
UC Irvine
UC Irvine Previously Published Works

Title
Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling

Permalink
https://escholarship.org/uc/item/1rm291mz

Authors
Li, Lianfa
Franklin, Meredith
Girguis, Mariam
et al.

Publication Date
2020-02-01

DOI
10.1016/j.rse.2019.111584
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rm291mz
https://escholarship.org/uc/item/1rm291mz#author
https://escholarship.org
http://www.cdlib.org/


Spatiotemporal Imputation of MAIAC AOD Using Deep Learning 
with Downscaling

Lianfa Li1,2, Meredith Franklin1, Mariam Girguis1, Frederick Lurmann3, Jun Wu4, Nathan 
Pavlovic3, Carrie Breton1, Frank Gilliland1, Rima Habre1

1.Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA

2.State Key Laboratory of Resources and Environmental Information System, Institute of 
Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing, China

3.Sonoma Technology, Inc., Petaluma, CA, USA

4.Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of 
California, Irvine, CA, USA

Abstract

Aerosols have adverse health effects and play a significant role in the climate as well. The 

Multiangle Implementation of Atmospheric Correction (MAIAC) provides Aerosol Optical Depth 

(AOD) at high temporal (daily) and spatial (1 km) resolution, making it particularly useful to infer 

and characterize spatiotemporal variability of aerosols at a fine spatial scale for exposure 

assessment and health studies. However, clouds and conditions of high surface reflectance result in 

a significant proportion of missing MAIAC AOD. To fill these gaps, we present an imputation 

approach using deep learning with downscaling. Using a baseline autoencoder, we leverage 

residual connections in deep neural networks to boost learning and parameter sharing to reduce 

overfitting, and conduct bagging to reduce error variance in the imputations. Downscaled through 

a similar auto-encoder based deep residual network, Modern-Era Retrospective analysis for 

Research and Applications Version 2 (MERRA-2) GMI Replay Simulation (M2GMI) data were 

introduced to the network as an important gap-filling feature that varies in space to be used for 

missingness imputations. Imputing weekly MAIAC AOD from 2000 to 2016 over California, a 

state with considerable geographic heterogeneity, our full (non-full) residual network achieved 

mean R2 = 0.94 (0.86) [RMSE = 0.007 (0.01)] in an independent test, showing considerably better 

performance than a regular neural network or non-linear generalized additive model (mean R2 = 

0.78–0.81; mean RMSE = 0.013–0.015). The adjusted imputed as well as combined imputed and 
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observed MAIAC AOD showed strong correlation with Aerosol Robotic Network (AERONET) 

AOD (R = 0.83; R2 = 0.69, RMSE = 0.04). Our results show that we can generate reliable 

imputations of missing AOD through a deep learning approach, having important downstream air 

quality modeling applications.

Keywords

aerosol optical depth; MAIAC; MERRA-2 GMI Replay Simulation; deep learning; downscaling; 
missingness imputation; air quality

1. Introduction

Aerosols have significant climate effects through the alteration of the radiation budget, cloud 

formation, atmospheric circulation, and surface temperature (Allen 2017; Kaufman et al. 

2002; Stocker 2014). Ground-level aerosols are differentiated by size and are typically 

characterized as particulate matter (PM) with aerodynamic diameter ≤10 μm (PM10) and 

fine particulate matter with diameter ≤2.5 μm (PM2.5) (Hinds 1999). PM has been associated 

with a variety of health effects including aggravated asthma, decreased lung function, heart 

attacks and premature mortality (Brauer et al. 2016; EPA 2015; O’Neill et al. 2013; WHO 

2013). Accurate estimation of the spatiotemporal variability of aerosols is important for 

understanding their role in climate change (Voiland 2010) and to reliably estimate exposures 

of PM10 and PM2.5 for human exposure and health effects studies (Li et al. 2015). Given the 

limitations of sparse surface monitoring networks such as state and national PM monitoring 

networks, or the AErosol RObotic NETwork (AERONET) (Holben et al. 1998), researchers 

have begun to rely on satellite observations of AOD to characterize aerosols, particularly 

over large geographic areas.

Since 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on 

the polar orbiting TERRA and AQUA satellites have provided daily AOD retrievals with 

global coverage. The Dark Target (DT) algorithm and the complementary Deep Blue (DB) 

algorithm have been used to retrieve AOD at a 10 or 3 km resolution for diverse land cover 

including bright land surfaces (Levy et al. 2013). In recent years, a new algorithm, the 

Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm (Lyapustin et al. 

2011a; Lyapustin et al. 2011b) was developed to simultaneously retrieve surface bi-

directional reflection function and AOD over bright and dark surfaces from MODIS at 1 km 

resolution. MAIAC uses time series to divide surface and atmospheric contributions and 

spatial information to characterize the surface bidirectional distribution function (BRDF), 

and in the aerosol retrieval it has improved atmospheric correction, cloud and snow detection 

compared to DT and DB algorithms (Lyapustin et al. 2018). As a high spatiotemporal-

resolution product, MAIAC AOD was used in several studies to estimate and characterize 

spatiotemporal variations of aerosols and surface PM2.5 (Di et al. 2016; Hu et al. 2017; Hu et 

al. 2014; Just et al. 2015; Kloog et al. 2015; Lee et al. 2011; Xiao et al. 2017; Xie et al. 

2015).

In general, the retrieval of satellite aerosol products relies on clear skies and appropriate 

surface conditions. Cloud cover (Singh et al. 2017), snow (Bai et al. 2016) and bright 
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surfaces (Lyapustin and Wang 2016) can result in significant proportions of missing data. A 

study examining the Yangtze River Delta of China found AOD were missing over >60% of 

the 2013–14 study period (Xiao et al. 2017). As cloud and surface conditions are 

geographically and temporally dependent, the missing data problem is non-random in nature 

(Polit and Beck 2012; Zhang and Reid 2009) making gap-filling and imputation more 

complex.

A variety of methods have been developed to gap-fill AOD by using spatial neighborhood 

information (Kloog et al. 2012), lowering the cloud screen criteria (Van Donkelaar et al. 

2011) and improving retrievals over bright surfaces with the Dense Dark Vegetation 

algorithm (Li et al. 2012). Recently, advanced statistical methods have been developed 

including a two-step method combining city- and season-specific linear models plus 

ordinary Kriging (Lv et al. 2016), flexible generalized additive models (GAM) that allow for 

non-linear functional forms (Xiao et al. 2017), and feed-forward (neural) networks (Di et al. 

2016). Spatial approaches such as nearest neighbors, Kriging, and GAM tend to have limited 

generalization (validation R2 with AERONET AOD: 0.18–0.44) or incomplete spatial 

coverage of imputation (Kloog et al. 2011; Li et al. 2012; Lv et al. 2016; Van Donkelaar et 

al. 2011; Xiao et al. 2017). Better performing imputations often rely on external information 

such as outputs from chemical transport models including the Community Multi-scale Air 

Quality Model (CMAQ) (Di et al. 2016; Hu et al. 2017; Xiao et al. 2017) or cloud fraction 

(Xiao et al. 2017); however, access to these model outputs can be limited particularly for 

large geographic areas. Feed-forward neural networks (Di et al. 2016), when used for 

regression, are subject to saturation and degradation of accuracy with increased hidden 

layers (He et al. 2016a; Srivastava et al. 2015). To remedy this issue, residual connections of 

identity mapping can be introduced into the neural network to improve the learning 

efficiency, as shown in many applications of convolutional neural network (CNN) in deep 

learning (He and Sun 2015; He et al. 2016a, b). Due to the substantial amount of missing 

MAIAC AOD observations, it is difficult to use the CNN based deep learning methods since 

CNN requires complete images or images with limited random missing values for training.

We present a novel approach that incorporates deep learning to robustly impute a long time 

series of MAIAC AOD over a large heterogeneous region. We leverage gridded 

meteorological data and AOD from the Modern-Era Retrospective analysis for Research and 

Applications, Version 2, GMI Replay Simulation (M2GMI) (Strode et al. 2019) to provide 

both spatial and temporal information into an autoencoder-based deep residual network. This 

deep learning framework has resulted in optimal results in other air quality prediction 

applications (Li et al. 2018a). We impute weekly missing MAIAC AOD for 17 years (2000 

to 2016) over California, evaluate our imputations against AERONET AOD, and compare 

them with those derived from more traditional GAM and regular neural network approaches.

2. Materials

2.1. Study Region

The study region (Fig. 1) is the State of California, which has an area of 423,970 km2 

extending from approximately −124°65’ and −114°13’ west to east longitude and 32°51’ to 

42°01’ north to south latitude. California encompasses a variety of topographic, land-use 
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and population characteristics (Fast et al. 2014) in addition to meteorological processes with 

significant spatiotemporal variability as a result of turbulent vertical mixing affecting 

dilution and chemical processes of aerosols (Aan de Brugh et al. 2012). These characteristics 

result in complex spatiotemporal variability of aerosols compared to central and eastern 

regions of the United States (US).

2.2. Data

2.2.1 MAIAC AOD—The MAIAC algorithm retrieves AOD at 1 km resolution from 

MODIS TERRA and AQUA satellites, with equatorial crossing at approximately 10:30 AM 

and 1:30 PM local time, respectively. We acquired MAIAC AOD covering California for 17 

years from February 28, 2000 to December 31, 2016 from the Land Processes Distributed 

Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/news/release-of-modis-

version-6-maiac-data-products), and extracted AOD at 550 nm with quality assurance flags 

and corresponding surface reflectance. Quality assurance flags indicating cloud, land, water, 

or snow contamination (including the adjacency mask of cloud/snow) were used to remove 

invalid AOD values.

2.2.2 AERONET AOD—Level 2 quality-assured AERONET AOD (version 3) was 

acquired for the 17-year study period from 35 sites across California (https://

aeronet.gsfc.nasa.gov/) (see Fig. 1 for the spatial distribution of the sites). The 5-minute 

AERONET data were averaged over 60 min intervals to match the satellite overpass times, 

and were interpolated to 550 nm using spectral linear interpolation in the log-log space 

between 440 and 600 nm, the two nearest wavelengths (Eck et al. 1999; Franklin et al. 

2017). AERONET AOD served as the “ground truth” to validate our imputed MAIAC AOD.

2.2.3 Meteorology—Meteorological variables were extracted from daily high resolution 

(~4 km, 1/24th degree) surface level meteorological data available for the contiguous US 

from 1979 to present (http://www.climatologylab.org/gridmet.html) (Abatzoglou 2011). 

Daily minimum air temperature (°C), maximum air temperature (°C), wind speed (meters/

second, m/s), specific humidity (grams of vapor per kilogram of air, g/kg), daily mean 

downward shortwave radiation (watt/meter2, w/m2) and accumulated precipitation 

(millimeters of rain per meter2 in 1 h, mm/m2) were extracted and averaged to weekly 

values.

2.2.3 MERRA-2 Global Modeling Initiative Replay Simulation—The MERRA-2 

GMI Replay Simulation (M2GMI, https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/

MERRA2GMI) is a global reanalysis data product, which, similar to its predecessor 

MERRA-2 (Brauer et al. 2016; Randles et al. 2017), assimilates multiple aerosol remote 

sensing, emissions, and meteorological data using the Goddard Earth Observing System 

Model (GEOS) but further incorporates aerosols, chemistry, atmosphere, land, ice, and 

ocean biogeochemistry. It provides 0.5° x 0.625° gridded total column aerosol optical depth 

and estimates of surface level sea salt, black carbon, dust, organic carbon, sulfates and PM2.5 

across our entire study period at daily time resolution. M2GMI has high temporal resolution 

(3 hours to daily) but coarse spatial resolution (approximately 50 km in the latitudinal 

direction). With these advances, it provides consistent and reliable regional estimates of 
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aerosols for a long period of time, which is integral to our MAIAC AOD imputation. For a 

more detailed description of M2GMI, refer to Strode et al. (2019). For the 2000–2016 study 

period we acquired M2GMI total aerosol extinction AOD, which is an assimilated column 

and species integrated quantity that includes observations from NASA and NOAA satellites 

and ground-based measurements (NASA 2018; Strode et al. 2019). For simplicity, we refer 

to MERRA-2 GMI Replay Simulation AOD as M2GMI throughout this paper.

2.2.4 Coordinates and Elevation—The central coordinates of each MAIAC grid cell 

were extracted and used to capture spatial autocorrelation in our models. Elevation at 30m-

resolution obtained from the GoogleMaps API was averaged over each 1 km MAIAC grid 

cell and used as a model variable.

3. Methods

Daily MAIAC AOD observations were preprocessed (Section 3.1) through a variety of steps 

to generate per-pixel weekly MAIAC AOD (Fig. 2). A deep learning modeling framework 

that includes two core components, a deep residual network based on an autoencoder and 

downscaling algorithm (Section 3.2 and 3.3) plus ensemble learning (Section 3.4) was 

developed based on the weekly data (Fig. 3). Model validation (Section 3.5) and prediction 

adjustment (Section 3.6) with AERONET data were conducted to reduce biases in the 

imputed AOD.

3.1. Preprocessing MAIAC AOD

There are seven steps for preprocessing MAIAC AOD images (Fig. 2): 1) bilinear 

resampling to re-project the Level 2 (L2) AOD to a local projection [Universal Transverse 

Mercator (UTM) zone 11], 2) filtering outliers and noise according to the reported range of 

valid AOD values (Lyapustin 2018) (i.e. remove AOD less than 0 and greater than 3), 3) 

applying quality assurance flags to remove observations contaminated by cloud or snow, 4) 

creating per-pixel daily averages of Aqua and Terra AOD, 5) fusing Aqua and Terra AODs: 

when both AODs were available in a pixel, their average was computed; if only one of the 

AODs was available, a GAM regression trained on the samples with both AODs available 

was applied to predict the missing Terra or Aqua AOD and then their average was computed, 

6) mosaicking and cropping all MAIAC tiles for California over the study period, and 7) 

calculating weekly AOD averages from daily AOD preprocessed using steps 1–6. The 

resultant weekly MAIAC AOD are considered our analytic sample with which imputing is 

conducted to fill in the missing gaps.

A secondary preprocessing step was conducted to derive monthly MAIAC AOD from the 

daily observations after applying steps 1–6. However, based on sensitivity analyses, monthly 

averages were only calculated for grid cells having valid MAIAC AOD (from TERRA 

and/or AQUA) for at least 60% of the days of a natural month. We used the monthly 

averages as inputs to the deep residual network to capture spatial and longer-term temporal 

variability in the imputations. For locations with no valid monthly average AOD, we used 

the other covariates to re-train the imputation models, referred to as non-full models (Section 

3.4). Correspondingly, the models trained using all the covariates including monthly 

averages are referred to as full models.
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3.2. Autoencoder-based Deep Residual Network

The core component of the imputation framework (Fig. 3) is a deep residual network based 

on an autoencoder. An autoencoder (Fig. 3–c) is a neural network that has the same variables 

in the input and the output layers, typically one or more encoding layers, one middle coding 

layer, and one or more decoding layers (Kingma and Welling 2013; Liou et al. 2014). An 

autoencoder aims to reconstruct and recover the input variables in the output layer. Typically 

each encoding layer has a corresponding decoding layer with the same number of nodes 

(variables in a hidden layer), making it symmetrical in structure. In practice, by introducing 

multiple hidden layers in an encoding stage, each with decreasing numbers of nodes, the 

high dimensional input data are decomposed to construct powerful compact latent 

representations or independent principal components to reduce the input data’s 

dimensionality (Baldi and Hornik 1989) in the middle coding layer (latent coding layer) that 

is beneficial for training and generalization (Jolliffe 2002). Therefore, for correlated input 

variables, an autoencoder resembles a principal component analysis as it reduces 

multicollinearity through the extraction of independent components in the latent layer (albeit 

through a non-linear transformation as opposed to PCA, which uses a linear transformation).

In the network developed to impute AOD, we adapt an autoencoder framework that has the 

same number of nodes for the encoding and decoding layers with residual connections 

between each shallow layer in the encoder to each deep layer in the decoder (Fig. 3–c). The 

mirrored/symmetrical network is a natural option to implement residual connections.

The network was trained on 1x1 km pixels that had weekly MAIAC AOD for three 

continuous weeks. Using this time-stratified approach to capture short-term temporal 

variation, an index was defined as (−1, 0, 1) for the three weeks with the middle week as the 

target week for prediction.

Our deep residual network contains 15 input variables (covariates): minimum and maximum 

temperature, wind speed, specific humidity, shortwave radiation, precipitation, M2GMI 

AOD, elevation, monthly average MAIAC AOD, time index, and UTM projected latitude 

and longitude. To account for spatial variation, the coordinates were introduced to the deep 

residual network as a combination of linear terms, quadratic terms, and as an interaction. For 

all input covariates, preprocessing was applied to filter invalid values or outliers using the 

quality flags and upper fences (Iglewicz and Hoaglin 1993), and each was normalized using 

its mean and standard deviation (Freedman et al. 2007). Comparatively, AOD was not 

normalized since it had a small range of valid value (0–3) with no distinct difference in the 

value scale from the other normalized covariates.

There are correspondingly 16 output variables: the 15 inputs plus the target variable, y, 

unobserved MAIAC AOD (Fig. 4). The autoencoder topology consists of the encoder with 

15, 128, 64, and 32 nodes for the 4 hidden layers, the middle coding layer (i.e. the latent 

space representation) with 16 nodes, and the decoder, which is symmetric to the encoder 

with 32, 64, 128, and 15 nodes for the 4 hidden layers. The network has the following loss 

function:
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L(θW,b) = 1
N ℓy y, yθW, b x + ℓx x, fθW, b x

+ Ω θW,b
(1)

where N is the training sample size of each 3-week strata, y represents observed MAIAC 

AOD, yθW,b is the estimated (imputed) MAIAC AOD, θW,b denotes the parameters of the 

weights, W and the bias, b of input, hidden, output layers and related batch normalization 

etc., x represents the Nx15 matrix of input covariates, fθW,b x  represents the output matrix 

of x determined by θW,b, ℓy and ℓX denote the loss functions for the target variable y and the 

input covariates x, respectively, and Ω(θW,b) represents the regularizer for the weights and 

bias, W and b. We use the mean square error (MSE) loss for ℓy and ℓX given that we are 

conducting regression of a continuous variable (AOD).

The introduction of ℓx x, fθW,b x  in (1) makes possible sharing of parameters between the 

target variable (y, MAIAC AOD) and the covariates (x also as the outputs). Our training 

samples are large, ranging from approximately 100,000 to over 600,000 observations in each 

three-week grouping. The shared parameters in these training samples effectively work as a 

regularizer to constrain the target variable from over-fitting, as demonstrated in several other 

applications of deep learning (Goodfellow et al. 2016; Sun et al. 2014; Zhang et al. 2016). 

Sensitivity analyses show that without such sharing, generalization of the networks in 

prediction is reduced.

Residual connections provide shortcuts from the encoding layer to the decoding layer, 

boosting efficient back-propagation of errors in network learning. Assuming pl is the input 

and ql is the output for the shallow layer, l, in encoding, and pL is the input and qL is the 

output for the deep layer, L, in decoding, the residual connections for the deep layer output 

in decoding step are defined by:

qL = pl + fL(pL, WL)
= pl + fL gL fl pl, Wl , WL

(2)

where Wl and WL represent weight parameters for the shallow and deep layer inputs, pl and 

pL respectively, fL and fl denote activation function for pL and pl, respectively, and pL = 

gL(fl(pl, Wl)) where gL denotes the function of pl for pL.

Based on automatic differentiation (Baydin et al. 2018), the gradient of the loss functions for 

the shallow layer input, pl is:

∂l
∂pl

= ∂L
∂fL(qL) ⋅ ∂fL(qL)

∂qL
⋅ ∂qL

∂pl

= ∂L
∂fL(qL) ⋅ ∂fL(qL)

∂qL
⋅ 1 + ∂

∂pl
fL gL fl pl, Wl , WL

(3)

where the constant term, 1, makes it possible to directly back-propagate errors from the deep 

layer, L to the shallow layer, l. Multiple residual connections nested in the internal 
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autoencoder with deep layers together reduces vanishing of the gradient and degradation of 

accuracy (Li et al. 2018a).

For each hidden layer in Fig. 4, we used the rectifier activation function (ReLU) that, due to 

good gradient propagation and efficient computation, is widely used in many modern deep 

learning systems. ReLU is defined as the positive part of its argument (Hahnloser and Seung 

20001):

Act(p) = max(0, p) (4)

where p is the input to a neuron and Act (p) is the activation’s output.

For the output layer, linear activation was used for regression of the output layer. Sensitivity 

analysis showed that this configuration of semi-linear activation functions effectively 

prevented the gradients from premature saturation in regression. Batch normalization was 

also added in each hidden layer to prevent or reduce covariance shift for effective learning 

(Ioffe and Szegedy 2015).

The multi-node output works as a regularizer by sharing the parameters across each output 

node (same as the covariates and target variable) as previously mentioned. The extra 

regularizer, Ω(θw,b) in (1) was unnecessary in our test. The optimization of gradient descent 

was used to train the residual network.

We implemented the Keras version of autoencoder-based deep residual network in python 

and R (the library or package of resautonet).

3.3. Downscaling of MERRA-2 GMI Replay Simulation AOD with Deep Residual Network

Our imputation framework relies heavily on M2GMI AOD as an input variable, however its 

native spatial resolution is far coarser (50 km) than our target parameter, MAIAC AOD (1 

km). In model development we found that our initial imputations had spatial variation 

mimicking that of the native 50 km M2GMI resolution, and that adding a prepossessing 

downscaling step achieved better spatial alignment of the inputs to the target 1 km spatial 

resolution. Thus, through a separate deep network similar to that described above, iterative 

downscaling was conducted to downscale 50 km M2GMI AOD to 1 km spatial resolution. 

Sensitivity analyses showed that the downscaling residual deep autoencoder was optimized 

when altered to produce a single output (1 km M2GMI AOD) rather than multiple shared 

outputs as described for the imputation model.

We used a reduced set of input covariates for downscaling: the projected geographic 

coordinates of the grid cells and 30 m elevation. Similar to in imputation, these covariates 

were normalized in preprocessing but M2GMI AOD was not normalized since it had a small 

value scale (0–2), almost consistent or just having slight differences from the normalized 

covariates. Given Yk (k=1,…,R) is original M2GMI AOD in k=1,…,R grid cells at 50 km 

resolution, and yk(k = 1, … , r) is the M2GMI AOD estimate to be downscaled in k=1,…, r 

grid cells at 1 km resolution, we assume each coarse-resolution cell encapsulates nf finely 

resolved cells. In initialization, the 1 km grid cells were directly assigned values from the 

coincident coarse resolution cell. During iteration, the estimators at the fine resolution was 
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then adjusted in order to make the average of these adjusted 1 km estimators equal to the 

value of the coarse-resolution grid cell that spatially covered them:

1
Fm

∑
i ∈ Fm

yi = Y m, m = 1, 2, …, R (5)

where Fm denotes the set of fine-resolution grid cells that are spatially covered by the mth 

coarse-resolution grid cell. Thus, we have n f =|Fm|.

For the tth iteration, we used the following formula to ensure (5):

yi
(t) = yi

(t − 1) ⋅ Y i
1

Fm
∑j ∈ Fm yj

(t − 1) , i ∈ Fm (6)

At each iteration, the 1 km predictions from the previous step (t-1) were adjusted so that 

their average equals the 50 km M2GMI AOD (Yk), and then with the normalized 1 km 

covariates (i.e., projected latitude, longitude, and elevation) the model is re-trained for the 

next step (t). Iterations proceeded until the mean of the absolute values of the difference in 

the fine-resolution cells between the last two iterations, i.e., 1
F ∑ yi

(t) − yi
(t − 1)  (|F|, the total 

number of samples) satisfies a stopping criterion (SC) (i.e., >=SC) and a maximum number 

of iterations was also set to prevent slow convergence. The specific procedure is presented in 

Fig. 5. By sensitivity analysis, we selected [32, 16, 8, 4] as the optimal number of nodes for 

the encoding layers of the downscaling deep residual network.

3.4. Full and non-full models, bagging for ensemble predictions

As described above, monthly MAIAC AOD was not computed for grid cells with less than 

60% of the daily observations over a month, so we developed two imputation models: full 

and non-full. The full models consisted of monthly AOD as an input, where available, in 

addition to meteorological and spatial input variables (15 total, described above). When 

monthly AOD was not available, the non-full model was identical to the full model except 

without monthly AOD (14 input variables total).

Random optimization of mini-batch gradient descent (Goodfellow et al. 2016) was used to 

learn, and to obtain stable predictions and reduce uncertainty, we used bootstrap aggregation 

(bagging) to train 10 multiple residual networks. Bagging reduces correlation between the 

models and boosts the accuracy of ensemble predictions.

Training was conducted respectively for the set of 879 weekly 1 km samples from 2/28/2000 

(earliest MODIS AOD data) to 12/31/2016. In total, 879 models were trained because as 

described above, the time-stratified training samples consisted of data for both the target 

week and the week immediately before and after to ensure a sufficient sample size for 

training while maintaining computational tractability. Further, this approach allowed for 

local temporal variation in the associations between the input variables and MAIAC AOD 

while controlling for confounding effects caused from mixing samples at vastly different 

temporal scales.
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3.5. Tuning of hyperparameters and validation

We used grid search to retrieve a local optimal solution for the residual neural network 

hyperparameters including mini-batch size, learning rate, network depth and scale, and 

activation functions.

For both the imputation and downscaling residual networks, the sample data was randomly 

split into three parts (with the stratifying factor of week index): approximately 63.2% of the 

samples were used for model training, one half of the remaining 36.8% samples were used 

for model validation (adjusting the hyperparameters in learning), and the other half was 

completely left out and used as an independent test. Training, validation and test R2 and 

RMSE are used as statistical summaries of model performance overall, and for selected 

weeks for illustration.

We compare the deep residual network-based M2GMI AOD downscaling results to those 

obtained by a typical approach (Malone et al. 2012) that uses GAM, and the imputations to 

those obtained from a regular neural network with similar structure but without residual 

connections as well as from GAM.

Furthermore, to examine the influence of downscaling on the imputations, we performed a 

leave-one-county-out cross validation for the deep residual networks using 29 weeks of 

MAIAC AOD from 2000 to 2016 with little missing data (>90% valid weekly MAIAC AOD 

values). In this cross validation, data from all of the grid cells from one of California’s 58 

counties were removed from the training samples, and two imputation models (with original 

and downscaled M2GMI AOD) were trained using the samples from the remaining 57 

counties. This procedure was iterated until all the cells within all the counties were predicted 

as the test samples. Imputed surfaces as well as mean R2 and RMSE are reported.

To evaluate the reliability and fidelity of the developed method, we compared observed 

and/or imputed MAIAC AOD against AERONET AOD from the coincident MAIAC pixel, 

as well as for multi-pixel averages within a series of circular buffers at 1, 3, 5, 7, and 9 km 

around each AERONET site. Specifically, the following validations were conducted:

1. Observed MAIAC AOD (no imputation) vs. AEORNET AOD.

2. Randomly selected MAIAC AOD vs. AERONET AOD. In this validation, 

approximately 18.2% of the weekly observed MAIAC AOD was set aside from 

model training, and independent predictions were made by the trained models. 

Since the samples of an independent test were randomly selected at the 

AERONET site no buffer averages were examined.

3. Validation of imputed MAIAC AOD (no observed AOD included) vs. 

AERONET AOD.

4. Validation of the combined observed and imputed MAIAC AOD vs. AERONET 

AOD.

Test performance metrics include Pearson’s correlation, R2 and RMSE of the coincident 

pixel-AERONET site match and the aforementioned buffer averages where applicable.
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3.6. Bias Correction with AERONET Data

Despite improved detection over regions with cloud and snow and quality screening in data 

preprocessing, it has been found that MAIAC AOD can be an overestimate of measured 

“ground truth” AOD (Li et al. 2015). To address this issue, a student’s t-test of paired 

samples was conducted to examine whether MAIAC AOD was statistically significantly 

greater than (i.e. overestimated) ground truth AOD at each AERONET site in the study 

region. If the criteria (t-test) shows overestimation, we conducted a systematic correction of 

the bias of both the original and imputed MAIAC AOD against AERONET AOD using a 

GAM adjusting for elevation, latitude, longitude, month and year. These covariates were 

selected according to their correlation with the difference between AERONET and MAIAC 

AOD. Given a small number of training samples for adjustment, the neural network based 

method was not used but rather GAM was used.

To evaluate the adjustment, the AERONET data were randomly split into 80% training and 

20% independent test sets. Leave-one-site-out cross validation was also performed whereby 

all data from one AERONET site were iteratively removed from the training set and were 

compared to predicted AOD obtained from the GAM. Correlation, R2 and RMSE between 

AERONET AOD and adjusted MAIAC AOD are reported in Results.

4. Results

4.1. Coverage and Summary of Satellite AOD and Covariates

The spatial availability of MAIAC AOD is visualized for the combined study period (2000–

2016) and separately for summer (June till August) and winter (December till February) 

(Fig. 6). On average, the per-pixel MAIAC AOD missing rate is 41% over the study period, 

with far fewer missing in summer (21%) than winter (61%). Spatially, northern California 

has a higher proportion of missing observations (46%) than southern California (32%). The 

mean daily MAIAC AOD over the study period and state is 0.084 [standard deviation (s.d.): 

0.017], with higher values in summer [0.10; s.d 0.024] than in winter (0.062; s.d. 0.018). 

Spatial distributions of multi-year and seasonal (summer vs. winter) observed AOD averages 

are presented in Fig. 7 where pixels with at least 10% completeness are shown. Descriptive 

statistics (mean and s.d) for overall and seasonal MAIAC AOD and the residual network 

input variables are presented in Table 1. Daily mean and daily standard deviations of 

MAIAC AOD for all pixels over the study region (California) from 2000 to 2016 are 

presented in Supplementary Data Fig. S1.

4.2. MERRA-2 GMI Replay Simulation AOD Downscaling

Maps showing the original (50 km) and downscaled (1 km) M2GMI AOD by GAM and 

deep residual network are shown in Fig. 8. Downscaling by GAM generates spatially 

smoother surfaces than by residual network but with loss of spatial variability compared to 

the original data. Two weeks (05/01/2000 to 05/07/2000 and 09/14/2015 to 09/20/2015) of 

typical missing MAIAC AOD patterns (low vs. high AOD; non-clustered vs. clustered) of 

M2GMI AOD across California are also shown (Fig 8). Correspondingly, for these weeks, 

downscaling via deep residual network had much better performance than GAM (test R2: 

0.94 vs. 0.66 and 0.87 vs 0.81; test RMSE: 0.05 vs. 0.14 and 0.004 vs. 0.006) (Table 2).
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When downscaled M2GMI AOD are used as inputs to the residual network for MAIAC 

AOD imputation, validation tests show better model performance for residual network 

downscaling than GAM downscaling (independent test mean R2 for downscaling: 0.89 vs. 

0.78; RMSE: 0.08 vs. 0.14) (Table 2 and Supplementary Data Fig. S2). It is also notable that 

with residual network downscaling, the resultant imputations show realistic spatial 

heterogeneity, avoiding artifacts from coarse 50 km M2GMI AOD inputs (Fig. 9 c vs. Fig 9 

d). In Fig. 9–11, a narrow color scale (0–0.4) rather than the full range (0–0.87) from the 

minimum to maximum AOD values was used to render the resultant images to highlight 

local details for the small AOD values. In the legend, “0.4+” indicates use of the red color 

for the AOD values equal to or larger than 0.4.

Full model and leave-one-county-out cross validation (CV) (R2 and RMSE) show better 

MAIAC AOD imputation performance (Supplementary Data Table S1 and Fig. S3) and 

spatial smoothing (Supplementary Data Fig. S4) with the inclusion of downscaled versus 

non-downscaled M2GMI AOD (full model R2: 0.85 vs. 0.82; full model RMSE: 0.0088 vs. 

0.0093; CV R2: 0.70 vs. 0.67; CV RMSE: 0.0082 vs. 0.0086).

4.3 Imputation

For the weeks between February 2000 and December 2016 we trained a total of 879 weekly 

residual networks. The autoencoder-based deep residual networks generally had better 

convergence and performance than regular feed-forward networks or GAM (Supplementary 

Data Fig. S5 for two typical weeks). The residual networks had higher mean (0.94) and 

range (0.84–0.99) test R2, and lower mean (0.007) and range (0.004–0.023) test RMSE than 

regular networks [mean (range) R2: 0.73 (0.08–0.99); RMSE: 0.015 (0.007–0.095)] and 

GAM [mean (range) R2: 0.81 (0.57–0.93); RMSE: 0.013 (0.009–0.037)] (Table 3 and 

Supplementary Data Fig. S6). Overall, the residual network improved test R2 by 21% over 

the regular network and by 13% over the GAM. When monthly AOD was unavailable as an 

input variable, the non-full residual network achieved a mean test R2 of 0.84 (range: 0.48–

0.99) and a test RMSE of 0.01 (range: 0.007–0.031); although with 10% decrease in test R2, 

compared with full residual networks, the non-full residual network still performed better 

than full regular network and GAM. Scatter plots between observed and predicted MAIAC 

AOD for the full and non-full residual networks are shown in Supplementary Data Fig. S7. 

Observed and imputed surfaces for four sample weeks where a varying degree of MAIAC 

AOD observations are missing with different spatial patterns show that the deep residual 

network provides reliable imputations even with a large proportion (>80%) of missing data 

(Fig. 10).

4.4 Validation and Bias Adjustment with AERONET Data

In total over 2000–2016, 18,097 daily samples from 35 AERONET sites were available for 

validation and bias correction. From these daily measurements, we obtained 2,921 weekly 

averages for the validations of observed and/or imputed MAIAC AOD, and 737 weekly 

averages for the validation of independent test point MAIAC AOD.

The validation results (Table 4) show similar performance for the observed AOD, and the 

combined observed-imputed AOD: Pearson’s correlation: 0.67 vs. 0.69 for coincident pixel-
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point estimates, 0.75 vs. 0.74 for buffer radius of 9 km; RMSE of point estimates is the same 

(0.06); R2 of point estimates: 0.44 vs. 0.45. The imputed AOD had lower correlations (0.60–

0.66) with AERONET AOD and only a slightly higher RMSE (0.07) than the observed data. 

There is a small sample (N=122) to compare imputed AOD against AERONET AOD most 

likely because cases where MAIAC cannot generate a valid observation also tend to be when 

AERONET cannot measure AOT (i.e. cloudy skies). Situations where MAIAC is missing 

but AERONET is available are less common, resulting in a small sample for this validation 

that potentially led to uncertainty in these validation metrics.

Compared with the validations of imputed MAIAC AOD, the independent test MAIAC AOD 

had a larger sample size (N=737) and showed a higher correlation (0.81) and R2 (0.61), and 

a slightly lower RMSE (0.53) with AERONET AOD for the point estimates, illustrating the 

reliability of our imputation approach.

Annual comparisons show an improvement in correlation over the study period 

(Supplementary Data Table S2) and monthly comparisons show a pronounced seasonal 

pattern with higher correlation and lower RMSE in summer than in winter (Table 5; 

Supplementary Data Fig. S8).

For those validations with averages of spatial buffers of 1–9 km, we see an Increasing 

positive influence on the association between MAIAC AOD and AERONET AOD with 

greater spatial averaging (Table 4 and 5, Supplementary Data Table S2 and Fig. S8).

Systematic over-estimation was noted in observed MAIAC AOD compared to AERONET 

AOD particularly at AERONET sites with high elevation. The time series of observed (un-

imputed) MAIAC AOD vs. those of the measured AERONET AOD for three typical 

AERONET sites (Table Mountain, Goldstone and Monterey) are shown in Supplementary 

Data Fig. S9–a, c and e. The two sites of Table Mountain and Goldstone are typical inland 

sites that have different characteristics, especially surface reflectance and elevation, and 

irregular terrain with considerable difference between MAIAC AOD and AERONET AOD, 

compared with the coastline AERONET sites such as Monterey (Loría-Salazar et al. 2016). 

Further, student’s t-tests of the samples from all the 35 AERONET sites showed that on 

average MAIAC AOD overestimated AERONET AOD by 0.005 (t=4.8, p-value<0.05). The 

difference between MAIAC and AERONET AOD was strongly correlated with elevation 

(Pearson’s correlation: 0.72), and moderately correlated with latitude (−0.22) and longitude 

(0.17). After imputation, the GAM regression between MAIAC (including observed and 

imputed values) and AERONET AOD including elevation, latitude and longitude obtained 

an R2 of 0.75 and an RMSE of 0.04.

Using leave-one-site-out cross validation, the final MAIAC AOD adjusted by GAM obtained 

a better correlation (0.83), R2 (0.69) and RMSE (0.04) with AERONET AOD than un-

adjusted MAIAC AOD (Supplementary Data Fig. S9–b, d and f for the times series of 

adjusted MAIAC AOD for Table Mountain, Goldstone and Monterey, respectively; Fig. S10 

for the scatter and residual plots of the samples of all the AERONET sites). Surfaces of the 

adjusted MAIAC AOD for the same four weeks as shown above (Fig. 10) are presented in 

Fig. 11.
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5. Discussion

We developed a deep learning approach to improve imputation of massive non-randomly 

missing MAIAC AOD over a large and heterogeneous geographic region. As a powerful tool 

often used in image processing (Goodfellow et al. 2016), feature extraction and prediction, 

convolutional neural networks cannot be directly applied for missing data imputation. As a 

viable alternative, we adopt an autoencoder-based residual network in a regression 

framework with residual connections that boost back-propagation of the errors from the deep 

to shallow layers. With multiple outputs in the network topology, the parameters were shared 

across the inputs and target output variable, which effectively prevented the models from 

over-fitting. By grid search for hyperparameters in deep learning including mini batch size, 

learning rate, number of hidden layers and numbers of nodes, we obtained a locally optimal 

solution that sufficiently improved effectiveness in learning.

We apply this deep residual network framework as the core component in both imputation 

and spatial downscaling of a key input variable. With limited available inputs (meteorology, 

M2GMI AOD, monthly MAIAC AOD, spatial coordinates and elevation), our approach 

achieved cutting-edge performance with mean test R2 = 0.94 (range 0.85–0.99) for the 

imputation of a long time series of MAIAC AOD with a significant proportion of missing 

values (41%). Spatiotemporally varying predictor variables such as meteorology, monthly 

AOD and M2GMI AOD were used to capture variability of MAIAC AOD. Compared with a 

global model, the weekly local models trained by different values of the spatially and/or 

temporally varying predictor variables better captured the local temporal variability in the 

association between MAIAC AOD and the predictors, and reduced the confounding effects 

of mixing samples at vastly different temporal scales. Similar localized modeling methods 

were used to impute satellite AOD (Xiao et al. 2017) and estimate PM2.5 (Li et al. 2018b). 

Compared to a regular neural network and GAM, the deep residual network performed 13–

21% better. Xiao et al. (2017) used a GAM to impute MAIAC AOD over the Yangtze River 

Delta of China, which achieved an average R2 of 0.77 (ranging from 0.48 to 0.97 in model 

fitting) and an R2 of 0.44 in validation with AERONET AOD. In addition, they included 

more covariates than what we used in this paper, such as cloud fraction, normalized 

difference vegetation index and CMAQ simulations. These measures are not always publicly 

and readily available for the long time series imputation in certain regions. Other studies (Di 

et al. 2016; Just et al. 2015; Kloog 2016; Lv et al. 2016) using a variety of modeling 

approaches had lower performance results or lower imputation rates for missing satellite 

AOD. To our knowledge, this is the first study to employ advanced deep learning techniques 

for robust downscaling and imputation of massive missing satellite AOD.

To fuse input variables (e.g., M2GMI and meteorology) at multiple scales, simple methods 

such as bilinear or nearest neighbor resampling are traditionally used. Such traditional 

methods can introduce grid effects (bias) at coarse resolution in scenarios where the spatial 

resolutions of the layers are very different (Alparone et al. 2015; Baboo and Devi 2010; 

Wald 2002). Kriging based area-to-point prediction methods (Goovaerts 2010; Gotway and 

Young 2002; Pardo-Iguzquiza et al. 2011) and GAM (Malone et al. 2012) can also be used, 

but given a large training sample size, generalization is limited in comparison with deep 

learning (Goodfellow et al. 2016). Comparatively, our downscaling algorithm, that also 
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leveraged a deep residual network, captured local heterogeneity at fine spatial scales. Our 

findings highlight that better downscaling performance can be achieved using deep residual 

networks compared to more traditional methods such as GAM.

With an internal cloud mask and snow detection, MAIAC AOD provides quality assurance 

metrics to enable detection and removal of invalid or highly uncertain values of AOD. 

Despite these quality assurance metrics, investigators have found that satellite AOD is 

subject to occasional overestimations when compared to AERONET AOD in locations along 

cloud and snow edges (Emili et al. 2011; Li et al. 2015). We observed and addressed similar 

artifacts, particularly in locations of high elevation. California’s diverse topography, 

elevation, emission sources (e.g. traffic, dust, photochemical reactions) and heterogenous 

meteorology result in high spatiotemporal variability of aerosols. Furthermore, cloud, snow 

or high surface reflectance is a leading cause for missing AOD values. California has more 

rain, clouds and snow in winter than in summer, and it also has large desert-like areas or 

deserts, which results in both a greater proportion of missing values and an over-estimation 

of AOD (Li et al. 2015). We observe 61% missing observations in December-February in 

addition to lower correlation and overestimation between MAIAC AOD and AERONET 

AOD in winter. Despite this, the extensive validations of imputed MAIAC AOD vs. 

AERONET AOD demonstrated the reliability of the proposed approach. Our investigation 

also demonstrates that AOD overestimation can be explained and corrected by elevation, 

geography, and temporal trends, resulting in improved correlation between MAIAC and 

AERONET AOD from 0.70 to 0.83.

Widespread wildfires (Wikipedia 2018) in California occasionally caused very high AOD, 

e.g., in 2008, 2015 and 2016. For example, the week from 09/14/2015 to 09/20/2015, a 

typical wildfire season week, had a distribution of MAIAC AOD that covered high AOD 

values (range: 0 – 2), compared with that (range: 0 – 0.3) of a non-wildfire week from 

05/01/2000 to 05/07/2000 (Supplementary Data Fig. S7). Correspondingly, AERONET 

AOD also presented high values (>0.6) for wildfire weeks, e.g., 06/23/2008–06/29/2008, 

07/07/2008–07/13/2008, 09/07/2015–09/13/2015, 07/25/2016–07/31/2016 and 08/15/2016–

08/21/2016 (Supplementary Data Fig. S10). As shown in the tests, the proposed approach 

reliably captured the variance of high AOD even though these samples were limitedly or 

sparsely distributed.

A long time series of spatially resolved MAIAC AOD with missing observation imputations 

having performance statistics that surpass those of previous studies provides the basis for a 

more complete and accurate analysis of the spatiotemporal variability of aerosols over 

California. Furthermore, these AODs can be leveraged to make better characterizations and 

inferences about ground-level PM2.5. Without complete MAIAC AOD we would have to 

rely on the other external information to estimate PM2.5 concentrations, which could result 

increased bias and measurement error (Paciorek and Liu 2009). The downstream impact of 

these errors can lead to underpowered, null or erroneous evaluation of PM2.5 related health 

effects.

Our approach has important implications for reduction of estimation errors of PM2.5 and 

subsequently bias of exposure estimation in evaluation of its health effects. Our approach is 
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also easily generalized to finer spatial scale (e.g. 1 km) and other regions. With the robust 

imputation of MAIAC AOD from 2000 to 2016 in California, future work is to use them to 

make high-resolution spatiotemporal estimates of PM2.5 across California.

6. Conclusion

Aerosol observations obtained from remote sensing suffer from limited coverage due to high 

surface reflectance and clouds, and the patterns of missing data are not random. We 

developed a robust approach for imputing missing MAIAC AOD by leveraging a deep 

residual neural network based on autoencoder and the MERRA-2 GMI Replay Simulation 

data product. Downscaling key input variables to the resolution of the target variable vastly 

improved the spatial representativeness of the imputations, and including monthly averaged 

MAIAC AOD improved model performance. For the case study of weekly MAIAC AOD 

imputation over California for 17 years (2000–2016), our approach achieved considerably 

better mean test R2 (full model: 0.94; non-full model: 0.86) with lower test RMSE (0.007–

0.01) than regular neural networks and GAMs, and our performance metrics surpassed those 

previously published imputation studies. In validation against data from 35 AERONET sites, 

the extensive tests provided a strong support to the generalization of the proposed approach, 

and the final adjusted MAIAC AOD had strong total correlation (0.83), illustrating the 

reliability of our imputations. Our approach can be easily generalized to finer temporal 

resolution (daily) and other regions and could be applied to different satellite data products 

such as aerosol observations from other instruments or observations of surface properties. 

Importantly, this study has downstream benefits in terms of improved exposure estimation of 

PM2.5 with reduced measurement error that will ensure more reliable evaluations of PM2.5 – 

related health effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Massive non-random missingness limits satellite AOD applications.

• Residual learning of deep network boosts training efficiency for AOD 

imputation.

• Residual network reliably downscales coarse-scale reanalysis data.

• Adjusted satellite AOD using elevation and coordinates better correlates with 

AERONET AOD.

• Residual network generalizable to impute missing satellite or environmental 

data.

Li et al. Page 21

Remote Sens Environ. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
California study region showing elevation (30 m resolution) and locations of the AERONET 

sites.
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Fig. 2. 
Preprocessing pipeline of MAIAC AOD
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Fig. 3. 
Autoencoder-based deep residual neural network modeling framework
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Fig. 4. 
Autoencoder-based deep residual network setup. Dashed lines form the residual connections 

of the 4 hidden layers from the encoder (yellow box) to the decoder (green box); the output 

at every layer is activated (blue rectangles) and batch normalized (brown rectangles).
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Fig. 5. 
Downscaling algorithm for M2GMI AOD.
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Fig. 6. 
Proportion (%) of available daily MAIAC AOD over California from 2000 to 2016: (a) 

overall; (b) summer (June-August); (c) winter (December-February).
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Fig. 7. 
Averages of multi-year (a), summer (b) and winter (c) daily MAIAC AOD across California 

from 2000 to 2016.
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Fig. 8. 
Comparison of the original M2GMI AOD (a and d), downscaled M2GMI AOD by GAM (b 

and e), and downscaled M2GMI AOD by deep residual network (c and f) for two weeks 

(05/01/2000–05/07/2000 for a, b and c; 09/14/2015–09/20/2015 for d, e and f).
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Fig. 9. 
For a typical week (12/05/2016–12/11/2016), maps of grid surfaces of a) M2GMI AOD, b) 

MAIAC AOD with a significant proportion of missing observations, c) imputed MAIAC 

AOD with original 50 km M2GMI AOD, and d) imputed MAIAC AOD with downscaled 1 

km M2GMI AOD
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Fig. 10. 
Grid surfaces of the missing (a, c, e and g) and imputed (b, d, f, and h) MAIAC AOD for 

four seasons of different years (a and b: spring of 2001; c and d: summer of 2003; e and f: 

autumn of 2010; g and h: winter of 2016).
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Fig. 11. 
Surfaces of bias-adjusted MAIAC AOD for four seasons of different years (a: spring of 

2001; b: summer of 2003; c: autumn of 2010; d: winter of 2016)
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Table 4

Four validations of MAIAC AOD vs. AERONET AOD

Validation
n

a
Pearson’s correlation (no buffer/x km)

b R2 (no 
buffer)

RMSE (no 
buffer)

Observed MAIAC AOD 2799 0.67 (no buffer) ; 0.71 (1 km); 0.73 (3 km); 0.74 (5 km); 0.75 (7 
km); 0.75 (9 km)

0.44 0.06

Independent test point 
MAIAC AOD

737 0.81 (no buffer) 0.61 0.05

Imputed MAIAC AOD 122 0.60 (no buffer); 0.61 (1 km); 0.62 (3 km); 0.65 (5 km); 0.66 (7 km); 
0.65 (9 km)

0.32 0.07

Combined observed and 
imputed MAIAC AOD

2921 0.69 (no buffer); 0.70 (1 km); 0.71 (3 km); 0.73 (5 km);0.73 (7 km); 
0.74 (9 km)

0.45 0.06

Note:

a:
Number of weekly samples

b:
“(no buffering)” indicates a metric (correlation or RMSE) based on matched coincident pixel – site samples, and “(x km)” indicates a metric 

(correlation or RMSE) based on a spatial average within a circular buffer with a certain radius (e.g., 1 km, 3 km, 5 km, 7 km or 9 km radii) around 
each site.
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Table 5.

Monthly variation for validation of weekly imputed MAIAC AOD with AERONET measurements.

Month
n

a Correlation R2 RMSE

Coincident
b

9 km
c Coincident 9 km Coincident 9 km

1 254 0.35 0.46 0.09 0.19 0.07 0.07

2 245 0.54 0.60 0.27 0.32 0.06 0.06

3 222 0.41 0.47 0.11 0.19 0.05 0.05

4 233 0.59 0.63 0.27 0.34 0.05 0.04

5 237 0.66 0.65 0.40 0.40 0.04 0.04

6 247 0.82 0.82 0.63 0.58 0.05 0.06

7 230 0.87 0.92 0.71 0.81 0.06 0.05

8 244 0.76 0.80 0.57 0.64 0.04 0.04

9 238 0.79 0.83 0.62 0.66 0.04 0.04

10 247 0.72 0.75 0.48 0.50 0.05 0.05

11 259 0.73 0.79 0.46 0.51 0.06 0.05

12 265 0.50 0.64 0.23 0.36 0.07 0.06

Note:

a.
sample size

b.
coincident pixel used

c.
9 km: average MAIAC AOD within 9 km buffer of AERONET site.
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