rewienski and J. White, “A Trajectory Piecewise-Linear Approach to Model Order

Reduction and Fast Simulation of Nonlinear Circuits and Micro-machined Devices,” in Proc.

Int. Conf. Comput.-Aided Des., Nov. 2001, pp. 252–257.

[8] S. K. Tiwary and R. A. Rutenbar, “Scalable Trajectory Methods for on Demand Analog

Macromodel Extraction,” in Proc. IEEE Des. Autom. Conf., 2005, pp. 403–408.

[9] H. Liu, A. Singhee, R. Rutenbar, and L. Carley, “Remembrance of Circuits Past:

Macromodeling by Data Mining in Large Analog Design Spaces,” in Proc. IEEE Des. Autom.

Conf., 2002, pp. 437–442.

[10] X. Ren and T. J. Kazmierski, “Behavioral-level Performance Modeling of Analog and

Mixed-signal Systems Using Support Vector Machines,” in Proc. IEEE Int. Behavioral Model.

Simul. Conf., 2006, pp. 28–33.

[11] M. Ding and R. Vemuri, “A Combined Feasibility and Performance Macromodel for

Analog Circuits,” in Proc. IEEE Des. Autom. Conf., 2005, pp. 63–68.

[12] T. Kiely and G. Gielen, “Performance Modeling of Analog Integrated Circuits Using

Least-squares Support Vector Machines,” in Proc. Des., Autom. Test Eur. Conf. Exhib., 2004,

pp. 448–453.

[13] D. De Jonghe et al, "Extracting analytical nonlinear models from analog circuits by

recursive vector fitting of Transfer Function Trajectories," DATE, 2013 , pp.1448-1453.

71

[14] Y. Cao et.al, "Dynamic Behavioral Modeling of Nonlinear Microwave Devices Using

Real-Time Recurrent Neural Network," IEEE Trans. El. Dev., vol.56, no.5, pp.1020-1026,

2009

[15] D. Drmanac et. al., "A non-parametric approach to behavioral device modeling," ISQED,

2010, pp.284-290.

[16] M. Elzeftawi, "Compact Low-Power Low-Noise Neural Recording Wireless Channel for

High Density Neural Implants (HDNIs)," PhD dissertation, Dept. Elect. Eng., Univ. California,

Santa Barbara, 2012.

[17] B. Scholkopf, A.J. Smola, “Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond,” MIT Press, Cambridge, MA USA, 2001.

[18] H. Li, M. Mansour, S. Maturi “A new Sampling Method for Analog Behavioral Modeling,”

Int. Symp. on Circuits and Systems (ISCAS), pp.2908-2911, May 30 2010-June 2 2010

[18] D. Overhauser, I. Hajj, Y.F. Hsu, "Automatic Mixed-Mode timing simulation," Proc.

International Conference on Computer-Aided Design, pp.84,87, 5-9 Nov 1989

[19] L. Yang, C.-J.R. Shi, "FROSTY: a Fast Hierarchy Extractor for Industrial CMOS

Circuits," Proc. Int. Conf. on Computer Aided Design, ICCAD-2003, pp. 741- 746, 9-13 Nov.

2003

[20] X. Li, X. Zeng, D. Zhou, X. Ling, "Behavioral Modeling of Analog Circuits by Wavelet

Collocation Method," Proc. Int. Conf. on Computer Aided Design, pp.65,69, 2001

[21] S. Lungu, D. Pitica, A. Rusu, "An Analogue Behavioral Macromodel Construction," 24th

Int. Spring Seminar on Concurrent Engineering in Electronic Packaging, pp.146-149, 2001

72

[22] S. Basu, B. Kommineni, R. Vemuri, "Variation-Aware Macromodeling and Synthesis of

Analog Circuits Using Spline Center and Range Method and Dynamically Reduced Design

Space," Int. Conf. on VLSI Design, pp.433,438, 5-9 Jan. 2009

[23] Y. Wei; A. Doboli, "Structural Macromodeling of Analog Circuits Through Model

Decoupling and Transformation," IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, vol.27, no.4, pp.712-725, April 2008

[27] HSPICE User Guide: Simulation and Analysis,” www.synopsys.com

[28] C.Chang, C.J. Lin, “LIBSVM: A Library for Support Vector Machines,”ACM Transactions

in Intelligent Systems and Technology, Vol. 2, Issue 3, 2011.

73

Chapter 4

Improving Circuit Verification Efficiency with

Unsupervised and Supervised Learning

Circuit simulation is a common approach for verifying the analog behavior of a circuit.

This chapter studies the application of statistical learning techniques for improving the circuit

verification efficiency. To enable the application, circuit simulation is modeled as an event

propagation process through a system consisting of primitive elements. Then, the efficiency

improvements are achieved with two approaches. By assuming that the output space can be

represented by a set of selected events, unsupervised learning is applied to search the input

events that correspond to the selected output events. Only the selected input events are

simulated, resulting in saving of the simulation time. During the simulation, low-complexity

primitive elements with low information content are modeled by supervised learning models.

Event propagation through these primitive elements is achieved by model prediction rather

than by actual simulation, resulting in further saving of the simulation time. This chapter

74

explains the statistical learning concepts and the techniques to implement the two approaches

and demonstrates their effectiveness with experimental results in the context of voltage domain

analysis of several analog circuit designs.

4.1 Introduction

Circuit simulation is indispensable for verifying the analog behavior of a design. For

assessing the uncertainty of design behavior over process variations, Monte Carlo circuit

simulation is one of the most popular approaches. However, circuit simulation can be time

consuming. Hence for a large and complex design, Monte Carlo circuit simulation can become

prohibitively expensive.

Figure 4.1: Functional view of uncertainty analysis of a statistical system

Figure 4.1 depicts a functional view for the underlying problem in uncertainty analysis

of a statistical system. In this view, the circuit to verify is seen as a mapping function f(). Inputs

to the function comprise two sets of random variables. First, there are variations on the input

space X. Furthermore, there are variations on the components constituting the circuit. The

component space is denoted as C. The function f() is a mapping from (X, C) to the output space

75

Y, i.e. f: (X, C) → Y. In verification, there is a specification on the expected output behavior.

Hence, the problem becomes, giving (X, C), is there any output behavior out of the

specification?

In a typical setting of Monte Carlo circuit simulation, a particular input x from the input

space X is selected. Uncertainty analysis concerns the output behavior with respect to the

component variations, i.e. assessing the output subspace Yx=f(x, C). The idea of improving

the efficiency of uncertainty analysis in this setting is not new.

For example, one notable area of research is static statistical timing analysis (SSTA)

[1][2]. For example, in SSTA each delay element is modeled as a random variable according

to process variations. Circuit timing is a function of a set of delay random variables under the

worst-case assumption on the input pattern space. The analysis is static because variation on

the input pattern to the circuit is not considered. In SSTA, efficiency is obtained by

propagating the random variables directly through the circuit. It does not involve random

sampling and hence avoids the high cost of Monte Carlo simulation. Delay elements in SSTA

are usually assumed to be pin-to-pin delays of a cell [2].

The same idea of propagating random variables can be applied to lower-level circuit

analysis where the random variables are based on basic circuit elements such as resistors and

capacitors. In lower-level circuit analysis, the operators involved are no longer restricted to

addition and maximization as used in SSTA. Hence, the problem becomes more complex. For

example, the work in [3] applied Polynomial Chaos Theory (PCT) [4] to low-level circuit

analysis. In a PCT framework, random variables are modeled by orthogonal polynomials to

facilitate their propagation through circuit equations [3].

76

In contrast, the work in [5] retains the idea of random sampling. To improve efficiency,

supervised learning techniques are applied to identify the irrelevant subspace (in C) to ignore.

Because the inputs to the circuit under analysis are well defined and limited, they are not

required to be treated as coming from a random space. In more recent works [6][7], advanced

learning techniques are applied to develop an efficient statistical analysis framework for

uncertainty analysis of circuit performance parameters. Similarly, the underlying sources of

uncertainty for the analysis are from the components C constituting the mapping function.

 Because traditional Monte Carlo analysis is cost restricted to analyze small circuits, it

is usually not required to explicitly treat the input space as a random variation space. Hence,

from the objective of improving the efficiency of Monte Carlo analysis, the focus is usually on

modeling the behavior with respect to the component variations C. However, this view can

change when the circuit to verify becomes large.

An example to consider variation in the circuit input space X is in the context of delay

testing. In delay testing, the mapping function f() is a gate-level circuit of n inputs. Hence, there

can be up to 2n input patterns to apply. For this problem, component variations in Figure 4.1

are based on two sources: (1) variations on the delay elements due to process variations, similar

to the setting of SSTA, and additionally (2) variations in the delay defect sizes and locations.

The output behavior is divided into two classes: passing and failing.

Since it is not feasible to apply all 2n input patterns, one crucial aspect of the uncertainty

analysis is to identify the important input patterns such that the result of uncertainty analysis

across all input patterns can be approximated by the result of uncertainty analysis across the

important input patterns. Hence, the saving is obtained by avoiding the analysis on the

unimportant input patterns.

77

The work in [8] is an example of how to approach this delay testing problem. However,

the work relied on Monte Carlo simulation of the entire circuit to be analyzed and hence, no

saving could be obtained with respect to the component random space C.

In Figure 4.1 if one takes an extreme view that the mapping function is a processor or

SoC, then the input space X becomes extremely large. In this case, considering component

variations is no longer practical. Typically, for verifying a SoC, RTL simulation is used.

Simulation cost is due to the large input space X to cover. In this context, an input pattern is a

functional test, i.e. a sequence of input vectors.

Suppose functional tests can be represented by n random variables each varying across

a domain of values. Then, the input space X can be viewed as a n-dimensional random space.

With such a view, the work in [9] proposed a framework for saving simulation time by

identifying and simulating only the important functional tests. Unsupervised learning

technique, the Support Vector Machine one-class [10], was applied to learn and model the

unimportant input subspace to facilitate the selection of the important tests. The work in

[11][13] extended the idea to the analysis where each functional test was an assembly program.

In view of the prior works discussed above, observe that the idea of improving

simulation efficiency with respect to either the X space or the C space is not new. However,

what has not been explored is to improve simulation efficiency in the context of Figure 4.1

where both the input variations and component variations are considered in the uncertainty

analysis. This motivates the study described in this work to develop a framework that tackles

the new problem setting.

78

With respect to Figure 4.1, such a framework aims to obtain saving from two ends: (1)

Simulation cost is reduced by avoiding the simulation of unimportant inputs sampled from X.

This objective is similar to the works in [8][9][11][13].

(2) Simulation cost is reduced by predicting a substantial number of events arising in the Monte

Carlo simulation. In other words, instead of using the actual simulation to obtain those events,

those events are predicted by learning models and hence, the total simulation time is reduced.

This objective can be thought of as similar to the works [5][6][7] discussed above.

It should be noted that the objective of this work is not to develop a framework that is

more general than the prior works. The proposed framework is to be applied in a different

application context in which the variations in both the X space and the C space in Figure 4.1

need to be considered in the uncertainty analysis. Hence, the proposed framework should not

be viewed as an alternative to the prior works in their respective application contexts. It can be

viewed as an addition which addresses a different application context.

The rest of the chapter is organized as the following. Section 4.2 explains the two

essential problems to solve in this work, one for each objective just discussed. Section 4.3

discusses basic machine learning concepts and keys to enable the application of statistical

learning techniques in the respective two problem settings. Section 4.4 presents our approach

to tackle the first problem where unsupervised learning is applied on the input space X to

achieve the objective (1) mentioned above. Then, section 4.5 presents our approach to solve

the second problem where supervised learning techniques are used to achieve the objective (2).

Section 4.6 puts all pieces together into a unified framework. Section 4.7 demonstrates the

effectiveness of this framework with experimental results. The experiments were conducted

79

based on a number of analog circuits with the focus on voltage domain analysis. Section 4.8

concludes.

4.2 Two Essential Problems to Solve

4.2.1 The Underlying Question to Ask

The problem stated with Figure 4.1 in theory can be thought of as a pre-image

computation problem illustrated in Figure 4.2. Let the combined input space to the function f()

be denoted as X∙C. Let the resulting output space be denoted as Y. Typically, some portion of

the Y space is considered acceptable while other portion is considered not acceptable. Let Y

denote the acceptable subspace. The theoretical problem of the verification can be thought of

as computing the pre-image f-1(y).

Figure 4.2: Theoretical view of the fundamental problem

Figure 4.2, while theoretically simple to understand, is a practically difficult problem

to solve. For example, while f() is computable with a simulator, f -1() is usually not. Moreover,

80

input variation space X and the component variation space C are fundamentally two different

spaces. For example, a sample in X can be a waveform over a simulation period [0,T]. A sample

in C can be a sample vector (s1,...,sp) where each si is the size sampled for the transistor i in the

circuit, according to a process variation model. Therefore, even assuming that one can formally

model the acceptable space Y with a set of rules or equations, it remains difficult to compute

the corresponding rules or equations in the combined X∙C space.

More practically, the verification problem illustrated in Figure 4.2 is approached by

asking a different question. This question is illustrated in Figure 4.3.

Figure 4.3: Practical view of the problem

In the setting of Figure 4.3, n samples x1,...,xn are drawn from the X space. For example,

these can correspond to n different input waveforms over a simulation period [0,T]. Moreover,

m samples c1,...,cm are drawn from the C space. For example, each ci is a vector capturing the

sizes of p transistors and together, they represent m samples drawn from a process variation

model for statistical Monte Carlo simulation. Every combination (xi, ci) is simulated to produce

the output waveform y{i,j} over the period [0,T]. In verification, a checker is applied to these n

X m outputs to decide which are acceptable and which are unacceptable.

One key concern in Figure 4.3 is obviously the total simulation time over the n X m

combined input samples. Suppose every output y{i,j} is crucial for the checker to verify the

81

design correctness. In this case, there is not much one can do but simulating all the n X m input

samples.

Suppose, however, that in order for the checker to be used to prove correctness of a

design, it does not need all the n X m output samples. Instead, a rather smaller set 𝒚̂ of k

representative samples {𝑦̂1, 𝑦̂2,...,𝑦̂k} is sufficient, i.e. k << n X m. Then, given these k output

samples, ideally one only needs to simulate the corresponding k samples in the combined input

space. In this context, the underlying question becomes: How to avoid simulating the

unimportant inputs that do not change the representative output set 𝒚̂?

Suppose i represents the information contained in a representative output set 𝒚̂, which

is used to prove correctness. Alternatively, one can ask a different question: How to select a

minimal number of combined input samples to simulate and obtain an output set that contains

an equal amount of the information as i and is sufficient to prove correctness?

Conceptually, one can treat {xi, cj} as a single unified sample and try to solve the

problem illustrated in Figure 4.3. However, this can be difficult because as mentioned above,

xi and ci come from two fundamentally different domains. A more effective way is to consider

these two domains separately. Below we will discuss how to approach the problem by solving

two essential problems.

4.2.2 First Essential Problem

In the first essential problem, we consider a fixed cj. Figure 4.4 illustrates the problem.

Given a particular cj, assuming that simulation of all input samples x1,...,xn results in coverage

of a subset of l output samples, without loss of generality, denoted as 𝐿̂={𝑦̂1, 𝑦̂2,..., 𝑦̂l} for l≤k.

82

In Figure 4.4, these l output samples are colored red. There are other output samples colored

green. They are output samples not reachable by simulating with the component sample cj.

The l output samples correspond to partitioning the n input samples into l clusters.

Therefore, ideally if at least one representative sample is selected from each cluster and

simulated, all the l output samples would be covered.

Figure 4.4: Discovery of representative input samples

Let the set of l clusters be denoted as U={u1,...,ul}. Let the set of selected inputs to

simulate be 𝑋̂={𝑥̂1,...,𝑥̂q}. We call them the representative input samples. We have q ≥ l. We

say that U is covered by 𝑋̂ if for every cluster ui, there exists an input xj ∈ 𝑋̂ such that xj ∈ ui.

With these definitions, the first essential problem can be stated as: How to discover a minimal-

size set 𝑋̂ that covers U without knowing the output sample set 𝐿̂ in advance?

In the context of functional verification, the output set 𝐿̂ can be thought of as a set of

coverage points while each input xi as an assembly program [13]. In this context, the work in

[11] approaches the problem by assuming that the set of coverage points is known in advance.

The learning approach takes advantage of this information to select representative inputs to

83

simulate. In contrast, the work in [12] approaches the same problem without assuming that the

set of coverage points is known in advance. Consequently, the approach in [11] is more

effective for a specific application task than the approach in [12] (e.g. see discussion in [13]).

Both approaches follow an unsupervised learning paradigm. Although they are

designed for a completely different context, conceptually they provide two hints to approach

the first essential problem stated above: (1) The problem could be approached by unsupervised

learning; and (2) Without knowing 𝐿̂ in advance is a harder problem than that with 𝐿̂ given.

4.2.3 Considering Component Variations

Suppose we have a method that can find a desired set of representative input samples.

An intuitive question arises: Can the method be used to find a desired set of representative

samples from the component variation space C as well? Figure 4.5 illustrates the difficulty

following this thought.

Figure 4.5: An intuitive way to consider component variations

84

Consider the outcome by simulating all inputs x1,...,xn based on a component sample

cj.

The outcome is a subset of 𝑌̂. Let f(∙, cj) denote this subset. To save simulation, one does not

want to simulate all component samples c1,...,cm. Rather, a subset of component samples is

selected for simulation.

From this perspective, we see that the basic problem to solve is, to discover a minimal

set from the m subsets f(∙, c1),...,f(∙, cm) such that a complete coverage of the output samples in

𝑌̂ can be obtained. However, even with the m subsets and 𝑌̂ known in advance, finding a

minimum set of subsets for the complete coverage is the same as the Set Cover Problem, a

well-known NP-complete problem. Hence, the problem illustrated in Figure 4.5 can be a very

difficult problem because neither the m subsets nor the 𝑌̂ are known in advance.

As pointed out in [14], statistical learning techniques do not make an NP-hard problem

easier. Consider the well-known Boolean Satisfiability (SAT) problem. From the statistical

learning perspective, SAT can be reduced to the problem of learning a Boolean function. As

discussed in [14], although some Boolean functions can be learned with a good accuracy [15],

learning a Boolean function in general can be a computationally difficult problem, i.e. the

learning problem itself is NP-hard [16]. Therefore, the problem formulated with Figure 4.5 is

not a problem suitable for application of statistical learning techniques. We need to pursue an

alternative.

4.2.4 Second Essential Problem

The discussion with Figure 4.5 above assumes that the only decision that can be made

to save simulation time is whether to skip the simulation based on each component sample ci

85

or not. However, this is not the only way to save the total Monte Carlo simulation time. An

alternative to save simulation time can be based on a different set of decisions: whether to skip

the simulation on some parts of the circuit. Figure 4.6 illustrates this alternative.

Suppose the circuit under verification can be partitioned into a set of primitive elements

(PEs). Some PEs are simple. For example, an inverter is a simple PE. Some PEs are complex.

Then, the basic idea is that simple PEs are replaced with statistical learning models and

complex PEs are simulated. Hence, the saving comes from skipping the simulation on the

simple PEs.

Figure 4.6: A more practical way to consider component variations

Note that modeling a simple PE is not solving the traditional analog behavior modeling

problem. First, in traditional behavior modeling, the component variations are usually not

considered. In recent works [17][18] some experiments were conducted to pursue behavior

modeling with component variations. However, the attempts were to derive a model for the

entire circuit. The works in [17][18] reached limited success because some aspects of circuit

86

behavior could be too complex to capture with a learning model. For simple circuits, however,

a learning model could work well [18].

Therefore, assuming that a learning method is given to model the behavior of a PE over

the combined space X∙C, the essential problem illustrated with Figure 4.6 is to decide which

PEs are simple enough that a learning model can be used to predict their behavior. In other

words, the focus of the problem is not on how to learn a model for a PE. The focus is on how

to define what a simple PE is with respect to a learning method. In other words, the focus is

on deciding which PEs are learnable and which PEs are not. Solving this problem requires (1)

a method to partition a circuit into a set of PEs, and (2) a method to evaluate the complexity of

learning the behavior of a PE.

4.3 Keys to Learning Problem Formulations

4.3.1 Basic Machine Learning Concepts

Figure 4.7: Typical dataset seen by a learning algorithm [14]

87

Figure 4.7 illustrates a typical dataset seen by a machine learning algorithm (For more

discussion, see e.g. [14]). When 𝑦⃗ is present and there is a label for every sample, it is called

supervised learning. In supervised learning, if each yi is a categorized value, it is a classification

problem. If each yi is modeled as a continuous value, it is a regression problem.

When 𝑦⃗ is not present and only X is present, it is called unsupervised learning. When

some (usually much fewer) samples are with labels and others have no label, the learning is

then called semi-supervised [19].

In Figure 4.7 each sample from X is encoded with n features f1,...,fn. Hence, the

characteristics of each sample are described as a vector 𝑥𝑖⃗⃗⃗⃗ . To apply a learning algorithm to

analyze a set of samples, an intuitive way is to decide on a set of features to encode the samples.

4.3.2 The Importance of Similarity Measure

Many modern machine learning algorithms follow the paradigm of kernel-based

learning [20][21]. Figure 4.8 illustrates the basic concept of kernel-based learning.

Figure 4.8: Kernel function vs. learning machine

88

In kernel-based learning, the learning machine, i.e. the learning algorithm such as a

Support Vector Machine (SVM) algorithm [20], is not required to access the samples 𝑥1⃗⃗ ⃗⃗ ,...,𝑥𝑚⃗⃗ ⃗⃗⃗⃗

directly. Instead all the information required for the learning is coming from a kernel function

k(). The kernel function measures the similarity between two samples based on some definition

of what similarity means.

Kernel-based learning provides great flexibility to apply learning techniques in EDA

and test applications [14], especially when the samples to be analyzed are not provided in

matrix form like Figure 4.8. This is because the representation of a sample is not important.

What is important is to define a proper similarity measure function.

4.3.3 Keys to Enable the Application of Learning Techniques

While the concepts discussed up to this point are more general, for experimental

purpose this work focuses on a rather specific application context. In this context, each input

sample xi from the X space is an input waveform to a circuit over a period [0,T]. Each sample

cj from the C space is a vector of transistor sizes sampled from a process variation model.

Consider the first essential problem. In this problem, the input samples are waveforms.

Hence, to enable learning, one has to devise a method to measure the similarity between two

waveforms. This is the key to apply unsupervised learning techniques to approach the first

essential problem.

Consider the second essential problem. This problem can be thought of as deciding the

complexity of learning the function f() in Figure 4.1 above, where f() is based on a PE

(primitive element). From this perspective, we see that the input samples to the PE are still

coming from the combined space X∙C. Hence, each sample can be represented as a 2-tuple (x'a,

89

c'b). Here, we use the notation (x'a, c'b) to emphasize the difference from the notation (x'i, c'j)

used earlier. Each x'a is a waveform to a PE. Each c'b is a vector of transistor sizes for the

transistors in the PE. In contrast, each cj earlier is a vector of sizes for all transistors in the

circuit. In other words, the dimensionality of c'b is much smaller than the dimensionality of cj.

While defining a proper kernel function for samples (xi, cj) can be hard, it is more

feasible to define a kernel function for samples (x'a, c'b) because of their reduced

dimensionality. It is important to note that in a 2-tuple (x'a, c'b), x'a is a waveform and the 2-

tuple is an object across two different domains. Therefore, to enable learning, one has to devise

a method to measure the similarity between pairs of 2-tuple samples. This is one of the keys

to apply learning techniques for the second essential problem.

For predicting the behavior of a PE, supervised learning techniques would be applied

(explained later). In Figure 4.8, an output 𝑦𝑖⃗⃗⃗ ⃗ is a scalar value. In contrast, the output of a PE is

a waveform. This raises another important question: How to apply supervised learning when

the outputs to be predicted are not scalar values? Answering this question is another key for

the second essential problem.

4.4 Unsupervised Learning for Important Input Subspace

Modeling

Suppose n samples x1,...,xn are given. Recall that the goal is to cover k representative

output samples 𝑌̂={𝑦̂1,...,𝑦̂k}. Without loss of generality, the assumption is that these k output

samples are dissimilar to each other. In other words, suppose ky() is a similarity measure

function applicable to the output samples. We have 0 ≤ ky() ≤ 1, and ky()=1 means the two

90

samples are most similar and ky()=0 means the two samples are least similar (or most

dissimilar). Then, for any pair 𝑦̂i, 𝑦̂j, we have k(𝑦̂i, 𝑦̂j) ≤ δ for some δ.

Suppose the simulation process is broken into iterations. In each iteration, l samples

are applied. Figure 4.9 depicts what might happen from one iteration to the next. In this

example, there are 14 samples, i.e. n=14. In each iteration, 3 samples are applied, i.e. l=3.

For iteration i=0, no sample is applied yet. Hence, the coverage on the Y space is

unknown. For iteration i=1, 3 samples are selected and applied. The picture depicts that these

3 samples are selected from three clusters of samples. In other words, a clustering algorithm is

applied to group samples. Then, one sample is selected from each cluster. Note that in order

to apply a clustering algorithm, another similarity measure function kx() is needed to measure

the similarity between two input samples. Then, similar samples can be grouped together

where the similarity is defined based on kx().

Figure 4.9: Iterative search for important inputs in X

Application of three input samples x1, x2, x3 results in three output samples y1, y2, y3.

Suppose based on a predefined method (e.g. k(𝑦̂i, 𝑦̂j) ≤ δ), y1 and y2 are determined to be

91

representative output samples, i.e. y1, y2 ∈ 𝒀̂, but y3 is not. In the X space, x1 and x2 are marked

as important samples (solid red) and x3 as unimportant samples (solid blue).

The question is: for the next iteration, what would be a good strategy to select input

samples?

Suppose the input samples are distributed in such a way that if two samples are

dissimilar in the X space, they both are likely to be important samples. In other words, kx()≈ky().

In this case, finding important input samples can be reduced to finding representative input

samples by clustering. This is because conceptually two representative samples from two

clusters are most dissimilar samples. Hence, in this case a simple clustering algorithm could

solve most of the problem. In other words, the strategy would be to form k clusters in the input

space and then, in each iteration, select k representative input samples, one from each cluster.

Then, the process repeats by removing those samples that have been applied.

A more realistic assumption is that kx() and ky() are very different, resulting in some

input subspaces more important than others. In this case, a strategy is needed to direct the

search to (1) identify the important subspaces and (2) select more samples from the important

subspaces.

Following this idea, for iteration i=2, the sample close to x3 is blacked out. Clustering

is then applied to the rest of the samples. Three samples x4, x5, x6 are selected. Samples x4 and

x5 are selected from the same clusters as x1 and x2 before. This is because x1 and x2 are identified

as important samples. Hence, regions close to them are treated as important subspaces in this

iteration. Notice that x6 is at a distance from x3 and hence, it is not deemed unimportant because

of x3. In iteration i=2, x6 by itself forms a cluster and is selected.

92

The above example illustrates the search strategy. A known unimportant sample results

in an unimportant subspace. A known important sample results in an important subspace. There

can be other samples not in either of the subspaces. Clustering is applied in each iteration to

find representative samples in the "adjusted" X space.

4.4.1 Adaptive Similarity Measure

Figure 4.10 illustrates how the idea discussed above can be accomplished without

changing the clustering algorithm and the similarity measure function kx() from one iteration

to the next. Suppose originally each input sample is encoded with two features f1 and f2. Hence,

the samples are distributed in a 2-dimensional space defined by f1 and f2. This is shown as the

left plot in the figure.

Figure 4.10: Adaptive learning space for similarity measure

Clustering is applied to form two clusters and two representative samples x1 and x2 are

selected. The trick is that in the next iteration, a new space is created based on x1 and x2.

93

The coordinate of a sample x is calculated as (kx(x, x1),kx (x, x2)). Therefore, the samples close

to x1 (and far from x2) will all be close to the point (1,0) and form a cluster. This cluster is

blacked out because x1 is not an important sample. The samples close to x2 (and far from x1)

will be close to the point (0,1) and form another cluster. One representative sample is selected

because x2 is an important sample. Furthermore, the remaining two samples form a cluster and

another representative sample is selected.

The simple example illustrates that without changing the similarity measure function

kx() and without changing the clustering algorithm, by projecting the samples into a different

space, the idea discussed above can be realized.

4.4.2 Issue of Large Dimensionality

The idea discussed above has one major drawback. As the number of the applied input

samples grows, the dimensionality of the adjusted space grows accordingly. To avoid this

growth, the actual implementation can be the following. Without loss of generality, assume

that l samples x1,...,xl have been applied. Samples x1,..., xi are deemed important samples while

xi+1,..., xl are deemed unimportant.

1) Start with all input samples not yet being applied.

2) For an input sample x, for each j, i+1 ≤ j ≤ l, if kx(x, xj) is greater than max{kx(x,xh) | ∀h, 1

≤ h ≤ i}, then x is removed from consideration in the current iteration. In other words, x is

more similar (or "closer") to an unimportant sample than to any of the important samples.

3) For all the input samples not removed, project them into the space defined by x1,...,xi. Run

clustering in the new space to find representative samples.

94

In the above implementation, the dimensionality of the adjusted space is bounded by k,

the number of representative output samples. A sample is removed from consideration in a

particular iteration if the sample falls into an unimportant subspace. An unimportant subspace

contains those samples closer to unimportant samples than to any of the important samples.

4.4.3 Property on the Removed Samples

It is important to note that a removed sample in one iteration can still have a chance to

be selected in a future iteration. Figure 4.11 illustrates this point. Figure 4.11 depicts a selection

process of three iterations (from left to right) for two cases. In the iteration 1 of case 1, x1 is

deemed important while x4 is deemed unimportant. Since x3 is closer to x4 than to x1, i.e. k(x3,

x4)>k(x3, x1), x3 is removed in the next iteration. In contrast, x2 is kept. In the next iteration,

x2 is applied and deemed important. In iteration 3, since x3 is closer to x2 than to x4, i.e. k(x3,

x4)<k(x3, x2), x3 is kept and selected.

The case 2 depicts a different scenario where k(x3, x4)>k(x3, x2). In this case, the process

stops at iteration 3 where x3 is not selected because it is closer to x4 than to x2.

Figure 4.11: A removed sample in one iteration can be selected in the next

95

4.4.4 Implementation Considerations

Suppose that given a set of output samples, the user has a method to determine the

representative samples. Then, there are two remaining questions to consider for implementing

the search strategy for finding important input samples.

The first question is how to define the similarity measure function kx(). Because for the

application discussed in this work, each input sample is a waveform over a period [0,T], a

sample x can be represented as a vector [x0,...,xT] assuming that time is incremented by 1 unit.

Then, given two input sample vectors, the popular Gaussian kernel function [21] can be used

as the similarity measure function.

In general, the input waveforms can be digital or analog, periodic or non-periodic,

stationary or non-stationary. The user might have an idea what important characteristics are

to be analyzed by the system under simulation. For example, for analyzing periodic non-

stationary waveforms, the user might desire to encode waveforms with wavelet transform [22].

Hence, the user can apply a particular transform to the waveform before applying the Gaussian

kernel. How to encode/transform waveforms to reflect the important characteristics under

analysis is subjected to user choice. From the perspective of providing a tool, the assumption

is that input waveforms are already encoded as vectors.

The second question is how to choose a learning algorithm. As discussed in [14], from

experience the learning algorithm is usually not as important as the methodology to utilize the

learning approach. In the above search strategy, the idea of re-projecting samples into a new

space based on the important samples can be thought of as the methodology to utilize the

clustering approach to solve the overall important input search problem. For clustering, the

96

definition of the space to conduct the clustering impacts the clustering result more than the

cluster algorithm. Hence, if the space re-projection idea does not work, then no clustering

algorithm would be helpful. If the idea is viable, then while two algorithms might give different

results, both results should show some effectiveness to indicate that the idea is working.

 Because the focus of this work is on developing the search strategy, optimization of the

learning algorithm is not discussed. Such optimization can also be application case dependent.

One algorithm can be better for one case while another algorithm is better for another case.

Unless a comprehensive set of test cases is determined, it is not really meaningful to discuss

optimization of the learning algorithm.

For clustering, the Python machine learning library [23] provides several options to

choose from. We selected the Hierarchical clustering algorithm because it was easy to apply

and from experience the result was usually more robust than the popular k-mean algorithm

[23].

4.5 Supervised Learning for Event Prediction in Monte Carlo

Simulation

Recall the discussion with Figure 4.6 above. The idea can be summarized into two

parts: (1) Partition a circuit into a set of primary elements (PEs) and (2) decide if a PE is

predictable.

 From a tool provider's perspective, partitioning a circuit can be subjected to the user. For

example, suppose the circuit is given as a transistor netlist. The starting point can be to partition

the circuit into a set of channel connected components. The user might want to merge certain

components because conceptually, merging components result in a PE whose input-output

97

behavior is more intuitive to understand. Hence, while partitioning a circuit is a required step

to run the tool, it is not the main focus for the tool development. The focus is on developing a

methodology to determine the predictability of a PE, and if it is predictable, to construct a

prediction model.

Suppose a set of n PEs {g1,...,gN} is given. Our goal is to develop a method to evaluate

the predictability of each PE. There can be two approaches to pursue this development.

First, predictability obviously depends on the power of the predictor, i.e. a model built

by a learning machine by learning from a given dataset. For example, the learning machine can

be the Support Vector Machine (SVM) regression called Support Vector Regression (SVR)

[20]. The predictability of a learning machine can be evaluated experimentally by applying it

to a set of PEs. In other words, the experimental approach starts with an idea to implement the

learning machine and then determines the predictability of a PE based on a specific learning

machine.

The experimental approach is feasible when one has a good idea to implement an

effective learning machine. However, as pointed out in Section 4.3.3 before, traditional

supervised learning algorithms assume that the outputs to be predicted are scalar values (refer

to Figure 4.7). Hence, learning machines such as SVR are not readily applicable.

The alternative approach is to develop a concept to capture the meaning of

predictability. Then, a learning machine for constructing the predictor can be designed based

on the concept. In this work, we take the second approach.

98

4.5.1 Intuition behind Predictability of a SVM

Before considering the predictability of a PE, we first illustrate the intuition behind the

predictability of a SVM learning model. Given a set of data points (x1, y1),...,(xn, yn) to be

learned (note: each xi can be a vector, and each yi is a scalar value), a SVM model is of the

form [20]:

𝑓(𝑥) = (∑ 𝛼𝑖𝑥𝑖
𝑘(𝑥𝑖, 𝑥)) + 𝑏 (3.1)

SV is a subset of the samples. Without loss of generality, let SV ={x1,...,xl}. Each xi ∈

SV is called a support vector. The kernel function k() measures the similarity between a pair

of x samples. Each k(xi,x) measures the similarity between a support vector xi and the input

vector x to be predicted. The coefficient 𝛼i is the weight associated with k(xi,x).

Figure 4.12: Intuition behind SVM predictability

Because the non-support vectors xl+1,...,xn are not used in the calculation of f(x), they

can be seen as the samples used to validate the model f(x). Figure 4.12 illustrates this point.

99

Suppose a prediction error function is given. For example the error function can be the

sum of square errors: SSE = ∑ (𝑛
𝑖=1 yi - f(xi))2. Then, with the optimization objective to minimize

the SSE, an SVM algorithm determines the following three things: (a) the set SV, (b) the

coefficients 𝛼's, and (c) the constant b in Equation (1) above.

Conceptually, the quantity 𝑛−𝑙

𝑛
 can be thought of as a measure for the predictability of

the model f(x) [24]. This is because the smaller the l (the size of the set SV) is, the larger the

number of the validation samples is. In other words, if the model can predict more validation

samples within a given error, then the dataset is more predictable.

Therefore, we make two observations: (1) Learning is to decide which samples can be

predicted by other samples. In a sense, it can be seen as a compression process. (2) The more

samples that can be predicted by others, the higher the predictability is for the given dataset.

4.5.2 Illustration of SVM Models

Consider |SV|=1. The SVM model is simplified to f(x) = 𝛼1 k(x1, x)+b. The learning

problem is simple because one sample x1 is sufficient to predict the behavior of all other

samples within a given error.

Assume that the kernel k(x1,x) is a Gaussian kernel k(x1,x)=𝑒{−(𝑥1−𝑥)2. Without loss of

generality, also assume 𝛼1=1 and b=0. Figure 4.13 illustrates the model on a 2-dimensional

plane. All points with the same distance (the quantity (x1-x)2 is the same) to x1 have the same

predicted y value. This is illustrated in the figure with three circles where the points on those

circles have the same predicted values ya, yb and yc, respectively.

100

Figure 4.13: SVM model based on one support vector x1

Figure 4.14: SVM models based on two support vector x1, x2

Now consider the case with two support vectors x1, x2. The model becomes

f(x)= 𝛼1k(x1,x)+ 𝛼2 k(x2,x) (assuming b=0). Figure 4.14 shows three cases for x1=1, x2=2, and

x=1.1,1.2,...,1.9. Again, we use k(xi,x)=𝑒{−(𝑥𝑖−𝑥)2
.

In the first case f1(x), we have 𝛼1=4 and 𝛼2=4. The predicted y values are shown.

Observe that the predicted y value of a xi is closer to f(x1) if xi is closer to x1. Similar observation

can be made for x2. For example, x=1.5 is the most dissimilar point to both x1=1 and x2 =2 and

hence, f1(1.5) has the largest y value.

101

In the second case f2(x), we have 𝛼1=4 and 𝛼2=2. Notice that in this case the largest y

value no longer occurs at x=1.4. This is due to the two non-equal weights 𝛼1, 𝛼2.

Observe that by changing 𝛼1, 𝛼2,the model is capable to capture a variety of convex

functions. In the third case f3(x), we take f2(x) and normalize it with the similarity sum

k(x1,x)+k(x2,x). This results in a linear function. Hence, if we desire to model a linear behavior

between two samples, we can use the normalization method.

Figure 4.14 illustrates that a variety of behavior, linear or non-linear, can be captured

by a simple two-SV learning machine. Later, we will use this simple learning machine as the

basis to implement a learning machine for PE behavior prediction.

4.5.3 The Predictability of an Inverter

Inverter perhaps is one of the simplest circuit elements. Therefore, we use an inverter

to illustrate the intuition behind predictability of a PE.

Figure 4.15: An inverter is simple for prediction

Figure 4.15 depicts an inverter with two cases. In the first case, the inverter is fed with

digital pulses at different times. In the second case, the inverter is fed with rising waveforms.

102

Consider the first case. Intuitively, the output pulse y2 of the input x2 can be easily

predicted by the two samples (x1, y1) and (x3, y3). This is because the distance between y1 and

y2 is almost the same as the distance between x1 and x2. Similar observation applies to x3 and

x2 as well. Furthermore, the shape of y2 is almost the same as the shapes of y1 and y3.

Suppose we have a kernel function k() that measures similarity between two pulses

based on their time distance. Then, intuitively y2 can be predicted as:

𝑦2 = 𝑓(𝑥2) =
𝑦1𝑘(𝑥1,𝑥2) + 𝑦3 𝑘(𝑥3,𝑥2)

𝑘(𝑥1𝑥1,𝑥2)+𝑘(𝑥3,𝑥2)
 (4.2)

If we refer to the discussion of the model f3() in Figure 4.14 earlier, we see that Equation

4.2 essentially is doing linear interpolation. In other words, the inverter is simple and

predictable because the output behavior of an input can be predicted by two samples with linear

interpolation.

Consider the second case in Figure 4.15. Observe that x2 is "between" x1, and x3 and

y2 is also between y1 and y3. Intuitively, the linear interpolation of Equation 4.2 may still work.

Or we can consider a more complex model:

y2 = f(x2) = 𝛼1y1k(x1, x2) + 𝛼3y3k(x3, x2) (4.3)

Essentially, we can find the coefficient values 𝛼1, 𝛼3 to best fit the output waveform y2.

Equation (3) is still following interpolation.

Based on the discussion above, observe that there are two properties that make an

inverter easy to predict by the equations: (1) the outputs follow the same "ordering" of the

103

inputs. (2) The similarity between two outputs is reflected in the similarity between the two

corresponding inputs. The first property allows interpolation to work. The second property

allows similarity-based prediction to work.

In the following, we will use the first property to explain the notion of complexity and

the second property to explain the notion of information. We want to define the notions of

complexity and information in such ways that only a PE with low complexity and low

information is considered predictable.

4.5.4 Intuition Behind Complexity and Information Measures

First, it is important to note that given a set of samples {(x1, y1),...,(xn, yn)} where xi and

yi are waveforms, what we have is a kernel function k() that measures the similarity between

a pair of inputs k(xi, xj). We assume that learning follows the kernel-based learning depicted in

Figure 4.8 before. Hence, we do not need to know the actual representation of a waveform. All

we need are the similarity measure values.

Figure 4.16: Intuition behind complexity and information measures

104

Figure 4.16 depicts the intuitions behind the complexity and information measures to

be developed later. Keep in mind that although samples are shown along a 1-dimensional line,

what we focus on is the similarity between them. Hence, those samples can reside in any space.

For a kernel that is distance-based (such as the Gaussian kernel used in Figure 4.13 and

Figure 4.14 above), when two samples are shorter in distance to each other, they have a larger

similarity value, and vice versa. Hence, we can use the distance dist(xi,xj) in the discussion to

make it more intuitive.

The first case in Figure 4.16 illustrates the case of low complexity and low information.

First, the ordering of five y outputs is the same as the ordering of the five x inputs. This gives

low complexity. Second, the distance between any pair of outputs is proportional to the

distance between the corresponding pair of inputs. This gives low information.

In the second case of high complexity and low information, observe that the ordering

changes among the y outputs. However, if we discard the y labels, the (relative) locations of

the five inputs are almost the same as the (relative) locations of the five outputs. In this case,

we say the information content of the y outputs is almost the same as the information content

of the x inputs.

The reason that information measure discards sample labels is the following. If we view

the samples as distributed in a space following a probability density function p(z), the

information can be measured by the differential entropy h(Z) Z =-∫z p(z) log p(z)dz. Basically,

we view the samples in the x space following a density function px() and the samples in the y

space following a density function py(). The low information means that the information

content based on py() is not changed much from the information content based on px(). Hence,

in this measure, labels are not required.

105

Given px() and py(), the relative information between the x space and the y space can be

measured by the well-known Kullback-Leibler Information:

 𝐼(𝑝𝑥(), 𝑝𝑦()) = ∫ 𝑝𝑥()𝑙𝑜𝑔 (
𝑝𝑥()

𝑝𝑦()
) 𝑑𝑥 (4.4)

which measures the information loss from the distribution in the x space to the distribution in

the y space. Hence, if we can estimate the two density functions px() and py() (this will be

discussed later), we can calculate this information loss. From this perspective, we say that a

PE is with low information if the information loss is low.

Consider the inverter example discussed above. The information loss by going through

an inverter is low. This is because an inverter is simply inverting an input waveform to obtain

its output waveform. This intuition can also be easily understood for an inverter operating in a

binary space. For example, the information contained in a binary sequence fed into an inverter

is the same as the information contained in the binary sequence output by the inverter.

The third case in Figure 4.16 shows low complexity and high information. We see that

the ordering does not change from x to y. However, the distribution (the relative locations of

the five samples) changes from x to y. Hence, some information is lost. The fourth case then

shows high complexity and high information where both the ordering and the distribution

changes from x to y.

4.5.5 Complexity Measure

To measure complexity, the above discussion points to the idea of measuring how much

the ordering is changed from the samples in x space to the samples in y space. While the

concept of ordering is easy to perceive in Figure 4.16 because samples are projected on a 1-

106

dimensional line, in general the ordering is not well defined if we are working in an unknown

space where only similarity values between pairs of samples are available. In fact, it is likely

that a total ordering does not exist for a given set of samples.

Figure 4.17: Intuition for complexity measure

Figure 4.17 depicts the idea employed in this work to measure complexity of a PE.

Suppose a set of samples are given (x1, y1),...,(xn, yn) for a PE. For any three samples, for

example (x1, y1),(x2, y2), (x3, y3), we check if their relative distances (or similarities) have

changed from x to y.

For example, on the left plot of Figure 4.17, we have d23>d13>d12 in the x space. The

corresponding y space also has d23>d13>d12. In this case, we say the ordering has not changed

for the three samples. On the right plot, we have d12>d13>d23 in the y space. In this case we

say the ordering has changed, or more specifically the relative positions among the three

samples have changed.

The check can be applied to all combinations of three samples (or a randomly selected

number of combinations if n is too large) to estimate a total number of ordering changes. The

107

higher the number of changes, the higher the complexity of the PE is. It is easy to see that if

we apply the complexity measure to the low complexity cases in Figure 4.16, the number of

changes would be zero.

4.5.6 Information Measure

Figure 4.18 illustrates the information measure in a 2-dimensional space. The top case

shows information unchanged. The y space is obtained by flipping the x space vertically and

horizontally, and by shrinking the scale of the image. If we view those dots as samples from a

probability distribution, we see that the x space and y space depicts the same distribution. For

example, there is a cluster (dense region) given by x1, x2, x3 in the x space. The same dense

region is given by y1, y2, y3 in the y space.

The bottom case shows that the distribution of samples in the x space is different from

the distribution of samples in the y space. This is easy to see because the dense region given

x1, x2, x3 in the x space is no longer there in the y space.

Given a set of samples (x1, y1),...,(xn, yn) for a PE, to measure the information (loss) of

the PE, we will perform the following three steps:

1) Estimate a probability density function px() based on samples x1,...,xn and kernel function

k().

2) Estimate a probability density function py() based on samples y1,...,yn and kernel function

k().

3) Measure the information loss using Kullback-Leibler Information in Equation 4.4.

108

To perform steps 1) and 2), we need a method to estimate density function from a set

of samples based on their similarity values. This is a classical unsupervised learning problem.

For example, we can use the SVM density estimation method proposed in [25]. Due to space

limitation, the detailed discussion on SVM density estimation is omitted.

Note that steps 1) and 2) use the same kernel function k(). In theory, this does not have

to be the case. However, in this work we do not consider using two different kernels. We leave

that consideration to future work.

Figure 4.18: Intuition for information measure

4.5.7 Supervising Learning Based on Local Prediction

The complexity and information measures discussed above enables us to assess the

predictability of a PE. Suppose a PE is deemed predictable after the evaluation. Next, we will

discuss how to construct a predictor.

Suppose a set of samples (x1, y1),...,(xn, yn) are available for learning. These samples

are simulated samples obtained during the entire circuit simulation. One can try to learn a

single model f(x) → y but this would be difficult because both x and y are waveforms. Hence,

109

instead of learning a single model, we try to find predictable regions based on a pair of samples.

Figure 4.19 illustrates our learning strategy.

Figure 4.19: Supervised learning flow based on local predictability

The general idea is based on the discussion in Section 4.5.1 before. Essentially, learning

is to identify samples that can be predicted by other samples. In our learning, we restrict the

prediction to be based on only two samples. This can result in many local predictors rather than

a single global predictor for all samples. When we do that, we need to define what a predictable

region is based on a pair of two samples. This is because there can be multiple predictors and

for a future sample, we need to decide (1) whether the future sample can be predicted by any

of the predictors and (2) if yes, which predictor should be applied.

4.5.8 Defining a Potential Predictable Region

Figure 4.20 gives an example to define a potential predictable region based on two

input samples xa, xb. The region is defined as: ∀x: k(xa,x) ≤ k(xa, xb) ∧ k(xb,x) ≤ k(xa, xb).

110

Suppose k() is distance-based, e.g. a Gaussian kernel as discussed before. On a 2-dimensional

plane, the region can be visualized as the intersection of the two circles as shown in Figure

4.20 (also refer to the discussion with Figure 4.13 before).

Figure 4.20: An example of potential predictable region by two samples

4.5.9 Deciding a Predictable Region

Figure 4.21: Illustration of a learning dataset based on two samples xa, xb and j other samples

falling into their potential predictable region

Given two input samples xa, xb and their potential predictable region, Figure 4.21 illustrates

the local learning problem to decide if the potential region is actually a predictable region.

111

Suppose there are i samples falling inside the potential region. Figure 4.21 shows how

a dataset or learning can be constructed for this region. Then, we can apply the simple models

shown in Equation 4.2 and Equation 4.3 above to see if a predictor can be constructed to predict

those i samples. If they can be predicted, then the potential region becomes a predictable

region. Observe that Figure 4.21 is a much easier learning problem than learning a global

model to predict all samples. The dimensionality is restricted at 2 and typically if xa and xb are

close, we do not expect that i is large.

4.5.10 Learning and Model Application

Figure 4.22: Illustration of learning phase and model application

Figure 4.22 summarizes the learning and the model application. In learning a local

predictor is based on two samples xa,xb. Three additional samples x1, x2, x3 are inside the

potential predictable region defined by xa,xb. If the three samples can be predicted by a model

such as Equation 4.2 or Equation 4.3, a predictable region is obtained. In the model application

phase, if a future sample falls inside the predictable region, it is predicted. If it is outside, the

112

sample is simulated. The simulated samples can then be used to learn local predictors in the

next iteration. Figure 4.19 above also summarizes this iterative process of learning and model

application.

4.6 The Overall Framework

 This section will outline how the theories developed in the previous sections can be

applied to an example circuit. The circuit in Figure 1.1 is partitioned into three PEs using the

channel connected component graph, CCG, Figure 1.2. The first step is to determine the input

set from X to cover the output behaviors in Y. Throughout the remainder of this chapter the

similarity function is the Gaussian distance measure between waveforms and the clustering

algorithm is hierarchical clustering. Table 4.1 shows the similarity between the waveforms

displayed in Figure 4.23 where 100% similarity means that the two waveforms are identical.

For this section we assume that the waveforms are encoded in a vector form where each

element in the vector is a voltage value representing the measurement at each time step. All

waveforms are of the same size.

Table 4.1: Similarity matrix between events 1-4 in Figure 4.23
 Event 1 Event 2 Event 3 Event 4
Event 1 100% 63.6% 59.6% 97.2%

Event 2 100% 98.3% 69.9%
Event 3 100% 65.3%
Event 4 100%

113

Figure 4.23: Four analog events

Hierarchical clustering is a tree clustering algorithm whose purpose is to join together

objects into successively larger clusters based on a similarity measure. The similarity measure

is often a distance measurement between pairs of objects. The algorithm begins with each

object in a class by itself. For each level in the tree, the similarity measure threshold is relaxed

or decreased and clusters are merged together. This continues until all of the clusters are

merged together forming a tree structure. The benefit of hierarchical clustering is that there is

no need to set specific number of clusters prior to the algorithm running. This is extremely

important if the trends and information contained in the data set is relatively unknown.

Unfortunately this algorithm has a long run time O(n2). The algorithm is also not very robust

towards outliers. Outlier is an object that is distant from any other cluster or object. The

algorithm treats outliers as a cluster which can affect the way clusters are merged.

Table 4.2 displays the number of clusters per partition per similarity level for the output

events of nine partitions from various circuits in Chapter 2. The number of events represents

the number of simulated output events being applied to the clustering algorithm. The majority

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70

V
o

lt
ag

e
 (

V
)

Time (nS)

Event 1 Event 2 Event 3 Event 4

114

of the events are similar and can be grouped into significantly fewer clusters at 99%. The

number of clusters steadily declines as the precision decreases as the allowable distance from

the center is increased. The analog repeating partitions, 2 and 3, have a significant drop in

events even at 99%. For Partition 2 when the precision is increased to 99.9% the number of

clusters becomes 32 and at 100% the number of clusters is 2247. Similarly for Partition 3 at

99.9% precision the number of clusters is 23 and for 100% the number of clusters is 215. Each

of the input events to the partitions is unique which implies that there is very little noise

generated from the partition. The number of clusters at 100% implies that no two events are

exactly the same, but the dramatic decrease in clusters implies that they are very similar.

Table 4.2: Number of Clusters per Partition and Precision
 # Events 99% 95% 90% 80% 70%
Partition 1 100 20 11 7 7 6
Partition 2 2247 9 5 4 3 3
Partition 3 215 8 4 2 2 2
Partition 4 284 153 122 107 90 70
Partition 5 2016 365 261 190 136 97
Partition 6 184 21 21 20 15 15
Partition 7 2648 578 455 455 374 353
Partition 8 127653 1120 872 740 573 417
Partition 9 11644 130 118 85 75 72

4.6.1 Avoiding the Simulation of Unimportant Inputs

 For the circuit in Figure 1.1 the set of input waveforms is 6000 where each waveform

is 70pS. For a small circuit, 6000 simulations may not seem like very many and may take little

time. When the circuits get much larger and the simulations are on the order of minute to hours,

reducing the input set even by a fraction is crucial. Following the iterative approach from

Section 4.4, hierarchical clustering is used to determine an initial set of input events to simulate

through the whole circuit. The cluster is done with 90% similarity which results in 50 clusters.

115

A representative sample, nucleus of the cluster, from each cluster is chosen and simulated. The

50 output events are clustered with the same similarity and 17 clusters are identified. The

nucleus of each output cluster is mapped back to the respective input waveform where each is

determined to be important waveform while the remaining 33 are deemed unimportant.

 For the remaining iterations until there are no more unique output clusters, the input

space clustering is not based on just the similarity of the time steps. A new set of features is

created for each of the 6000 waveforms. Each feature is the similarity measure between the

input waveform with the important input waveforms. The clustering is performed and 26

clusters are identified. Of the 26 clusters 17 of those contain the important waveforms and do

not need to be re-simulated, resulting in only 9 new simulations. The clustering at the output

remains a comparison between the waveforms and 3 new clusters identified. This process

repeats until there are no new output clusters, i.e. convergence. This circuit converges after

two iterations where there are 21 output clusters. To generate a golden set of data for

comparison, all 6000 waveforms were simulated. The number of output clusters is 21 which

matches the number of clusters determined from just 68 simulations.

Table 4.3: Overview to clustering in each iteration
Iteration Input Clusters Output Clusters
Initial 50 17

1 26 20
2 35 21

Golden Results 6000 21 clusters

4.6.2 Determining Primitive Elements

 The next phase in simulation reduction is the abstraction of the circuit; determining and

behaviorally modeling PEs. Simulation data from the input space reduction phase is

116

decomposed into input/output data for each partition. To determine the complexity of the PE

the input and output data is clustered. If the output clusters number is more than the input

clusters then the PE is complex. Table 4.4 shows the number of clusters for each PE in the

circuit. At various similarity measures, the complexity of the circuit shows that Partitions 1

and 3 are information reducers while Partition 2 is an information injector. We use 90%

similarity measure in this work therefore Partition 1 and 3 are candidates for behavioral

modeling

Table 4.4: Information Measure of PEs

Precision Partition 1 Partition 2 Partition 3
Input Output Input Output Input Output

99% 72 66 66 122 122 40
98% 45 38 38 86 86 37
97% 33 29 29 72 72 36
96% 24 22 22 63 63 35
95% 21 19 19 54 54 34
94% 20 18 18 52 52 31
93% 17 15 15 45 45 31
92% 14 14 14 40 40 31
91% 13 13 13 34 34 27
90% 12 12 12 42 42 25

 The complexity of the partitions are measured by the distance between three events,

Figure 4.17. If the ordering distance between each event is maintained between all triples then

the partitions is considered non-complex. Table 4.5 shows the complexity measure for each of

the three partitions. The OUT column indicated how many of the samples have not had the

distance maintained between all three events at the input and the output, i.e. input d1<d2<d3

117

and output d1<d3<d2. 50,000 random combinations of events are analyzed for each partitions.

Even though Partition 2 is an information injector and removed from the behavioral modeling

candidates, we show the complexity for reference. Of the mismatched events in Partition 1 and

3, the difference for all the events is <<1%. For example given at the input {d1, d2,

d3}={.00011387,.00011382,.9999} and at the out {d1,d1,d3}={.0375,.0376,.999} the change

in order for the output is so insignificant. This is not the case for Partition 2. The column INS

represents the insignificant events which have differences <<1%.

Table 4.5: Complexity Measure of PEs

50k Runs Partition 1 Partition 2 Partition 3
 OUT INS OUT INS OUT INS
1 11.42% 11.32% 26.31% 11.76% 10.03% 10.02%
2 11.70% 11.58% 26.57% 11.98% 9.65% 9.65%
3 11.95% 11.86% 26.41% 12.10% 9.86% 9.86%
4 12.02% 11.90% 26.43% 11.77% 10.08% 10.07%
5 11.86% 11.75% 26.89% 12.08% 10.11% 10.11%
6 12.02% 11.93% 26.58% 12.06% 10.09% 10.08%
7 11.64% 11.55% 26.37% 11.91% 10.28% 10.27%
8 12.15% 12.04% 26.40% 11.99% 9.99% 9.90%
9 11.80% 11.68% 26.22% 11.89% 9.99% 9.98%
10 12.18% 12.05% 26.64% 11.81% 10.14% 10.13%
Average 11.87% 11.77% 26.48% 11.94% 10.02% 10.01%

Chapter 3 discussed an SVM transient based prediction method for modeling the

behavior of analog circuits. As method earlier this method is not general and has various

limitations. For non-complex partitions which have ordered input/output waveforms any

behavioral modeling, even SVM, will be effective. In this work we will use a lookup table with

interpolation to predict the output waveform.

118

 The initial table is built using the simulation data from the complexity analysis of the

PE. Monte Carlo simulations are performed on the partition and simulated. For each input in

the table 100 samples of variation data are collected. The events are analyzed for information

measurements based on the discussion above. This reduces the table entries from 2121 to 27.

This tells us that the variation data had little impact on the partitions behavior.

Every new input waveform is applied to the lookup table behavioral model. If the

output can be predicted by interpolation of the table data then no simulation is necessary. If

the output cannot be predicted then the waveform is simulated with and without Monte Carlo

variation sampling and added to the lookup table as a new entry. Figure 4.24 displays the

number of waveforms added to the lookup table as more input waveforms and variation

samples are applied. For all 6000 input waveforms only 77 are simulated which is 1.28% of

the simulation time. These models are significantly faster the circuit simulation, on the order

of two to three magnitudes depending on the PE size.

Figure 4.24: Number of input waveforms verse the number of lookup table entries

0

21
26

37
42 46 49

77

0
10
20
30
40
50
60
70
80

0 1000 2000 3000 4000 5000 6000

N
u

m
b

r
o

f
T

a
b

le
 E

n
ti

es

Number of Input Waveforms

119

4.7 Experimental Results

The methods outlined in Section 4.6 are further extended to a number of individual

partitions for PE analysis and large complex analog circuits, UWB-PLL. Nine partitions are

used in the remaining chapter as a representative sub-set of the partitions. The partitions are as

follows:

1) Voltage Regulator Partition 3

2) Voltage Regulator Partition 1

3) Differential amplifier from ∑∆-SDM

4) Charge Pump bias UWB-PLL

5) Charge Pump differential down partition

6) PFD Down from UWB-PLL

7) PFD Up from PLL for Clock Recover

8) Divider Partition 1 from UWB-PLL

9) Divider Partition 3 PLL from Clock Recovery

To determine which PEs are complex the input and output clustering is applied to

Partition 1-9. The analysis results for the input (IN) and output (OUT) clusters are displayed

in Table 4.6a and Table 4.6b. All events of the input and output are simulated over the same

amount of time, 100nS. Partitions 1-5 are all non-complex PE and can be modeled using a

lookup table. Partitions 6-9 on the other hand will need to be simulated. These partitions which

are digital are highly sensitivity to changes at the input, in particular delay based events.

Partitions 4 and 5 have a digital input and produce an analog output. The analog output

responds slowly over time to changes in the digital input which is why so many are similar

120

while there are so many different combinations of digital inputs. Partitions 1-3 are partitions

of circuits whose functionality is to transfer or amplify input waveforms which explains why

the clustering of the input and output are very similar. Figure 4.25 displays the events of

Partitions 1. The 100 input events over 100nS to the partitions are displayed in Figure 4.25(a)

followed by the central event for each clusters for (b) 100%, (c) 99%, and (d) 90%.

121

Table 4.6a: Input Cluster Analysis
 Partition

1 IN
Partition
1 OUT

Partition
2 IN

Partition
2 OUT

Partition
3 IN

Partition
3 OUT

Partition
4 IN

Partition
4 OUT

100% 100 100 100 100 100 100 200 200
99% 20 15 11 7 21 15 10 2
98% 16 15 8 5 15 11 7 2
97% 12 11 7 4 12 9 7 2
96% 11 11 7 4 11 8 6 2
95% 11 9 6 4 10 8 6 2
94% 10 8 6 4 9 8 6 2
93% 9 7 6 4 8 7 6 2
92% 9 7 5 3 8 7 5 2
91% 7 7 5 3 8 7 5 2
90% 7 7 5 3 8 6 5 2
89% 7 7 5 3 8 6 5 2
88% 7 7 5 3 7 6 5 2
87% 7 6 5 2 7 6 5 2
86% 7 5 4 2 6 6 5 2
85% 7 5 4 2 6 6 4 2

Table 4.6b: Input Cluster Analysis

 Partition
5 IN

Partition
5 OUT

Partitions
6-9 IN

Partition
6 OUT

Partition
7 OUT

Partition
8 OUT

Partition
9 OUT

100% 300 300 300 300 300 300 300
99% 269 2 125 269 131 198 202
98% 266 2 93 266 131 198 201
97% 261 2 71 261 131 198 201
96% 251 2 59 251 120 198 201
95% 244 2 52 244 103 197 201
94% 236 2 52 236 96 197 201
93% 231 2 43 231 92 197 201
92% 223 2 41 223 86 197 201
91% 215 2 39 215 82 197 201
90% 207 2 38 207 80 197 201
89% 197 2 33 197 77 196 201
88% 192 2 32 192 74 196 201
87% 187 2 31 187 69 196 201
86% 179 2 30 179 68 195 201
85% 169 2 29 169 68 195 201

122

Figure 4.25: Clustered events from Partition 1 output (a) input (b) 100%, (c) 99%, (d) 90%

0

0.2

0.4

0.6

0.8

1

1.2

V
o

lt
a

g
e

(V
)

(a)

0

0.5

1

1.5

2

2.5

3

3.5

V
o

lt
a

g
e

(V
)

(b)

0

0.5

1

1.5

2

2.5

3

3.5

V
o

lt
a

g
e

(V
)

(c)

0
0.5

1
1.5

2
2.5

3
3.5

0 10 20 30 40 50 60 70 80 90 100

V
o

lt
a

g
e

(V
)

Time (nS)

(d)

123

Table 4.7: Complex Primitive Elements with Reduced Simulation Time
Circuit Complex

PE
Time to

Convergence
Golden Simulation

Time
UWB-PLL 22 647.3h 1481.2h
PLL CR 18 377.5h 1232.1h
Regulator 2 20m 119.4m
TIA 1 17.9m 16.5m

The results in Table 4.7 present the applied methodology on 4 circuits from Chapter 2,

the two PLLs are extremely large and complex. The time to convergence is the amount of time

it takes to (1) converge on the input space, (2) create the behavioral models, and (3) apply

Monte Carlo analysis. The golden simulation time is the amount of time to run 1,000 Monte

Carlo simulations on the full circuit with 10 different frequencies (PLLs) and 10 different input

combinations. Except the TIA, where the simulation is just as fast as the model predictions,

the other circuits have 55-75% reduction in simulation time.

4.8 Conclusion

 This Chapter developed a methodology for applying statistical learning to the

verification of analog circuits. The first methodology developed utilizes unsupervised learning,

circuit partitioning, and event propagation to determine the minimal representative set of input

events which describe the output space. A significant amount of simulation time is saved by

only simulating the important inputs. The second methodology developed locates primitive

elements with low complexity which can be modeled behaviorally instead of simulated.

Unsupervised learning is used on the input and output of each cluster to determine if the

primitive element increases, transfers, or decreases the information content. Distance

calculations are used to determine the complexity of the events through the primitive element.

124

Low complexity primitive elements maintain the distance ordering of the events. Behavioral

models are created using supervised learning techniques for primitive elements with

transferring or decreasing information content. We have shown the effectiveness of the method

on four analog circuits where the simulation time is decreased by 55-75%.

4.9 Chapter 4 References

 [1] C. Visweswariah, et. al. First-order incremental block-based statistical timing analysis. in

IEEE Trans. CAD v25, 10, 2006, pp. 2170-2180.

[2] Xin Li, et al. Statistical Performance Modeling and Optimization. Now Publishers, 2007.

[3] A. Monti, F. Ponci, Member, T. Lovett. A polynomial chaos theory approach to uncertainty

in electrical engineering. in International Conference on Intelligent Systems Application to

Power Systems, 2005, pp.

[4] F. Augustin, A. Gilg, M. Paffrath, P. Rentrop and U. Wever. Polynomial chaos for the

approximation of uncertainties: Chances and limits. in European Journal of Applied

Mathematics,v 19, 02, 2008, pp. 149-190.

[5] A. Singhee, R. A. Rutenbar. Statistical Blockade: A Novel Method for Very Fast Monte

Carlo Simulation of Rare Circuit Events, and its Application. in DATE 2007.

[6] X. Li, W. Zhang and F. Wang. Large-scale statistical performance modeling of analog and

mixed-signal circuits. IEEE Custom Integrated Circuits Conference (CICC), 2012.

[7] X. Li, F. Wang, S. Sun and C. Gu, Bayesian model fusion: a statistical framework for

efficient pre-silicon validation and postsilicon tuning of complex analog and mixed-signal

circuits. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2013, pp.

795-802.

125

[8] M. C.T. Chao, L.-C. Wang, and K.-T. Cheng. Pattern selection for testing of deep sub-

micron timing defects. in DATE, 2004, pp. 1060-1065.

[9] O. Guzey, et. al., Functional Test Selection Based on Unsupervised Support Vector

Analysis. in Design Automation Conference, 2008.

[10] B. Sch¨olkopf, et. al. Estimating the Support of a High- Dimensional Distribution. in

Journal Neural Computation, v 13, 7, 2001, pp. 1443-1471.

[11] W. Chen, et. al. Novel Test Detection to Improve Simulation Efficiency — A Commercial

Experiment. ACM/IEEE ICCAD, 2012.

[12] P.-H. Chang, et. al., A Kernel-Based Approach for Functional Test Program Generation.

In International Test Conference, 2010.

[13] L.-C. Wang. Data Mining in Functional Test Content Optimization. in ASP-DAC, 2014.

[14] Li-C. Wang, Magdy Abadir. Data Mining In EDA - Basic Principles, Promises, and

Constraints in Design Automation Conference, 2014.

[15] O. Guzey, et. al. Extracting a Simplified View of Design Functionality Based on Vector

Simulation. Lecture Note in Computer Science, LNCS, Vol 4383, 2007, pp. 34-49.

[16] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory,

MIT Press, 1994.

[17] H. Li, et. al. Analog behavioral modeling flow using statistical learning method. in Proc.

ISQED, 2010.

[18] S. Alt, L.-C. Wang, M. Marek-Sadowska. Circuit Partitioning for Behavioral Full Chip

Simulation Modeling of Analog and Mixed Signal Circuits. International Conference on

System Modeling and Optimization, 2014.

[19] O. Chapelle, B. Schlkopf and A. Zien. Semi- Supervised Learning. The MIT Press, 2010.

126

[20] B. Schlkopf, and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. The MIT Press, 2001.

[21] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge

University Press 2004.

[22] R. L. Allen and D. W. Mills. Signal Analysis, IEEE Press Wiley-Interscience, 2004.

[23] http://scikit-learn.org/stable/user_guide.html\#user-guide

http://scikit-learn.org/stable/modules/classes.html

[24] V. Vapnik, The nature of Statistical Learning Theory. 2nd ed., Springer,1999.

[25] Sayan Mukherjee and Vladimir Vapnik. Support Vector Method for Multivariate Density

Estimation. A.I. Memo No. 1653, C.B.C.L. Paper No. 170, MIT 1999.

[26] V. Kamath, et. al., Functional Test Content Optimization for Peak-Power Validation —

An Experimental Study. In International Test Conference, 2012.

[27] W. Chen, et al., Simulation knowledge extraction and reuse in constrained random

processor verification. In ACM/IEEE Design Automation Conference, 2013.

[28] K.-K. Hsieh, et al., On Application of Data Mining in Functional Debug. In ICCAD, 2014.

[29] F. Rosenblatt. Principles of Neurodynamics. Washington, DC. Spartan Books, 1962.

[30] O. Bousquet, et. al. Introduction to Statistical Learning Theory. Springer LNCS, V 3176,

2004, pp. 169-207.

[31] F. E. Grubbs. Procedures for Detecting Outlying Observations in Samples in

Technometrics, v11, no 1, 1969, pp. 1-21.

[32] T. Hastie, et al. The Elements of Statistical Learning - Date Mining, Inference, and

Prediction. Springer Series in Statistics, 2001

127

[33] Y. Katz and et al. Learning microarchitectural behaviors to improve stimuli generation

quality. In ACM/IEEE Design Automation Conference, pages 848 –853, 2011.

[34] N. Callegari, et. al. Classification rule learning using subgroup discovery of cross-domain

attributes responsible for design-silicon mismatch. DAC, 2010, pp. 374-379.

[35] J. Chen, et. al. Mining AC Delay Measurements for Understanding Speed-limiting Paths.

In IEEE ITC, 2010.

[36] G. Batista. A Study of the Behavior of Several Methods for Balancing Machine Learning

Training Data. Sigkdd Explor., 6(1), pp. 20-29, 2004.

[37] N. Sumikawa, et. al. Screening Customer Returns With Multivariate Test Analysis. In

IEEE ITC, 2012.

[38] J. Tikkanen et. al., Yield Optimization Using Advanced Statistical Correlation Methods.

In IEEE ITC, 2014.

[39] O. Guzey, et. al., Enhancing signal controllability in functional testbenches through

automatic constraint extraction. In International Test Conference, 2007.

[40] C. Zhang and S. Zhang. Association Rule Mining, Models and Algorithms. Lecture Notes

in CS Vol. 2307, Springer 2002.

[41] C.H.-P. Wen, et. al., An Incremental Learning Framework for Estimating Signal

Controllability in Unit-Level Verification. In ICCAD, 2007.

[42] K. J. Cios, et. al., Data Mining - A Knowledge Discovery Approach, Springer, 2007.

128

Chapter 5

Efficient Method for Critical Node Identification

Time Varying Large Analog and Mixed Signal

Circuit with Process and Environment Variation

Every transition to a new technology node increases the complexity of the process,

resulting in larger numbers of process faults, greater parameter variations and more

complicated descriptions of tolerances. This is especially true with nanometer technologies and

low-power high-frequency circuits. Random and systematic process variations have a large

influence on the quality, yield, and reliability of the analog, mixed signal, and RF circuits. This

is a challenge for today's designs because varying parameters are usually uncorrelated and

increasingly hard to capture. Undetected critical behaviors can result in many design re-spins

and lower yield, increasing the time to market and production costs. It is important to detect

critical transistors beforehand and determine their tolerance ranges so that critical behaviors

can be analyzed before manufacturing the circuit.

Circuits that are high-speed and low-power are highly susceptible to various reliability

and yield concerns in CMOS technologies, and are also negatively impacted by various

environmental effects. For these reasons analyzing circuits under environment variation,

129

reliability effects, and manufacturing variation ensure the circuit maintains proper functionality

over time out in the field.

An example of concerns in reliability and yield is illustrated in high precision analog

circuits, such as converters and comparators. These require stable threshold voltages that can

be disrupted by such effects as hot carrier injection (an effect within transistors where an

electron or hole gains enough kinetic energy to break into the gate dielectric and become

trapped), negative bias temperature instability (when positive oxide charge is generated in

transistors under negative bias in increased temperatures) or process variation. Additionally,

environmental effects, such as VDD fluctuation caused by high switching digital circuits, result

in fluctuation of speed and functionality of transistor. Therefore it is important to analyze the

circuit under environment variation, reliability effects, and manufacturing variation to ensure

the circuit maintains proper functionality over time out in the field.

This chapter provides a directed, simulation-based, sensitivity analysis of process

variation of very large analog circuits for the purpose of critical transistors identification. The

partitioning and input space methods discussed in Chapter 3 locates sensitive and non-sensitive

partitions and provides an event comparison methodology based on waveform extraction and

sensitivity analysis. Using these methods we will show that it is possible to locate high

sensitivity transistors which cause critical behaviors due to a combination of process variation

and waveform excitation. To our knowledge this has never been reported for circuits of this

size.

After locating the high sensitivity transistors, the method is extended in order to

identify reliability and yield concerns. Using these methods we will show how we can quickly

and automatically find transistors that pose reliability and yield concerns due to process

130

variation and power fluctuation for very large analog circuits. Due to the overtime nature of

reliability concerns the analysis is performed in the transient domain. We will show that if both

Vth and VDD change simultaneously, faulty behavior can be observed even though each source

of variation has been verified for proper behavior independently. We will analyze how the

variations and fluctuations affect the circuit behavior and provide trade-off between process

variations and supply voltage resilience for the most sensitive transistors. Though we only

focus on Vth and power fluctuation, the method can be extended to any number of parameters.

The target uses of this tool is pre-layout and post-design syntheses, where the critical circuit

elements and behaviors need to be identified taking into account process variation. There are

three main applications for critical transistor analysis:

1. Re-designing the circuit by resizing or adding dummy elements to reduce the critical

transistors effect on the behavior.

2. Reducing the parameter space of Monte Carlo simulations to just critical transistor

parameters of the design. This is useful in Monte Carlo-based yield optimization

methods or verification.

3. Incorporating into an optimization loop for design or layout.

This chapter is organized as follows. Section 5.1 provides a motivational example for

power variation and circuit sensitivity. Section 5.2 provides background on sensitivity analysis

techniques. Section 5.3 provides background on reliability and yield optimization. Section 5.4

discusses critical elements and sensitivity. Section 5.5 outlines the automatic method for

identifying critical transistors. Section 5.6 provides experimental results. Section 5.7

concludes.

131

5.1 Motivational Example

As the power supply voltage, VDD, gets closer to the threshold voltage, Vth, the

transistor’s threshold voltage becomes more sensitive to variation. For low power high

frequency components, power and process variations have a drastic effect on the performance

and reliability of the device. In this motivational example we will first show the effects of

varied power levels on the circuits from Chapter 2. We will then show the effect of process

variation from -6σ to 6σ Vth on the lock time performance of three different transistors. Finally

we will show the effect of combined power variation and process variation on the lock time.

Figure 5.1: VDD effects on the lock time performance of UWB-PLL

Figure 5.2: Vth variation from -6σ to +6σ for three transistors

10

15

20

25

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

L
o

ck
 T

im
e

(n
S

)

Voltage (VDD)

0

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6 8

Transistor 1 (1 cpbias nfet)

Transistor 2 (6 reg pfet)

Transistor 3 (2 divider pfet)

132

Figure 5.1 shows the effect of VDD on the lock time of the UWB-PLL. VDD is varied

from 0.9V to 1.5V where the nominal operating VDD is 1.2V. At 0.9V the circuit can never

achieve lock and thus is not included in the graph. The supply power is held at a constant VDD

for the entire transient simulation. As VDD decreases, the circuit becomes unstable and

eventually is unable to lock. Figure 5.2 shows the effect of Vth variation of three individually

varied transistors and their respective lock times.

Figure 5.3: Simultaneous VDD and Vth variation simulations for (a) Transistor 1, (b)

Transistor 2, and (c) Transistor 3

-5
0
5

10
15
20
25
30

-4 -3 -2 -1 0 1 2 3 4 5 6 7

L
co

k
 T

im
e

(n
S

)

Variation (σ)

1V 1.1V 1.2V
1.3V 1.4V 1.5V

0

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6 8

L
co

k
 T

im
e

(n
S

)

Variation (σ)

1V 1.1V 1.2V
1.3V 1.4V 1.5V

0

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6 8

L
co

k
 T

im
e

(n
S

)

Variation (σ)

1V 1.1V 1.2V
1.3V 1.4V 1.5V

133

Each simulation contains only a single transistor varying at 13 different σ points. Values of σ

that are not graphed for a transistor indicate that the PLL never achieves lock. Certain

transistors affect the circuit behavior more drastically then others even if they are varied by the

same amount and have similar functionality. The final Figure 5.3 presents the effect of both

Vth variation and VDD changes and their combined effect on the lock time. As observed in the

graphs, coupled Vth and VDD variation have drastic effects on the performance that may be

otherwise unnoticed by performing the experiments independently. For example when

combining VDD =1.0V and +3σ Vth for Transistor 1 the circuit no longer locks as compared to

nominal VDD where the circuit locks almost at the ideal time. The effects of power supply and

process variations are a source for serious reliability concerns and must be addressed before

the device is manufactured

5.2 Techniques for Sensitivity Analysis

Over time circuit behavior is subject to change through ageing and environmental

effects and sensitivity analysis is useful in locating the critical parameters and elements.

Sensitivity analysis computes the effect of parameter variations on the circuit performance.

The analysis provides quantitative insight into performance deviations due to process variation

and their effects on design specifications.

5.2.1 Adjoint Techniques

The adjoint method [1] is a way to perform sensitivity analysis of a circuit in the

transient domain. The method can be formulated as a convolution of circuit equations with a

134

carefully constructed function. Proper initial values have to be determined by a backward

integration of time in the related differential algebraic equations. Aside from transient analysis,

adjoint methods are useful in determining optimal reduced order models [2][3] in the case of a

large number of parameters.

Many works in this field are for linear circuits [1][4-6]. The method has been extended

to incorporate nonlinear differential equations [7-9]. The works in [10-17] use adjoint linear

analysis for AC, periodic AC, and AC steady state analysis for time-invariant or periodically

time-varying systems.

Though the adjoint method has the ability to perform sensitivity analysis in the transient

domain, it is not robust enough to incorporate a very large number of parameters. When dealing

with sensitivity of the circuit with process variation, the resulting differential equations become

unrealistic to be solved efficiently.

5.2.2 Symbolic Techniques

The main purpose of symbolic simulators is to replace tasks that require repeated

computations such as Monte Carlo simulations and design space exploration [18][19]. These

techniques are applied in early design stages where fast analyses for quick re-designs are

required. This stage often relies on designer’s knowledge, and is mainly done by hand. With

the advancements of computers and their processing power on one hand and increased circuit

complexity on the other hand, simulation-based techniques such as Monte Carlo-based

methods are becoming more popular. Nonetheless, symbolic simulators are very fast and

provide an early analysis of circuit sensitivities.

135

With the introduction of Binary Decision Diagram-based computation methods,

symbolic simulators had been extended to handle opamp circuits containing over 20 transistors.

If hierarchical methods are employed [20] more than twice as many transistors can be analyzed.

Symbolic sensitivity analysis techniques are applicable to circuits on a scale of tens of

transistors. Large analog blocks, with more than 20 transistors, need to be approached with

either approximation [21] or hierarchical methods [22].

Hierarchical methods [20][22-28] derive symbolic formulas for a sequence of

expressions or nested symbolic expressions from the decomposition of circuit transfer

functions. In topological hierarchical analysis [24] the circuit topology is represented as a

directed graph whose edges and weights of the edges are circuit parameters. Decomposition is

applied to the graph and analysis is performed to find disjoint paths and loops. In network

formulation [22] decomposition is applied directly to the transfer functions and variables are

eliminated one at a time for each sub circuit.

Approximation methods [21][29-35] discard insignificant terms based on the relative

numerical magnitudes of the symbolic parameters and the frequency defined at some nominal

design point or range. These methods suffer with respect to accuracy, but make up for it with

the reduced expression, which increases speed. Unfortunately the simplified expressions often

lose certain information for sensitivities with respect to parasitic or process variation [26].

Determinant decision diagrams (DDDs) [36][37] exploit the sparsity and sharing of

sub-expressions within the circuit matrix and create graph representations of the symbolic

determinants, under the assumption that each element in the matrix is unique. In the worst case

DDDs grow exponentially with the size of the circuit, but in practice show orders-of-magnitude

136

reduction in the number of elements. Element-Coefficient Diagrams [38][39] are an extension

of determinant decision diagrams to include multiple roots.

The Method of Moments (MoM) was first introduced in [40][41] and was used to solve

the integral equations of the sensitivities of electrostatic problems for planar structures. The

works in [42][43] introduced adjoint techniques with MoM for full-wave sensitivity analysis.

Symbolic analysis MoM-based sensitivity scales exponentially with the circuit size.

Sensitivity analysis has also been used in genetic circuits [44]. The work reported in [45] uses

Random Sampling – High Dimensional Model Representation (RS-HDRM) algorithm which

can provide reliable pre-experimental estimates on sensitivities of the circuit properties with

respect to broad scale variations in the model parameters without knowing their precise values.

The global sensitivity analysis technique can decompose the high-dimensional, nonlinear

contributions of reaction rate constants to the network properties (represented by their total

sensitivity) into a hierarchy of low-dimensional terms. Genetic circuit components are built

from well-studied natural networks, therefore the ordinary differential equations, initial

conditions, and tolerance ranges are all usually known beforehand.

All of these symbolic techniques require that an efficiently solvable function can be

derived. The main difficulty with symbolic analysis is that the number of product terms in an

expression may increase exponentially with the size of the circuit. For a circuit with 15 nodes

and 25 devices (transistors, resistors, etc.) the determinant of the circuit matrix contains more

than 1011 product terms [46]. The above techniques have attempted to reduce the terms as much

as possible, but even with the advancements in the field most state-of-the-art techniques can

handle "large" analog circuits ranging from 20-40 transistors or are tailored specifically to a

circuit type and not general enough to be used on other circuits. Many state-of-the-art works

137

using symbolic analysis are limited to linear analysis of the circuit [47-50]. In contrast the sizes

of circuits in this thesis range from tens to thousands of transistors. The existing methods are

impractical for circuits of such size. To the best of our knowledge there are no symbolic

sensitivity analysis techniques able to handle circuits as large as a PLL.

Another shortcoming of these methods is their inability to do analysis in the transient

domain. Transient analysis provides the picture of the system as a whole and how its varied

behavior over time may affect neighboring digital components, i.e. lock time of a PLL.

5.2.3 Genetic Algorithms

Genetic algorithms are very fast and very powerful global optimization techniques.

Their goal is to find an optimum solution based on a set of objectives and parameters. For

sensitivity analysis a genetic algorithm [51-54] is combined with some kind of numerical

circuit simulator such as SPICE. The data from the simulator is analyzed and sensitivity is

computed by the algorithm, which then provides a new set of optimized parameters for

simulations. The loop and simulations continue until an optimized solution for the objectives

is found.

5.3 Techniques for Yield and Reliability

5.3.1 Reliability

Traditionally, reliability testing of a device is performed through stress testing at the

device level. Designers are forced to use large design margins since the effect of device failures

138

at the circuit level are not considered, limiting performance [55]. Given a specific process

technology, certain analog components can admit 10% parameter drift, while others as little as

.1%. The Vth shift caused by process variation and reliability concerns has dramatic effects on

the performance of analog circuits.

There are four classes of reliability concerns; spatial stochastic unreliability effects,

temporal deterministic unreliability effects, temporal stochastic unreliability effects, and

dynamic unreliability effects [56]. Spatial stochastic reliability effects affect the yield of a

circuit right after manufacturing. These effects include parametric process variation and time

dependent wear out effects. Temporal deterministic reliability effects such as negative bias

temperature instability and hot carrier degradation cause a shift in transistor parameters over

time. These effects can be prevented by reducing the power supply [57], but the supply voltages

can no longer be scaled at the same rate as in previous transistor generations due to the non-

scalability of the sub-threshold voltage [58-60] Therefore hot carrier injection is a major

concern whose effects increase the number of interface and oxide traps resulting in shifts in

threshold voltage, Vth, carrier mobility, β, and output conductance, go. Bias temperature

instability is a shift in Vth after a bias voltage has been applied to the gate at elevated

temperatures [61]. Temporal stochastic unreliability effects also cause a shift in transistor

parameters, but can also result in circuit failure from time dependent transistor mismatch.

Dynamic reliability effects are caused primarily by the environment in which the circuit is in

[62].

139

5.3.2 Yield Optimization

The goal of yield optimization of to find the design point of a circuit such that the

maximum yield is achieved taking into account the manufacturing and environmental

variations [63]. In contrast, the goal of design optimization is to determine design parameters

such that the circuit performance is as close to the nominal as possible, taking into account

process variation. In both cases the circuit needs to be analyzed for its sensitivities with respect

to various parameters. This section will focus only on the analysis methods used in yield

analysis and not on the optimization engines.

The typical flow for circuit yield optimization analyses the effect of parameter values

on a circuit and the optimization engine uses the analysis to produce a new set of parameter

values. This cycle continues until an optimized set of parameters is found. There are four types

of analysis methods that are used in yield optimization: corner methods [64][65], performance-

based worst case methods [66][67][68][77], response surface methods [69][70], and Monte

Carlo methods [63][71-75]. A corner based method uses the fast/slow parameter sets of a

device model as the worst-case parameters for all devices in a given circuit. The number of

simulations is extremely low and they give a ballpark of the worst-case performances, but they

are pessimistic and lead to potential overdesign. They do not consider every possible

performance parameter that reduces the yield. The performance specific worst-case methods

extract the worst-case parameters for each specific performance of the circuit in its nominal

state, though the search for this state is difficult. Response surface methods create macro

models based on regression to estimate the yield based on design variables and process

parameters. These models benefit from the low computational cost making exploration very

fast, but they must trade-off between accuracy and complexity of the model and require a large

140

number of samples for higher accuracy. Monte Carlo is the most commonly used and reliable

technique due to its generality and high accuracy, but cannot be used within an iterative

optimization loop due to the number of simulations required.

Corner case and worst-case performance methods are generally pessimistic and do not

test the full range of the circuit which reduces the yield. The method in [67] linearizes the

performance at the worst-case point even though the search for this point uses nonlinear

optimization, which introduces errors. [68] Builds a response surface model relating the

performance to intra-die parameters that are correlated to the design parameters. The method

in [77] utilizes the Box-Behnken Design which is an independent quadratic as it does not

contain an embedded factorial or fractional factorial [78]. Each factor has three levels that form

a box around the design space and samples are taken on the midpoint on each edge of the box.

Response Surface techniques model the circuit performances as a function of the

parameters around the nominal design point. This model is then used to estimate the yield and

provides insight into the design, which potentially may produce a more efficient solution. [69]

Uses genetic algorithms to mine data from simulations to find the best-fit model automatically

without an a-priori template. Performance based macro-modeling technique [70] employs a

quasi-random sampling scheme using Halton Sequence Generation [81] that uniformly

samples the design space. With any response surface modeling or macro-modeling technique,

the accuracy of the models is largely dependent on the sampling of the space and

dimensionality of the problem.

The Monte Carlo algorithm takes random combinations of values chosen from within

a specified tolerance range of each parameter. For large number of parameters and dimensions,

the number of simulations could be very high if the application requires some kind of space

141

exploration. Therefore, various sampling methods have been introduced in order to reduce the

number of simulations while still maintaining robustness of Monte Carlo.

Latin hypercube sampling [63][72][73][76] is the most common method to reduce the

number of evaluations required while still enduring reasonable accuracy in computing the

performance distribution function with multiple variables. It is used in conjunction with Monte

Carlo to reduce the number of simulations and achieve a reasonably accurate random

distribution. The key to sampling is stratification of input probability distributions, which

divides the cumulative curve into equal intervals on the cumulative probability scale. A sample

is randomly taken from each interval and that sample represents the interval. All of the samples

are combined to recreate the probability distribution.

Quasi-Monte Carlo [74][75] requires a careful mapping of important statistical

variables to the individual dimensions of the sampling process for effective use in higher

dimensions. The work in [79] recommends either providing designer expertise or rank

correlation coefficients for the mapping. If neither is available then the Karhunen Loéve

Expansion (KLE) can be employed [80]. The KLE of a random field model of intra-die

statistical variation can take an extremely large model with many random variations and reduce

them to just a few uncorrelated random variables.

All of the above sampling techniques suffer from large dimensional spaces. Though

there are techniques to reduce the dimensionality, they either require a knowledge-based guide

or do not reduce the dimensionality enough for the scale of the circuits considered in this thesis.

It was reported in [63] that while the Quasi-Monte Carlo and Latin Hypercube samplings are

significant speed ups over traditional Monte Carlo, their computational load is too high for

large analog circuits.

142

5.4 Critical Elements and Sensitivity

Sensitivity is defined as the amount the circuit behavior changes with respect to

particular circuit elements. In this work the circuit behavior is the output waveform over time

with respect to changes in Vth. Equation 1 defines sensitivity as

𝑆𝑥
𝑦

= lim
∆𝑥→0

(

∆𝑦

𝑦
∆𝑥

𝑥

) =
𝑥

𝑦

𝑑𝑦

𝑑𝑥
 (5.1)

Where S is the sensitivity, x is the changing circuit component, and y is the circuit behavior

we wish to evaluate as x changes. The equation simply evaluates the dependent variable ∆y/y

changes with respect to the change in the independent variable ∆x/x. The limit as ∆x goes to 0

evaluates the expression for small changes. As described in Chapter 4 each waveform is

decomposed into events where each event is a vector of length n. Each event is based on the

type of waveform detected; analog, digital, analog oscillating. Each vector is compared using

the sum of squares.

A critical transistor is a highly sensitive circuit component. High sensitivity is

determined by ranking all of the sensitive components by the level of sensitivity. The levels

are determined by percentages of the varied component. For example, Vth of a transistor

component is varied at ten different levels of sigma, where the lowest level corresponds to

small changes and the highest level to large changes. Components that fall into the lowest ranks

affect the circuit behavior with just small changes in sigma, making them the most sensitive

components. In this work, we consider 20% of the ranking levels to be highly sensitive as

143

default - the lowest two ranks will contain all the highly sensitive transistors. This value can

be changed depending on how conservative the user is. The higher the percentage of the

ranking, the more highly sensitive transistors there will be. The number of ranks depends on

the distribution and uniform sampling of the component being varied. If the sampling steps are

small there will be more ranks and vice versa.

5.5 Automatic Critical Transistor Identification

While the goal in Chapter 4 was to determine the minimum set of inputs of X (input events)

and C (transistor variation) to completely verify a large analog feedback circuit, here we want

to use the output clusters to determine the subset of C which has the lowest tolerance to

variation and has the largest impact on the output behavior. Figure 5.4 represents the behavioral

output space where X is a held constant and C is varying. The star symbol represents the

nominal output behaviors and the clusters represent similar behaviors. The cause of each of the

behaviors within the clusters that do not contain the nominal output is analyzed to determine

the location of the varied transistor and its tolerance ranges.

144

Figure 5.4: Clustering of the behavioral output space. Nominal behavior is the star symbol

and each cluster represents a group of similar output behaviors.

The circuit is first partitioned into primitive elements (PEs) using CCG. Stage one is to

remove non-critical nodes at the PE level. An input event is applied to the PE and each

transistor is varied and simulated independently by the maximum, i.e. σ=6. If the similarity

between the non-varied output event and the varied output event is >99% then the transistor is

considered non-critical. A large portion of the transistors are pruned from the critical set with

only performing simulation on a PE. These non-critical transistors can be removed since the

variation did not affect the output of the PE it will not affect the output of the whole circuit.

Performing the pruning of transistors at the PE level in Stage 1 drastically reduces the space

C. Stage 2 is to locate transistors which affect the final output behavior and not just the PE

output behavior. This will provide us with two things (1) how the transistor variation behavior

affects the entire circuit, and (2) if the transistor variation is masked or corrected by the normal

operation of the circuit. The transistors that fall into category (2) are pruned early in the

parameter sweeps. Instead of full circuit simulation, the simulation reduction method in

Chapter 3 is used. All PEs classified as non-critical are replaced with behavioral models for

faster simulation while critical PEs are simulated. Instead of performing Monte Carlo in C,

sweeps are performed on a single transistor at a time. The transistors not pruned from Stage 1

are swept from the next largest variation, i.e. σ=5, until the circuit output behavior is clustered

in the same cluster as the nominal output response of the circuit. When transistor variation is

being swept on non-critical PEs, the behavioral models are replaced with circuit simulation for

more accurate responses; otherwise they are replaced with behavior models.

145

It is true that transistors can interact with one another to form new behaviors and together

become critical. It would require an extensive amount of simulations and time in order to locate

these combinations, especially in a very large circuit. The goal of this chapter is to quickly

locate the most critical transistors within the design in order to help facilitate and guide layout.

Therefore we are only looking for the independently critical transistors. Each simulation will

have independent analysis for each transistor, they can be run in parallel reducing the amount

of time to find the transistors.

The following example is performed on the circuit in Figure 1.1. The transistor set contains

all of the transistors in the design and partition analysis at 6σ is performed on each transistor.

At 6σ all of the transistors are very sensitive. To find the tolerance range for each sensitive

transistor we perform a greedy search which splits the max σ range in half at the specified

uniform intervals. If the max range is 6σ, then the transistor is simulated next at 3σ. Partitioning

with behavioral modeling and simulation is performed at 5σ thru .1σ and the results are

displayed in Table 1 where S stands for sensitive, NS represents non-sensitive circuit responses

and NT represents variation levels not tested. For Transistor 7 the variation simulations are

±6σ partition simulation and {±3σ, ±1σ, ±.1σ, +.5σ} circuit simulations. The total number of

transistors for each rank is shown in the bar graph Figure 5.5. The highly sensitive critical

transistors which are within Rank 1 and 2 (±.1σ and ±.5σ) are displayed in Figure 5.6(a).

146

Table 5.1: Sensitivity for each transistor with specified variation. S=Sensitive, NS=Non-
Sensitive, NT=Not Tested

Transistor -5 σ -4σ -3σ -2σ -1σ -.5σ -.1σ +.1σ +.5σ +1σ +2σ +3σ +4σ +5σ

1 S NT S NT S S S S S S NT S NT S

2 S NT S NT S S S NS NS S NT S NT S

3 NS NT NS NT NS NT NS NS NT NS NT NS NT NS

4 S S NS NT NS NT NS NS NS S NT S NT S

5 S NT S NT S NS NS NS NS S NT S NT S

6 S NT S NT S NS NS NS NS S NT S NT S

7 S NT S NT S NT S NS NS S NT S NT S

8 S NT S NT S NT S S S S NT S NT S

9 S NT S NT S NS NS NS NS S NT S NT S

10 S NT S NT S NS NS NS NS S NT S NT S

11 S NT S NT S NS NS NS NS NS S S NT S

12 NS NT NS NT NS NT NS NS NT NS NT NS NT NS

Figure 5.5: Bar graph of sensitive variation distribution of transistors

0
5

10
15
20
25
30

σ=6 σ=5 σ=4 σ=3 σ=2 σ=1 σ=.5 σ=.1

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

Variation

147

Figure 5.6: Critical transistor comparison between (a) Rank 1 with (b) expert design analysis

Figure 5.6 displays the critical transistor locations found through the ranking systems.

Rank 1 and 2 critical transistors are encapsulated in a red box in (a) while the designer nodes

locations (b) are within a blue box. The designer located the critical nodes which reside on nets

Vin, Vout and Vctrl, therefore the critical transistors are those which directly feed those nodes.

Vctrl is held constant through these simulations so we have removed Vctrl from the critical node

list. Transistors 6 and 8 are within Rank 3 at σ=1 which is close to being critical. Transistor 3

on the other hand is not critical and hardly sensitive during full circuit simulation while

Transistor 1 which was not located by the designer is highly sensitive. We were able to prune

one transistor from the critical list while adding another.

5.6 Experiments

The experiments were run on the circuits with variations described in Chapter 2.

Sensitivities that are less the 99% are added to each rank. In this work extremely small

perturbation in the waveforms are not considered sensitive enough for analysis. For a transistor

to be critical it needs to be in ranks 1 or 2 and be at least 95% sensitive for a given power level.

148

95% is the sensitivity measure for the output behavior clustering which can be changed based

on the user need. The power is varied in a range from ±20% of the nominal VDD. The range

is uniformly sampled and simulated in combination with Vth variation. Each circuit will be

analyzed by the number of sensitive transistors per rank and the highest ranked transistors are

compared against an expert analog designers hand done critical node predictions.

5.6.1 Cascode Regulator

The distribution of sensitive transistors for the regulator is shown in Figure 5.7(a). The

number of sensitive transistors is slightly deceiving because most the sensitivities fall within

97-99% range. Of the highest sensitivity transistors, 2 of the 3 are highly critical, resulting in

catastrophic failures for low levels of variation, Figure 5.7(b). The third transistor shows

decreased amplitude with respect to the nominal waveform, but still results in an oscillation.

Each transistor location is marked in Figure 5.8(a), where the red boxes are the two highly

sensitive transistors in Rank 1 and the green box is the Rank 2 transistor. As compared with

the designers critical node analysis in Figure X(b) where nodes 8 and 9 are the most critical,

then 1-5, and finally 6 and 7. In comparison we detect that the most critical nodes in the design

with be nodes 8 and 9 which are labeled red and 5 which is labeled green. The remaining nodes

are in Ranks 3 and 5. The most critical transistors are within the biasing portion of the circuit.

The distribution in Figure 5.9(a) depicts the total number of sensitive transistors for

each σ variation level at different power levels. While there may appear to be a large number

of sensitive transistors in σ=5, this is slightly misleading since the majority of those

sensitivities fall into the high end of the 95-99% category. Aside from two critical transistors

and one mildly sensitive transistor, all three sensitive in both the ±σ direction, any sensitive

149

transistor within the 95-99% range typically is much closer to the high end of the distribution,

Figure 5.9(b).

Aside from the two critical transistors this is a highly stable design. Figure 5.10 shows

the distribution of the number of sensitive transistors to the respective sensitivity for VDD and

σ variation. Figure 5.10(c) shows that at high levels of variation for σ and VDD the sensitivity

rarely falls below 90% threshold.

 (a) (b)

Figure 5.7: (a) Bar graph for the number of sensitive transistors per rank, (b) waveforms

generated from three transistors: T1 and T2 from Rank 1 and T3 from Rank 2

0

10

20

30

40

50

Rank 4
(σ=5)

Rank 3
(σ=3)

Rank 2
(σ=1)

Rank 1
(σ=.5)

0

1

2

3

4

0 500 1000 1500 2000 2500

REG_Nominal REG_T2

REG_T1 REG_T3

150

 (a)

 (b)

Figure 5.8: (a) Circuit diagram with sensitive transistors enclosed; red=rank 1, green=rank 2

151

Figure 5.9: (a) Bar graph depicting the total number of sensitive transistors for each σ and VDD

for the Cascode Regulator (b) The distribution of sensitive transistors within the 95-99%

bracket vs. the ratio between the number of transistors within each sensitivity to all the sensitive

transistors

Figure 5.10: Regulator relationship between Voltage (x-axis), Number of Transistors (Y-axis),

and Sensitivity Value (Z-axis), for (a) σ=1 (b) σ=3 (c) σ=5

0

10

20

30

40

50

60(a)

σ=5 σ=3 σ=1

0

0.2

0.4

0.6

0.8

1

95% 96% 97% 98% 98.50%

(b)

σ=5 σ=3 σ=1

<80%
80-90%

90-95%
95-99%

99-99.9%
>99.9%

0
10
20
30
40
50
60

(a)

<80%
80-90%

90-95%
95-99%

99-99.9%
>99.9%

0
10
20
30
40
50
60

(b)

<80%
80-90%

90-95%
95-99%

99-99.9%
>99.9%

0
10
20
30
40
50
60

(c)

152

5.6.2 Differential Amplifier

 The differential amplifier design is a fairly sensitive design with the rankings spanning

from .1σ to 1σ, Figure 5.11(a). As differential pairs require identical matching, injecting

process variation into only a single element of those pairs causes a deviation in the output,

Figure 5.11(b). Though most of the transistors are sensitive the most sensitive critical

transistors are those within Ranks1-3, Figure 5.12(a). As compared with the designers analysis,

Figure 5.12(b) we can see that the predictions are completely opposite. The bias points M8 and

M7 are contained in rank 5. The transistors identified in Figure 5.12(a) are identified as critical

due to the mismatch occurring between the inputs. The circuit connecting to the amplifier will

dictate how much noise can be tolerated and which ranks need to be re-sized, re-designed, or

require specific layout techniques.

 (a) (b)

Figure 5.11: (a) Bar graph for the number of sensitive transistors per rank (b) Difference

between the output for nominal simulations and Rank 3 variation for Transistor 5

0

5

10

15

20

25

30

35

-1

-0.5

0

0.5

1

0 5000 10000 15000

Diff_Output Diff_Output_T5_s.5

153

 (a) (b)

Figure 5.12: (a) Circuit diagram with sensitive transistors enclosed; red=rank 1, green=rank 2,

purple=rank 3 (b) Circled critical nodes from designer

Figure 5.13: Total number of sensitive transistors for each σ and VDD for Differential

Amplifier

 This highly sensitive circuit exhibits increasingly more sensitive behavior on the tail ends

of VDD. In Figure 5.13 the bar graph depicts extremely high sensitivity for all levels of

0
5

10
15
20
25
30
35
40
45

0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

σ=1 σ=0.75 σ=0.5 σ=0.25 σ=0.1

154

variation at the lower end of VDD. As the voltage increases above the nominal, more

transistors become sensitive. This is because of the differential self-biasing of the circuit. Vth

effects the mismatch while VDD effects the current amplifying the effects of the mismatch.

Figure 5.14(a-e) show the effects of VDD variation on the sensitive transistors with respect to

the sensitivity level.

Figure 5.14: Differential amplifier relationship between Voltage (x-axis), Number of

Transistors (Y-axis), and Sensitivity Value (Z-axis), for (a) σ=.1 (b) σ=.25 (c) σ=.5 (d) σ=.75

(e) σ=1

<80%
80-90%

90-95%
95-99%

99-99.9%
>99.9%

0
5

10
15
20
25
30
35

0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

(a)

<80%
80-90%

90-95%
95-99%

99-99.9%
>99.9%

0
5

10
15
20
25
30
35

0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

(b)

<80%
80-90%

90-95%
95-99%
99-99.9%
>99.9%

0
5

10
15
20
25
30
35

0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

(c)

<80%
80-90%

90-95%
95-99%

99-99.9%
>99.9%

0
5

10
15

20

25

30

0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

(d)

<80%
80-90%

90-95%
95-99%
99-99.9%>99.9%

0
5

10
15
20
25
30

0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

(e)

155

5.6.3 UWB-PLL

 Due to the size and complexity of this circuit, for display purposes, only the transistors

which cause catastrophic failures or unreliable waveforms will be discussed. The sensitivity

level for the discussed transistors will be when the sensitivity<95%. In this section we will

consider only failure to lock as the failure conditions. Due to the self correcting nature of this

circuit, small variations at the partition level are corrected for within the next few cycles. Figure

5.15(b) shows the Vcp behavior for nominal, a shifted but locking, and a non-locking behavior.

While the sensitivity of the phase shifted behavior is <95%, it still locks at the same time as

the nominal behavior.

Figure 5.15 shows the number of transistors which cause failing or unreliable behaviors

in this circuit. Out of the 1000+ transistors in the design only 643 were sensitive during

partition level 6σ simulations. This reduced the number of simulations by more than half. In a

circuit of this size where the time to simulate the entire circuit is long, this saves approximately

100 hours of simulation time. Of those 643 transistors only 111 were sensitive at the full circuit

level at 5σ and 84 at 3σ. Most of the variation injected into the logic partitions of the circuit

was not sensitive past 3σ leaving only the analog partitions with Rank 1 and 2 variations.

The analog partition of the circuit we show in Figure 5.16 is the charge pump. The

circuits in Figure 5.16(a) are the critical transistors found through the tool where Rank 1 is red

and Rank 2 is green. The corresponding designer nodes and transistors Figure 5.16(b) are

marked in blue where the blue circles are the predicted critical nodes and boxes are critical

transistors. For the charge pump we calculate that there will be extra critical transistors in the

bias portion of the circuit while fewer transistors in matched pairs will be critical. For the other

sensitive analog partitions the results are similar. Some of the differential pairs which would

156

originally be considered sensitive are not critically sensitive while more transistors in the

biasing regions are sensitive.

Due to the nature of the circuit behavior under the influence of variation, which exhibits

primarily large deviations from the nominal, the analysis in this section will be on the

sensitivity with respect to the lock time instead of the entire transient waveform. The lock time

for the nominal circuit is around 12nS. The sensitivity categories will be broken down into

locking {<9nS, 10-14nS, 15-20nS, >20nS} and never locking {high, low, oscillating}. The

three types of behaviors are there to distinguish between the types of non-locking behavior;

Figure 5.17. High indicates the frequency is maxed due to the inability to decrease frequency

while low indicates the opposite. Oscillating indicates that the circuit never stabilizes on a

frequency. The distribution for the total number of sensitive transistors is shown in Figure 5.18.

As VDD increases the circuit becomes less sensitive especially at higher ranges of σ. The

graphs of Figure 5.19 show the distribution of the sensitivities with respect to VDD and the

sensitivity categories.

 (a) (b)

Figure 5.15 (a) Circuit Bar graph of the failing and unreliable waveforms (b) Graph of Vcp for

nominal operating conditaions, phase shift due to variation, non-locking behavior due to

process variation

0

20

40

60

80

100

120

Rank 4
(σ=5)

Rank 3
(σ=3)

Rank 2
(σ=2)

Rank 1
(σ=1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5000 10000 15000 20000

V
o

lt
ag

e
 (

V
)

Time (pS)

Nominal PhaseShift Non-Locking

157

Figure 5.16: Circuit diagram with sensitive transistors enclosed; red=Rank 1, green=Rank 2,

blue=designer

Figure 5.17: Non-Locking behavior catagorites of the UWB-PLL

Figure 5.18: Total number of sensitive transistors for each σ and VDD for UWB-PLL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2000 4000 6000 8000 10000 12000 14000

Low High Oscillate

0
20
40
60
80

100
120
140

1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

Voltage (V)

σ=5 σ=3 σ=1

158

Figure 5.19: UWB-PLL relationship between number of transistors and sensitivity category

for each voltage and (a) σ=5 (b) σ=3 (c) σ=1

0
25
50
75

100
125
150
175

<10nS 10-15nS 15-20nS >20nS OSC LOW HIGH

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

(a) 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

0
10
20
30
40
50
60
70
80
90

<10nS 10-15nS 15-20nS >20nS OSC LOW HIGH

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

(b) 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

0

10

20

30

40

50

60

<10nS 10-15nS 15-20nS >20nS OSC LOW HIGH

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

(c) 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V

159

5.6.4 TIA

 The TIA circuit is not very sensitive and does not contain any critical transistors. Due

to the way we compare waveforms and events, phase shifted events do not constitute a unique

event or behavior. Figure 5.20 shows the (a) nominal waveform (b) 5σ transistor shifted

waveforms. The behavior always oscillated at the expected frequency where the worst

variation only causes a shift in the phase. This is because of the inverter chain which adjusts

for variations by converting the analog signal to a discrete digital signal and always oscillates.

Figure 5.20: Phase shifted behavior introduced by 5σ variation on transistor 16

The circuit never fails in terms of generating a frequency, similarly to the critical

transistor evaluation where the process variation causes a shift in the phase. When VDD varies

the frequency is changed based on the variation level. The effect of VDD variation is shown

in Figure 5.21. A change in the supply voltage directly impacts the frequency generated due to

the impact on the supply current. In this circuit the combination of variation types do not

produce new unexpected behaviors. For each VDD level there are variations that cause a phase

shift, but the frequency generated is always the same at a given level.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450 500

TIA_Nominal TIA_5σ_T16

160

Figure 5.21: Frequency and phase sensitivity of TIA with respect to power supply variation

5.7 Conclusion

In this chapter we have shown we can automatically detect critical transistors of a

design in a quick and efficient way. This chapter addresses the need for an automated tool to

assist a designer in understanding and identifying critical transistors within a design. The result

of the tool is compared to an expert’s critical node analysis. We have shown that we can

produce a set of critical nodes based on sensitivity levels to the entire circuit. Each transistor

identified by the expert designer was identified by the tool. The most sensitive of the transistors

were identified and the results generated by the tool which supplies the designer with feedback

based on the circuits’ sensitivity or overdesign.

We have been able to show that we can efficiently and automatically produce tradeoff

data for environmental and process variation. The method provides a designer or layout

engineer with the power and variation sensitivities for specific transistors so that they can

adjust the design or layout accordingly. This method can be incorporated into a feedback

optimization or simulation sizing algorithms to automatically adjust the design based on

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450 500

V
o

lt
a

g
e
 (

V
)

Time (.1nS)

TIA_vdd0.9 TIA_vdd1.0 TIA_vdd1.1 TIA_vdd1.2 TIA_vdd1.3 TIA_vdd1.4 TIA_vdd1.5

161

sensitivity analysis. We have shown the validity of this technique on multiple large and

complex analog and mixed signal circuits.

5.8 Chapter 5 References

[1]. L.T. Pillage, R.A. Rohrer, C. Visweswariah, "Electronic circuit and system simulation

methods," McGraw-Hill, Inc, New York, USA, ISBN 070501696, 1994.

[2] O. Balima, Y. Favennec, M. Girault, D. Petit, "Comparison between the modal

identification method and the POD-Galerkin method for model reduction in nonlinear diffusion

systems," International Journal for Numerical Methods in Engineering., Vol. 67, pp. 895-915,

2006.

[3] Y. Favennec, M. Girault, D. Petit, "The adjoint method coupled with the modal

identification method for nonlinear model reduction," Inverse Problems in Science and

Engineering., Vol. 14, No. 3, 153-170, 2006.

[4] A.R. Conn, P.K. Coulman, R.A. Haring, G.L. Morrill, C. Visweswariah, C.W.Wu,

"JiffyTune: circuit optimization using time-domain sensitivities," IEEE Trans. on CAD of ICs

and Systems, Vol. 17-12, pp. 1292-1309, 1998.

[5] Y. Fei Yuan, A. Opal, "Sensitivity analysis of periodically switched linear circuits using an

adjoint network technique," Proceedings of the 1999 IEEE International Symposium

on Circuits and Systems, 1999. ISCAS '99., vol.5, no., pp.331-334 vol.5, 1999

[6] J.H. Laning, R.H. Battin, "An application of analog computers to the statistical analysis of

time-variable networks," IRE Transactions on Circuit Theory, vol.2, no.1, pp.44,49, March

1955

162

[7] H. Xu., "Transient Sensitivity Analysis in Circuit Simulation," MSc-Thesis, Department of

Mathematics and Computing Science, Eindhoven University of Technology, 2004.

[8] Z. Ilievski, H.Xu, A. Verhoeven, E.J.W. Maten, W.H. Schilders, R.M. Mattheij, "Adjoint

Transient Sensitivity Analysis in Circuit Simulation," Scientific Computing in Electrical

Engineering Mathematics in Industry, vol. 11, pp. 183-189, 2007

[9]Y. Cao, S. Li, L. Petzold, R. Serban, "Adjoint sensitivity for differential-algebraic

equations: the adjoint DAE system and its numerical solution," SIAM Journal of Scientific

Computing, Vol. 24-3, pp. 1076-1089, 2002.

[10] L. T. Pillage, A. R. Rohrer, C Visweswariah, Electronic Circuit and System Simulation

Methods, McGraw-Hill, New York, 1995.

[11] S. W. Director and R. A. Rohrer, "The Generalized Adjoint Network and Network

Sensitivities," IEEE Trans. Ckt. Theory, vol 16, pp. 318-323, Aug. 1969.

[12] J. W. Bandler, Qi-J Zhang, R. M. Biernacki, "A Unified Theory for Frequency Domain

Simulation and Sensitivity Analysis of Linear and Nonlinear Circuits," IEEE Trans.

Microwave Theory and Tech., vol 36. pp. 1661-1669, Dec. 1988

[13] K. S. Kundert and A. Sangiovanni-Vincentelli, "Simulation of Nonlinear Circuits in the

Frequency Domain," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,

vol. CAD-5, pp. 521-535, OCt. 1986.

[14] J. Kim, J. Ren, M.A. Horowitz, "Stochastic steady-state and AC analyses of mixed-signal

systems," Design Automation Conference, 2009. DAC '09. 46th ACM/IEEE , vol., no.,

pp.376,381, 26-31 July 2009

163

[15] Y. Fei, A. Opal, "Distortion analysis of periodically switched nonlinear circuits using

time-varying Volterra series," IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, vol.48, no.6, pp.726,738, Jun 2001

[16] V. C. Prasad, S.N.R. Pinjala, "A fast algorithm for the generation of fault dictionary of

linear analog circuits using adjoint network approach," International Symposium on Circuits

and Systems, 1990, IEEE, vol., no., pp.37,40 vol.1, 1-3 May 1990

[17] M.E. Valtonen, "Equivalence in sensitivity calculation between direct differentiation and

the method based on Tellegen's theorem," Proceedings of the IEEE , vol.65, no.11,

pp.1602,1603, Nov. 1977

[18] F. Ferñandez, A. Rodriguez-Vazquez, J. Huertas, and G. Gielen, Symbolic Analysis

Techniques – Applications to Analog Design Automation. NewYork: IEEE Press, 1998.

[19] P. Wambacq, G. Gielen, and W. Sansen, “Symbolic network analysis methods for

practical analog integrated circuits: a survey,” IEEE Transactions on Circuits and Systems –

II: Analog and Digital Signal Processing, vol. 45, no. 10, pp. 1331–1341, 1998.

[20] H. Xu, G. Shi, and X. Li, “Hierarchical exact symbolic analysis of large analog integrated

circuits by symbolic stamps,” in Proc. Asia South-Pacific Design Automation Conference

(ASPDAC), Yokohama, Japan,2011.

[21] Q. Yu and C. Sechen, “A unified approach to the approximate symbolic analysis of large

analog integrated circuits,” IEEE Transactions on Circuits and Systems – I: Fundamental

Theory and Applications, vol. 43, no. 8, pp. 656–669, 1996.

[22] M. M. Hassoun and P. M. Lin, “A hierarchical network approach to symbolic analysis of

large-scale networks,” IEEE Transactions on Circuits and Systems – I: Fundamental Theory

and Applications, vol. 42, no. 2, pp. 201–211, 1995.

164

[23] O. Guerra, E. Roca, F. V. Fern´andez, and A. Rodr´ıguez-V´azquez, “Approximate

symbolic analysis of hierarchically decomposed analog circuits,” Analog Integrated Circuits

and Signal Processing, vol. 31, pp. 131–145, 2002.

[24] J. A. Starzyk and A. Konczykowska, “Flow graph analysis of large electronic networks,”

IEEE Transactions on Circuits and Systems, vol. CAS- 33, no. 3, pp. 302–315, 1986.

[25] M. M. Hassoun and K. McCarville, “Symbolic analysis of large-scale networks using a

hierarchical signal flowgraph approach,” J. Analog VLSI Signal Processing, vol. 3, pp. 31–42,

Jan. 1993.

[26] X. D. Tan and C.-J. R. Shi, “Hierarchical symbolic analysis of analog integrated circuits

via determinant decision diagrams,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 19, no. 4, pp. 401–412, April 2000.

[27] A. Doboli and R. Vemuri, “A regularity-based hierarchical symbolic analysis methods for

large-scale analog networks,” IEEE Transactions on Circuits and Systems – II: Analog and

Digital Signal Processing, vol. CAS-48, no. 11, pp. 1054–1068, 2001.

[28] S. X. D. Tan, W. Guo, and Z. Qi, “Hierarchical approach to exact symbolic analysis of

large analog circuits,” in Proceedings Design Automation Conference, 2004, pp. 860–863.

[29] S.-M. Chang, J.-F. MacKey, and G. M. Wierzba, “Matrix reduction and numerical

approximation during computation techniques for symbolic analog circuit analysis,” in

Proceedings IEEE International Symposyum Circuits and Systems, 1992, pp. 1153–1156.

[30] J.-J. Hsu and C. Sechen, “DC small signal symbolic analysis of large analog integrated

circuits,” IEEE Transactions Circuits Systems, vol. 41, pp. 817–828, Dec. 1994.

165

[31] S. J. Seda, M. G. R. Degrauwe, and W. Fichtner, “Lazy-expansion symbolic expression

approximation in SYNAP,” in Proceedings IEEE International Conference Computer-Aided

Design (ICCAD), 1992, pp. 310–317.

[32] P. Wambacq, G. Gielen, and W. Sansen, “A new reliable approximation method for

expanded symbolic network functions,” in Proceedings IEEE International Symposyum

Circuits and Systems, 1996, pp. 584–587.

[33] Q. Yu and C. Sechen, “A unified approach to the approximate symbolic analysis of large

analog integrated circuits,” IEEE Transactions Circuits Systems, vol. 43, pp. 656–669, Aug.

1996.

[34] F. V. Fernández, J. D. Martín, A. Rodríguez-Vázquez, and J. L. Huertas, “On

simplification techniques for symbolic analysis of analog integrated circuits,” in Proceedings

IEEE International Symposyum Circuits and Systems, 1992, pp. 1149–1152.

[35] G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated

Circuits. Norwell, MA: Kluwer Academic, 1991.

[36] C.-J. Shi and X.-D. Tan, “Canonical symbolic analysis of large analog circuits with

determinant decision diagrams,” IEEE Transactions on Computer- Aided Design of Integrated

Circuits and Systems, vol. 19, no. 1, pp. 1–18, January 2000.

[37] S.-D. Tan and C.-J. Shi, “Efficient approximation of symbolic expressions for analog

behavioral modeling and analysis,” IEEE Transactions on Computer- Aided Design of

Integrated Circuits and Systems, vol. 23, no. 6, pp. 907– 918, June 2004.

 [38] H. Yang, M. Ranjan, W. Verhaegen, M. Ding, R. Vemuri, and G. Gielen, “Efficient

symbolic sensitivity analysis of analog circuits using element coefficient diagrams,” in

166

Proceedings Asia South-Pacific Design Automation Conference (ASPDAC), Yokohama,

Japan, Jan. 2005, pp. 230–235.

[39] H. Yang, A. Agarwal, and R. Vemuri, “Fast analog circuit synthesis using multiparameter

sensitivity analysis based on element-coefficient diagrams,” in Proceedings IEEE Computer

Society Annual Symposium on VLSI, 2005.

[40]. J. Ureel and D. De Zutter, Shape sensitivities of capacitances of planar conducting

surfaces using the method of moments, IEEE Trans Microwave Theory Tech 44 (1996), 198–

207.

[41] J. Ureel and D. De Zutter, A new method for obtaining the shape sensitivities of planar

microstrip structures by a full-wave analysis, IEEE Trans Microwave Theory Tech 44 (1996),

249–260.

[42] N.K. Georgieva, S. Glavic, M.H. Bakr, and J.W. Bandler, Feasible adjoint sensitivity

technique for EM design optimization, IEEE Trans Microwave Theory Tech 50 (2002), 2751–

2758.

[43] Yuan, T., Cheng-W. Q., Li, Le-W., Zouhda, S., Leong, Mook-S., "Sensitivity analysis of

iterative adjoint technique for microstrip circuits optimization," Microwave and Optical

Technology Letters, Vol. 49, pp. 607-609, March 2007

[44] Saltelli, A., K. Chan, and E. M. Scott. 2000. Sensitivity Analysis. John Wiley & Sons,

New York.

[45] Feng, X. J., Hooshangi, S., Chen, D., Li, G., Weiss, R., Rabitz, H., "Optimizing genetic

circuits by global sensitivity analysis," Biophysical Journal, vol. 87, pp. 2195-2202, Oct. 2004

167

[46] P. Wambacq, G. Gielen , and W. Sansen, “A new reliable approximation method for

expanded symbolic network functions,” in Proceedings IEEE International Symposyum

Circuits and Systems, 1996, pp. 584–587.

[47]A.C. Sanabria-Borbon, E. Tlelo-Cuautle, E., "Symbolic sensitivity analysis in the sizing

of analog integrated circuits," Electrical Engineering, Computing Science and Automatic

Control (CCE), 2013 10th International Conference on , vol., no., pp.440,444, Sept. 30 2013-

Oct. 4 2013

[48] G. Shi, ”Graph-Pair Decision Diagram Construction for Topological Symbolic Circuit

Analysis”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 32, no. 2, pp. 275-288, Feb. 2013.

[49] M. Pierzchala and M. Fakhfakh, ”Transformation of LC-filters to active RC-circuits via

the two-graph method”. Microelectronics Journal, vol. 42, no. 8, pp. 999-1005, Aug. 2011.

[50] S. Rodriguez-Chavez, A.A. Palma-Rodriguez, E. Tlelo-Cuautle, S. X.-D. Tan, ”Graph-

based symbolic and symbolic sensitivity analysis of analog integrated circuits”, Analog/RF

and Mixed-Signal Circuit Systematic Design, M. Fakhfakh, E. Tlelo-Cuautle, R. Castro-Lpez

(Eds.), Springer, Lecture Notes in Electrical Engineering, Vol. 233, pp. 101-122, 2013.

[51] M. Fakhfakh, Y. Cooren, A. Sallem, et al., "Analog circuit design optimization through

the particle swarm optimization technique," Analog Integrated Circuits and Signal Processing,

vol. 63, no. 1, pp. 71–82, 2010.

[52] E. Tlelo-Cuautle, I. Guerra-Gomez, M.A Duarte-Villaseñor, et al., "Applications of

evolutionary algorithms in the design automation of analog integrated circuits," Journal of

Applied Sciences, vol. 10, no. 17, pp. 1859–1872, 2010.

168

[53] B. Liu, Y. Wang, Z.P. Yu and F.V. Fernandez, "Analog circuit optimization system based

on hybrid evolutionary algorithms," Integration - The VLSI Journal, vol. 42, no. 2, pp. 137–

148, 2009.

[54] I. Guerra-Gomez, E. Tlelo-Cuautle, L.G. de la Fraga, "Sensitivity analysis in the optimal

sizing of analog ICs by evolutionary algorithms," Evolutionary Computation (CEC), 2013

IEEE Congress on , vol., no., pp.3161,3165, 20-23 June 2013

[55] G. Groeseneken et al., “Trends and perspectives for electrical characterization and

reliability assessment in advanced CMOS technologies,” in ESSDERC, 2010, pp. 64–72.

[56] E. Maricau, G. Gielen, G., "Computer-Aided Analog Circuit Design for Reliability in

Nanometer CMOS," IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol.1, no.1, pp.50,58, March 2011

[57] C. Hu et al., “Hot-electron-induced MOSFET degradation—Model, monitor and

improvement,” IEEE Trans. Electron Devices, vol. ED–32, no. 2, pp. 375–385, Feb. 1985.

[58] E. Maricau et al., “An analytical model for hot carrier degradation in nanoscale CMOS

suitable for the simulation of degradation in analog IC applications,” Microelectron. Rel., vol.

48, no. 8–9, pp. 1576–1580, 2008.

[59] A. Bravaix et al., “Hot-carrier acceleration factors for low power management in DC-AC

stressed 40 nm NMOS node at high temperature,” in IRPS, 2009, pp. 531–548.

[60] W. Wanget al., “Compact modeling and simulation of circuit reliability for 65-nm CMOS

technology,” IEEE Trans .Device Mater. Rel., vol. 7, no. 4, pp. 509–517, 2007

[61] D. K. Schroder et al., “Negative bias temperature instability: Road to cross in deep

submicron silicon semiconductor manufacturing,” J. Appl. Phys., vol. 94, no. 1, 2003.

169

[62] G. Gielen et al., “Emerging yield and reliability challenges in nanometer CMOS

technologies,” in DATE, 2008.

[63] B. Liu, F.V. Fernandez, G. Gielen, "Efficient and Accurate Statistical Analog Yield

Optimization and Variation-Aware Circuit Sizing based on Computational Intelligence

Techniques," IEEE Trans on Computer- Aided Design of Integrated Circuits and Systems, Vol.

30, no. 6, pp. 793–805, 2011.

[64] K. S. Eshbaugh, “Generation of correlated parameters for statistical circuit simulation,”

IEEE Transactions Computer-Aided Design Integr. Circuits Systems, vol. 11, no. 10, pp. 1198–

1206, Oct. 1992.

[65] M. Barros, J. Guilherme, and N. Horta, “Analog circuits optimization based on

evolutionary computation techniques,” Integr. VLSI J., vol. 43, no. 1, pp. 136–155, 2010.

[66] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H. Graeb, andK. Antreich, “Mismatch

analysis and direct yield optimization by spec-wise linearization and feasibility-guided

search,” in Proceedings DAC, 2001, pp. 858–863.

[67] R. Schwencker, F. Schenkel, M. Pronath, and H. Graeb, “Analog circuit sizing using

adaptive worst-case parameters sets,” in Proceedings DATE, 2002, pp. 581–585.

[68] M. Sengupta, S. Saxena, L. Daldoss, G. Kramer, S. Minehane, and J. Cheng, “Application-

specific worst case corners using response surfaces and statistical models,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol.24, no.9, pp.1372,1380,

Sept. 2005

[69] G. Gielen, T. Eeckelaert, E. Martens, and T. McConaghy, “Automated synthesis of

complex analog circuits,” in Proceedings 18th Eur. Conference Circuit Theory Design, Aug.

2007, pp. 20–23.

170

[70] S. Basu, B. Kommineni, and R. Vemuri, “Variation-aware macromodeling and synthesis

of analog circuits using spline center and range method and dynamically reduced design

space,” in Proceedings 22nd International Conference VLSI Design, Jan. 2009, pp. 433–438.

[71] A. A. Mutlu, N. G. Gunther, and M. Rahman, “Concurrent optimization of process

dependent variations in different circuit performance measures,” in Proceedings International

Symposium Circuits Systems, May 2003, pp. 692–695.

[72] S. K. Tiwary, P. K. Tiwary, and R. A. Rutenbar, “Generation of yield aware Pareto

surfaces for hierarchical circuit design space exploration,” in Proceedings DAC, 2006, pp. 31–

36.

[73] M. Stein, “Large sample properties of simulations using Latin hypercube sampling,”

Technometrics, vol. 29, no. 2, pp. 143–151, 1987.

[74] A. Singhee, S. Singhal, and R. A. Rutenbar, “Practical, fast Monte Carlo statistical static

timing analysis: Why and how,” in Proceedings IEEE ICCAD, Nov. 2008, pp. 190–195.

[75] A. Singhee and R. Rutenbar, Novel Algorithms for Fast Statistical Analysis of Scaled

Circuits. Berlin, Germany: Springer, 2009.

[76] K. T. Fang. K. Fang, L. Runze, "Design for Modeling for Computer Experiments," CRC

Press, October 2005

[77] H. Cai, H. Petit, J.-F. Naviner, "A fast reliability-aware approach for analogue integrated

circuits based on Pareto fronts," New Circuits and Systems Conference (NEWCAS), 2013 IEEE

11th International , vol., no., pp.1,4, 16-19 June 2013

[78] NIST/SEMATECH e-Handbook of Statistical Methods. [Online]. Available:

http://www.itl.nist.gov/div898/handbook

171

[79] A. Singhee and R. A. Rutenbar, “From finance to flip-flops: a study of fast quasi-Monte

Carlo methods from computational finance applied to statistical circuit analysis,” ISQED,

2007.

[80] A. Singhee, S. Singhal and R. A. Rutenbar, “Exploiting correlation kernels for efficient

handling of intra-die spatial correlation, with application to statistical timing,” DATE, 2008.

[81] J.H.Halton. On the efficiency of certain quasi-random sequences of points in evaluating

multi-dimensional integrals. Nuremische Mathematik, 2:84–90, 1960

172

Chapter 6

Conclusion

In this work we have presented a new approach for creating behavioral models of

analog and mixed signal circuits based on partitioning. This methodology addresses the need

for an automatic approach for behavioral modeling of any type of analog and mixed signal

circuits. We developed a tool that can automatically create a set of partitions and detect

intermediate behaviors based on netlist and transistor level simulation behavior. SVM models

are created to predict intermediate behaviors which lead to the prediction of the final output

behavior. We have shown the generality and feasibility of this approach on large circuits such

as a PLL and ∑∆-ADC. Our results indicate that we can obtain three orders of magnitude

speedup over transistor level simulations while maintaining over 95% accuracy.

 We then developed a methodology for applying statistical learning to the

verification of analog circuits. The first methodology developed utilizes unsupervised learning,

circuit partitioning, and event propagation to determine the minimal representative set of input

events which describe the output space. A significant amount of simulation time is saved by

only simulating the important inputs. The second methodology developed locates primitive

173

elements with low complexity which can be modeled behaviorally instead of simulated.

Unsupervised learning is used on the input and output of each cluster to determine if the

primitive element increases, transfers, or decreases the information content. Distance

calculations are used to determine the complexity of the events through the primitive element.

Low complexity primitive elements maintain the distance ordering of the events. Behavioral

models are created using supervised learning techniques for primitive elements with

transferring or decreasing information content. We have shown the effectiveness of the method

on four analog circuits where the simulation time is decreased by 55-75%.

Finally, we have shown that we can automatically detect critical transistors of a design

in a quick and efficient way. This chapter addresses the need for an automated tool to assist a

designer in understanding and identifying critical transistors within a design. The result of the

tool is compared to an expert’s critical node analysis. We have shown that we can produce a

set of critical nodes based on sensitivity levels to the entire circuit. Each transistor identified

by the expert designer was identified by the tool. The most sensitive of the transistors were

identified and the results generated by the tool which supplies the designer with feedback based

on the circuits’ sensitivity or overdesign.

We have been able to show that we can efficiently and automatically produce tradeoff

data for environmental and process variation. The method provides a designer or layout

engineer with the power and variation sensitivities for specific transistors so that they can

adjust the design or layout accordingly. This method can be incorporated into a feedback

optimization or simulation sizing algorithms to automatically adjust the design based on

sensitivity analysis. We have shown the validity of this technique on multiple large and

complex analog and mixed signal circuits.

174

Chapter 7

Future Work

The work in Chapter 4 can be extended in multiple areas. The first of these areas is the modeling

of the primitive elements. In the current form the modeling is done simply by creating lookup tables

and applying linear interpolation. Time sensitive modeling of the behavior is a challenging problem

which may be solved with polynomial chaotic models. In current literature, these chaotic models have

been applied to simple analog circuits which may be conducive for primitive element modeling.

Event and waveforms parsing is done using simple evaluations of the waveforms. If the

waveform is repeating, then each period is considered an event, otherwise the entire waveform is an

event. This can be reevaluated to extract key information from each waveform by way of advanced

signal analysis, both digital and analog. Instead of predicting the event, the attributes and be predicted

and the waveform can be reconstructed based on the predicted attributes.

Input space clustering can be extended to include redundancy calculations for better sampling

of complex regions. The redundancy measure will ensure that each cluster in the input space maps to

the output space in a similar cluster.

The use of Kernel Density Estimation (KDE) can be employed to calculation information loss

for information and complexity measures of primitive elements. Analyzing the soundness of the data

for building behavioral models enhances the confidence in the behavioral model predictions.

