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ABSTRACT OF THE THESIS

An Integrated Mechanochemical Model of Sperm Locomotion

by

Chenji Li

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor David Saintillan, Chair

Mammalian sperm cells manage locomotion by the movement of their flagella. Dynein

motors inside the flagellum consume energy from ATP to exert active sliding forces between

microtubule doublets, thus creating bending waves along the flagellum and enabling the sperm

cell to swim in a viscous medium. Recently, a model has been proposed for the planar nonlinear

beating of the flagellum under clamped and hinged boundary conditions, where spontaneous

oscillations emerged from the coupling of dynein motor kinetics with deformations. In a new

framework combining slender-body theory and the boundary element method, we extend this

model to study the free swimming of sperm cells with arbitrary head shapes, considering the

effects of non-local hydrodynamic interactions between head and flagellum. The model is shown

ix



to produce realistic beating patterns and swimming trajectories, which we analyze as a function

of sperm number and motor activity. Remarkably, we find that the swimming velocity does not

vary monotonically with motor activity, but instead displays two local maxima corresponding to

distinct modes of swimming.
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Chapter 1

Introduction

The spermatozoon, or sperm cell is the male gamete reproductive cell that contains the

genetic information. The tail of the sperm cell is known as flagellum, normally possessing motility

that enables the delivery of the genetic material to the egg. The sexual fertilization process of

mammals makes it extremely hard for the sperm cell to reach the egg, where only successful

sperm, part of a population of hundreds of millions, can survive through this process [1]. Because

sperm cells are allogenic to the female, they may encounter the defenses of the female immune

system meant for infectious organisms [4]. To maintain the fertility, sperm cells have to take

advantage of their resources like motility to survive from the selection and elimination [5], while

such a selection process often takes place in highly viscous non-Newtonian liquids.

Studying sperm cell motility has significant meaning to the mammalian fertility. About

one fifth of couples are infertile, and half of them are caused by the male partner due to abnormal

semen quality [6, 7]. The advent of in vitro fertilization (IVF) has greatly helped couples who are

unable to have children. On the other hand, developing a safely reversible nonhormonal male

contraception method could assist preventing the unwanted pregnancy [8]. Motility of sperm has

been observed to have a strong relation to the fertility [9, 10]. Sperm swimming velocity, it turns

out, is particularly important to its competitive advantage of fertilization [11, 12, 13, 14, 15, 16].

1



Other swimming characteristics like head trajectory, beating frequency and amplitude have also

been observed to have correlation with fertility [10, 17].

Mammalian sperm cell has a head that packs the genetic information, connected with

a flagellum beating actively and pushing the cell swimming forward. As illustrated by Figure

1.1, the axoneme is the inner core of the flagellum that generates the bending for the motility of

the sperm cell. The cross section of the flagellum has nine microtubule pairs centered around a

pair of singlet microtubules, known as the ‘9+2’ structure [18]. Active dynein motors provide

flagellum activity with the energy coming from ATP hydrolysis. A group of dynein motors,

attached to one of the microtubules and walking along the other one, exert sliding forces between

the microtubules [19].

FL43CH21-Gaffney ARI 15 November 2010 14:17

beat pattern, the flagellum velocity and progressive velocity scale as ωL, with power consumption
scaling as µωL3 (Dresdner & Katz 1981).

2.2. The Sperm Head
The human sperm head is packed with haploid DNA and expresses numerous surface receptors and
proteins (Figure 2a). Except in rare pathologies, such as globozoospermia, which imparts sterility
(Dam et al. 2007), mammalian sperm do not possess spherical heads. As discussed in Section 4.3.2,
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Figure 1.1: Microscopic observation of Spermatozoa Structure (Reproduced from [1, 2, 3])

The typical value of the Reynolds number for a sperm cell has the order of 10−3, so that

the viscous force plays a much more important role in the system than the inertial force. Under the

environment of low Reynolds number flow, hydrodynamics analysis first gives to resistive force

theory, which offers a linear relation between the hydrodynamic viscous force and velocity in the

tangential and normal directions, respectively [20, 21]. Associated with resistive force theory,

2



slender body theory also provides a relation between force and velocity around slender-body,

with hydrodynamic interactions being considered to satisfy the no-slip boundary condition on the

body [22, 23, 24].

While the flagellum has been usually modeled as an Euler-Bernoulli filament, a lot of

efforts have been made to explain the active movement of sperm cell. It has been proposed that

the steady dynein forces can produce propulsive oscillations [25, 26]. More realistic to biological

mechanism, geometric feedback control models include the on and off activity of molecular

motors [27, 28, 29, 30].

A sliding control model recently has been proposed by Oriola et al. [31], which coupled

the dynein kinetics to the shape of flagellum. Chakrabarti et al. [32] further complete the model

by considering the interaction, and gives numerically solvable governing equations. The results

showed the existence of a second transition where the direction of wave propagation reversed

for a clamped flagellum. In this thesis, I further improved the model of Chakrabarti et al. [32]

and studied the motility of sperm cell with coupled interaction between head and flagellum being

considered. I find the existence of a second transition in the similar form of Chakrabarti’s work

[32], but marked by a change in the characteristic of the head trajectory and beating mode, with

the wave propagation direction going from base to tip.
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Chapter 2

Sperm Cell Model

In this chapter, we show the process of building a detailed bottom-up model for the sperm

locomotion. In the model, we use a sliding control model to simulate the geometric feedback on

the force exerted by active dynein motors, which drives the flagellum’s spontaneous beating in the

viscous medium. Within the regime of low Reynolds number, slender body theory and boundary

integral method are used here to include the long-range hydrodynamic interaction into the system.

2.1 Geometric and Kinetic Description

2.1.1 Shape of Sperm Cell

The shape of the sperm head can vary from one mammalian to the other [33, 34]. To keep

the universality of this model, we kept the shape of the head to be an arbitrary 3D shape in the

whole modeling process. In the simulation results,we will use an ellipsoidal shape. The flagellum

in the model has a cylindrical shape connected with the head, and the connection is assumed to

be clamped.

It has been observed that the sperm cell beating is mostly planar. We describe the flagellum

deformation and kinetics in 2D where most of it can be captured. Note that 2D frame here is

4



Head

Flagellum Center Line

Figure 2.1: Geometry description of sperm cell

only used for deformation, both head and flagellum still have 3D geometric shapes, and the

hydrodynamic interactions also act in the 3D domain. As shown in Figure 2.1, we use the center

line of the flagellum to define its shape.

2.1.2 Frame of Reference

In both experiment and simulation, the lab frame of reference is the most common and

most directly method to describe the geometry information. However, in the process of modeling,

numerical, and post processing, other frames of reference can also be very useful and convenient.

Here we describe four observation systems that will be used.

Lab frame of reference: For the lab frame, êx and êx are two unit vectors in Cartesian

coordinates.

Flagellum local coordinate system: For slender structure like flagellum, it is very

convenient to define variables along the flagellum, especially when the flagellum in this problem

is assumed to be inextensible, and the hydrodynamic resistance perform differently on tangential

and normal direction. As shown in Figure 2.2, s is the arc length along the flagellum, while s = 0

and s = L represent the base end and the tip end of flagellum. At each point on the flagellum, t̂

and n̂ are unit vectors on local tangential and normal direction, and φ(s, t) is the angle between t̂

and êx.

5
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Figure 2.2: Four frame of reference for geometric description

Co-moving frame: The origin point of the co-moving frame is fixed at the joint point

between head and flagellum, while staying parallel with the lab frame. Two base unit vectors

are êcm
x and êcm

y . Within the co-moving frame we can have the sperm cell fixed in the frame to

observe the beating and rotation clearer. Also, it can be used to analyze the data in flow field

during the swimming.

Co-moving-rotating frame: By rotating the co-moving frame to keep êcmr
x and êcmr

y

aligned with t̂(s = 0, t) and n̂(s = 0, t) respectively, we get the co-moving-rotating frame. Note

that no head movement will be observed under this frame, which can speed up the numerical

solver for the head. We will discuss this in more detail in Chapter 3.

To increase the readability, here we list some useful relations. The translation between lab

frame and the local perspective is

t̂ = êxcosφ + êysinφ (2.1)

n̂ =−êxsinφ + êycosφ (2.2)

We define the derivative of φ(s, t) with respect to the arc length as the curvature, written

6



as κ = ∂sφ . Since êx and êy are constants, by taking space and time derivatives of t̂ and n̂, we get

∂st̂ = κn̂ (2.3)

∂sn̂ =−κ t̂ (2.4)

∂t t̂ = φ̇ n̂ (2.5)

∂t n̂ =−φ̇ t̂ (2.6)

For the translation between co-moving frame and co-moving-rotating frame, here we

introduce the rotation matrix R, so that xcmr = Rxcm.

2.1.3 Kinetics of Sperm Cell

When the position of the head is known, the function φ(s, t) itself can fully describe the

geometric and kinetic information of the sperm cell:

x f (s) = x f (0)+
∫ s

0
t̂(s′)ds′ (2.7)

where x f (s) is the position of flagellum in lab frame, and the flagellum velocity is

v(s) = v(0)+
∫ s

0
φ̇(s′)n̂(s′)ds′ (2.8)

Dh shown in Figure 2.2 is the surface of the head. As in Figure 2.3 (a), we first use xcmr
h (s)

define the geometric shape of the head by its surface in co-moving-rotating frame, where xcmr
h (s)

is a known constant for non-deformable head. Since the head is clamped with the flagellum, we

can have kinetic information of each point on the head with φ(0) and x f (0), as in Figure 2.3 (b):

xh = x f (0)+R′xcmr
h (2.9)

7



xh ∈ Dh

0 ̂ex

̂ey
xf(0)

̂ecmr
x

̂ecmr
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xcmr
h

ϕ(0) ̂ecmr
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̂ecmr
y

(a) (b)
Figure 2.3: (a) Geometric shape of head in co-moving-rotating frame. (b) Geometric shape of
head in lab frame.

where R′ is the inverse of R, defined the transition from co-moving-rotating frame to co-moving

frame.

For the velocity of flagellum v(s) = vT t̂+ vN n̂, here is an important relation that we will

need for later use. With the relation given above, the spatial derivative of velocity along the arc

length is

∂sv = (∂svT −φsvN)t̂+(∂svN +φsvT )n̂ (2.10)

On the other hand, ∂sv = ∂s∂tx = ∂t∂sx. Since we know that ∂sx = t̂, we also have

∂sv = φt n̂ (2.11)

For Equation (2.10) and (2.11) to be both satisfied, we find

∂svT = φsvN (2.12)

∂svN = φt−φsvT (2.13)

8



2.2 Dynamics of Locomotion

The beating of sperm can be proved to have low Reynolds number, meaning that inertia is

negligible compared to viscosity of the system. In the absence of the inertia, the system stays

balanced for each time instant. In this section, we derive the force and moment balance equations,

and give the corresponding scalar expressions for planar beating.

2.2.1 Force and Moment in System

Flagellum can be regarded as a passive elastic rod when the sperm cell is inactive. The

internal force along the flagellum is F = T t̂+Nn̂, where T and N are tangent and normal

components of the internal force. For an elastic rod, the internal moment along the flagellum is

M = B∂sφ k̂, with B the bending rigidity of the flagellum. The force density distribution on the

flagellum is defined as f f =
∂F
∂ s . Based on Equations (2.3) and (2.4), we have

f f = (Ts−Nφs)t̂+(Ns +T φs)n̂ (2.14)

The viscous force density acting on the flagellum is written as fvis = qT t̂+qN n̂. Here qT

and qN components of viscous force on t̂ and n̂ direction.

The force density distribution on the head is defined as fh for xh ∈ Dh.

It will be proved in the later section that the activity of dynein motors only shows up as an

active moment acting on flagellum, which we will denote as n

9



2.2.2 Balance Equations of flagellum

For a segment from s1 to s2, the internal force at two sides should balanced with the total

viscous force on the flagellum, written as

∫ s2

s1

fvisds+F(s)
∣∣s2
s1
= 0 (2.15)

This balance equation has to be satisfied for an arbitrary segment, which gives

fvis +
∂F
∂ s

= 0 (2.16)

This can also be written as

f f =−fvis (2.17)

Similarly for the moment balance, we can first write down the balance equation for s1 to s2

segment ∫ s2

s1

(n(s)+x(s)× fvis)ds+(M(s)+x(s)×F(s))
∣∣∣∣s2

s1

= 0 (2.18)

With Equation (2.16), the equation at arclength s becomes

n(s)+
∂M
∂ s

+∂sx×F = 0 (2.19)

2.2.3 Scalar Expression in Planar Beating

Equations (2.16) and (2.19) are the balance equations for the flagellum. By projecting

these two equations onto t̂, n̂, and k̂ directions, we get the scalar expressions of the balance

equation for the planar beating of the flagellum:

Ts−Nφs +qT = 0 (2.20)

10



Ns +T φs +qN = 0 (2.21)

Ms +n+N = 0 (2.22)

2.3 Activity

Instead of seeing the flagellum as a passive elastic rod with superimposed beating, here

we model the flagellum as an active filament. The spontaneous bending of the flagellum exerted

by the dynein motors is modeled in this section, with the sliding control model providing the

density coefficients and sliding force. The geometric deformation and hydrodynamic perturbation

created by the swimming motion of the cell will be the factor that defines the activity, and thus

gives rise to spontaneous oscillations.

2.3.1 Micro Structure and its 2D Projection

With the fact that the beating of flagellum is mostly planar, here we simplify the 3D

structure by projecting it onto the 2D plane. As illustrated in Figure 2.4, the axoneme has been

simplified as two filaments, with dynein motors and nexin links working between them.

2.3.2 Bending and Sliding Displacement

With the sliding force exerted by the dynein motors, two filaments tend to slide relative to

each other. Since both filaments are connected to the head where no displacement can happen,

sliding displacement for flagellum shows up as bending in the end. As marked in Figure 2.4,

x is the position of the flagellum center line. t̂ and n̂ are unit vectors on tangential and normal

direction, and a is the diameter of the flagellum. We use x+ and x− to describe the shape of two

filaments, where we have

x+ = x+
a
2

n̂ (2.23)
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a ̂t

̂n

f

f

Δxx+
x−

Dynein Motor

Nexin Link

Figure 2.4: Two-dimensional simplification for planar beating

x− = x− a
2

n̂ (2.24)

∆ is the sliding displacement between the filaments, this can be calculated by the arc

length difference for a specific location.

∆ =
∫ s

0

[∣∣∂sx−(s′)
∣∣− ∣∣∂sx+(s′)

∣∣]ds′ (2.25)

Note that we have the relation ∂sn̂ =−κ t̂, and therefore

∆ = a
∫ s

0
κds′ (2.26)

Since curvature is defined as κ = ∂sφ , we find the relation between sliding displacement

and local angle as

∆ = a [φ(s)−φ(0)] (2.27)
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2.3.3 Sliding Force

The sliding force between filaments is decided by both dynein activity and nexin resistance.

As shown in Figure 2.4, dynein motors attached to one filament are ‘walking’ along the other

filament. This ‘walking’ process is a combination of repeated binding and unbinding.

Following Oriola et al. [31], here we model the sliding force density as

f (s, t) = ρ(n+F++n−F−)−K∆ (2.28)

In this equation, f (s, t) is the sliding force acting on unit length of filament given by

dynein motor and nexin links. ρ = N /L defines the average density of dynein motors along

filaments, when N is the total number of the dynein motors and L is the total length of flagellum.

n+ and n− are density coefficients that define the fractions of dynein motors in the bound state.

F+ and F− are the local sliding force exerted by a single bound motor. K is the spring stiffness of

nexin links, while ∆ is the local sliding displacement.

By the Newton’s third law of motion, sliding force acting on these two filament has equal

magnitude and opposite direction. This means there will be no active force in macroscopic

view acting on the flagellum. Instead, it shows up as an active moment n. Centered around the

flagellum center line, the active moment is given as

n(s) =
a
2

n̂× (− f t̂)+(−a
2

n̂)× f t̂ = a f k̂ (2.29)

where k̂ is the unit vector pointing out of the plane.

2.3.4 Motor Kinetics

To fully describe the sliding force given by dynein motors, we also need to provide a

model for binding and unbinding process. The total number of dynein motor along the flagellum
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N is a constant. As defined before, n+ and n− are fractions of bounded dynein motors, which is

the part of dynein motors that are exerting the sliding force. We express the bind rate for a single

dynein motor as π±, and unbind rate as ε±, so that the rate of change of n± can be written as

∂tn± = π±− ε± (2.30)

The binding rate of dynein motor is proportional to the local fraction of unbound motors,

thus

π± = π0(1−n±) (2.31)

where π0 is a constant, indicating a characteristic binding rate.

The unbinding rate is proportional to the local fraction of bound motors, and also expo-

nentially decided by the loading

ε± = ε0n±exp(F±/ fc) (2.32)

in which ε0, similarly, is a characteristic unbinding rate. fc is the critical load that defines the

transition when the unbinding will start to happen massively.

The force exerted by a single bound dynein motor is assumed to have a linear relations

with the local sliding velocity

F± =± f0(1∓∆t/v0) (2.33)

where f0 is the stall force when there is no dynein motion. ∆t(s) = a(φt(s)−φt(0)) is the sliding

velocity, and v0 is the zero load velocity.

By combining Equations (2.30), (2.31), (2.32) and (2.33), we get the governing equation

for the rate of change of the density coefficients:

∂tn± = π0(1−n±)− ε0n±exp[
f0

fc
(1∓∆t/v0)] (2.34)
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By combining Equations (2.33) and (2.28), the sliding force equation becomes

f (s, t) = f0ρ(n̄− ∆t

v0
ñ)−K∆ (2.35)

where n̄ = n+−n−, ñ = n++n−.

2.4 Hydrodynamic Interaction

The sperm cell experiences viscous drag as it swims through the medium. In this section,

we show that the inertia is negligible given the low Reynolds number of the system. The

viscous force density acting on the flagellum is expressed by the slender body theory, while the

hydrodynamics of the head is captured by the boundary integral method.

2.4.1 Low Reynolds Number and Stokeslet

The ratio of inertial force and viscous force in fluid system can be expressed by its

Reynolds number, defined as

Re =
ρUL

µ
(2.36)

The scales of the flow environment for the current biology system we are exploring shows

to have very small Reynolds number (O(10−5−10−4)). This indicates the flow to be creeping

flow, with negligible inertial force.

When Re→ 0, the Navier-Stokes equations simplify as the Stokes equations

−µ∇
2u+∇p = ρb (2.37)

∇ ·u = 0 (2.38)
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When the force in the system is distributed as a delta function

−µ∇
2u+∇p = gδ (x−x0), (2.39)

we know the solution for Stokes equation can be written as

ui(x) =
1

8πµ
Gi j(x,x0)g j (2.40)

where Gi j is the Green’s function.

For our problem with sperm cell swimming in the free-space, we have the Green’s function

as Stokeslet

Gi j(x̂) =
δi j

r
+

x̂ix̂ j

r3 (2.41)

where r = |x̂|, x̂ = x−x0.

2.4.2 Slender Body Theory

The viscous force acting on flagellum is captured by the slender body theory, considering

the flagellum-self interaction and head-to-flagellum interaction. The velocity of the flagellum is

decided by the force distribution on both head and flagellum, written as

8πνv = M [f f ]+H [fh] (2.42)

Here the operator M has two contributions M = L +K . The local part L [f f ] gives

the viscous force by the local velocity within the quiescent environment.

L [f f ](s) = [
1

ξ⊥
n̂(s)n̂(s)+

1
ξ‖

t̂(s)t̂(s)] · ff(s) (2.43)

Two friction coefficients in the local operator, ξ⊥ and ξ‖ indicate that the resistance force
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on slender body has different performance on tangential and normal direction, defined as

ξ‖ =−
1
2c

, ξ⊥ =
1

2− c
(2.44)

where c = log(ε2e)< 0 with ε = a/L.

K [f f ] and H [fh] capture the viscous force due to the hydrodynamic interactions, in

which K [f f ] is the contribution for non-local flagellum perturbation.

K [f f ](s) =
∫ L

0

[
I+ R̂(s,s′)R̂(s,s′)
|R(s,s′)| · ff(s′)−

I+ t̂(s)t̂(s)
|s− s′| · ff(s)

]
ds′ (2.45)

where R(s,s′) = x f (s)−x f (s′) and R̂ = R/|R|.

H [fh] is the hydrodynamic interaction contributed by the head

H [fh] =
∫∫

Dh

G(x f (s),x′h) · fh(x′h)dD′h (2.46)

in which G is the Stokeslet, which gives

H [fh] =
∫∫

Dh

(
I

|r(x f ,x′h)|
+

r(x f ,x′h)r(x f ,x′h)
|r(x f ,x′h)|3

)
· fh(x′h)dD′h (2.47)

where r(x f ,x′h) = x f (s)−x′h.

2.5 Governing Equations

In the previous section, we have finished modeling the dynamic system centered around

the force and moment balance equation. The active and viscous terms are given by the sliding

control model and slender body theory. In this section, we combine the models and present the

comprehensive governing equations.

For the nonlocal terms K [f f ] and H [fh] in slender body theory, we group their projection
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of tangential and normal direction as

ud
t (s) =

(
K [f f ](s)+H [fh](s)

)
· t̂(s) (2.48)

ud
n(s) =

(
K [f f ](s)+H [fh](s)

)
· n̂(s) (2.49)

We can now project the slender body theory onto t̂ and n̂

8πνvT =
1
ξ‖

t̂ · ff +ud
t (2.50)

8πνvN =
1

ξ⊥
n̂ · ff +ud

n (2.51)

With the fact that f f =−fvis and fvis = qT t̂+qN n̂, the viscous force in the force balance

equation can be expressed by

qT = (ud
t −8πνvT )ξ‖ (2.52)

qN = (ud
n−8πνvN)ξ⊥ (2.53)

The scalar force balance equations (2.20) and (2.21) then become

Ts−Nφs +(ud
t −8πνvT )ξ‖ = 0 (2.54)

Ns +T φs +(ud
n−8πνvN)ξ⊥ = 0 (2.55)

To eliminate the velocity terms vT and vN in the system, we use the velocity relation that

has been proved above. After plugging Equations (2.54) and (2.55) into (2.12) and (2.11), we get

the force and balance equation on tangential and normal direction as

Tss−Nφss− (1+
ξ‖
ξ⊥

)Nsφs−
ξ‖
ξ⊥

T φ
2
s = ξ‖(φsud

n−∂sud
t ) (2.56)
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Nss +T φss +(1+
ξ⊥
ξ‖

)Tsφs−
ξ⊥
ξ‖

Nφ
2
s = ξ⊥(8πνφt−ud

t φs−∂sud
n) (2.57)

For a flagellum regarded as elastic beam, the bending torque is given as M = EIφs. We

substitute Equation (2.29) into (2.22), so that we get the moment balance equation as

EIφss +a f +N = 0 (2.58)

We now have had a closed system of governing equations, namely Equations (2.56),

(2.57), (2.58), (2.35), (2.34).

2.6 Boundary Conditions

The boundary condition at the base end of flagellum is given by the force and moment

balance equations on the head. The head of the sperm cell itself has no motility and is pushed,

dragged and rotated by the force and torque coming from the flagellum through the clamping

connection. As inertia is negligible, we write down the force and moment balance equation for

the head as

F(0)−
∫∫

Dh

fh(x′h)dD′h = 0 (2.59)

x f (0)×F(0)+M(0)−
∫∫

Dh

x′h× fh(x′h)dD′h = 0 (2.60)

The distal end of the flagellum has force free and moment free conditions, which are

F(L) = 0 (2.61)

M(L) = 0 (2.62)

With the definition of bending torque, M(L) = 0 can also be written as φs(L) = 0. As for

the expression of M(0), we need to start with Equation (2.18) by setting s1 to 0 and s2 to L. With
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̂ey fh

F(0)
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Figure 2.5: Force and moment acting on the head.

the moment free boundary condition at the distal end, the bending torque at the base end is given

as M(0) =
∫ L

0 Nds. We rewrite equation (2.5) as

x(0)×F(0)+
∫ L

0
Nds−

∫∫
Dh

x′h× fh(x′h)dD′h = 0 (2.63)

On both the flagellum and head surface, we have the no-slip boundary condition. The one

for the flagellum has been given by slender body theory. To capture the no-slip condition on the

head surface, we first write down the velocity of the head surface as the rigid body motion

vh = v(0)+ φ̇(0)k̂× x̄ (2.64)

The velocity of the fluid flow at the same place on the head surface is given by the

boundary integral method as

v′h =
1

8πν

[∫ L

0
G(xh,x′f )f f (x′f )dS′f +

∫∫
Dh

G(xh,x′h)fh(x′h)dD′h

]
(2.65)

where the first term on the right hand side corresponds to the flow created by the flagellum beating,

and the second term correspond to the flow perturbed by head.
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The no-slip boundary condition requires the velocity of the rigid body to be the same as

the velocity of the fluid at the same place, which gives

∫ L

0
G(xh,x′f )f f (x′f )dS′f +

∫∫
Dh

G(xh,x′h)fh(x′h)dD′h

= 8πν
(
v(0)+ φ̇(0)k̂× x̄

) (2.66)

2.7 Nondimensionalization

We now nondimensionalize the system with characteritic scales for the system. The

macroscopical length is nondimensionalized by the are-length L of sperm cell, while the micro-

scopic length scale is the diameter a of flagellum. Scale for time is chosen to be the characteristic

time τ0 = 1/(ε0 +π0). The density of the sliding force between the filaments is scaled by ρ f0,

and the elastic force in the flagellum is scaled by B/L2.

By applying nondimensionalization to the corresponding variables in the system, we

obtain several important dimensionless parameters:

• Sp = L(8πνξ⊥/Bτ0)
1/4

• µa = aρ f0L2/B

• µ = Ka2L2/B

• ζ = a/(v0τ0)

Sp is the sperm number, represent the bending rigidity of the system by comparing the

time scale of bending relaxation to motor correlation time. Note that larger sperm number

indicates less rigid flagellum. µa measures the active force compared to the bending force and

indicates the activity of the flagellum. Larger µa gives more active sperm cell. µ is the ratio

between resistance from the nexin links and the bending, reporting the stiffness of the system. ζ

compares the diameter of flagellum to the characteristic displacement due to motor activity. Also,
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we define η = π0/(ε0 +π0), and f̄ = f0/ fc. Then the governing equations become

Tss−Nφss− (1+
ξ‖
ξ⊥

)Nsφs−
ξ‖
ξ⊥

T φ
2
s = ξ‖(φsud

n−∂sud
t ) (2.67)

Nss +T φss +(1+
ξ⊥
ξ‖

)Tsφs−
ξ⊥
ξ‖

Nφ
2
s = Sp4

φt−ξ⊥(ud
t φs +∂sud

n) (2.68)

φss +µa f +N = 0 (2.69)

f = n̄−ζ ñ∆t−
µ

µa
∆ (2.70)

∂tn± = η(1−n±)− (1−η)n±exp[ f̄ (1∓ζ ∆t)] (2.71)

in which all the variables are dimensionless.

Similarly for boundary conditions, we have

F(0) =
∫∫

Dh

fh(x′h)dD′h (2.72)

x(0)×F(0)+
∫ 1

0
Nds =

∫∫
Dh

x′h× fh(x′h)dD′h (2.73)

F(1) = 0 (2.74)

M(1) = 0 (2.75)∫ L

0
G(xh,x′f )f f (x′f )dS′f +

∫∫
Dh

G(xh,x′h)fh(x′h)dD′h

=
Sp4

ξ⊥

(
v(0)+ φ̇(0)k̂× x̄

) (2.76)

Sp4

ξ⊥
v = L [f f ]+K [f f ]+H [fh] (2.77)
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Chapter 3

Numerical Methods

Previously, we presented the nondimensionalized governing equations and boundary

conditions for the sperm model. In this chapter, we present the numerical method for solving the

nonlinear system. By separating the system into equations for the head and flagellum dynamics,

we can use both explicit and implicit methods to march in time. The advantage of each method is

discussed, and detailed process of both solver is explained.

3.1 Separated System

The two components of the sperm cell, head and flagellum, are clamped with each other.

The geometric description of the head and flagellum is done differently during the modeling

process. For the flagellum, we use its center line to describe the shape, while for the head we use

the surface. Even though in the system both of them are 3D objects with a surface to be evaluated,

here we have to handle them separately because of their different geometric description.

We now name the equations we have into two groups, namely, the equations for the head

and flagellum, so that we can discuss their solver separately.

All five governing equations in the system are applied to the flagellum. Under the

assumption of negligible inertial, the system is balanced at any time instant. Ideally, we would

23



like to solve the system at a given time instant as fast and accurately as possible. To make the

flagellum solvable at a time, we start with two balance equations (2.67) and (2.68). Recall that

∆ = φ −φ(0), ∆t = φt−φt(0), here we have a time derivative term φt on the right hand side of

equations (2.68), which can be eliminated by combining them with Equation (2.69) and (2.70):

µaζ ñ

[
Nss +T φss +(1+

ξ⊥
ξ‖

)Tsφs−
ξ⊥
ξ‖

Nφ
2
s

]
−Sp4N =

Sp4 [
φss +µan̄+µaζ ñφ̇(0)−µ (φ −φ(0))

]
−ξ⊥µaζ ñ

(
ud

t φs +∂sud
n

) (3.1)

Tss−Nφss− (1+
ξ‖
ξ⊥

)Nsφs−
ξ‖
ξ⊥

T φ
2
s = ξ‖(φsud

n−∂sud
t ) (3.2)

Equation (2.74) and (2.75) are nominated as the boundary conditions for the distal end of

the flagellum, and Equation (2.77) at the connecting point will be used as the boundary condition

for the base end of the flagellum.

As for the head, we have Equation (2.76) as the governing equations, while Equations

(2.72) and (2.73) work as the boundary conditions.

3.2 Explicit and Implicit

For the two parts of equation for flagellum and head, neither of the part is closed. More

specifically, for the equation of flagellum we have φ̇(0) in the governing equation, and v(0) in the

boundary condition. These are the velocity and angular velocity of head, which should be given

by the head part of the system. Similarly in the head part of the system, there are F(0),
∫ 1

0 Nds, f f ,

which are all the variables for the flagellum that has to be given by the solution of flagellum part.

These features of the system indicates that the two parts for flagellum and head are a

coupled system. The first option would be solving them explicitly, which means each part of

system is solved directly with all the necessary input information. Say we start the simulation
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with an initial guess based on the information from previous time steps, for example the velocity

and angular velocity of flagellum. Then we solve the part of flagellum by itself and use its results

to solve for the part of head, then doing it iteratively. Note that during this process, each step

of the solving process has all the necessary values and can be solved efficiently, which is the

advantage of using explicit method. One disadvantage is that we need to run multiple iterations

for each time step to reach its convergence. Also the system can be relatively unstable when using

the explicit method, so that the system can keep running stably only with very small time step

size. To reach to the same total time length, more steps of calculation have to be processed.

The other option is to use the implicit scheme to solve the system. We notice that only

terms that the flagellum part needs are the head velocity and angular velocity. If we can manage

to express the head velocity and angular velocity explicitly in terms of the information from the

flagellum itself, we no longer need the iteration and can solve the system for a time instant by one

step calculation. The numerical scheme becomes more stable with the implicit scheme, which

gives us the chance to use hundreds of times larger time step size to reach to same time length

with much fewer steps. This feature gives us the chance to better search in the parameter plane.

Note that the implicit method generally is not guaranteed to be faster than the explicit

method, because each step consumes more work to be done. In this paper, we proposed both

explicit and implicit schemes. Numerical simulations show that the implicit scheme can be faster

with larger time step size, while each step takes around 10 times longer than the explicit method.

3.3 Discretization and Finite Difference

To translate the equation numerically, we discretize the flagellum along its arc length,

with a total number of N f nodes evenly distributed on the flagellum. h = 1/(N f −1) is the size of

grid on flagellum. Head surface is discretized as a mesh with a total number of Nh triangles.
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3.3.1 Solver for Flagellum

Equation (3.1) and (3.2) are the two equations we want to solve numerically here. As-

suming the shape and non-local interaction terms are unknown, these two equations now become

linear in the two unknowns N and T . The derivative terms are given by finite differences with

second order accuracy. For the grid point with index j on the flagellum ( j 6= 1, j 6= N f ), the

equations can be written as

µaζ ñ

[
N j−1−2N j +N j+1

h2 +φssT j +

(
1+

ξ⊥
ξ‖

)
φs

T j+1−T j−1

2h
− ξ⊥

ξ‖
φ

2
s N j

]

−Sp4N j = Sp4 [
φss +µan̄+µaζ ñφ̇(0)−µ (φ −φ(0))

]
−ξ⊥µaζ ñ

(
ud

t φs +∂sud
n

) (3.3)

T j−1−2T j +T j+1

h2 −φssN j−
(

1+
ξ‖
ξ⊥

)
φs

N j+1−N j−1

2h

−
ξ‖
ξ⊥

φ
2
s T j = ξ‖(φsud

n−∂sud
t )

(3.4)

We introduce the notation k = µaζ ñ. The right hand sides of both equations are known,

and now written as b1 and b2. We can thus further simplify the equation as

k
h2 N j−1 +

(
−2k

h2 −
ξ⊥
ξ‖

kφ
2
s −Sp4

)
N j +

k
h2 N j+1

+

[
−
(

1+
ξ⊥
ξ‖

)
k

2h
φs

]
T j−1 + kφssT j +

[(
1+

ξ⊥
ξ‖

)
k

2h
φs

]
T j+1 = b j

1

(3.5)

[(
1+

ξ‖
ξ⊥

)
1

2h
φs

]
N j−1 +(−φss)N j +

[
−
(

1+
ξ‖
ξ⊥

)
1

2h
φs

]
N j+1

+
1
h2 T j−1 +

(
− 2

h2 −
ξ‖
ξ⊥

φ
2
s

)
T j +

1
h2 T j+1 = b j

2

(3.6)
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The numerical system then can be written as

ANT ·
−→
F NT = b (3.7)

in which
−→
F NT = [N1,T 1,N2,T 2,N3,T 3, ....] is the merge vector of N and T . Similarly, b is

the merge vector of b1 and b2. ANT is a 2N f ×2N f matrix including the coefficients given by

Equation (3.5) and (3.6).

The first two and last two rows of ANT should be defined separately based on the boundary

conditions. The force free boundary condition at the distal end shows up in the last two rows as

NN f = 0 (3.8)

T N f = 0 (3.9)

The boundary condition at the base end is given by the slender body theory when s = 0:

Sp4

ξ⊥
vT (0) =

1
ξ‖

(Ts−Nφs)+ud
t (3.10)

Sp4

ξ⊥
vN(0) =

1
ξ⊥

(Ns +T φs)+ud
n (3.11)

In the form of finite difference, the first two rows of ANT read

(−φs)N1 +

(
− 3

2h

)
T 1 +

2
h

T 2 +

(
− 1

2h

)
T 3 = Sp4 ξ‖

ξ⊥
vT (0)−ξ‖u

d
t (0) (3.12)

(
− 3

2h

)
N1 +

2
h

N2 +

(
− 1

2h

)
N3 +φsT 1 = Sp4vN(0)−ξ⊥ud

n(0) (3.13)

With Equation (3.5), (3.6), (3.8), (3.9), (3.12), (3.13), ANT and b has been fully defined.

Thus we can solve the flagellum part and get the force distribution along the flagellum.
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3.3.2 Solver for Head

Assume that we know the shape of the flagellum and F(s), which can be used to calculate

f f . And v(0), φ̇(0), fh are the unknowns we need to solve here. We start with Equation (2.76),

and choose the center point of the element with index j, we have

∫ L

0
G(x j

h,x
′
f )f f (x′f )dS′f +

∫∫
Dh

G(x j
h,x
′
h)fh(x′h)dD′h

=
Sp4

ξ⊥

(
v(0)+ φ̇(0)k̂× x̄

) (3.14)

Note that integral here is already the numerical operator. With known flagellum shape

and non-deformable head clamped with flagellum, the Green’s function G(x j
h,x
′
f ) and G(x j

h,x
′
h)

that govern the interactions are known here. This equation has to be satisfied for each element on

the head, so that the system can be written as

Ahh ·
−→
fh +Ah f ·

−→
f f =

Sp4

ξ⊥

(−−→
v(0)+ φ̇(0)

−−−→
k̂× x̄

)
(3.15)

where Ahh includes the information of surface integral and Green’s function for two elements on

flagellum, and Ah f includes the line integral and interaction between the element on the head and

the grid on flagellum.
−→
fh and

−→
f f are the matrix containing all the force distribution for head and

flagellum. Similar for
−−→
v(0) and

−−−→
k̂× x̄.

Then the force distribution on the head reads as

−→
fh =−A−1

hh ·Ah f ·
−→
f f +

Sp4

ξ⊥
A−1

hh ·
(−−→

v(0)+ φ̇(0)
−−−→
k̂× x̄

)
(3.16)

The first term on the right hand side is known, while the second one isn’t as it involve the

unknown velocity and angular velocity of the head. These quantities will be given by the force

and moment balance equation on the head. To finish this step, first we need to define the force

response of the unit movement when the head is swimming by itself in the quiescent flow.
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Table 3.1: Force response of unit movement for head swimming in quiescent flow.

Unit Movement Force distribution Total force and moment
vT (0) = 1
vN(0) = 0
φ̇(0) = 0

fq
T (xh) Fq

T =
∫∫

Dh
fq
T (x
′
h)dD′h

vT (0) = 0
vN(0) = 1
φ̇(0) = 0

fq
N(xh) Fq

N =
∫∫

Dh
fq
N(x
′
h)dD′h

vT (0) = 0
vN(0) = 0
φ̇(0) = 1

fq
K(xh)

Fq
K =

∫∫
Dh

fq
K(x
′
h)dD′h

Mq
K =

∫∫
Dh

x′h× fq
K(x
′
h)dD′h

For non-deformable head, fq
T , fq

N , fq
K , Fq

T , Fq
N , Fq

K and Mq
K are all constants in the co-

moving-rotating frame. Recall that Stokes flow is linear, meaning the force in the system has a

linear relation with the velocity. Based on Table 3.1, force distribution for the head swimming in

the quiescent flow is

fq
h = vT (0)f

q
T + vN(0)f

q
N + φ̇(0)fq

K(xh) (3.17)

Now go back to Equation (3.16), the second term on the right hand side is the force due to

the self interaction, which is identical to the force distribution for the head in the quiescent flow

with the same movement. By replacing it by the linear combination of unit response, we get

−→
fh =−A−1

hh ·Ah f ·
−→
f f + vT (0)f

q
T + vN(0)f

q
N + φ̇(0)fq

K (3.18)

To solve for the velocity and angular velocity in Equation (3.18), we substitute it into

Equation (2.72) and (2.73):

vT (0)F
q
T + vN(0)F

q
N + φ̇(0)Fq

K =
∫∫

Dh

(
A−1

hh ·Ah f ·
−→
f f

)
dD′h +F(0) (3.19)

φ̇(0)Mq
K =

∫∫
Dh

x′h×
(

A−1
hh ·Ah f ·

−→
f f

)
dD′h +x(0)×F(0)+

∫ 1

0
Nds (3.20)

With Equation (3.19) and (3.20), v(0) and φ̇(0) can be solved and used in Equation (3.18)
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to solve for the force distribution on the head.

3.4 Implicit Solver

As discussed before, only information necessary to solve for the flagellum part is force

distribution, velocity and angular velocity of the head. If we manage to express these terms by the

information from flagellum itself, we can couple these two parts and get rid of the iteration. In

both Equation (3.19) and (3.20), we have the surface integral term on the right hand side. Because

surface integral, dot product and cross product are all linear operator, we can group them into one

operator, defined as ∫∫
Dh

(
A−1

hh ·Ah f ·
−→
f f

)
dD′h = BF ·

−→
f f (3.21)

∫∫
Dh

x′h×
(

A−1
hh ·Ah f ·

−→
f f

)
dD′h = BM ·

−→
f f (3.22)

Equation (3.19) and (3.20) for the 2D beating can be written as

[
Fq

T Fq
N

]
·

vT (0)

vN(0)

= BF ·
−→
f f +F(0)− φ̇(0)Fq

K (3.23)

φ̇(0)Mq
K = BM ·

−→
f f +x(0)×F(0)+

∫ 1

0
Nds (3.24)

We solve the angular velocity first, and then use it to solve for the velocity

vT (0)

vN(0)

=

[
Fq

T Fq
N

]−1

·

(
BF ·
−→
f f +F(0)− BM ·

−→
f f +x(0)×F(0)+

∫ 1
0 Nds

Mq
K

Fq
K

) (3.25)
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φ̇(0) =
BM ·
−→
f f +x(0)×F(0)+

∫ 1
0 Nds

Mq
K

(3.26)

In Equation (3.25) and (3.26), right hand side of the equation are linear operators fully

given by the flagellum. We can further simplify it to be

vT (0) = C1 ·
−→
F NT (3.27)

vN(0) = C2 ·
−→
F NT (3.28)

φ̇(0) = C3 ·
−→
F NT (3.29)

With known C1, C2, C3, we move the corresponding terms in flagellum part on the right

hand side to the left, and thus modified system as

A′NT ·
−→
F NT = b′ (3.30)

Then we have N and T along the flagellum by solving Equation (3.30) once only.

3.5 Time Marching

Based on Equation (2.68), the angular velocity of each flagellum segment can be calculated

with Equation (3.31) after we calculate the force distribution in the system.

: φt =
1

Sp4

[
Nss +T φss +

(
1+

ξ⊥
ξ‖

)
Tsφs−

ξ⊥
ξ‖

Nφ
2
s +ξ⊥

(
ud

t φs +∂sud
n

)]
(3.31)

Velocity and angular velocity of head can be given by Equation (3.25) and (3.26). Dynein

kinetics should be updated by Equation (2.71).

31



Chapter 4

Linear Stability Analysis

Before going to the simulation of nonlinear system with large deformations, we first apply

the linear stability analysis with small perturbations. Compared to the later results for nonlinear

simulation, by observing the dominating eigenvalue of the system we can successfully predict the

existence and location of two bifurcations.

4.1 Assumption and Linearization

With very small perturbation of the flagellum, only very small force will be applied onto

the head. The shape of head will only factor the solution slightly. To simplify the system, we

assume the sperm cell is swimming with a spherical head in the quiescent flow with hydrodynamic

interaction negligible. The non-local resistance force term ud
n = ud

t = 0, so the governing equations

become

Tss−Nφss− (1+
ξ‖
ξ⊥

)Nsφs−
ξ‖
ξ⊥

T φ
2
s = 0 (4.1)

Nss +T φss +(1+
ξ⊥
ξ‖

)Tsφs−
ξ⊥
ξ‖

Nφ
2
s = Sp4

φt (4.2)

φss +µa f +N = 0 (4.3)
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f = n̄−ζ ñ∆t−
µ

µa
∆ (4.4)

∂tn± = η(1−n±)− (1−η)n±exp[ f̄ (1∓ζ ∆t)] (4.5)

The viscous force and torque acting on the spherical head in quiescent flow is known

as Fhead
vis = −6πνrv(0) and Mhead

vis = −8πνr3φ̇(0), where r is the radius of the head. Then the

nondimensionlized boundary conditions become

T (0) =
3rSp4

4ξ⊥
vt(0) (4.6)

N(0) =
3rSp4

4ξ⊥

(
vn(0)− rφ̇(0)

)
(4.7)

rN(0)+
∫ 1

0
Nds =

r3Sp4

ξ⊥
φ̇(0) (4.8)

T (1) = 0 (4.9)

N(1) = 0 (4.10)

φs(1) = 0 (4.11)

4.2 Base State and Perturbation

Setting all time derivative terms to zero, we find the steady state at φ = const. Here we

choose this constant to be zero, so that the flagellum now aligned with x axis. From Equation

(4.5), we got n±0 = n0 =
π0

π0+ε0e f̄ . Combined with boundary condition, we find f = 0, N = 0,

T = 0 at base state.

Then we add the perturbation to the system, φ = δφ and n± = n0 + δn±. Here we

introduce δn = δn+ =−δn−. Similarly, f = δ f , T = δT , N = δN. Also, we consider f̄ ζ φt� 1.
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Substituting into the governing equations and linearizing the system, we get

δTss = 0 (4.12)

δNss = Sp4
δφt (4.13)

δφss +µaδ f +δN = 0 (4.14)

δ f = 2δn−2ζ n0δ∆t−
µ

µa
δ∆ (4.15)

δnt = (1−η)e f̄ n0 f̄ ζ δ∆t−
η

n0
δn (4.16)

Using the fact that ∂s∆ = ∂sφ , we apply ∂s on Equation (4.15) and (4.16)

δ fs = 2δns−2ζ n0δφts−
µ

µa
δφs (4.17)

δnts = (1−η)e f̄ n0 f̄ ζ δφts−
η

n0
δns (4.18)

4.3 Normal Mode

Assume all perturbation has the form δA = Ãeσteiks, where A can be T,N,φ , f ,n. Substi-

tute to Equation (4.12), (4.13), (4.14), (4.17), (4.18), we get

− k2T̃ = 0 (4.19)

− k2Ñ = Sp4
σφ̃ (4.20)

− k2
φ̃ +µa f̃ + Ñ = 0 (4.21)

f̃ = 2ñ−2ζ n0σφ̃ − µ

µa
φ̃ (4.22)
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σ ñ = (1−η)e f̄ n0 f̄ ζ σφ̃ − η

n0
ñ (4.23)

For Equation (4.19) to be satisfied without having a trivial solution, T̃ = 0. We now use φ̃

as the only variable. From eqn. (4.20), (4.22), (4.23)

Ñ =−Sp4σ

k2 φ̃ (4.24)

ñ = χ
′
φ̃ (4.25)

f̃ = χφ̃ (4.26)

Where, χ ′ = n0(1−n0) f̄ ζ
ση

σn0+η
, and χ = 2χ ′−2ζ n0σ − µ

µa
. Substitute Equation(4.24),

(4.26) into (4.21) and cancel φ̃ , we get

k4−µaχk2 +Sp4
σ = 0 (4.27)

which is quartic equation for k, with four roots, so we can write δA = ∑
4
j=1 Ã jeik jseσt , where A

can be T,N,φ , f ,n.

4.4 Boundary Conditions

From the slender body theory, we have Ns +T φs = Sp4vN . Since T = 0 from eqn.(4.19),

we have vN = Sp−4Ns. Then eqn.(4.7) becomes

N(0) =
3rSp4

4ξ‖

(
Sp−4Ns(0)− rφ̇(0)

)
(4.28)

Substitute normal modes into eqn. (4.28), (4.8), (4.10), (4.11), we get

4

∑
j=1

[(
3ir
4ξ⊥

k−1
j +

3r2

4ξ⊥
− k−2

j

)
Φ j

]
= 0 (4.29)
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4

∑
j=1

{[
ik−3

j

(
1− eik j

)
+ rk−2

j +
r3

ξ⊥

]
Φ j

}
= 0 (4.30)

4

∑
j=1

(
ik jeik jΦ j

)
= 0 (4.31)

4

∑
j=1

(
k−2

j eik jΦ j

)
= 0 (4.32)

4.5 Bifurcations

4.5.1 Methodology

Here we re-write Equation (4.29), (4.30), (4.31), (4.32) as

G ·Φ = 0 (4.33)

Where G is the coefficients we get that include k j as the root of Equation (4.27), and

Φ = [Φ1,Φ2,Φ3,Φ4]
T . The characteristic equation for this system is written as

det(G) = 0 (4.34)

while its roots are defined as the eigenvalues of the system that can be used to predict the stability

condition for this problem.

The characteristic equation has been solved numerically. With a specific Sp and µa, we

search σ in the complex plane and plot the value of determinant of G, so that we can approximately

locate the roots by inspection. Then we use the function Findroot in software Mathematica, and

use the approximate guess as the initial guess to determine the more specific location of roots.
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4.5.2 Dominant Eigenvalue

It is σ in the expression δA = ∑
4
j=1 Ã jeik jseσt that governs the development for the mode

over the time. We define the eigenvalue with the largest real part as the dominant eigenvalue.
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Figure 4.1: Real and imaginary part of dominant eigenvalue with Sp = 8.

With Sp = 8, Figure 4.1 marks the real and imaginary part of dominant eigenvalue as a

function of µa. When the activity is low, the dominant eigenvalue stays at the origin point in

the complex plane until a pair of eigenvalues reach the imaginary axis. Then it gradually moves

toward the real axis with increasing activity and further moves toward the right. It finally reaches

to the real axis and the slope of real part suddenly increases with µa.

4.5.3 Marginal Stability

As shown in Figure 4.1, there are two important bifurcations in the system. The first

bifurcation marks the marginal stability of the system. If all eigenvalues of the system have a

negative real part, the perturbation will decay to non-perturbed state eventually. So the sign of real

part of dominant eigenvalue decides whether the system is steady or will amplify the perturbation
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and thus create the spontaneous oscillation. The bifurcation between stable and unstable regimes

happens when the dominant eigenvalue sits right on the imaginary axis. Searching in the parameter

plane of Sp and µa, we can mark the marginal stability boundary line as shown in Figure 4.2.
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Second Bifurcation

Figure 4.2: Marginal stability line and second bifurcation in parameter plane based on linear
stability analysis.

4.5.4 Second Bifurcation

Within the unstable region above the marginal stability line, there has been at least one

pair of conjugate eigenvalues reach the right half of the parameter plane. While the positive real

part of the eigenvalues amplifies the mode, imaginary part of the eigenvalue offers the oscillation.

For a eigenvalue sitting on the real axis, it no longer produces the oscillation to the system. It can

be interesting when the imaginary part of the dominant eigenvalue goes to zero as observed in

Figure 4.1. At this point, the beating is no longer generated by the dominant eigenvalue but by

the rest of the modes. We call this line the second bifurcation, and also mark it in the parameter

plane as in Figure 4.2.
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Chapter 5

Results

In the previous chapters, we have proposed the governing equations and boundary condi-

tions. Following the partially implicit numerical methods that factored the long range interaction

between head and flagellum, we successfully simulate the swimming of sperm cell with different

parameters. In this chapter, we observe the simulation results from different aspects. We first start

with the beating shape and swimming direction, finding that there exist two different beating pat-

terns characterized by different shapes, while both swim forward with the curvature propagating

from base to tip. Then we calculate the velocity and vorticity domain, and the average velocity

for both close and far region within the co-moving frame. Several transitions have been observed

with different methods, to separate the parameter plane into two regions. To better understand the

swimming, we have also defined several swimming characteristics, with the results showing that

some of them are not monotonically controlled by the parameters in specific regions. In the end

of this chapter, we look at the energetics of the system, studying the dissipation and efficiency of

this biological system.
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5.1 Beating and Swimming

For the cases that the sperm cell has ability to amplify the initial perturbation and exhibit

spontaneous beating, the swimming movement will reach a steady periodic stage after several

beating cycles. The swimming shape can be depicted by the stroboscopic view in Figure 5.1,

where (a) and (b) show two different beating patterns that can be observed in the parameter

plane. The sperm cell with relatively smaller activity beat as shown in Figure 5.1 (a) where a

spindle shape is enveloped by the beating. When we further increase the activity up to point, we

can observe the beating shape like in Figure 5.1 (b). The first pattern has larger head rotation

and smoother curvature distribution, while the rotation of head in the second pattern in more

restricted, with large curvature concentrated at the section near to the middle and the end.
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Figure 5.1: Stroboscopic view of two typical beating pattern. Simulation parameters: (a) Sp= 4,
µa = 5820; (b) Sp = 4, µa = 10910.

In the previous study, flagellum clamped on the wall is noticed to have a second bifurcation

that divide the two beating modes with different curvature wave propagation direction [32]. In

this study where the sperm can freely swim in the viscous environment, the curvature is always

propagating from the base end to the distal end. With such a wave, the sperm cell in all the cases
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swims in the forward direction. Further, we also observed the transition by its beating shape

instead of the wave propagation direction. In the later section, we will discuss this bifurcation in

more detail.

5.2 Flow Fields

Looking more closely at one parameter combination, we use boundary integral method to

evaluate the velocity and vorticity in the flow domain.
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Figure 5.2: Snapshots of streamline and velocity magnitude in flow domain. Simulation
parameters: Sp = 5, µa = 8000.

The snapshots of velocity magnitude and streamline over one beating period is illustrated

as Figure 5.2. For the side to side beating of sperm cell, two local maximum velocity magnitude

region are generated in one cycle. The large velocity region is first generated in front of the head

and gradually covers and climb over the head surface down to the flagellum. Once it reaches

flagellum at the connection point, it starts to propagate along the flagellum from base to tip. After
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the region gets to the distal end, it starts to accumulate at the tip, and vanish at last. Streamlines in

the figure indicates the existence of vortices in the domain, where we can see vortex with different

direction show up side by side, creating the local maximum velocity region at the boundary of

two vortices.
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Figure 5.3: Snapshots of streamline and vorticity in flow domain. Simulation parameters:
Sp = 5, µa = 8000.

The distribution of vorticity in the flow domain is shown as in Figure 5.3. As we can

observed before from the streamline, positive and negative vortices are generated alternately in

front of the head, propagate along the flagellum, accumulate and vanish at the distal end. Different

from the velocity, local maximum vorticity magnitude stand right on the center of the vortices,

and tend to show up at the concave side of the bending flagellum.

Figure 5.4 shows the normalized average velocity in the near region and in a larger

domain. Since the sperm cell is swimming forward, to evaluate the mean value of the velocity

after the sperm reaching its steady periodic beating, sperm cell and its domain is observed in
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Figure 5.4: Average flow field in co-moving frame. Simulation parameters: Sp = 5, µa = 8000.

the co-moving frame. In Figure 5.4 (a), the average flow near the sperm cell shows two pairs

of vortices symmetric about the flagellum. The relatively smaller pair contact with other side

at the connecting point, while the larger pair is much more dominant, creating a large average

velocity region near the middle section of the flagellum. Regarding the far domain, Figure 5.4

(b) indicates that the flagellum mostly works as a force dipole in the domain, creating the flow

starting from the head and distal end of the flagellum. There also exists a large pair of vortices at

the middle section.

5.3 Transitions

In the chapter on linear stability analysis, we predicted the existence of the marginal

stability and the second bifurcation. Here by observing the performance of the simulation results

of the nonlinear system, we mark several transition lines in the parameter plane.

The pink line in Figure 5.5 represents the first bifurcation as marginal stability line of

the system. Below the line is the stable region, where the activity is not enough to trigger the
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Figure 5.5: Transitions in parameter plane.

oscillation starting from the perturbation. The region above the marginal stability line is the

unstable region, where we can observe the spontaneous beating and swimming.

We apply the Principle Component Analysis (PCA) onto the curvature of the flagellum as

a function of time. The linear combination of first two modes can correctly represent over 90%

information of the beating. By observing the shape of the first two dominant modes, we find three

patterns in the parameter plane as shown in Figure 5.6. The pattern in (a) shows up starting from

the marginal stability line, with relatively smaller activity. The pattern in (b) only exists within a

narrow band in the parameter plane, followed with the third pattern in (c). The transition between

these three patterns is marked by the two red lines as shown in Figure 5.5.

Figure 5.7 shows the corresponding head trajectory of the two beating patterns observed

in Figure 5.1. Both patterns swim forward, which is leftward in the current frame. From the top of

the trajectory to the bottom, (a) with relatively smaller activity goes backward and then forward,

while the pattern shown in (b) goes forward and then backward. There is a clear transition
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Figure 5.6: First two mode of Principle Component Analysis of curvature along flagellum.
Simulation parameters: (a) Sp = 4, µa = 1749; (b) Sp = 4, µa = 6839; (c) Sp = 4, µa = 11928.

between these two patterns, and happens at the same time as the second PCA transition as shown

in Figure 5.5.

These transitions divide the parameter plane into several regions. The region below the

marginal stability line is called the stable region. For the unstable region above the marginal

stability line, we call the part under the first PCA transition as the lower region, and that above

the second PCA transition as the upper region.

45



(a) (b)

-0.95 -0.9 -0.85 -0.8 -0.75
x/L

-0.1

-0.05

0

0.05

0.1

y/
L

-1.2 -1.1 -1
x/L

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
y/
L

Figure 5.7: Two patterns of head trajectory. Simulation parameters: (a) Sp = 4, µa = 5312; (b)
Sp = 4, µa = 9892.

5.4 Swimming Characteristics

The beating of the flagellum manages to push the head forward by propagating the

curvature wave from base to tip. The goal of the sperm cell movement is to transport the genetic

information carrier DNA to the egg. Even though the trajectories show that the head oscillates

side to side during swimming, forward marching is the ultimate purpose. In this section we study

the movement of head by defining several swimming characteristics.

The rotation and side to side oscillation are typical motion that steer the swimming

direction of sperm cell. For the symmetric beating in our simulation results, the total displacement

of the head is a straight line pointing in the forward direction, which makes oscillations nothing

but a waste of energy. We evaluate the beating amplitude as the distance between upper and

lower boundary of the trajectory, with Figure 5.8 showing its dependence on Sp and µa. It is non

monotonically controlled by the parameters in the lower region, where we can find the maximum

amplitude zone with larger Sp and µa near the first PCA transition. In the upper region, the
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amplitude increases with smaller Sp and larger µa.
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Figure 5.8: Side-to-side beating amplitude.

The head and flagellum have their own frequency distribution in the frequency domain.

However we find their dominant frequency to be identical, which is evaluated here. Figure 5.9

shows the contour of the dominant frequency in the parameter plane. With the least activity right

above the marginal stability line, we find the largest beating frequency. In both the upper and

lower regions the frequency is mostly dominated by the activity, while the frequency decrease

with larger activity in the lower region, and slightly decreases with larger activity in the upper

region.

Since the forward marching is the ultimate purpose of sperm cell, the velocity in the

forward direction is very important for a given active beating. The forward velocity is defined

as the average velocity in the forward direction over a period. In the contour shown in Figure
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Figure 5.9: Dominant frequency of the sperm cell.

5.10, we can see the velocity is non monotonic in the lower region. With activity right above the

marginal stability line, even though the sperm beats at a large frequency, the beating is almost

local. When we further increase the activity, the velocity suddenly increases and reaches its

maximum region. The maximum region is located near the first PCA transition similar to the

amplitude, but closer to the small Sp. For one parameter combination, it is hard for a trajectory

to have both large amplitude and forward displacement with fixed active input, which makes it

reasonable to observe the maximum zone of magnitude and velocity locate differently. In the

upper region the velocity is mostly dominated by the activity, and monotonically decreases with

larger activity.

We are interested in the energy efficiency of this biological system. We write the energy
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Figure 5.10: Forward swimming velocity of sperm cell.

balance equation of the system as
dE
dt

+Pd = Pa (5.1)

where dE
dt is the change rate of the total elastic energy stored in the flagellum, Pd is the total

viscous dissipation of the system, and Pa is the total active input given by dynein motors.

After the beating reaching its steady stage with same shape of the flagellum after a cycle

of beating, there will be no difference of the elastic energy stored in flagellum, so that we can

write ∫ t+T

t
Padt =Wd (5.2)

where Wd =
∫ t+T

t Pddt.

If we define the forward marching as the purpose, the minimum possible dissipation
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would be for the case of one inactive and undeformed sperm cell moving the same distance over a

period with the same velocity, written as Wmin = Fd · l. The viscous force Fd =Cvavg is linear in

the velocity based on the linearity of Stokes flow. The displacement over a period in the active

case can be given by velocity and frequency l = vavg/ f f req. The efficiency ε = Wmin
Wd

can then be

expressed as

ε =
Cv2

avg

f f req ·
∫ t+T

t
∫ 1

0 f ∆tdsdt
(5.3)
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Figure 5.11: Normalized efficiency of the system.

Figure 5.11 illustrates the contour of normalized efficiency. Logarithm color bar indicates

that the efficiency of the system is mostly dominated by the rigidity of the system. For a specific

Sp, best efficiency always show up at the place where maximum velocity exists.
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Chapter 6

Conclusions

In this thesis, I numerically solved for the motion of a sperm cell freely swimming

with the spontaneous beating governed by a sliding control model. Slender body theory and

boundary integral method are used here to include not only the local resistance but also long range

hydrodynamic interaction between head and flagellum and between different parts of flagellum.

An implicit numerical solver coupling the hydrodynamic interaction was proposed, which can

solve the system dozens to thousands of time faster then the explicit solver.

Under the assumption of small shape perturbations, we applied a linear stability analysis

to the system. A Hopf bifurcation can be marked where the unstable modes start to drive the

spontaneous beating. By tracking the dominant eigenvalue of the system, we can also predict the

existence of the second transition where the dominant mode no longer provides oscillation to the

system.

The simulation results of the nonlinear system is found to have similar pattern as predicted

by linear stability analysis. While the Hopf bifurcation is defined by the motility, the second

transition in parameter plane of sperm number and activity can be marked by different patterns of

head trajectories, PCA modes and the shape enveloped by the beating flagellum. Through whole

parameter domain, sperm cells are observed to keep swimming forward. Unlike the clamped
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flagellum [32], the curvature wave with freely swimming condition is always propagating from

base to tip.

As for the motility of sperm cell, flow fields show that both velocity and vorticity have

their local maxima first appear in front of the head, propagate along the flagellum, accumulate and

vanish at the distal end. Swimming characteristics are showen to be smooth in both the upper and

lower regions and not always monotonically controlled by the rigidity or activity. The frequency

of the head oscillation is mostly controlled by activity, and the efficiency of the biological system

is mostly decided by the sperm number. Head beating amplitude and sperm forward swimming

velocity are both found to be non monotonic in the lower region, with their maximum region right

under the first PCA transition.
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