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ABSTRACT: In this work, we determined the tilt angles of
molecular units in hierarchical self-assembled materials on a single-
sheet level, which were not available previously. This was achieved
by developing a fast line-scanning vibrational sum frequency
generation (VSFG) hyperspectral imaging technique in combina-
tion with neural network analysis. Rapid VSFG imaging enabled
polarization resolved images on a single sheet level to be measured
quickly, circumventing technical challenges due to long-term
optical instability. The polarization resolved hyperspectral images
were then used to extract the supramolecular tilt angle of a self-
assembly through a set of spectra-tilt angle relationships which
were solved through neural network analysis. This unique
combination of both novel techniques offers a new pathway to resolve molecular level structural information on self-assembled
materials. Understanding these properties can further drive self-assembly design from a bottom-up approach for applications in
biomimetic and drug delivery research.

■ INTRODUCTION
Molecular self-assemblies (MSAs) are a class of materials that
spontaneously organize from individual molecular subunits
into an ordered structure without templates or external
guidance.1−6 MSAs can have larger architectures that maintain
the high ordering and orientation of the smaller structures,
known as hierarchical organization.2,6−10 In both natural and
synthetic materials, even when formed from identical subunits,
different hierarchical organization can lead to various material
functions.11,12 For example, the diverse structures of natural
collagen enable them to assume different tissue functions such
as bone, skin, etc.13 In particular, bone possesses a 12-level
hierarchical structure from collagen fibrils to the macroscopic
fractal-like architectures, affording it both high stiffness and
toughness, properties often considered mutually exclusive.14

Moreover, liquid crystal displays show different optical
properties based on the orientation of the building blocks.15

Thus, it is feasible to design and manipulate materials functions
through hierarchical organizations; however, to do so, it is
necessary to understand and control the relative positions and
orientations of the subunits within the MSAs.16,17

Specifically, the orientation of building blocks within a MSA
is important to its functions. Applications can be found in
chemistry, such as alkanethiol self-assembled monolayers,
which are used as an active layer in molecular electronics.

The tilting of the alkanethiol chains with respect to surface
normal can open additional tunneling pathways and change
interfacial dipole properties, altering the electron transport
properties.18−20 In biomaterials, mechanical properties often
depend on the hierarchical subunit orientation. For example,
the longitudinal modulus of nacre is higher than the transverse
modulus because of oriented tiles in the hierarchical
structures.21 It has also been demonstrated that surface
wettability is correlated with the tilting of subunits,22 which
could further affect protein adsorption and cell adhesion.23

An interesting, recent development in MSAs is a lattice self-
assembly composed of β-cyclodextrin (β-CD) and sodium
dodecyl sulfate (SDS) in a 2:1 ratio, formed through
intermolecular forces, especially hydrogen bonds.11 This
MSA assumes a variety of morphologies depending on the
concentration of SDS and β-CD in water. We will refer to this
MSA as SDS@2β-CD herein. The primary subunit of the
SDS@2β-CD self-assembly is the supramolecule comprised of
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two β-CD molecules penetrated by one SDS molecule (Figure
1a,b). These subunits form highly ordered and oriented
rhombic sheets that can fold into larger mesoscopic
architectures such as, lamella sheets, microtubules, rhombic
dodecahedra, and micelles, among others.11 This MSA has
drawn much attention because of the biomimetic nature of its
mesoscopic architectures in addition to its broad application
such as wastewater treatment,24 drug delivery,25 and
optoelectronics.26 However, the structural details of the
subunits, the most basic formation of the self-assembly that
folds into all other higher order molecular architectures, are
not fully understood.11 Through small-angle X-ray scattering
(SAXS) the intersupramolecular distance was determined to be
1.52 nm, but open questions remain regarding the relative
orientation of the subunits in SDS@2β-CD. Because molecular
orientations often act as critical factors to MSA’s functions, it is
pertinent to understand whether and how the subunits in the
self-assembled sheets are tilted (Figure 1c), which could
potentially indicate the van der Waals contact, the structural
symmetry, or the materials macroscopic properties.18,22,27,28

In this work, we determined the orientation of the subunits
in SDS@2β-CD through the development of a fast line-
scanning vibrational sum-frequency generation (VSFG)
microscopy in combination with neural network data
analysis.29,30 Building on our previous efforts in ultrafast
hyperspectral imaging techniques,31,32 this new technical
advancement enabled imaging single SDS@2β-CD sheets
hyperspectrally with eight different polarization combinations.
Then, to reveal structural information, we applied a neural
network method to solve a set of equations that relate the
supramolecular tilt angle to the second order susceptibility of
different polarizations. We found that the subunits were tilted
relative to normal of the sheets by ∼23°. This provides insight
into how to design future materials as well as offer details to
what role hierarchical orientation played in MSAs. This
structural knowledge is revealed through the combination of
rapid acquisition of hyperspectral imaging and neural networks.
Both are crucial to extract these parameters with the former
minimizing long-term laser drift issues and the latter offering a
route to solve a complex set of equations that were otherwise
difficult to be solved.

■ METHOD
VSFG Line Scanning Microscope. The hyperspectral

microscope was based on VSFG spectroscopy, a second-order
nonlinear optical phenomenon. As an even-order nonlinear
optical process, only noncentrosymmetric systems produce
VSFG responses, such as the air/liquid, air/solid, and solid/
liquid interfaces.29,31−45 Furthermore, VSFG is also sensitive to
materials without inversion centers,46−55 many of which are
MSAs, including collagen,49,50 amyloid fibers,56 artificial
materials used in drug delivery,57−59 metal−organic frame-
works,60−62 and piezoelectric crystals.63

A big challenge in using VSFG spectroscopy to probe MSAs
is that most MSAs only form nano- to micrometer sizes
domains, while the illumination area of VSFG spectroscopy is
generally around 100 μm by 100 μm. Thus, traditional VSFG
spectroscopy will probe multiple MSAs in an ensemble-
averaged manner which does not accurately reflect the
molecular structure of an individual MSA.32 The development
of VSFG spectroscopy into a hyperspectral imaging techni-
que32,48−50,52,53,64−67 overcame this challenge with 1 μm or
submicrometer resolution being obtained, which offered a
platform that could resolve multiple micrometer-sized MSAs
individually.
Additionally, to retrieve molecular orientations, it was

necessary to measure VSFG images with multiple polarization
combinations.49,50,65,68 Though theoretically feasible, it was
practically prohibited in our previous point-scanning VSFG
microscope31,32 since it took nearly 4 h to scan a single 100 μm
by 100 μm polarization resolved image and would take at least
30 h to collect all eight polarization combinations. The long
acquisition time would introduce fluctuations in optome-
chanics and laser output, which further complicates data
analysis.
To overcome these challenges, we hybridized the line-

scanning technique with our existing VSFG microscope. A line-
scanning method was first implemented in VSFG microscopy
by the Ge and Potma groups using a photomultiplier tube as a
detector,49,50,64,65 which required scanning the IR frequency to
gain spectral information. The integration of line-scanning with
a CCD detector reported here enabled simultaneous measure-
ment of spectra of a vertical line, maximizing the information
measured by the 2D detector.

Figure 1. Structure of SDS@2β-CD. (a) Top down view of the SDS@2β-CD MSA subunits. (b) Side view of the subunits. (c) Microscopic
formations of the SDS@2β-CD which hierarchically oriented to form rhombically shaped sheets. The orientation of the subunits relative to surface
normal is unknown.
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The VSFG line-scanning microscope is shown in Figure 2.
Laser pulses for the microscope are provided by a 100 kHz Yb
based cavity femtosecond laser (Light Conversion, Carbide)
centered at 1025 nm. The output from the Carbide is used to
pump an optical parametric amplifier (OPA) (Light Con-
version, Orpheus-HP) centered at 3500 nm which covers the
CH stretching vibration region of interest. The residual 1025
nm beam is used as the up-conversion and is first conditioned
spectrally by directing it through a folded 4f pulse shaper. The
frequency narrowed 1025 nm beam is then focused through an
8 μm spatial filter followed by a λ/2 waveplate. The mid-IR
(MIR) light is steered toward a delay stage followed by a λ/2
waveplate and spatially overlapped with the up-conversion with
a customized dichroic mirror that is transparent to MIR and
reflective to near IR (NIR). In this way, the mid-IR and
upconversion beams are combined collinearly. The overlapped
beams are then guided to a 1D resonant scanner (EOPC) and
focused onto the sample mounted to a 2D piezo stage
(MadCity Labs) by a purely reflective 20× Schwarzschild
objective (0.70 NA, PIKE Technologies Inc., PN 891-0001).
The emitted nonlinear VSFG signal is collected by an infinity
corrected, 20× refractive microscope objective (Zeiss, Fluar
0.75 NA, working distance = 0.6 mm) and passes through a
linear polarizer (ThorLabs). The polarization resolved signals
are projected into spectra using a Shamrock 500i spectrograph
(Andor) coupled to a CCD (Newton, Andor).
To enable line-scanning, the resonant scanner operated at

325 Hz and steered the angle of the beam along the vertical
axis. At the sample plane, the incoming beams were
transformed into a vertical line of illumination which generated
a line of VSFG signal that was relayed and magnified by a
home-built tube lens to match the vertical dimension of the
CCD. The signal was frequency resolved by a spectrograph
horizontally (Figure 2a). Thus, the CCD measured the spectra
dispersed along the horizontal axis and the spatial profile along
vertical axis. 2D images were acquired by scanning the sample
in the horizontal direction with an automated mechanical
stage. This improvement decreased image acquisition times by

10, compared to the point-by-point microscope, to 20 min for
a 100 μm by 100 μm image.
The VSFG images obtained from the line-scanning micro-

scope captured the same geometric features of the optical
image of plated gold patterns on quartz substrates (Figure
2a,b,d). Depending on the scan angle of the resonant mirror
and magnification of the tube lens, we achieved a 100 μm
vertical field of view. The vertical and horizontal resolutions
were 1.2 and 1.6 μm, respectively (Figure 2c), and the total
magnification was 66.
2B-CD@SDS Synthesis. B-CD sheets are synthesized by

adding B-CD and SDS at a molar ratio of 2:1 in DI water until
the percent concentration is 10% m/m. The suspension is then
heated to clarity and cooled to room temperature overnight.
CuCl2 is added with sheets fully forming approximately 3−5
days later. Isolated sheet samples with linear dimensions on the
10s of micrometer scale are produced by drop casting 5 μL of
the sheet suspension onto a 15 mm × 15 mm × 0.170 mm
microscope slide spinning at 10 000 rpm. The sheets are
transparent, but the silhouette can be observed with a standard
optical microscope.
Neural Network Model. The polarization dependent

VSFG spectra were analyzed using a neural network model to
extract molecular tilt information. Keras in Python is employed
to set up the neural network model. A layered neural network
modified from Github repotsitory69 is built with a 200−100−
50 node structure and a hyperbolic tangent activation function
between layers (Figure 3). Training set with 100 000 by 27
values (see Supporting Information for details) was created by
randomly generating angles and hyperpolarizabilities (used as
training output, 100 000 by 11 values) and then supplying the
values to the polarization-dependent equations (eqs 5−12 in
Supporting Information) to calculate the corresponding
susceptibilities (used as training input, 100 000 by 16 values)
(Figure 3, Figure S13a). Similar to simple trigonometric
function where θ = 0 and θ = π both satisfy sin(θ) = 0, one
input vector (susceptibility values) in our model could also
have multiple output vectors (different in-plane rotation, tilt
angle, hyperpolarizabilities combinations) at the same time.

Figure 2. Line-scanning VSFG microscope. (a) Schematic of the setup: DCM, dichroic mirror; RS, resonant scanner; RC, reflective objective; RO,
refractive objective; TL1, convex lens 1 in tube lens; TL2, convex lens 2 in tube lens. (b) VSFG image of quartz substrate target image. (c) Vertical
and horizontal resolution generated by taking the derivative of the corresponding cut. The spectral resolution is 4 cm−1. (d) Optical image of gold
target on quartz substrate in a similar area.
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Hence, the in-plane rotation angle is divided into [0, π) and [π,
2π) intervals and the tilt angle is divided into [0, π/2) and [π/
2, π) intervals to differentiate these output vectors. Training is
run with an epoch size of 1000 and a batch size of 100. Mean
squared error of output vector is used to monitor the deviation
of prediction from true values. During the training, only 90% of
the data set is used for actual modeling and the rest 10% of the
training data is separated out to testify whether the model can
generalize to unseen data. In such a way one can mitigate
overfitting, as seen in the small and close loss values obtained
in both training and test processes (Figure S13b).
After validating that our model is capable of predicting the

tilt angle, we supply the model with experimentally determined
susceptibilities Figures S9 and S10, Table S1) to extract the tilt
angle. Since there is no phase information in our measurement,
we enumerate the sign of each susceptibility value (total of 216
combinations) and provide all these as input vectors to our
neural network.

■ RESULTS AND DISCUSSION
Polarization Resolved Hyperspectral Imaging on

SDS@2β-CD. To measure the tilt angle of subunits in
SDS@2β-CD, we applied the line-scanning VSFG microscope

to image single SDS@2β-CD sheets. Single SDS@2β-CD
sheets, which can be visually seen under optical microscope
with micrometer size, were carefully prepared (synthesis details
in Supporting Information). We note that the single sheets are
composed of multilayers of self-assembled materials instead of
a monolayer, and its thickness is about 110 nm, determined by
AFM height profiles (Figures S2 and S3). Via inspection with
an optical microscope, we mitigate sheet overlapping, which
would complicate analysis later as well as affect the image
quality, by optimizing spin coating parameters (Figure S1).
An example of hyperspectral images of SSS polarization

combination (left to right were polarization of VSFG,
upconversion, and IR beams) was shown in Figure 4a. Edges
of a single SDS@2β-CD sheet could be clearly seen as well as
the rotational orientation of the rhombic shape inherent to the
self-assembly, and the VSFG and optical images agreed well
(Figure 4c,d). An atomic force microscope (AFM) was also
used to image the sheets (Figure S2), and well separated single
sheets are captured, with sharp edge contrast that is also seen
by our VSFG microscope (Figure 4a). We noted that there was
a significant improvement in the quality of VSFG images and
their agreement with the optical images of the SDS@2β-CD,
compared to the images in our previous publications.31,32 This
improvement is achieved by (1) an improved sample
deposition method to prepare single sheets instead of multiple
sheets overlapping on top of each other and (2) the fast line-
scanning VSFG microscope that allowed optimizations of
image quality within a short image acquisition time and large
field of view, which was not available before.
To further disentangle spectral features of the VSFG image,

spectral maps were generated using the MatLab hyperspectral
imaging toolbox. Two unique spectra for the SSS polarization
combination were identified, highlighted in blue and magenta
in Figure 4a with corresponding spectra shown in Figure 4b.
Clearly, there were two types of sheets and the sheets with

Figure 3. Schematic illustration of the neural network employed to
extract orientation information on the SDS@2β-CD.

Figure 4. VSFG hyperspectral image and spectral analysis of the SDS@2β-CD. (a) Polarization resolved hyperspectral VSFG image of SDS@2β-
CD. Blue and magenta colors represent areas where different spectra reside, and the corresponding spectra are plotted in (b) which are
representative spectra for single pixels with signal-to-noise ratio for blue and magenta spectra of ∼56 and ∼26 respectively. The sheets in the red
and blue boxes are analyzed explicitly below to extract the supramolecule tilt angles. (c) Optical image of the same area as that in (a). (d) VSFG
hyperspectral image overlaid with optical image of identical area. (e) From left to right: PPS, PPP, SSP, SSS polarization resolved spectra summed
over 180 and 480 pixels within the two single sheets highlighted in red rectangular boxes in (a). All spectra had a dominant feature centered at
approximately 2910 cm−1 and a signal-to-noise ratio in the order of 1000. The spectra were fitted with multiple Voigt functions, which were
represented by the shaded areas, and used for further orientation analysis.
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magenta color coding are due to sheet overlapping. In the
following, we only analyze the areas highlighted with the red
and blue rectangular boxes to extract tilt angles, which were
single sheets identified using an optical microscope.
To extract molecular orientations, all eight lab frame VSFG

polarization combinations (SSS, SSP, SPS, PSS, SPP, PSP,
PPS, PPP) were collected. We summed spectra over all pixels
within single sheets (pixel index shown in Figure S8), and four
representative polarizations resolved VSFG spectra are shown
in Figure 4e with a signal-to-noise level of 1000 (additional
spectra shown in Figures S9 and S10). Each spectrum was
fitted with multiple Voigt functions (shaded area, Figures 4e,
S9, and S10, eq 13 in Supporting Information; detailed fitting
parameters are summarized in Table S1). From the fitting, we
have identified peaks at 2860 cm−1, 2910 cm−1, 2930 cm−1,
and 2960 cm−1 which can be assigned to the −CH2 symmetric
stretch, −CH2 asymmetric stretch, −CH2 Fermi resonance of
p-polarized signals, and −CH2 Fermi resonance of s-polarized
signals.70 In all spectra, we identified a clear peak at the 2910
cm−1 position, the −CH2 asymmetric vibration, which we used
for the orientation analysis below. The signal arises only from
β-CD, as when using deuterated SDS to form d-SDS@2β-CD
complex, the signal in this region is unchanged and no signal of
deuterated CHx were observed (Figures S5 and S6).31 This
observation is a result of the inherent chirality of β-CD which
even as a dimer does not have an inversion center. Thus, the
CHx modes in β-CD are VSFG active. The CHx modes in SDS,
however, do not survive as SDS is achiral within the MSA.
Theoretical Basis of Orientation Analysis of a Single

MSA Sheet. Theoretically, VSFG spectra with different
polarization combinations, which were related to the lab
frame second order susceptibility, χ(2)IJK, could be expressed in
terms of the molecular orientation (such as tilt angle and in-
plane rotation) in the lab frame and molecular frame
hyperpolarizability tensor, βijk, through an Euler rotation
(Figure S7 and eqs 5−12).49,65,71,72 In our measurement, the
z-axis of the lab frame and the MSA frame were identical (i.e.,
sheets lying flat, but subunits may not), and the x-y axis of the

MSA was only rotated away from their counterparts in the lab
frame. Thus, in principle, we could extract the relative subunits
orientation in the MSA using the lab frame VSFG spectral
intensity.
Because the SDS@2β-CD supramolecule has C7 symmetry,

it has 13 βijk elements, of which only 7 are nondegenerate,
βzzz,βxxz,βxzx,βzxx,βxzy,βzxy,βxyz (eqs 1 and 2 in Supporting
Information).32 We note that these hyperpolarizabilities are
contributed from all CH2 asymmetric stretches of SDS@2β-
CD supramolecule, so they together satisfy the C7 symmetry of
the supramolecules. In this way, it is not necessary to consider
hyperpolarizability of individual CH2 groups. Here, we also do
not assume Kleinman symmetry, which has been previously
reported as nonuniversal.73,74 Then, for the lab frame, with the
NA of the condenser objective being 0.7, the axial z-
component can be neglected,75 which renders 8 independent
second order measurement χ(2)XXX = χ(2)SSS, χ(2)XXY = χ(2)SSP,
χ(2)XYX = χ(2)SPS, χ(2)YXX = χ(2)PSS, χ(2)XYY = χ(2)SPP, χ(2)YXY =
χ(2)PSP, χ(2)YYX = χ(2)PPS, χ(2)YYY = χ(2)PPP. Through an Euler
rotation (Figures 5a and S7) and assuming the twist angle, ψ, is
arbitrary, the lab frame χ(2) could be expressed as a function of
βijk and solid angles, resulting in a set of 8 equations (eq 5−12
in Supporting Information). One of the output equations of
the Euler rotation is provided, eq 1, as an example and the rest
were listed in the Supporting Information. As evident from eq
1 and Supporting Information eqs 5−12, three hyper-
polarizability elements were not completely independent as
they appeared as βxzy + βzxy and βxyz − βxyz grouped terms in all
equations. Therefore, 7 nondegenerate hyperpolarizability
elements were grouped down to 6 independent terms
simplifying our set of 8 equations with 8 inputs to 8 unknowns
(6 βijk grouped terms and two solid angles).

1
16

(4 cos(3 ) sin ( ) cos( )(13 sin( )

sin(3 )) 8 sin( ) (sin(2 )( )

sin ( ) sin(2 )( ))

xxz xzy zxy

xzx zxx zzz

PPS
(2) 3

3

= [ +

+ +

+ + (1)

Figure 5. Euler transformation, neural network, and extracted tilt angles of the subunits in MSAs. (a) Euler transformation between the laboratory
coordinates (XYZ) and the molecular coordinates (xyz). z−y′−z″ Euler rotation is performed on the molecular coordinates, with φ as the in-plane
rotation angle, θ as the tilt angle, and ψ as the twist angle. (b) Neural network results for the tilt (left) and in-plane rotation (right) angles. (c)
Visualization of the tilted subunits forming a sheet determined by the neural network results.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c05876
J. Phys. Chem. B 2022, 126, 7192−7201

7196

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c05876/suppl_file/jp2c05876_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05876?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05876?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05876?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c05876?fig=fig5&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To extract molecular orientations in the MSA frames, we
need to solve the equations based on the experimentally
measured χ(2) to extract θ, φ, and βijk. To enhance the
consistency of the result, we analyzed the signal on two single
sheets and assumed that the supramolecular subunit in all
single sheets had the same tilt angle. Two single sheets, i.e.,
without overlapping and with visibly different orientations,
were selected as a simplified scenario (highlighted by red and
blue boxes in Figures 4a and S8). The χ(2) of the 2910 cm−1

peak of two sheets were extracted by the fitting results
illustrated in Figures 4e, S10, and S11, for the orientation
analysis. Based on the optical images, (Figures 4 and S8), we
determined that the two single sheets are rotated approx-
imately 60° in the XY plane relative to one another. Therefore,
we further restrained our model with φ2 = φ1 + 60 degrees. As
a result, for two sheets, we have 16 input known values (2 × 8
different polarization combinations) and 9 unknown outputs: 6
independent variables consisting of βijk, the in-plane rotation
φ1, tilt angle θ, and the relative coverage ratio N between
sheets.
Neural Networks To Train the Solvers and Extract Tilt

Angles. This equation set was solvable; however, traditional
Matlab solver either provides no solution due to less tolerance
to noise, which is always present in experimental data, or runs
for a long time with 216 sign enumerated combinations of input
and 1000 iterations for each combination.76,77 These
limitations prohibited us from obtaining reasonable results,
so we turned to a neural network approach (Figure S13).69,78

A training set was used to train the neural network to identify
relationships between the susceptibilities and molecular details
(see Method and Supporting Information). To mitigate
overfitting, i.e., the model memorizes training data well but
cannot generalize relationships to new data it has never
encountered, we use 10% of our training set as a validation set
to monitor the model loss during training (Figure S13b). It is
apparent that with more training cycles the model can predict
with less deviation/loss from true values, and it can also predict
the validation set which contains data not used for actual
training relatively well. Therefore, with experimental results
that are new input for the model too, it should be able to
predict with a similar error level. To quantify the error and
deviation of prediction, the trained model was then tested with
another data set (1000 by 27 values) generated via a similar
random process (Figure S13a). Figure 5b displayed the
correlation between Euler angles, i.e., molecular orientations,
predicted by our model which captured the true values in the
test data set well, resembling a y = x relationship with mean
squared error of in-plane rotation prediction of 0.4° and that of
tilt-angle at <30° region of 1.5°. Thus, our neural network
based orientation solver was appropriate in predicting the
molecular orientations.
Finally, we extracted molecular orientation using this

method, by supplying it with the experimentally determined
susceptibility values (Tables S1 and S2). Since phase
information was not retrieved in our homodyne experiment,
we enumerated the signs of all 16 susceptibility values when
supplying them to the model and selected the predicted results
with the smallest mean squared error of susceptibilities. By
calculating the mean squared errors of the predicted
normalized susceptibility values and the experimentally
determined ones, the smallest mean squared error we can
obtain is 0.02, whose corresponding predicted tilt angle away
from the lab frame z-axis is 23 ± 1.5° (Supporting Information

Table S2 and Figure 5c). To the best of our knowledge, this is
the first work using neural network to relate VSFG spectral
observables back to physical properties of molecules, while
other studies involving machine learning in the SFG field
mainly focus on assisting peak fitting/assignment and sole
spectral analysis.79−81

From the polarization-dependent equations we could see
that if the tilt angle was 0°, all susceptibility terms on the left
side of the equations would be zero, which did not agree with
the strong SFG signal, implying nonzero susceptibilities of the
SDS@2β-CD system. On the other hand, using the literature
reported in-plane unit cell parameters of the SDS@2β-CD
system,11 we could visually demonstrate that when the tilt
angle was 30°, the space between subunits was tight, and when
the tilt angle was 45−60°, SDS@2β-CD subunits would collide
with each other (Figure S12). Hence, The results retrieved
from the neural network mode, i.e., the SDS@2β-CD subunits
were tilted slightly at 23 ± 1.5°, was appropriate and consistent
with existing structural knowledge of the self-assembly. The tilt
angle result is further validated when compared with results
from X-ray diffraction. The XRD results indicate the stacking
height of 4 SDS@2β-CD (a unit cell) to be 2.9 nm, while if the
4 SDS@2β-CDs sit straight up, their height should be 3.1 nm.
To make the height to be 2.9 nm, an angle of approximately
20° is necessary (further explained in Supporting Information
section I and Figure S4). Moreover, the AFM height profile
shows a gradient height change across the edge and the edge
incline/tilt toward sheet center, which could also be due to the
stacking of tilted subunits. Comparable to the well-studied self-
assembled monolayer on metal substrates, we believed the
driving force of the tilting could be the interplay of
intermolecular interactions (such as hydrogen bonds) among
subunits and binding behaviors between subunits and
substrate.22,27,82,83

It had been widely studied that the tilt of molecules within
monolayers commonly existed in self-assembled materials and
potentially adjusted the conduction,84,85 wetting,86,87 or
mechanical properties.84,88,89 With SDS@2β-CD as an
important biomimetic motif, the tilt angle resolved in our
neural network approach sheds light on how the subunits pack
within the self-assembly and provides a protocol to study other
MSA systems structure−properties correlations. For example,
when the supramolecule units tilt, the top part of one unit
overlaps with the bottom part of another unit, creating a fish
scale type of structure, increasing the mechanical stability,
compared to if the unit sits straight up. Moreover, as the tilting
is influenced by the interaction of the subunits and hydration
level, future works on humidity dependent packing of the
system might unravel how the chemical environments affect
the self-assembly process and could be very interesting and
significant for the drug delivery field90 as the release of target
molecules highly relies on the biological environment.
It is noteworthy that such information is difficult to obtain

with IR microscope. Based on the C7 symmetry of the SDS@
2β-CD supramolecule, only μz is nonvanishing in molecular
frame. The dipole moment in the lab frame can be expressed as
a vector (cos ϕ sin θμz sin ϕ sin θμz cos θμz) via the afore-
mentioned Euler transformation. To extract tilt angle θ, we
have to measure the Z component cos θμz in the lab frame,
which is practically difficult as it requires the incident IR beam
to have a large polarization component along the surface
normal. Furthermore, with 3 unknowns (φ, Θ, μz) and only 2
knowns (P and S polarizations of IR beam), it is an
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underdetermined problem, which still requires the multisheet
approach demonstrated in our neural network approach.

■ CONCLUSION
We note that there are a couple of limitations of the current
microscope. First. The spatial resolution is only 1.6 μm, which
limits its utility to imaging smaller domains. This limitation
could be improved by using higher NA objective lens.50

Second, the current sensitivity might not be able to image a
self-assembled monolayer. This limitation is partly because the
electromagnetic field projection on the z axis is too small,
which always contributes strongly to the self-assembled
monolayers. Thus, it is possible to image monolayers by tilting
the sample relative to the beam propagation directions.
However, it will detoriate the spatial resolution. Nevertheless,
should these limitations be overcome, the present fast line-
scanning and neural network analysis method can be readily
applied. Indeed, the neural network analysis can be applied to
any typical SFG spectroscopy study, when the orientation
analysis becomes difficult.
The molecular self-assembly formed from a mixture of β-CD

and SDS in water was analyzed using a line-scanning
hyperspectral VSFG microscope and neural network. A 1D
resonant scanner coupled to a CCD/spectrograph increases
image collection speed 10-fold with simultaneous spectral
information. This development enables polarization resolved
VSFG images of single MSA sheets, which were analyzed by a
neural network approach. The analysis revealed that the
supramolecular subunits are tilted at around 23 ± 1.5° in the
SDS@2β-CD MSA frame. Such information could help us
further understand the structure and intermolecular inter-
actions of other biomimetic morphologies that the subunits
construct. This information became available because of the
power of VSFG microscopy to extract spatially resolved,
spectral information of the sheets.
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