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The mode of expression divergence in Drosophila fat
body is infection-specific

Bryan A. Ramirez-Corona, Stephanie Fruth, Oluchi Ofoegbu, and Zeba Wunderlich
Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA

Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting factors. Changes in cis or
trans factors can drive expression divergence within and between species, and their relative prevalence can reveal the evo-

lutionary history and pressures that drive expression variation. Previous work delineating the mode of expression diver-

gence in animals has largely used whole-body expression measurements in one condition. Because cis-acting elements

often drive expression in a subset of cell types or conditions, these measurements may not capture the complete contribu-

tion of cis-acting changes. Here, we quantify the mode of expression divergence in the Drosophila fat body, the primary im-

mune organ, in several conditions, using two geographically distinct lines of D. melanogaster and their F1 hybrids. We

measured expression in the absence of infection and in infections with Gram-negative S. marcescens or Gram-positive E. faecalis
bacteria, which trigger the two primary signaling pathways in the Drosophila innate immune response. The mode of expres-

sion divergence strongly depends on the condition, with trans-acting effects dominating in response to Gram-negative infec-

tion and cis-acting effects dominating in Gram-positive and preinfection conditions. Expression divergence in several

receptor proteins may underlie the infection-specific trans effects. Before infection, when the fat body has a metabolic

role, there are many compensatory effects, changes in cis and trans that counteract each other to maintain expression levels.

This work shows that within a single tissue, the mode of expression divergence varies between conditions and suggests that

these differences reflect the diverse evolutionary histories of host–pathogen interactions.

[Supplemental material is available for this article.]

Differences in gene expression are drivers of phenotypic diver-
gence in closely related species (King andWilson 1975). These ex-
pression differences can arise through sequence changes in cis-
regulatory elements, such as enhancers, or in the coding regions
of trans-acting factors, such as transcription factors. These two
types of changes differ in their impact. Changes in cis are local,
typically affecting the expression of one gene at a time, whereas
changes in trans can be broad, affecting all downstream targets
of a gene. The relative prevalence of each of these types of changes
may give insight into how expression divergence arises in a partic-
ular setting: through the accumulation of many fine-tuning cis-
acting changes, by a smaller number of large impact trans-acting
changes, or by both.

The prevalence and relative contributions of cis and trans
changes are being explored in various model systems (Signor and
Nuzhdin 2018). For example, within individual Drosophila mela-
nogaster lines or between Drosophila species, the contributions of
cis-acting changes generally increase with phylogenetic distance,
and the precise balance of cis versus trans effects depends on the
phylogenetic relationships and demographics of the genotypes be-
ing compared (Wittkopp et al. 2004, 2008; McManus et al. 2010;
Coolon et al. 2014; Osada et al. 2017). These studies have elucidat-
ed the mode and tempo of the changes driving expression diver-
gence; however, most studies use whole-body measurements of
expression, thus averaging signal across multiple tissues.
Therefore, these studies cannot examine the prevalence of cis
and trans changes in specific biological processes, which may be
subject to different types of selection pressure. In addition, given
that many cis-regulatory elements act in a tissue-specific manner,

studies thatmeasure cis and trans effects with tissue-specific resolu-
tion may reveal effects undetectable in heterogenous samples.

Drosophila have an innate, but not adaptative, immune re-
sponse, and this response is a powerful system for measuring the
contributions of cis and trans changes for several reasons. First,
the immune response is inducible, with active and inactive states.
This allows for the clear delineation of the transcriptional response
of the immune system from that of other processes. Second, the fat
body within the immune system is an optimal tissue for study.
Although other tissues participate in the immune system, the fat
body is a primary driver of the humoral response (Buchon et al.
2014), and it is relatively easy to isolate. Last, there is ample varia-
tion in the resistance, survival, and transcriptional response to in-
fection between individual D. melanogaster lines (Lazzaro et al.
2004, 2006; Sackton et al. 2010; Hotson and Schneider 2015), sug-
gesting there aremany sequence changes driving these differences.

To quantify changes in cis and trans that drive transcriptional
divergence in the immune response, we use allele-specific expres-
sion analysis of RNA-seq data (Wittkopp et al. 2004; Signor and
Nuzhdin 2018; Frochaux et al. 2020). In this approach, we com-
pare a gene’s expression levels in two parental lines to the expres-
sion levels of each parental allele in the resulting F1 hybrids.
Differences in expression owing to changes in cis, for example, a
sequence change in a promoter or enhancer, will only affect the
expression of the corresponding parental allele. Thus, changes in
cis are independent of cellular environment and will be observed
as an allelic imbalance between the parents that is maintained in
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the hybrids. Differences in trans, for example, a coding sequence
change in a transcription factor, will affect the expression of
both alleles in the F1 hybrids and thus will be observed as a differ-
ential expression in the parental lines that is notmaintained in the
F1 hybrids. Combining allele-specific expression analysis with
RNA-seq allows us to determine the prevalence of cis and trans
changes genome-wide.

When comparing the innate immune response of differentD.
melanogaster lines, it is not clear whether cis or trans changes will
dominate. Changes in cis generally affect a single gene’s expression
and thus may be easily tolerated, as they only introduce small
amounts of phenotypic variation. Changes in trans can affect the
expression of many genes at once and efficiently introduce a large
amount of phenotypic variation, but changes in trans may
be harder for the organism to tolerate, as they also increase the
likelihood of deleterious effects. However, the specific biology of
the innate immune response may temper this expectation.
Antimicrobial peptides (AMPs) are among the most highly up-reg-
ulated genes in response to infection, but the deletion of individ-
ual AMP genes often has little to nomeasurable effect on infection
survival (Hanson et al. 2019). This suggests that to get an apprecia-
ble phenotypic effect, synchronous changes in gene expression are
required, which can result from a trans-acting change. In addition,
withinD.melanogaster lines, trans changes are typicallymore prev-
alent (Wittkopp et al. 2008; Coolon et al. 2014). In this setting, the
observation of a large number of cis-acting changes would imply
that immune-responsive expression divergence is achieved
through the divergence of one gene at a time, suggesting a fine-
tuning process. Conversely, a preponderance of trans-acting
changes would imply that expression divergence is achieved
through changes in upstream factors that can simultaneously
modulate the expression of many target genes.

To measure the contributions of cis- and trans-acting changes
in the Drosophila innate immune response, we measured fat body
gene expression in two sequenced inbredD.melanogaster lines and
their F1 hybrids, in control and infection conditions. To find sig-
naling pathway–specific effects, we separately infected the animals
with either Gram-positive Enterococcus faecalis (Efae) or the Gram-
negative Serratia marcescens (Smar). These bacteria have different
strengths of virulence and separately trigger the two primary im-
mune-signaling pathways in the fly. We quantified the contribu-
tion of cis and trans effects in the control and in each infection
condition. This approach enabled us to examine the evolutionary
changes that drive expression divergence in response to a stimulus,
whileminimizing the confounding effects ofmultiple tissue types.

Results

Two geographically distinct lines show genotype-specific

immune response

To measure the relative contributions of cis- and trans-acting ef-
fects in the innate immune response, we needed two inbred, se-
quenced strains of D. melanogaster with abundant genetic
variation and phenotypic differences in the immune response.
The founder lines of the Drosophila Synthetic Population
Resource fit these requirements, making them ideal candidates
(King et al. 2012). To maximize the likelihood of finding variation
in these lines, we selected two lines from different continents: the
A4 line, also known as KSA2, collected from the Koriba Dam in
South Africa, and the B6 line, collected from Ica, Peru. By using
the available SNP data, we found 462,548 SNPs between A4 and

B6, with about half of them falling into exonic regions, indicating
that 0.9% of exonic bases varied between the genotypes, with an
average of 25.3 variants per gene. The extensive variation in the
coding regions allowed us to map, on average, 11.2% (±1.3%) of
RNA-seq reads in an allele-specific manner.

To assess the divergence in the A4 and B6 immune responses,
wemeasured gene expression pre- andpostinfection in the abdom-
inal fat body, the primary site of immune response. To do so, we
performed RNA-seq on the dissected fat bodies of 4-d-old males
from both lines that had been infected with either Gram-positive
E. faecalis (Efae) or Gram-negative S. marcescens (Smar).We selected
these bacteria because inD.melanogaster, Gram-positive infections
generally stimulate the Toll pathway, and Gram-negative infec-
tions generally stimulate the IMDpathway, although there is addi-
tional nuance owing to signaling cross talk and the contributions
of other signaling pathways (Busse et al. 2007; Lemaitre and
Hoffmann 2007; Tanji et al. 2010; Buchon et al. 2014; Troha
et al. 2018). We measured expression before infection and 3 h
post infection to capture the early transcriptional response before
the complicating effects of feedback. As a control, we performed
RNA-seq on the fat bodies of uninfected, unwounded animals
from each genotype (see Methods). This choice means that, com-
pared with that of the control, the expression response observed
in the infected samples includes both wound healing and infec-
tion responses.

In response to Efae infection, we found sizable genotype-spe-
cific effects in the immune response. To detect these effects, we
performed two types of differential gene expression analysis: We
compared control and infected samples to find Efae-responsive
genes, and then within this group, we looked for genes differen-
tially expressed between the A4 and B6 genotypes. We found
1165 differentially expressed genes between the control and in-
fected samples regardless of genotype (Fig. 1A). We categorized
these Efae-responsive genes into four groups based on their differ-
ential expression between genotypes. Group 1 genes showed no
genotype-specific expression, Group 2 genes are differentially ex-
pressed only in the control samples, Group 3 genes are differen-
tially expressed only in the infected samples, and Group 4 genes
are differentially expressed in both the control and infected sam-
ples. Of the 500 Efae-responsive genes showing genotype effects,
87% (433 genes) are in Group 3, whereas only 10 genes are in
Group 1 and 57 genes are in Group 4 (Fig. 1B). This indicates
that many Efae-responsive genes show genotype-specific expres-
sion, and these differences are typically only revealed in response
to infection.

In response to the Smar infection, we found 1203 differen-
tially expressed genes between the control and infected samples
(Fig. 1A). To look for genotype-specific expression, we categorized
the 1203 Smar-responsive genes into the four previously men-
tioned groups. For this infection, we found roughly equal numbers
of genes in Groups 2–4, with 88, 91, and 84 genes, respectively
(Fig. 1B). This indicates that a higher fraction of Smar-responsive
genes shows genotype effects before infection than that of Efae-re-
sponsive genes (P=1.7 ×10−11, chi-square test, Bonferroni-correct-
ed), whereas a higher fraction of Efae-responsive genes shows
genotype effects after infection (P=9.5 ×10−67, chi-square test,
Bonferroni-corrected).

To assess whether there is also phenotypic divergence on
the organismal level, we performed the Efae and Smar infections
andmeasured survival and bacterial load. In response to Efae infec-
tion, we found differences in the ability to survive infection
between genotypes, with B6 surviving infection longer than A4
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(Supplemental Fig. S1A). In response to Smar, we found there were
no significant differences in survival, but bacterial load was lower
in A4 than in B6 (Supplemental Fig. S1B,C). Together, these data
show that there are differences between the two lines in their abil-
ity to resist or survive infection.

To compare our tissue-specific measurements to previous
work, we intersected our Efae- and Smar-responsive genes to an ex-
isting list of immune-responsive genes. This list is an expanded
version of the Drosophila immune-responsive genes set (DIRGS)
and constitutes the summation of more than two decades of
work in Drosophila (De Gregorio et al. 2001; Lemaitre and
Hoffmann 2007; Troha et al. 2018). Of 538 genes on this list, we
found more than half of these (297 genes) were identified as im-
mune-responsive in our data (Fig. 1C). Troha and colleagues
(2018) identified a subset of immune-responsive genes as core,
that is, the genes that are differentially expressed regardless of
the type of bacterial infection. Of these 252 core genes, ∼40%
were found to be both Smar- and Efae-responsive in our data.
Therefore, despite differences in the genetic background, tissue
(previous studies were typically performed with whole-body sam-
pling), and time points, our findings show concordance with pre-
vious studies of gene expression in response to infection. We also

show that the A4 and B6 lines have diver-
gence in immune-responsive expression,
making them suitable for subsequent F1
hybrid experiments.

Cis-acting effects dominate expression

variation in the uninfected fat body

To effectively quantify cis and trans ef-
fects, we needed to accurately analyze
the allelic expression in F1 hybrids.
By using the allele-specific alignment
pipeline (ASAP) (F Krueger, https://www
.bioinformatics.babraham.ac.uk/projects
/ASAP/), we quantified allele-specific ex-
pression in our samples. Because we are
working with males, we were able to use
the fraction of misassigned X Chromo-
some reads as a metric of our pipeline’s
accuracy (Supplemental Methods). On
average, 0.5% of X Chromosome reads
were misassigned (SD=3%) (Supplemen-
tal Table S1). The consistent, low level of
misassigned reads verifies our ability to
accurately quantify allelic expression.

We next sought to quantify cis and
trans effects in the control samples. We
used the complete set of parental RNA-
seq reads and the subset of the F1 hybrid
reads that could be assigned to a specific
allele. By using three separate generalized
linear models, we tested for differential
expression in the parents, allelic imbal-
ance in the F1 hybrids, and trans effects
between the parents and F1 hybrids (see
Methods) (Davidson and Balakrishnan
2016; Osada et al. 2017; Takada et al.
2017). We then categorized each gene
into one of six categories (Fig. 2A).
Genes showing no differential expres-

sion in the parents or F1 hybrids are conserved. Genes showing dif-
ferential expression in both the parents and F1 hybrids and no
trans signal are cis-only. Genes showing differential expression in
the parents and not the F1 hybrids are trans-only. Some genes
show evidence of both cis and trans effects and are either compen-
satory (if the changes on expression are in opposite directions) or
cis+ trans (if the changes on expression are coherent). Genes that
do not fall into any of these categories are undetermined.

Of the 4959 genes that were expressed in the preinfection fat
body and could be detected in an allele-specific manner, 77%were
conserved (3802 genes) (Fig. 2B,F). We found 151 genes showing
unambiguous cis or trans effects. Among these 151 genes, cis effects
dominated the signal: 90% of genes (135 genes) showed cis signal
(including cis-only, cis + trans, and compensatory genes), and 57%
(87 genes) showed cis-only effects. Forty-two percent of genes (64
genes) showed trans signal, and only 10% of genes (16 genes)
showed trans-only effects. One-quarter of genes (37 genes) were
compensatory, even when using an experimental design to avoid
the artificial inflation of compensatory signal (Methods) (Fraser
2019; Zhang and Emerson 2019). Additionally, to ensure that
any differences in the quality of our in-house A4 and B6 transcrip-
tomes do not affect our conclusions, we quantified cis and trans

B

C

A

Figure 1. The A4 and B6 D. melanogaster lines have variation in their response to Gram-positive E. fae-
calis (Efae) infection and Gram-negative S. marcescens (Smar). (A) Wemeasured expression in the fat bod-
ies of the A4 and B6 lines infected with Efae or with Smar, 3 h post infection. We found 1165 and 1205
differentially expressed genes in response to infection to Efae and Smar, respectively, relative to control
samples. Mean centered log2 average CPM values for each condition are displayed. We categorized
the infection-responsive genes into four groups, based on their differential expression between the
two fly genotypes: genes showing no genotype-specific expression (Group 1), genes showing geno-
type-specific expression only in the control condition (Group 2), genes showing genotype-specific ex-
pression only in the infected condition (Group 3), and genes showing genotype-specific expression in
both the control and infected conditions (Group 4). (B) Among genes showing genotype effects, thema-
jority of genes in Efae fell into the Group 2 classification, indicating a large amount of genotype-specific
expression variation is revealed upon infection with Efae. Among Smar-responsive genes, roughly equal
numbers show expression differences between the genotypes before (Group 2), after (Group 3), and
both before and after infection (Group 4). (C) We intersected the genes we identified as differentially ex-
pressed in response to infection and a list of previously published immune-responsive genes. More than
half of the verified immune genes were identified as differentially expressed in the abdominal fat body,
with half of these immune genes being shared between conditions. Among these previously identified
immune genes, core genes are differentially expressed across all infections. We detected ∼40% of the
core set as differentially expressed in both our infection conditions, despite differences in the genetic
background, tissue type, and time point used in our study versus previous work.
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effects using sets of high-confidence genes at multiple levels of
stringency and found that this had negligible effects on the detect-
ed signal (Methods) (Supplemental Fig. S2; Supplemental Table
S2). From these data, we can conclude that in the unstimulated
state, most genes have conserved expression levels in the fat
body, and among those genes that diverge, cis effects dominate,
with a sizable number of genes showing compensatory cis and
trans changes.

More cis than trans effects are found in

Efae-infected fat body expression

We quantified cis and trans effects in
Efae-infected samples following the
same methodology. We found ∼52% of
genes (2580 genes) are conserved, and
379 genes showed unambiguous cis or
trans effects (Fig. 2C). To identify genes
whose expression divergence is specific
to the immune response, we eliminated
genes that show cis or trans signal in the
control sample. After this filtering,
∼69%of the genes showing cis or trans ef-
fects (263 genes) remained; 66% of these
genes (174 genes) show cis-only signal,
and 28% (75 genes) show trans-only sig-
nal. Only eight genes (3%) show concor-
dant cis+ trans effects, and only six genes
show compensatory effects. Of the genes
that show cis-only signal, roughly even
numbers of genes show higher expres-
sion in each genotype, consistent with
the idea that cis-acting changes affect a
single gene at a time. In contrast, of the
genes showing trans-only signal, nearly
twice asmanywere expressedmore high-
ly in the B6 genotype (48 genes) than in
the A4 genotype (27 genes; P=0.0105,
chi-square test). This suggests that one
or a few changes in upstream regulatory
factors are responsible for this observa-
tion, and below, we identify candidate
genes. Because we do not observe this
trend toward higher B6 expression in
the control samples and have removed
genes that showed any evidence of map-
ping bias (Methods), we are confident
this trend reflects true biological differ-
ences in the immune response. In sum,
we find both cis and trans effects drive
Efae-responsive expression divergence,
with cis effects dominating.

Trans effects dominate

expression variation

in the Smar-infected fat body

Last, we quantified cis and trans effects in
response to Smar infection. We found
∼82% of genes (4106 genes) are con-
served, and 355 genes showed unambig-
uous cis or trans signal (Fig. 2D).We again
filtered out genes that show cis or trans ef-
fects in the control samples and were left

with 251 genes that have immune-specific signal. Of these, 31%
(79 genes) showed cis-only signal, and roughly equal numbers of
cis-only genes showed higher expression in each genotype.
Seven genes showed cis+ trans effects, and 16 genes had compen-
satory signal. Fifty-nine percent of genes (149 genes) showed
trans-only signal. Within trans-only genes, we found that 71%
(106 genes) showed greater expression in B6. In summary, in re-
sponse to Smar infection, trans effects drive the majority of

E F

BA

C D

Figure 2. The relative contributions of cis and trans effects to expression divergence are condition spe-
cific. (A) Here we show a schematic of the expected locations for genes falling into four classifications of
causes of expression divergence in plots that show the expression ratio of a gene in the parental lines (x-
axis) against the allele expression ratio in the F1 hybrids (y-axis). (B) In the uninfected control condition,
of 4960 genes that could be detected in an allele-specific manner, 153 genes showed cis or trans signal.
Of these 153 genes, most showed cis-acting effects. Panel F displays the precise numbers of genes in each
category. (C) In response to Efae infection, expression divergence is driven predominantly by changes in
cis. (D) In response to Smar infection, expression divergence is dominated by changes in trans. (E) We
compared the fraction of genes categorized into each divergence class in the three conditions and found
that the modes of expression divergence were condition specific.
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expression divergence between the two genotypes, and few genes
show compensatory effects.

Comparisons of cis and trans signals in different conditions reveal

both infection-specific and shared divergence

To systematically assessmodes of expression variance under differ-
ent conditions, we compared the proportion of genes falling into
the different categories (Fig. 2E). The control and Efae-infected
samples had a greater proportion of cis-only genes than the Smar
samples (control vs. Smar P=4.0 ×10−6, Efae vs. Smar P= 6.8 ×
10−14, chi-square test, Bonferroni-corrected). All three groups dif-
fer in the proportion of trans-only genes, with Smar-infected
samples showing the highest proportion of genes with trans-only
signal, followed by Efae, and then the control samples (control
vs. Efae P=3.5 ×10−4, control vs. Smar P<1.5 ×10−16, Efae vs.
Smar P=3.1 ×10−11, chi-square test, Bonferroni-corrected). We
also found that the uninfected fat body showed significantly
more compensatory signal than either infected sample (control
vs. Efae P<1.5 ×10−16, control vs. Smar P=1.8 ×10−6, chi-square
test, Bonferroni-corrected). Taken together, this suggests one of
two possibilities. One possibility is that before infection, when
the fat body is carrying out its metabolic functions, there is less
pressure for expression divergence. An alternative interpretation
is that immune-responsive genes are more tolerant of expression
divergence and subject to less pressure to maintain expression lev-
els. In response to infection, there is ample expression divergence,
which is driven by both cis and trans effects. The extent to which
each type of effect contributes is dependent on the particular path-
ogen, suggesting that the relative importance of local and pleiotro-
pic changes is specific to different infection pressures.

Although we generally expect the two infections to regulate
gene expression via distinct signaling pathways, we also anticipat-
ed some genes would be regulated in both infections, owing either
to cross talk between the IMD and Toll pathways (Busse et al. 2007;
Tanji et al. 2010) or to more general infection and wound respons-
es.We found 86 genes with unambiguous cis and/or trans signal in
response to both Efae and Smar infection (Supplemental Data S1).
Of these genes, 71 showed concordant classification. Therefore, in
the majority of genes shared between these two infections, the
same genetic differences are likely driving the expression diver-
gence in both infection conditions.

Differential expression of detection genes is a likely source for

genotype expression bias in observed trans effects

Becauseweobserved that geneswith trans-only effects tended to be
more highly expressed in B6 than in A4 in both infection condi-
tions, we hypothesized that changes in a handful of upstream im-
mune factors are responsible for this phenomenon. The changes in
upstream regulators could either be infection specific or shared.
Out of 202 genes showing trans-only signal in either infection,
only 17 genes were shared, indicating that the bulk of trans-acting
changes are likely infection specific.

Immune-detection genes, immune-signaling genes, or tran-
scription factors differentially expressed between genotypes are
likely sources of trans-acting changes, because these genes have
the ability to affect the expression of many downstream targets.
We posited that these genotype-specific differences had to be pre-
sent in the control to have the effects at the 3-h post-infection
timepoint. Of the 295 genes that are differentially expressed be-
tween genotypes in the control samples, we found 22 genes that

are prime candidates, which we will refer to as trans-source candi-
dates (Table 1).

Five peptidoglycan recognition protein (PGRP) genes are po-
tential mediators of the large number of trans effects observed in
the Smar infection. Four of these PGRPs (PGRP-SC1a, PGRP-SC1b,
PGRP-SC2, PGRP-LB) are negative regulators of the IMD response,
and the last gene, PGRP-SD is a positive Toll and IMD regulator
(Bischoff et al. 2006; Zaidman-Rémy et al. 2006; Iatsenko et al.
2016; Charroux et al. 2018; Lu et al. 2020). All of the negative reg-
ulators, PGRP-SC1a, PGRP-SC1b, PGRP-SC2, PGRP-LB, are more
highly expressed in A4. Given that these are negative regulators
of the IMD pathway, this finding is congruent with the observa-
tion that genes showing a trans-only signal tend to showgreater ex-
pression in B6. PGRP-SD is more highly expressed in A4, and given
its role as a positive regulator of the IMD response, it is not consis-
tent with the trend of a higher B6 expression of genes showing
trans-only signal. Because the four negative regulators are more
highly expressed in A4, it is possible this balance between negative
and positive IMD regulators can account for the expression trend
seen in Smar trans-only genes.

Although there were fewer trans effects in the Efae-infected
samples than in the Smar-infected samples, the pattern wherein
most trans-only genes showed greater expression in B6 than A4
was maintained. Of the 22 trans-source candidates, we found two
Toll-specific genes: Spatzle-Processing Enzyme (SPE) and spatzle
(spz), which are both more highly expressed in A4. spz encodes
the Toll receptor ligand and SPE is required to generate the active
form of Spz, so differential expression of these genes can drive a
large number of downstream changes. In addition, the PGRP-SD
protein can act as a positive regulator of both the Toll and IMD re-
sponses and is also found to have higher expression in the A4 line.
Given these observations, it is likely that other sources are respon-
sible for the trans effects observed in Smar infections.

In addition to differences in expression between genotypes,
function-altering differences in the coding sequences of immune
genes may also be the source of trans-acting changes. As a first ap-
proach, we analyzed the coding sequence differences between A4
and B6 in the 22 trans-source candidates identified above using the
Ensembl Variant Effect Predictor (VEP) (McLaren et al. 2016).
There are a number of nonsynonymous changes, some of which
fall into functional domains (Supplemental Fig. S3; Supplemental
Tables S3, S4). Predicting the effect of these mutations on individ-
ual protein function, however, remains a challenge.

As an alternative approach, we analyzed the proportions of
synonymous to nonsynonymous coding changes between A4
and B6 in several larger gene sets. Previous work has shown that
immune-related genes have a higher average rate of adaptive evo-
lution than other gene classes (Sackton et al. 2007; Obbard et al.
2009). We wanted to see if, for our particular genotypes and genes
of interest, the same held true. We considered all genes expressed
in the fat body above a threshold of one count per million (CPM)
and then sorted them into two groups: genes that are differentially
expressed in response to either or both infections (DE infection)
and those that are not (fat body detected). We then intersected
each of these gene lists with our curated immune-responsive
gene set to generate both a list of differentially and nondifferen-
tially expressed immune genes (DE immune and non-DE immune,
respectively) (Fig. 3A). We posited that, given the large number of
trans effects in response to infection, differentially expressed im-
mune-related genes may have a greater proportion of nonsynony-
mous changes compared with the fat body–detected gene set. We
found that DE immune genes have a significantly higher fraction
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of nonsynonymous sequence changes (24%) compared with the
fat body–detected genes (21%) (P=0.01, chi-square test,
Bonferroni-corrected), suggesting that some of these changes
may be under selection and possibly the
source of our trans-acting signal (Fig.
3A,B). In comparison, the non-DE im-
mune genes had a lower proportion of
nonsynonymous changes (19%, P=1.6
×10−4, chi-square test, Bonferroni-cor-
rected), suggesting that the elevated rate
of nonsynonymous changes in DE im-
mune genes is not simply reflective of
their immune status. In summary, we
find that differentially expressed im-
mune genes have a larger proportion of
nonsynonymous changes between our
genomes of interest than did fat body–
detected or nondifferentially expressed
immune genes. Some of these nonsy-
nonymous changes may be capable of
altering the function of these proteins
and therefore drive expression diver-
gence of downstream genes in a trans-act-
ing fashion.

Genes with cis effects have greater
transcription factor binding site

divergence than genes with trans effects

The above analysis sought to identify
changes in expression or protein se-

quence that may drive the observed trans effects; cis-acting chang-
es also drive expression divergence of a large number of genes.
These changes encompass mutations in several types of DNA

BA

Figure 3. There is a greater proportion of nonsynonymous SNPs in previously identified immune-re-
sponsive genes. (A) To look for the prevalence of nonsynonymous SNPs in our genotypes and genes
of interest, we defined four gene sets. Among genes detected in the fat body samples, we separated
genes into those that were differentially expressed in response to either infection (DE infection) and those
that were not (fat body detected). Within the fat body–detected genes, we defined previously identified
immune genes showing no differential expression in response to infection (non-DE immune), and among
the DE infection genes, we refined the gene list to include previously identified immune genes (DE im-
mune). The numbers indicate the total number of SNPs found in each gene set and the percentages
of synonymous and nonsynonymous SNPs. (B) DE immune genes have a higher proportion of nonsynon-
ymous SNPs than the fat body–expressed genes, which suggests theymay carry function-altering SNPs at
a higher rate than the fat body–expressed genes. P-values are Bonferroni-corrected from chi-square tests
with the proportion of nonsynonymous SNPS relative to the fat body–expressed gene set.

Table 1. Transcription factors and immune genes identified as potential sources of trans effects in infection

FB Gene ID
Gene
symbol Type

Log2 fold
change (B6/

A4)
More highly
expressed in:

A4
average
CPM

B6
average
CPM Immune involvement

FBgn0029822 CG12236 TF −3.13 A4 28 2.7 Unclear
FBgn0039075 CG4393 Signaling 2.06 B6 8.8 39 Unclear
FBgn0038978 tHMG1 TF 3.06 B6 7 57 Unclear
FBgn0287768 esg TF −3.27 A4 11 1 Unclear
FBgn0039932 fuss TF 2.50 B6 1.1 6.3 Wound healing
FBgn0250732 gfzf TF 8.24 B6 0 2 Unclear
FBgn0000448 Hr3 TF −4.12 A4 10 0.7 Unclear
FBgn0016675 Lectin-galC1 Detection 2.72 B6 79 570 Binding and agglutination
FBgn0035993 Nf-YA TF −10.16 A4 10 0 Unclear
FBgn0028542 NimB4 Detection −1.08 A4 40 22 Phagocytosis and microbial pattern

recognition
FBgn0259896 NimC1 Detection −3.06 A4 97 27 Phagocytosis and microbial pattern

recognition
FBgn0003130 Poxn TF −4.38 A4 1.2 0.07 Unclear
FBgn0014033 Sr-CI Detection −2.39 A4 84 38.6 Phagocytosis and microbial pattern

recognition
FBgn0004606 zfh1 Signaling / TF −1.30 A4 50 17 Hematopoiesis
FBgn0031973 Spn28Dc Signaling −1.82 A4 9.4 2.4 Negative regulator of melanization
FBgn0037906 PGRP-LB Detection −0.87 A4 111.9 75.2 Negative regulator of IMD pathway
FBgn0043576 PGRP-SC1a Detection −5.57 A4 10 0.1 Negative regulator of IMD pathway
FBgn0033327 PGRP-SC1b Detection −5.24 A4 3.9 0.2 Negative regulator of IMD pathway
FBgn0043575 PGRP-SC2 Detection −4.02 A4 15 1.3 Negative regulator of IMD pathway
FBgn0035806 PGRP-SD Detection −1.33 A4 97.6 19.2 Positive regulator of IMD pathway
FBgn0039102 SPE Signaling −0.89 A4 491.9 255.2 Positive regulator of Toll pathway
FBgn0003495 spz Signaling −0.85 A4 72.8 45.5 Positive regulator of Toll pathway

List of genes potentially driving the trans effects for Efae and Smar infection. Candidate genes were identified by finding genes that had genotype-spe-
cific expression differences in the uninfected control conditions and that were classified as either a transcription factor (TF), immune-signaling gene, or
immune-detection gene.
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features, including promoters, enhancers, and untranslated re-
gions. We analyzed the patterns of divergence in immune-respon-
sive transcription factor binding sites (TFBSs) to see if they were
consistent with our delineation of cis- and trans-acting effects.
We hypothesized that genes whose divergence was owing to cis-
acting effects would show more divergence in the associated
TFBSs than those without them.

We scanned potential regulatory regions of our genes of inter-
est for TFBSs in the A4 and B6 genomes. There are relatively few
characterized immune-responsive enhancers in the fat body, so in-
stead we extracted 1-kb regions upstream of the transcription start
site of genes showing any cis- or trans-acting changes in infected
conditions. We searched these regions for binding sites corre-
sponding to four known immune-responsive transcription factors:
dorsal (Dl), Relish (Rel), serpent (Srp), and CrebA (Shazman et al.
2014). CrebA modulates transcription in response to both Gram-
positive and Gram-negative bacteria (Troha et al. 2018). Srp bind-
ing sites have been previously used to identify immune-responsive
enhancers (Senger et al. 2004). Relish is a NF-kB transcription fac-
tor downstream from the IMD pathway, and Dl and its paralog
Dorsal-related immunity factor (Dif) are downstream from the
Toll signaling pathway. For this analysis, however, only Dl was
considered because Dif homodimers have fewer specific binding
preferences than Dl and because Dif/Rel heterodimers bind se-
quences similar to Rel homodimers (Senger et al. 2004). Given
the cross talk between the Toll and IMD pathways, we searched
both Efae- and Smar-responsive genes for both Dl and Rel binding
sites. For each gene, we calculated the difference in the total num-
ber of TFBSs in the A4 and B6 genomes.We then compared the ge-
notype differences between genes showing any cis effects and

genes showing exclusively trans effects (seeMethods). We hypoth-
esized that genes showing cis effects would have more differences
in TFBSs than the trans-effected genes, whichwould be observed as
a broader distribution in TFBS differences.

For all transcription factors except Dl (Fig. 4A–E), the genes
with cis effects did indeed show a broader distribution of difference
than those with trans effects (all TFs: P=8.8 ×10−13; Rel: P=2.9 ×
10−2; Srp: P=7.1 ×10−10; CrebA: P=1.5 ×10−7; F-test to compare
distribution variances, Bonferroni-corrected). Although most
genes do not differ in TFBS numbers, 22% of genes with cis chang-
es differed, as opposed to only 18% of trans-affected genes, but this
differencewas not significant (Fig. 4F). As the number of character-
ized immune-responsive enhancers and transcription factors in-
creases, we will be able to refine this analysis to more accurately
identify potential causative mutations of cis effects.

Discussion

Here, we quantified themode and extent of expression divergence
in the Drosophila abdominal fat body, both in an uninfected con-
trol condition, in which it carries out a variety of metabolic roles,
and in response to two types of infection. We found that two geo-
graphically isolated lines ofD. melanogaster are phenotypically dis-
tinct in their immune responses, differing on both the organismal
and transcriptional levels. By comparing gene expression in the fat
body between these lines and their F1 hybrids, we quantified the
contributions of cis and trans effects to expression divergence in
the uninfected control, Efae-infected, and Smar-infected condi-
tions. Both the control and Efae-infection conditions were domi-
nated by cis effects, whereas the Smar-infection condition had an

E

F

BA C

D

Figure 4. There are greater differences in TFBSs in cis-affected genes than trans-affected genes. (A) We identified TFBSs for the four immune-responsive
transcription factors Dl, Rel, Srp, and CrebA in a 1-kb region upstream of 219 cis-affected genes and 199 trans-affected genes. Differences in total TFBS
numbers between genotypes were calculated for each gene and plotted. We find that variance in the distribution of these differences is significantly greater
in genes showing cis effects (F-test to compare distribution variances, Bonferroni-corrected). (B) For Dl TFBSs, there was not a significant difference in the
width of the TFBS distribution between genes showing cis effects and trans effects. (C–E) For Rel, Srp, and CrebA TFBSs, there was a broader distribution of
TFBS differences in genes with cis effects than in genes with trans effects. (F) A larger proportion of genes showing cis effects had a difference in total TFBSs
than did genes showing trans effects, although the differences in these proportions were not significant.
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abundance of trans effects. The uninfected control also showed a
greater proportion of compensatory effects, suggesting that there
is stabilizing selection tomaintain fat body expression levels of cer-
tain genes in the absence of an infection. Among the genes show-
ing changes in trans, we found that expression of the B6 allele is
typically higher, and we identified expression divergence in a
group of proteins that may drive these trans effects. By analyzing
the TFBS content of upstream regions of genes, we found that
genes with cis effects show evidence of more TFBS divergence
than do genes with trans effects. Overall, we find that the mode
of evolution in expressiondivergence can vary between conditions
in a single tissue and likely represents condition-specific selection
pressures.

Our unique approach to measuring the mode of expression
divergence gave rise to several novel observations about the rela-
tive contributions of cis and trans effects on expression variation.
Although there have been a number of studies aimed at disentan-
gling the contribution of cis and trans changes to gene expression
in Drosophila, few have sought to answer this question using a sin-
gle organ or with different physiological stimuli (Wittkopp et al.
2004, 2008; McManus et al. 2010; Coolon et al. 2014; Osada
et al. 2017). Our approach allows us to examine evolutionary
changes in response to perturbation while minimizing the con-
founding effects of multiple tissue types. A previous study by
Juneja et al. (2016) found, among geographically distinct flies, a
large number of cis-acting changes that cause whole-body expres-
sion divergence in response to an infection with mixture of bacte-
ria. This is concordant with our finding of a large number of cis-
acting changes in both infection conditions, but this study did
not quantify trans-acting changes or distinguish between Toll-
and IMD-specific responses. Bymeasuring expression in the heads
and abdomens of multipleD. melanogaster lines, another group re-
ported the predominance of changes in cis over those in trans but
did not measure these differences in different physiological states
or attempt to dissect individual tissues in the head or abdomen
(Osada et al. 2017). Most recently, two studies sought to uncover
the underlying genetics of resistance to either Pseudomonas ento-
mophila or E. faecalis infection, and each identified novel drivers
of phenotypic divergence (Chapman et al. 2020; Frochaux et al.
2020). Here, we sought to directly assess the contribution of cis
and trans sequence changes in a single tissue in the context ofmul-
tiple treatment conditions, giving a unique high-resolution view
of the evolutionary sequence changes underlying expression
divergence.

With our approach, we were able to uncover two key trends.
First, we found that compensatory mutations were more frequent
in the control samples than in either of the infected conditions.
Previous studies in several organisms had suggested that compen-
satory effects were very prevalent (McManus et al. 2010; Goncalves
et al. 2012; Schaefke et al. 2013; Coolon et al. 2014). However, cer-
tain choices in experimental design can inflate estimates of com-
pensatory effects (Fraser 2019; Zhang and Emerson 2019). Our
study avoids this artifact and therefore yields a more accurate esti-
mate of compensatory effects across multiple conditions.
Additionally, a large proportion of studies addressing cis and trans
effects in animals do so in “control” conditions, whichmay not re-
veal the full extent of selection forces that act on gene expression
(Goncalves et al. 2012; Davidson and Balakrishnan 2016; Osada
et al. 2017; Signor and Nuzhdin 2018). We find evidence that
the genes involved in the maintenance of basic metabolic func-
tions of the uninfected fat body are under different selective pres-
sures than those involved in immune response. Unlike the

immune-responsive genes, which must contend with a continu-
ously evolving pathogen landscape, the genes carrying out meta-
bolic functions may be subject to stabilizing selection, given
relatively unchanging nutritional availability. In future studies, it
will be interesting to further probe which systems and conditions
show enrichment for these different patterns of expression
divergence.

Second, we observe that the relative contribution of cis- and
trans-acting changes are perturbation specific. In response to Efae
infection, cis effects dominate expression changes, whereas in
the Smar infection, trans changes are predominant. The prevalence
of either cis or trans effects can be reasonably justified in our sys-
tem, but we did not anticipate that the proportion of these effects
would be infection specific. Because changes in trans factors have
pleiotropic effects, it has been suggested that changes to these
factors are under more selective constraint than are cis-acting ele-
ments, and thus, cis effects can more readily introduce small-scale
variation into a system (Schaefke et al. 2013). In some cases, how-
ever, arriving at a more fit phenotypemay require the coordinated
alteration of expression ofmany genes, whichmay bemore readily
achieved by changes to trans-acting factors. In our D. melanogaster
lines, S. marcescens is more virulent than E. faecalis: A higher dose
of E. faecalis is needed to achieve similar levels of mortality to that
of S. marcescens (Supplemental Fig. S1). It is possible that adapta-
tion to highly virulent pathogens or rapidly evolving pathogens
requires large-scale, synchronous changes to expression, whereas
adaptation to less virulent pathogens is possible with smaller, lo-
calized mutations. Experiments with a wider range of pathogens,
particularly those that trigger the same signaling pathway, will fur-
ther illuminate the relationship between the mode of expression
divergence and the host–pathogen relationship. In addition, ex-
pansion of the study tomoreD.melanogaster genotypes or to other
time points will yield a more complete picture of the modes of ex-
pression divergence in the immune response.

In summary, we find that themode of expression divergence,
as represented by the proportion of cis and trans effects in a system,
is condition specific in the D. melanogaster abdominal fat body.
This specificity may be a result of the distinct selective pressures
that different host–pathogen interactions exert on the D. mela-
nogaster immune system. In the course of our study, we found sev-
eral candidate genes that may be the sources of the observed trans
effects, which aremost prominent in Smar infection. In the future,
we can combine the data sets presented here with other types of
functional genomics experiments to identify the specific sequence
changes that drive cis-acting divergence. Taken together, these
studies will provide a more comprehensive view of how regulation
of expression in this rapidly changing system is wired and evolves.

Methods

Animal genotypes, infection protocols, and survival analysis

TheA4 andB6D.melanogaster lines, SNP tables, and genomic reads
were received from the Drosophila Synthetic Population Resource
(King et al. 2012). Flies were reared at 25°C on standard cornmeal
fly food (Brent and Oster 1974). For all RNA-seq experiments 4-d-
old males were infected with ∼15 nL of A600 = 0.5 OD solution of
either E. faecalis or S. marcescens viamicroinjection, yielding an in-
fection of ∼10,000 CFU per fly (Khalil et al. 2015). Survival and
bacterial load experiments were performed using amodified infec-
tion protocol (Supplemental Methods). Uninfected controls were
placed on a carbon dioxide pad for 6 min to mimic the effects of
anesthesia used for microinjection. Bacteria were grown in liquid
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culture on a shaker overnight at 37°C and then diluted 1:1000 in
fresh media in the morning. Cultures were grown until exponen-
tial phase and then pelleted down and resuspended in PBS for
OD measurement and injection. Injections took place between
3:00 p.m. and 5:00 p.m. to account for the impact of circadian
rhythm on immune response (Scheiermann et al. 2013).

To determine the number of unique SNPs betweenA4 and B6,
we downloaded published SNP tables from the DSPRwebsite (King
et al. 2012). We selected SNPs that were not shared between lines
and that also showed a reference allele frequency of <0.05. We
then calculated total SNP differences for exonic and nonexonic
regions using exon coordinates from FlyBase (dm6/iso-1:
FB2019_01) (Thurmond et al. 2019).

Preparation and sequencing of RNA-seq libraries

For sequencing experiments, abdominal filets with the attached
fat bodies were prepared as previously described (Krupp and
Levine 2010) 3 h post infection. Three fat bodies per sample
were suspended in TRIzol on ice (Invitrogen) and immediately
stored at −80°C for later extraction (Kono et al. 2016). To mitigate
the impact of batch effects, injections and RNA extractions were
performed in groupings of six to eight samples, with at least two
treatment conditions and two genotypes (A4, B6, A4B6, or B6A4)
represented in each batch. A minimum of three biological repli-
cates were collected for each treatment condition/genotype com-
bination. Both the order of treatment and the order of RNA
extraction were randomized for each batch. RNAwas extracted us-
ing Zymo Research Direct-zol RNA extraction kits. Library con-
struction was completed by protocol outlined by Serra et al.
(2018). Samples were then sequenced on a Illumina NextSeq plat-
form with a NextSeq 500/550 high output kit v2.5 to generate 43-
bp paired-end reads. Data were imported to the UCI high perfor-
mance computational cluster for trimming and mapping of se-
quenced reads.

Differential expression analysis

Reads were trimmed and filtered using Trimmomatic 0.35 (Bolger
et al. 2014), specifying the parameters ILLUMINACLIP:TruSeq3-
PE.fa:2:30:10 LEADING:6 SLIDINGWINDOW:4:15 MINLEN:30.
Count and TPM data for each sample were then calculated using
Salmon 0.12.0 aligner (Patro et al. 2017) using the dm6/iso-1 tran-
scriptome and the parameters -l A ‐‐validateMappings. Count
matrices of gene-level data were then constructed in R using
the Tximport 1.12.3 package (Soneson et al. 2015). To find genes
either differentially expressed in response to each infection, com-
pared with control, or differentially expressed between genotypes,
we used the edgeR 3.26.5 package (Robinson et al. 2010;McCarthy
et al. 2012). For this analysis, we excluded lowly expressed genes
(CPM<1), accounted for extraction batch in our model, and cor-
rected P-values with false-discovery rate (FDR) (Benjamini and
Yekutieli 2001). Genes with an FDR<0.05 were considered differ-
entially expressed. Additionally, we assessed the potential effect of
absolute expression on our ability to call genotype effects, and we
did not find any significant sources of bias (Supplemental Fig. S5).
Code and accompanying files related to this section are in
Supplemental Code as both R-notebooks and HTML documents
(Script1_fig1).

Generation of A4 and B6 transcriptome annotations

Tomap RNA-seq reads in an allele-specificmanner, we created two
reference transcriptomes by lifting over iso-1 genome annotations
to sequenced A4 and B6 genomes. By use of the UCSC liftOver
suite, custom chain files were created by mapping iso-1 homolo-

gous sequences to the A4 or B6 genome using BLAT (parameters
-tileSize = 12 -minScore = 100 -minIdentity = 98) (Salinas et al.
2016). A subset of 7654 high-confidence genes were used for the
subsequent analysis (Supplemental Methods).

Allele-specific expression analysis

RNA reads were assigned parental alleles using ASAP (F Krueger,
https://www.bioinformatics.babraham.ac.uk/projects/ASAP/) us-
ing the A4 and B6 genomes and allowing for no mismatches.
Nonuniquely assignable reads were discarded. Count and TPM
data were then generated by aligning allelic reads to the corre-
sponding transcriptome. Count matrices of gene-level data were
then constructed in R using the Tximport 1.12.3 package
(Soneson et al. 2015).

To characterize expression divergence into cis and trans cate-
gories, differential expression was determined with unparsed pa-
rental reads and allele-specific reads from the F1 hybrids, using
edgeR and three distinct GLM structures. Lowly expressed genes
(CPM<1) and X Chromosome genes were excluded from the anal-
ysis. For each condition, we first tested for differential gene expres-
sion between parental samples (Murad et al. 2019). Next, we tested
for allelic imbalance, taking into account parent of origin andma-
ternal genotype effects as outlined previously (Osada et al. 2017;
Takada et al. 2017). For this test, we used half of the F1 hybrid
samples. Finally, we tested for trans effects using parental samples
and the remaining F1 hybrid samples (Supplemental Code:
Script2_fig2.rmd section 4; J Coolon, pers. comm.). In all three
tests, we assigned significance after adjusted P-values for multiple
comparisons using the FDR method (Benjamini and Yekutieli
2001). By using the results from each test, we categorized each
gene into one of five classes using the logic outlined in Table 2,
which is based on previous studies (Emerson and Li 2010;
McManus et al. 2010). Any genes that did not fit into the described
patterns were categorized as “undetermined” and were excluded
from further analysis. A complete list of genes and their categories
for each condition is available in the Supplemental Data S1. The
code and accompanying files related to this section are available
in the Supplemental Code in both R-notebook and HTML docu-
ment form (Script2_fig2).

Identification of sources of trans effects

To investigate potential sources of observed trans effects, we looked
for genes differentially expressed in uninfected samples.We select-
ed genes that show differential expression between A4 and B6 in
uninfected samples. These genes were then intersected with a list
of known Drosophila transcription factors, as well as known im-
mune genes (De Gregorio et al. 2001; Lemaitre and Hoffmann
2007; Hammonds et al. 2013; Troha et al. 2018). Only genes that

Table 2. Logic for cis and trans effect gene categories

Category
Differential gene

expression in parents
F1 allelic
imbalance

Trans
test

cis-only True True False
trans-only True False True
cis+ trans True True True
Compensatory False True True
Conserved False False False

Genes were designated into categories based on the results of three stat-
istical tests. Here, true indicates a significant test result at FDR <0.05,
and false indicates an insignificant test result.
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were transcription factors, immune-detection genes, or immune-
signaling genes were considered to be candidates.

Analysis of SNPs in coding sequences

To better understand the effects of sequence changes on coding re-
gions between our lines, we used the Ensembl VEP to predict the
effects of SNPs on the resulting amino acid sequence (McLaren
et al. 2016). The fat body–expressed gene set consists of genes ex-
pressed in the unstimulated fat body above a CPM of one and ex-
cludes genes differentially expressed in response to infection. DE
infection genes are those differentially expressed in response to in-
fection with either Efae or Smar. DE immune genes are those differ-
entially expressed genes that are also previously verified immune-
response genes, and non-DE immune genes are previously verified
immune genes in the fat body expression gene set. Unless other-
wise stated, figures were generated using ggplot2 3.3.2 package
in R 3.6.0 (Wickham 2016; R Core Team 2019). Code and accom-
panying files related to this section are available in the
Supplemental Code in both R-notebook and HTML document
form (Script3_figure3).

Analysis of TFBS variation

To investigate the effects of noncoding sequence changes on ob-
served expression divergence, we identified differences in TFBSs
in potential cis elements of genes showing evidence of expression
divergence.We selected 1-kb regions upstreamof the transcription
start site of genes showing cis or trans effects in response to infec-
tion (421 genes). TFBSs for these regions were passed through the
tool for finding individual motif occurrences (FIMO) from the
MEME suite (v 5.1.0) at P-value thresholds of either P=0.001 or
P=0.0001 and at default parameters (Bailey et al. 2009). MEME
motif files were generated using the sites2meme utility and TFBS
sequences from OnTheFly (Shazman et al. 2014). Binding site
data were downloaded into R 3.6.0 for analysis and plotting (R
Core Team 2019). Binding sites with a P-value<0.001 were consid-
ered in downstream analysis. This threshold was selected based on
the ability to call a majority of previously identified Rel and Srp
binding sites in four immune-responsive enhancers (Senger et al.
2004; Supplemental Table S5). For comparison, we categorized
genes into two groups: cis genes or trans genes. Cis genes were de-
fined as genes showing any cis effect (cis-only, cis+ trans, and com-
pensatory categories) in response to either infection (219 genes).
Trans genes were defined as genes that showed trans-only effects
and no other effects in response to either infection (199 genes).
Genes showing any combination of trans-only and any cis effects
were excluded from this analysis (three genes). Differences in the
number of TFBSs were calculated by subtracting the number of
TFBSs for each gene’s upstream region in B6 from A4, for all TFs
combined as well as for each TF separately. We tested for signifi-
cance in the distribution of these TFBS differences between the
cis- and trans-affected genes using an F-test for variance with the
R 3.6.0 function var.test. We also repeated this analysis using the
TFBS score instead of number, and the results mirrored those
found for the TFBS number (Supplemental Fig. S4). The code and
accompanying files related to this section can be found in the
Supplemental Code in both R-notebooks and HTML document
form (Script4_fig4).

Description of statistical tests

P-values for all single and multiple proportion comparisons were
calculated using the R 3.6.0 prop.test function, which performs a
chi-square test with Yate’s continuity correction. For data for
which more than one statistical test was performed on the same

set of data, P-values were Bonferroni-corrected for familywise
type I error by multiplying the P-value by the number of tests
performed.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE155033.
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