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ABSTRACT

Feedback controls are usually designed to achieve multiple and often con-
flicting performance goals. These incommensurable objectives can be found in both
time and frequency domains. For instance, one may want to design a control system
such that the closed-loop system response to a step input has a minimum percent-
age overshoot (Mp), peak time (tp), rise time (tr), settling time (ts), tracking error,
and control effort (Eu). Another designer may want the controlled system to have
a maximum crossover frequency (ωc), maximum phase margin (Pm) and minimum
steady-state error (ess). However, Most of these objectives cannot be achieved con-
currently. Therefore, trade-offs have to be made when the design objective space
includes two or more conflicting objectives. These compromise solutions can be
found by techniques called multi-objective optimization algorithms. Unlike the sin-
gle optimization methods which return only a single solution, the multi-objective
optimization algorithms return a set of solutions called the Pareto set and a set of
the corresponding objective function values called the Pareto front.

In this thesis, we present a multi-objective optimal (MOO) design of linear
and nonlinear control systems using two algorithms: the non-dominated sorting
genetic algorithm (NSGA-II) and a multi-objective optimization algorithm based
on the simple cell mapping. The NSGA-II is one of the most popular methods in
solving multi-objective optimization problems (MOPs). The cell mapping methods
were originated by Hsu in 1980s for global analysis of nonlinear dynamical systems
that can have multiple steady-state responses including equilibrium states, periodic
motions, and chaotic attractors. However, this method can be also used also to
solve multi-objective optimization problems by using a direct search method that
can steer the search into any pre-selected direction in the objective space.

Four case studies of robust multi-objective/many-objective optimal control
design are introduced. In the first case, the NSGA-II is used to design the gains
of a PID (proportional-integral-derivative) control and an observer simultaneously.
The optimal design takes into account the stability robustness of both the control
system and the estimator at the same time. Furthermore, the closed-loop system’s
robustness against external disturbances and measurement noises are included in
the objective space.

The second case study investigates the MOO design of an active control
system applied to an under-actuated bogie system of high speed trains using the
NSGA-II. Three conflicting objectives are considered in the design: the controlled

xiii



system relative stability, disturbance rejection and control energy consumption. The
performance of the Pareto optimal controls is tested against the train speed and
wheel-rail contact conicity, which have huge impact on the bogie lateral stability.

The third case addresses the MOO design of an adaptive sliding mode control
for nonlinear dynamic systems. Minimizing the rise time, control energy consump-
tion, and tracking integral absolute error and maximizing the disturbance rejection
efficiency are the objectives of the design. The solution of the MOP results in a large
number of trade-off solutions. Therefore, we also introduce a post-processing algo-
rithm that can help the decision-maker to choose from the many available options
in the Pareto set.

Since the PID controls are the most used control algorithm in industry and
usually experience time delay, a MOO design of a time-delayed PID control applied
to a nonlinear system is presented as the fourth case study. The SCM is used in
the solution of this problem. The peak time, overshoot and the tracking error are
considered as design objectives and the design parameters are the PID controller
gains.

xiv



Chapter 1

INTRODUCTION

The process of optimizing two objectives or more simultaneously is called
multi-objective optimization or vector optimization. In some references when the
number of objectives are more than three, the term many-objective optimization is
used instead.

Most real-life problems have several conflicting criteria that have to be con-
sidered at the same time. For example, one may want to buy the cheapest and the
most comfortable car. However, these two goals cannot be achieved at the same
time. So, the problem of minimizing the cost and maximizing the comfort when
buying a car can be formulated as a multi-objective optimization problem with two
conflicting objectives. Another example of conflicting criteria that can be found in
real-life applications is maximizing performance whilst minimizing fuel consumption
and emission of pollutants when designing a vehicle. These three incommensurable
aims cannot be satisfied concurrently and trade-offs need to be made among them.

One can notice that since the objectives are in competition, the traditional
single objective optimization and linear programming algorithms are not enough.
Because the solution of these kinds of problems is not a single point, but rather
a set of solutions, which represents the trade-offs between cost and comfort in the
case of buying a car or performance, fuel consumption and emission of pollutants
while designing a vehicle. Therefore, in real-life applications one is faced with the
problem of finding the best trade-off solutions for the given problems.

1.1 Multi-Objective Optimization

Multi-objective Optimization Problems (MOPs) have been in focus for a
long time because of their vast applications. The solutions to MOPs are not certain
points, but rather it forms a set called Pareto set and the set of corresponding
objective function values is called Pareto front. A MOP problem can be expressed
as follows:

min
k∈Q
{F(k)}, (1.1)

where F is the map that consists of the objective functions fi : Q → R1 under
consideration.

F : Q→ Rk, F(k) = [f1(k), . . . , fk(k)]. (1.2)
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k ∈ Q is a q-dimensional vector of design parameters. The domain Q ⊂ Rq can in
general be expressed by inequality and equality constraints:

Q = {k ∈ Rq | gi(k) ≤ 0, i = 1, . . . , l,
and hj(k) = 0, j = 1, . . . ,m}. (1.3)

The concept of dominancy [1] which is defined below, plays an important
role in defining the optimal solution of a given MOP:

1.1.1 Definition 1

(a) Let v,w ∈ Rk. The vector v is said to be less than w (in short: v <p w), if
vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector v ∈ Q is called dominated by a vector w ∈ Q (w ≺ v) with respect
to the MOP (1.1) if F(w) ≤p F(v) and F(w) ̸= F(v), else v is called non-
dominated by w.

If a vector w dominates a vector v, then w can be considered to be a ‘better’
solution of the MOP. The definition of optimality or the ‘best’ solution of the MOP
is now straightforward.

1.1.2 Definition 2

(a) A point w ∈ Q is called Pareto optimal or a Pareto point of the MOP (1.1) if
there is no v ∈ Q which dominates w.

(b) The set of all Pareto optimal solutions is called the Pareto set denoted as

P := {w ∈ Q : w is a Pareto point of the MOP (1.1)}. (1.4)

(c) The image F(P) of P is called the Pareto front.

Pareto set and Pareto front typically form (k − 1)-dimensional manifolds
under certain mild assumptions on the MOP. A survey of the methods for the
solution of MOPs can be found in [2,3]. In the next section, only the MOP methods
that have been used in the design of control systems will be discussed.

1.2 MOP Methods Used in Control Systems Design

There are many methods for solving MOPs. These methods can be classi-
fied into two or more categories. See, for example, the references [4–7]. In [4], the
methods were divided into two groups: generation methods and preference-based
methods. In the former category, the solution set is generated first. Then, the opti-
mal solution is introduced to the decision maker who has the absolute authority to
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choose any point from it, reject the whole solution or accept it. In the latter cate-
gory, the decision maker must specify preferences regarding the objective functions
articulated in terms of goals, importance of objectives, etc. These preferences are
taken into account during the solution process and the solution that best satisfies
the user’s preferences is elected.

Another classification can be found in [7] where the MOP techniques are put
into four categories: no-preference, posterior, prior and interactive methods.

In this thesis, we adopt the classification presented in [8] where the MOP ap-
proaches are split into three categories: scalarization, Pareto, and non-scalarization
non-Pareto methods. It is worth mentioning that the first two categories are the
most important MOP techniques [8, 9].

1.2.1 Scalarization Methods

The scalarization methods require transformation of the MOP into a single
optimization problem (SOP), normally by using coefficients, exponents, constraint
limits, etc. and then methods for single objective optimization are utilized to search
for a single solution. Computationally, these methods find a unique solution effi-
ciently and converge quickly. However, these methods cannot discover the global
Pareto solution for non-convex problems [9]. Also, it is not always obvious for the
designer to know how to choose the weighting factors for the scalarization [7, 9].

There are three common scalarization methods reported in the literature.
They are the weighted sum approach [10, 11], goal attainment method [12] and
lexicographic method [13].

The weighted sum approach is perhaps one of the commonly used methods [9].
It is based on adding the weighted objectives to form a single cost function as follows,

min
k∈Q

n∑
i=1

wifi(k), (1.5)

where, wi > 0 for all i = 1, ..., n and
∑n

i=1wi = 1. The optimization may be also
subjected to various constraints. The objective functions are often normalized in
the weighted sum when they have different range of values.

A clear advantage of this method is that the SOP methods can be used to
produce a unique solution, which also means that the solution can be found by less
computational burden. However, the weighting factors have a huge impact on the
solution and they are hard to be selected [9]. It is also worth mentioning that these
“weights indicate the relative importance of the corresponding objective function
but they do not mean priorities” [9]. Other drawback of this method is that the
optimization process becomes very difficult in case of non-convex problems [7, 9].

The goal attainment method includes a set of prior chosen design targets.
Each target is associated with an objective. The formulation of the MOP in this
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case allows the objectives to be under- or over-achieved so that the initial design
goals can be chosen to be imprecise by the decision-maker. The relative degree
of under- or over-achievement of these targets is determined by a set of weighting
factors. A standard optimization problem using this method can be given as follows,

min
γ∈R1, k∈Q

γ, (1.6)

such that fi(k)−wiγ ≤ f ∗
i (k) subject to other constraints. Here, fi(k) are objective

functions, wi are weights indicating the relative importance of each objective func-
tion. This vector has to be elected by the decision maker before the MOP method
is applied. f ∗

i (k) are the goals, which have to be reached, and γ is an unrestricted
scalar.

It is evident that this method shares similar properties with the weighted
sum method, where the most important task is to find the weight vector. Also, each
element in this vector does not represent the corresponding function priority.

In the lexicographic method, objective functions are sorted according to their
importance, starting with the most important one to the least. A MOP of this
method can be formulated as follows [7],

min
k∈Q

f1(k), f2(k), ..., fn(k), (1.7)

where f1 is the most important and fn is the least important objective.
The merit of this approach is that there is only one unique solution for a given

lexicographic order. Also, the implementation of this method is straightforward
because of the sequential optimization. Its demerit is that usually criteria with lower
priorities will not be satisfied. Therefore, priority assignment is of great importance
for the success of this technique [9].

1.2.2 Pareto Methods

Unlike the scalarization methods, the Pareto methods do not aggregate the
elements of the objectives into a single fitness function. They keep the objectives
separate all the time during the optimization process. Therefore, they can handle
all conflicting design criteria independently, and compromise them simultaneously
[9]. The dominancy concept in Section 1.1 is used to differentiate between inferior
and non-inferior solutions. The Pareto methods provide the decision-maker with
a set of solutions such that every solution in the set expresses a different trade-off
among the functions in the objective space. Then, the decision-maker can select any
point from this set. In other words, in contrast to the scalarization methods where
the preferences have to be expressed before the optimization is carried out, in the
Pareto methods, these preferences can be decided once the optimization process is
over [7, 9, 14].
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Compared to the scalarization approaches, the Pareto methods can success-
fully find the optimal or near-optimal solution set. They are computationally more
expensive. In general, these methods can be classified into three classes: multi-
objective evolutionary algorithm (MOEAs), multi-objective deterministic methods
and multi-objective hybrid methods.

Evolutionary algorithms are most broadly used for MOPs [15]. The basic
notion in evolutionary computation is to evolve an entire set of trial solutions of
chosen size toward the solution during the search. Evolutionary algorithms designed
for these problems have been demonstrated their power in many applications. The
solution set can be well approximated in most cases with these algorithms [16].

The first attempt of using MOEAs in solving MOPs was circa 1988 in [17].
Since then, many MOEAs were developed. The most important are: ACO (Ant
Colony Optimization, [18]), MOGA (Multiple Objective Genetic Algorithm, [19]),
PSO (Particle Swarm Optimization, [20]), NSGA-II (Non-dominated Sorting Ge-
netic Algorithm, [21]), SPEA2 (Strength Pareto Evolutionary Algorithm, [22]), and
NPGA-II (Niched Pareto Genetic Algorithm, [23]). Mainstream evolutionary algo-
rithms for MOPs include genetic algorithm (GA), multi-objective particle swarm
optimization (MOPSO) and strength Pareto evolutionary algorithm (SPEA).

Deterministic methods such as set oriented methods with subdivision tech-
niques [24], and MOO algorithm based on the simple cell mapping (SCM) [16] can
be used to find the solution set. The advantage of the set oriented methods is that
they produce an approximation of the global Pareto set in one single run of the algo-
rithm. The cell mapping method is the predecessor of the set oriented methods, and
was proposed in [25] for global analysis of nonlinear dynamic systems. It can be also
implemented with subdivision techniques. Both of these approaches can be used to
solve optimization problems and are characterized by a great robustness. Therefore,
these techniques are attractive choices against ‘classical’ mathematical programming
approaches, specially for solving low or moderate dimensional problems.

Even though the study of hybrids of MOO techniques is still relatively scarce,
this topic is receiving much attention. The aim of the hybridization is to reduce
the number of function evaluations and improve the quality and diversity of the
solution. For instance, a hybrid approach of a fast differential evolution multi-
objective algorithm and a local search method based on the use of rough set theory
is introduced [26]. The new algorithm has less computational cost and is robust in
solving difficult constrained multi-objective optimization problems as compared to
NSGA-II.

Other examples have been also reported in the literature. In [27], a genetic
algorithm is coupled with a tabu search. A hybridization of simulated annealing
principles with genetic algorithms is studied in [28] and [29]. More details about
hybrid MOP methods can be found in [30].
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1.2.3 Non-Pareto and Non-scalarization Methods

There are two MOO algorithms that cannot be classified as either Pareto
or scalarization Methods. They are the ϵ−constraint method [31] and the VEGA
(Vector Evaluated Genetic Algorithm, [32]) approach.

The ϵ−constraint method was proposed in 1971 by Haimes. In this method,
one of the cost functions is selected to be optimized and the rest of the functions
in the objective space are converted into constraints by setting an upper bound to
each of them. In this case, the MOP is formulated as follows

min fl(k), (1.8)

subject to fj(k) ≤ εj . . . for all j = 1, ..., n, n ̸= l

The VEGA works almost in the same way as the single objective genetic
algorithm. Its selection step has been modified. In this step, a number of sub-
populations is produced at each generation. These subpopulations are resulted
from performing proportional selection according to each objective function. For
Instance, for a problem with k objectives and N population size, k subpopulations
of size N/k each are created. These subpopulations are then combined to form a
new population of size N . After that, the crossover and mutation processes are
applied as in the standard GA.

One of the disadvantages of this algorithm is that it does not perform well
in the case of a concave trade-off surface where the population tends to split into
different species. Each of them is particularly strong in one of the objectives. This
phenomenon is not desirable because it disagrees with the goal of finding a compro-
mised solution [33].

These algorithms have been exploited in the design of multi-objective optimal
linear and nonlinear controls. In the next section, we list some of these examples.

1.3 The State-of-the-art of MOPs in Control Systems

Multi-objective optimal control has been receiving much attention. Examples
can be found in almost all the control fields including linear, robust, nonlinear and
structural control systems [34].

In linear control systems, the multi-objective optimal design of the proportional-
integral-derivative (PID) controller has the lion share of the literature. Because of
vast applications of PID controls in industries, there have been many studies to de-
velop designs or tuning techniques of the control. The multi-objective optimal design
of this type of control systems is discussed extensively in [14]. For the last three
decades, there have been a large number of publications on multi-objective optimal
design of PID controllers. For instance, in [35], a MOGA is used to design a fixed-
gain PID controller and a gain-scheduled PID for a highly nonlinear chemical pilot
plant. Two design objectives are considered: minimum integral square error (ISE)
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and minimum control effort defined by |u|, where u is the control signal. In [36] ,
an algorithm called the global ranking genetic algorithm was developed and used to
design the PID controller gains for a rotary inverted pendulum. Three conflicting
functions are considered in the design including the settling time, overshoot and
mean square steady-state error. Another multi-objective genetic algorithm called
the genetic artificial immune system algorithm was investigated in [37]. The four
fitness functions are considered: the rise time, overshoot, settling time, and inte-
gral square error. A non-dominated sorting genetic algorithm was used in [38] to
tune the control gains to minimize the rise time, overshoot and settling time. Simi-
lar multi-objective optimal control designs are studied with different algorithms for
multi-objective optimization problems including the ant colony algorithm [39], an
immune algorithm [40] and the imperialist competitive algorithm [41]. One of the
most important works in the field of MOPs of PID controller is proposed in [42],
where four objectives, overshoot, rise time, settling time and JIAE (Integral absolute
error), are optimized using NSGA-II. A similar design method is introduced in [43],
but the solution is found by using a gradient-based MOP algorithm.

Other designs are done in the frequency domain where the gain and phase
margins are used to characterize the system stability and robustness, and the crossover
frequency is used to assess the system speed of response [44]. For example, an opti-
mal PID control designed in the frequency domain and applied to a rotary hydraulic
system has been proposed in [45]. The control parameters are tuned such that the
crossover frequency, gain margin, phase margin, and steady state error are within
targeted ranges. In [46], a PI controller is design by optimizing three objective func-
tions: weighted integral square error, gain and phase margins. The goal attainment
method is used to solve this problem for two different case studies: the first order
plus delay time (FOPDT) models and integrator plus delay time (IPDT) models.

The first attempt to use nonlinear optimization methods in robust control
was reported in [47]. Therein, the weights for LQG (Linear-Quadratic-Gaussian)
control design was tuned using a method called DELIGHT which is an interac-
tive optimization-based method. A similar idea was proposed in [48].Therein, LQG
(Loop Transfer Recover) LTR weighting matrices are designed by using Matlab’s
constrained optimization function. These matrices are computed such that a user
defined performance criterion is minimized under both performance and stability ro-
bustness constraints. Another example is found in [49] where the problem of design-
ing a robust control system for a distillation column is formulated as a constrained
MOP problem. The MOP performance indices include the individual eigenvalue
sensitivities, and the sensitivity and the complementary sensitivity functions in the
frequency domain. The robust performance criteria are formulated as a set of in-
equalities and the full-state feedback matrix are designed by using genetic algorithm.
A robust H∞ control for rotorcraft is designed using multi-objective particle swarm
optimization has been reported in [50]. The algorithm minimizes three functions-
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rising time, overshoot, and bandwidth while it searches for the optimal parameters
of three frequency-dependent weighting functions- the performance weighting func-
tion, control activity weighting function and robustness weighting function-under
the circumstance of the given structures of three weighting matrices in the H∞
mixed sensitivity design.

Although up to now only limited studies on multi-objective design of non-
linear control systems have been done, several prosperous applications of common
stochastic algorithms such particle swarm optimization (PSO) [51] and the genetic
algorithm [52] show an increasing interest in this subject. A multi-objective opti-
mization on sliding surface construction by using genetic multi-objective algorithm
was investigated in [53]. In [54], a hybrid fuzzy and genetic algorithm-based multi-
objective optimization approach was used to tune the parameters of sliding mode
control (SMC) applied to a remotely operated underwater vehicle system. SMC to
train neural networks for multi-objective optimization was developed in [55]. In [56],
non-dominated multi-objective genetic algorithm (NSGA-II) is used to optimize pa-
rameters of membership functions and find appropriate fuzzy rules of a fuzzy logic
controller implemented on a smart base-isolation system which consist of a friction
pendulum system and a large magnetorheological damper. In [57], three control
techniques: skyhook control, feedback linearization, and sliding mode control ap-
plied to semi-active vehicle suspensions were optimized by the multi-objective ge-
netic algorithm (MOGA). Two objectives were considered: ride quality, as measured
by absorbed power, and thermal performance, as measured by power dissipated in
the suspension damper. The design parameter space includes only one parameter
called skyhook control, feedback, or sliding mode control gain. A comparison study
of the Pareto optimal design of the decoupled sliding mode controller for an inverted
pendulum system was presented in [58]. In that respect, five different algorithms:
the Sigma method [59], the modified NSGA-II algorithm [60], the MOGA toolbox
in Matlab and a novel PSO algorithm were used. In [61], an optimal robust sliding
mode tracking control of a biped robot was designed by a new variant of PSO al-
gorithm called ingenious multi-objective PSO. To show the superiority of the new
algorithm, the same control problem was optimized with three well-known multi-
objective optimization algorithms, modified NSGAII, Sigma method, and MOGA.
The most recent work in this matter was published in [62]. Therein, a multi-objective
optimal sliding mode applied to an under-actuated nonlinear system was designed
by the parallel simple cell mapping method. The results demonstrated that the
presented multi-objective designs are quite useful.

In [63], a constrained optimization problem with two objectives of actively
controlled structures was solved by a hybrid method combined a Pareto genetic
algorithm (GA) and a fuzzy penalty function. The Pareto GA with five basic oper-
ators: reproduction, crossover, mutation, niche, and the Pareto-set filter was used
to find the solution set while the fuzzy penalty function was used to transform
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the constrained optimization problem into non-constrained one. In [64], the prob-
lem of building an actively controlled structure with constraints was formulated as
MOP. This method was applied to two truss structures. The objective space had
four objective functions: the weight of the structure, control effort in terms of the
Frobenious norm of the control gains, effective damping response time, and per-
formance index, which provides a measure of the total system energy. The design
space was chosen as the cross-sectional areas of the members of the structure. In [65]
, physical programming algorithm was used to design a robust control system for
a well-known benchmark control problem, two degree-of-freedom spring-and-mass
system. The objective space included five design metrics: settling time, stability,
noise amplification, control effort, and controller complexity, which represents the
controller order. The size of the design parameter space is nine variables used in
the development of the controller.

1.4 Outline of the Thesis

This dissertation is based on the author’s research publications on multi-
objective optimal design of control systems in the past four years. Two algorithms
have been used in the research: the non-dominated sorting genetic algorithm II and
a multi-objective optimization algorithm based on the simple cell mapping, which
are detailed in Chapter 2 . Chapters 3, 4 and 5 propose multi-objective optimal
designs of a PID controller with a state observer, partial state-feedback controller
applied to a high speed train, and an adaptive sliding mode controller, respectively.
Chapter 6 focuses on the application of MOP algorithm based on the SCM method
to the design of a time-delayed PID controller applied to a nonlinear Duffing system.
Chapter 7 summarizes the work and suggests the future works.
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Chapter 2

MOP ALGORITHMS BASED ON SCM AND NSGA-II

2.1 Introduction

In this chapter, we describe two Pareto algorithms for MOPs. The first one
is called the non-dominated sorting genetic algorithm II (NSGA-II) which belongs
to the family of stochastic algorithms. This algorithm has been widely used in the
literature to solve MOPs. The second one belongs to the family of deterministic
methods and is termed the simple cell mapping (SCM) method for MOPs.

2.2 NSGA-II

NSGA developed in [66] is a non-domination based genetic algorithm. Even
though it performs well in solving MOPs, its high computational effort, lack of
elitism, and the implementation of what is called sharing parameter necessitate
improvements. As a result, a modified version of the algorithm named NSGA-II
was presented in [67]. The new version has a better sorting algorithm, includes
elitism, eliminates the need for the sharing parameter, and has less computational
burden.

As shown in Table 2.1, the algorithm incorporates eight basic operations:
Initialization, fitness evaluation, non-domination ranking, crowding distance calcu-
lation, tournament selection, crossover, mutation, and combination [67].

It starts with the initialization process in which a random population, Npop,
that satisfies the constraints, [lb , ub], is generated. Once the population is initial-
ized, fitness function evaluations, F(Pop), takes place in the second stage.

Using these function values, the candidate solutions are sorted based on their
non-domination and placed into different fronts. The realization of this algorithm is
shown in Table 2.2. The solutions in the first front dominate all the other individuals
while those in the second front are dominated only by the members in the first front.
Similarly, the solutions in the third front are dominated by individuals in both the
first and second fronts, and so on. Each candidate solution is given a rank number,
r, of the front where it resides. For instance, members in first front are ranked 1
and those in second are given a rank of 2 and so on.

To improve the diversity of the solution, a parameter called the crowding
distance is computed for each solution as shown in Table 2.3. This parameter
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measures how close an individual is to its neighbors. In this algorithm, nf denotes
the number of individuals in the front and nobj is the number of objective functions.
The crowding distance is calculated front wise and comparing the crowding distance
between two individuals from two different fronts is meaningless. The larger the
average crowding distance, the better the diversity of the population.

After that, the parents for the next generation are selected. The binary
tournament selection method, shown in Table 2.4, is used for this purpose. In this
algorithm, randint generates two uniform random integers between 1 and Npop.
These values are used to fetch two candidate parents fromPop. A candidate solution
is selected if its rank is smaller than the other or if its diversity measure is bigger
than the other.

Then, the arithmetic crossover (see Table 2.5) [68, 69] and simple mutation
(see Table 2.6) [70] operators are applied on the selected parents to produce new
children. These two operations are repeated nc times, where nc = round(Npop/2),
and result in a new offspring of size Npop. In the mutation algorithm, pm is the
mutation probability which is used to mutate the jth variable of a child with navrs
of design parameters when rand (generates a uniform random number between [0
1]) is less than or equal to pm. Mutation should allow the algorithm to avoid local
minima by preventing the population of chromosomes from becoming too similar to
each other. Elaborated details about crossover and mutation methods can be found
in [71].

After that, the new children is merged with the current population. This
combination guarantees the elitism of the best individuals.

Finally, the population is sorted based on the crowding distance, d, and rank,
rnkp , values. First, the sorting is performed with respect to d in a descending order.
Then, an ascending order of the population is followed based on the rank values.
The new generation is produced from the sorted population until the size reaches
Npop.

As long as the number of generations, gen, is not equal to the maximum
number of iterations, Ngens, the selection, crossover, mutation, merging, ranking
and sorting process are repeated.

The NSGA-II converges to the neighborhood of the solution very quickly
and slows down subsequently. That is, it needs more time to converge to the global
solution of MOPs. It is an attractive choice to high dimensional problems that the
number of populations is usually kept to be manageable.

Another algorithm that can approximate the real Pareto solution accurately
is the MOP algorithm based on the SCM. This method is a very interesting alterna-
tive against ‘classical’ mathematical programming techniques in particular for the
thorough investigation of low or moderate dimensional MOPs.
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Table 2.1: Algorithm 1 – Pseudo code of NSGA-II

INPUT: F;nvars;nobj;ub; lb;Npop;Ngens; pm
OUTPUT: Ps, Pf
1: [Initialization] Generate a random population, Pop, of Npop
chromosomes within the specified constraints, ub and lb.

2: [Fitness] Evaluate multiple fitness of each chromosome
in the population, F(Pop)

3: [Rank] Rank the population by the following steps:
3.1 [Domination rank] Rank individuals in population

by using Algorithm 2.
3.2 [Crowding distance] Calculate the crowding distance

by using Algorithm 3.
4: while gen < Ngens
5: while k ≤ nc
6: parent1 ←−Selection(r, d,Pop)
7: parent2 ←−Selection(r, d,Pop)
8: C childern←−Crossover(nvars, parent1, parent2,ub, lb)
9: M Childern1 ←−Mutation(navrs,Crossover childern1, pm,ub, lb)
10: M Childern2 ←−Mutation(navrs,Crossover childern2, pm,ub, lb)
11: end while
12: [Fitness] Evaluate multiple fitness of M Childern
13: [Merge] Pop←− [Pop, M Childern]
14: [Rank] by using Algorithm 2 and Algorithm 3.
15: [Sort Population] sort Pop based on their d and r
16: [Replace] Pop←− Pop(1 : Npop)
17: end while
18: Ps←− Pop
19: Pf ←− F(Pop)
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Table 2.2: Algorithm 2 – Pseudo code of domination rank .

INPUT: F;Pop
OUTPUT: rnk
1: Let rank counter r be zero.
2: Increase: r = r + 1.
3: Find the non-dominated individuals, S, from population Pop
based on the definition of domination.

4: rnkp ←− r ∀p ∈ S
5: Remove these individuals from Pop and continue.
6: If Pop is empty then stop, else go to step 2.

Table 2.3: Algorithm 3 – Pseudo code of Crowding distance.

INPUT: F;nf ;nobj
OUTPUT: d
1: Let dk = 0 for k = 1, 2, , nf .
2: For each objective function fi, i = 1, 2, ...,nobj
sort the set in ascending order.

3: Let d1 and dnf be maximum values, e.g. d1 = dnf =∞.

4: For j = 2 to (nf − 1), set dj = dj +
∑nobj

k=1
fi(j+1)−fi(j−1)
fi(nf)−fi(1) .
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Table 2.4: Algorithm 4 – Pseudo code of the selection method.

INPUT: rnk;d;Pop
OUTPUT: parent
1: rn←− randint(1, 2, [1 Npop])
2: w←− Pop(rn1)
3: u←− Pop(rn2)
4: if rnk(w) < rnk(u) then
5: parent←− w
6: elseif rnk(w) > rnk(u) then
7: parent←− u
8: else
9: if d(w) < d(u) then
10: parent←− u
11: else
12: parent←− w
13: end if
14: end if

Table 2.5: Algorithm 5 – Pseudo code of crossover.

INPUT: nvars,parent1,parent2;ub; lb
OUTPUT: C childern
1: Generate uniform random vector, α, between [0 1]
α = rand1×nvars
2: Assign the children’s values by the following equations:
C childern1 = α× parent1+(1− α)× parent2
C childern2= α× parent2+(1− α)× parent1
3: Judge whether the obtained value located within the
available range [lb, ub], if the value beyond, reset
the chromosome within the available range
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Table 2.6: Algorithm 6 – Pseudo code of the mutation operator .

INPUT: nvars;child; pm;ub; lb
OUTPUT: M Childern
1: M Childern = child
2: while j ≤ nvars do
3: if rand ≤ pm
4:M Childernj = rand ∈ [lbj;ubj]
5: end if

2.3 Simple Cell Mapping Method

The cell mapping methods describe system dynamics with cell-to-cell map-
pings by discretizing both the phase space and time. In MOPs, the SCM method
is applied to the dynamic search process in the design parameter space, not to the
original dynamical system in time domain. The point-to-point mapping obtained
from the gradient search algorithm for MOPs can be written as

k(i) = G(k(i− 1)), (2.1)

where k (i) ∈ Rq is the design vector at the ith mapping step. In the SCM, the
dynamics of an entire cell denoted as Z is represented by the dynamics of its center.
The center of Z is mapped according to the point-to-point mapping. The cell that
contains the image point is called the image cell of Z. The cell-to-cell mapping
corresponding to Equation (2.1) is denoted by C,

Z(i) = C(Z(i− 1)). (2.2)

To illustrate how the SCM is constructed for MOPs, we present a Directed
Search (DS) algorithm [72, 73], which has the benefit of needing less information
to perform the local search for minimum, assuming that the parameter space Q is
discretized into a collection of finite size cells and that the SCM method is applied.

The first step of the SCM method for MOP is to compute the objective
functions at the center point of all the cells in Q. The DS algorithm allows to
steer the search into any pre-selected direction di ∈ Rk in the objective space. di is
usually chosen from the current location in the objective function space to point to a
direction along which all the objective functions decrease [74]. To apply the gradient
free version of this algorithm within SCM, we can proceed as follows: Choose nb ≥ q
neighboring cells of a current cell under processing. Define unit vectors as

νi =
ki − k0

∥ki − k0∥2
i = 1, 2, · · · , nb, (2.3)
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where k0 is the center of the current cell, and ki is the center of the ith cell in the
immediate neighborhood of k0. Define a matrix F = {mi,j} ∈ Rk×nb as

mi,j =
fi(kj)− fi(k0)

∥kj − k0∥2
, (2.4)

which is an approximation of the directional derivative of fi(k0) in direction νj at
k0. Compute

λ = F+di, (2.5)

where F+ denotes the pseudo inverse of F [75]. Then a line search in the parameter
space along the direction

ν =
nb∑
i=1

λiνi, (2.6)

leads to a movement along di-direction in the objective space. If the search along
ν-direction near the neighborhood of the current cell k0 ends at a cell kd which
dominates k0, i.e. F(kdi) ≤p F(k0), kdi is taken as the image cell of k0. If no
such a cell can be found, the current cell k0 may be on the Pareto set, and we
assign its image as itself. This is how the simple cell mappings are constructed
for all the cells in the parameter space Q. After all the cells are processed, we
apply the sorting algorithm due to Hsu to identify periodic and transient cells in
the discretized domain Q [25]. The periodic cells represent an approximation of the
Pareto set, with possibly one exception.

If no transient cells are mapped to a periodic cell with period one, the periodic
cell is isolated. We change it to be the sink cell. This can happen when a cell is not
on the Pareto set and none of its neighboring cells dominates it.

Next, we discuss a hybrid algorithm for computing the SCM of a MOP. The
hybrid algorithm consists of a gradient free search on a relatively coarse cell space
and a gradient based search on the region of the approximate Pareto set obtained
by the gradient free search with much refined cells. For the gradient free search,
the image of a cell is selected by comparing the objective function values of all its
neighboring cells. If there is only one dominant cell in the neighborhood, it becomes
the image of the cell under consideration. If there are more than one dominant
cells, we select the one that has the highest objective function value decrease per
unit distance. Such a choice mimics the steepest gradient decent algorithm. The
outcome of the gradient free search on a coarse cell partition is a covering set of the
Pareto set.

We point out that gradient based approaches could be realized efficiently in
the context of SCM. If the cells are small enough, one could, for instance, use the
center points of the neighboring cells to obtain a finite difference approximation of
the gradient at a given cell. This would in principle open the door for the usage of
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all gradient based search algorithms, but without explicitly computing the gradient.
Since the function values for the center points of neighboring cells in all q directions
are already known, the approximation of the gradient comes for free in terms of the
additional function evaluations. This is the reason that a gradient search algorithm
is proposed for the second step of the hybrid algorithm over the refined cell space.

Before the refinement step in the hybrid algorithm, we programmatically
make the covering set larger than the collection of all periodic cells by including
their immediate neighboring cells. This is a strategy to avoid the missing segments
of the Pareto set. As a final step, the dominance of the cells in the Pareto set is
checked in order to remove the additional cells that are brought in to avoid the
missing segments of the Pareto set.

We should note that the exact image of the center of a cell is approximated
by the center of its image cell. This approximation can cause significant errors
in the long term solution of dynamical systems [76–78]. The cell mapping with a
finite number of cells in the computational domain will eventually lead to closed
groups of cells of the period same as the number of cells in the group. The periodic
cells represent invariant sets, which can be periodic motion and stable attractors
of dynamical systems, and which represent the Pareto set in the context of MOPs.
The rest of the cells form the domains of attraction of the invariant sets. For
more discussions on the cell mapping methods, their properties and computational
algorithms, the reader is referred to the book by Hsu [25].

2.4 Numerical Example

Consider the minimization of the vector function F = [f1(k), f2(k)] such that
f1 and f2 are given by,

f1(k) = k21 + k22 (2.7)

f2(k) = (k1 − 10)2 + k22, (2.8)

where, k ∈ Q is a 2-dimensional vector of design parameters. The domain Q is
expressed by box constraints:

Q = {k ∈ [−1, 10]× [−1, 10] ⊂ R2}, (2.9)

The Pareto set and front returned by the NSGA-II are shown in Figures 2.1
and 2.2, respectively. It can be noticed that the population size affects the solution
of the NSGA-II, and so is the number of generation. As a matter of fact, there is
no definite relationship between the population size and the number of the design
parameters. According to the Matlab documentation, the population size can be set
in different ways and the default population size is 15 times the number of variables.
Also, the maximum number of generations should not exceed 200× nvars.
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Figure 2.1: Pareto set: returned by NSGA-II: (a) Npop =50 and Ngens =200 ,
(b) Npop =100 and Ngens =200.

The solution set of the MOP algorithm based on the SCM for different cell
divisions is shown in Figure 2.3. The corresponding Pareto front is depicted in
Figure 2.4. As it is evident from Figure 2.3, the larger N values, the better the
solution. Theoretically, SCM with N = [∞ ∞] will produce the exact solution of
this problem. However, it is clear that this is practically impossible because there
is no infinite computer memory to handle this problem.

Though we are not concerned with the comparison between NSGA-II and
SCM in this thesis, we can note that the SCM produces a well-distributed solution
compared to that of the NSGA-II.

2.5 Summary

The NSGA-II and SCM for MOPs are detailed in this chapter. The first one
is very popular in solving MOPs. The SCM is developed by our team and seems to
produce very interesting results as we will see later. These two algorithms will be
used in the next chapters to solve MOPs of a class of linear and nonlinear control
problems.
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Figure 2.2: Pareto front corresponding to Figure 2.1 : (a) Npop =50 and
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Chapter 3

MANY-OBJECTIVE OPTIMAL AND ROBUST DESIGN
OF PID CONTROLS WITH A STATE OBSERVER

3.1 Introduction

The proportional-integral-derivative (PID) control is the most used control
algorithm. However, its tuning is not easy, especially when the design involves
multiple conflicting design objectives. For instance, tuning the controller for small
overshoot (Mp); low control energy; fast transient response (small peak time (tp)
or rise time (tr)); and high rejection against measurement errors and noises is a
very challenging task. It is well-known for control designer that a low control force
is required to reduce the effect of the measurement noise and a large control force
is needed for better noise rejection for the disturbance on the control signal. Fur-
thermore, when an observer is used to estimate unmeasured states, high observer
gains can cause a noise amplification. In linear control systems, the so-called Lu-
enberger observer is usually used to estimate unavailable states from the available
ones. Because the system is linear, the separation principle is used to design both
of the controller and observer independently. The controller is designed first by
the pole-placement method such that certain requirements on performance and/or
robustness are satisfied. After that, the observer’s gains are chosen so that some
demands on accuracy and speed of response are met. In some textbooks, authors
suggest a separation on the order of 2 to 10 between the desired closed-loop system’s
poles and the observer poles. This separation guarantees that the closed-loop per-
formance dominates that of the estimator. This method of design can only handle
specific requirements on both the controlled system and observer. However, other
interesting results can be also found if the optimization of the controller’s parameters
and the observer gains is considered. The problem becomes more interesting when
a many-objective optimization approach is used to find trade-offs between different
non-agreeable design goals.

In this chapter, we study a many-objective optimal design of the PID control
coupled with a linear observer, and make the following contributions: a) The gains
of a PID control and an observer are designed simultaneously. Hence, the optimal
design considers the stability robustness of both the control system and the estimator
at the same time. b) We optimize the robustness to disturbance and measurement
noises.
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3.2 Linear Control System

Consider a linear control system

ẋ(t) = Ax(t) +Bu(t), (3.1)

y(t) = Cx(t),

where x ∈ Rn, u ∈ Rm and y ∈ Rp. Consider a full state feedback control
u = −Kx(t). The control gain K can be designed in a number of ways. When
(A,B) is a controllable pair, we can design the control by the method of pole
placement. If (A,C) is an observable pair, the following state estimator can be
constructed:

˙̂x = Ax̂(t) +Bu(t) + L(y(t)−Cx̂(t)), (3.2)

where x̂ is the estimate of x and L denotes the observer gain matrix. In this case,
the actual control law is written as u = −Kx̂(t). The estimation error, e = x− x̂,
satisfies the following equation,

ė(t) = (A− LC)e. (3.3)

In linear control systems, the separation principle is used to design the con-
troller and observer in two steps. In the first step, the poles of the closed-loop
dynamic matrix, A−BK, are placed in the desired locations so that the system
performance meets the requirements. Then, the observer gain is designed so that
observer dynamics are faster than those of the closed-loop system. To this end, a
separation on the order of 2 to 10 is usually maintained between the poles of the
matrix A−BK and those of A− LC [79]. In this chapter, we propose to design the
gains of the PID control and the observer in a many-objective optimization setting.

In the following, we consider a second order oscillator as an example.

ẋ(t) =

[
0 1
ω2
n 2ζωn

]
x(t) +

[
0
ω2
n

]
u(t), (3.4)

y(t) = [1 0] x(t) = x1(t),

where ωn = 5, ζ = 0.01.
Since the system is observable, a second-order estimator can be formulated

as follow,

˙̂x =

[
0 1
ω2
n 2ζωn

]
x̂(t) +

[
0
ω2
n

]
u(t) +

[
l1
l2

]
(x1(t)− x̂1(t)), (3.5)

and the PID control is given by,

u(t) = kpe1(t)− kdx̂2(t)) + kix3, (3.6)
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where e1(t) = r(t)− x̂1(t), r(t) is a step input, kp, ki and kd are the gains and x3 is
the extended state with its first derivative given by ẋ3 = r − x̂1. l1 and l2 are the
observer parameters.

We consider the design vector K = [kp, ki, kd, l1, l2] for the optimization prob-
lem. The design space, Q, for the parameters is chosen as follows,

Q = {K ∈ [10, 60]× [1, 30]× [1, 3]× [1, 50000]× [1, 50000] ⊂ R5}, (3.7)

The gains for the control and the observer are chosen such that the closed-loop
matrices A−BK and A− LC are Hurwitz. Otherwise, the bounds of the design
parameters are somewhat arbitrarily selected.

The many-objective optimal design problem is stated as,

min
K∈Q
{tp,Mp, ∥S(jω)∥∞ , Eu, JIAE,L

TL}, (3.8)

where tp is the peak time, Mp is the maximum percentage overshoot, ∥S(jω)∥∞ de-
scribes the disturbance rejection capability of the closed-loop system, where S(jω)
represents the transfer function from the disturbance to the closed-loop system out-
put. ∥S(jω)∥∞ is given by

∥S(jω)∥∞ = sup
ω∈R

σ(S(jω)), (3.9)

where σ is the largest singular value of the transfer function. To have a good
disturbance rejection and reference signal tracking, the inequality, ∥S(jω)∥∞ << 1,
must hold.

The last three objectives in Equation (3.8) are the control energy, Eu given
by Equation( 3.10), integral absolute error, JIAE as defined Equation (3.11), and
the Frobenius norm, LTL, of the estimator gain matrix where L = [l1, l2]

T .

Eu =

t∫
0

uT (τ)u(τ)dτ (3.10)

JIAE =

∫ t

0

|e(t)|dt. (3.11)

We also impose the constraints: Mp ≤ 10%, max(λr(A−BK)) ≤ −1, and
max(λr(A− LC)) < min(λr(A−BK)). λr denotes the real parts of the matrix.
The second constraint improves the relative stability and provides a certain stability
robustness. The last condition to guarantee that the observer response is faster than
that of the closed-loop system.

The solution of this optimization problem is defined via the concept of dom-
inancy [1]. For this problem, we use the non-dominated sorting genetic algorithm
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(NSGA-II) proposed in Section 2.2. Most of the default settings of this algorithm
are kept and only two parameters are changed. They are population size and gen-
eration number. The population size is set to 150, and the number of generation is
set to 800.

3.2.1 Numerical Results

The Pareto front, Pareto set, pole maps and selected system responses are
discussed here. Figure 3.1 shows the Pareto set and Figure 3.2 shows some projec-
tions of the Pareto front. The Pareto set is colored with respect to the value of JIAE.
It can be seen from the Pareto set that a small tracking error is mainly associated
with large kp and ki values, which indicates a large control effort.

The color in Figure 3.2 is also mapped to the value of JIAE. The coloring adds
a 3D visualization of the six dimensional Pareto front. The Pareto front shows a
conflict relationship between tp andMp in Figure 3.2-a, between tp and Eu in Figure
3.2-b, between ∥S(jω)∥∞ and LTL in Figure 3.2-c, and finally between ∥S(jω)∥∞
and Eu in Figure 3.2-d. These plots also demonstrate a non-agreeable relationship
between Eu and JIAE as indicated by the color in Figure 3.2-b, where the red denotes
the highest value of JIAE, and dark blue denotes the smallest value. These results
are expected and have been reported in many books such as [79] and [14].

Figure 3.3-a shows the closed-loop poles of the matrix A−BK and Figure
3.3-b portraits the eigenvalues of the matrix A− LC on the Pareto set. It can be
noticed that closed-loop poles are at least one unit further away from the left of the
imaginary axis and the observer eigenvalues are to the left of those of the closed-loop
system as imposed by the constraints.

The system responses at the worst max(∥S(jω)∥∞) and the best min(∥S(jω)∥∞)
disturbance rejections are shown in Figures 3.4-a and 3.4-b, respectively, and those
for the worse (max(LTL)) and best ((min(LTL))) measurement noise rejection are
depicted in Figures 3.4-c and 3.4-d. The external disturbance and measurement
noise are modelled by white noises with the variance σ2 = 20 and σ2 = 0.05, re-
spectively. Comparing the values of the absolute tracking error before (JIAE) and
after (JIAEd) adding the disturbance, one can find out that the solution with the
smallest ∥S(jω)∥∞ has better rejection. However, measurement noise will be ampli-
fied because LTL will be large in this case as shown in Figure 3.4-c. In this figure,
JIAEn denotes the absolute tracking error after adding the measurement noise. For
low noise amplification, the solution with a small value of LTL must be selected.
Finally, we point out that the user can choose any solution from the Pareto set that
provides various compromises when meeting the performance requirements.

In the optimization we assume that the observer has zero error initially. The
system responses under different initial estimation errors are reported in Figures
3.5-a and 3.5-c for a slow observer and in Figures 3.5-b and 3.5-d when the observer
is fast. The simulation results exhibit that the initial conditions alter the transient
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response speed, overshoot and tracking error and in turn the total control effort.
However, LTL and∥S(jω)∥∞ stay the same and they are insensitive to the initial
estimation errors.

3.3 Concluding Remarks

We have studied the many-objective optimal PID control for a linear system
with a state estimator. The optimization problem with 5 design parameters and 6
objective functions is solved by using the NSGA-II algorithm. Three performance
and stability constraints have been imposed. The Pareto optimal designs form
a set that offers a wide range of control compromises to meet the performance
requirements. The numerical simulations have showed that the system has robust
performance against external disturbances and measurement noise. It has been
demonstrated that all the design objectives except ∥S(jω)∥∞ and LTL are sensitive
to the initial estimation errors.
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Figure 3.1: The Pareto set: (a) kp versus ki, (b) kp versus kd, (c) kp versus l1,
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Chapter 4

MULTI-OBJECTIVE OPTIMAL CONTROL OF
UNDER-ACTUATED BOGIE SYSTEM OF HIGH SPEED

TRAINS

4.1 Introduction

Active controls of high speed trains have been receiving much attention be-
cause of their flexibility compared to passive technologies. The design of feedback
controls must meet multiple and often conflicting requirements. In this chapter, we
present a multi-objective optimization approach to design an active control system
for a train subsystem called the bogie system.

With the development of active control technology, there is more and more
literature on active control of railway vehicles in recent years. Much research is
focused on railway vehicle ride comfort, the tilting train control and the secondary
suspension semi-active or active control in order to improve the vehicle lateral and
vertical smoothness, and to reduce high-frequency elastic vibration of the compart-
ment body [80, 81]. Since the effect of bogie primary suspension on the critical
velocity of railway vehicles has been well studied, researchers have proposed the
use of semi-active and full-active suspension control to improve the lateral stabil-
ity of the train [82–88]. There is a great variety of approaches for active primary
suspensions. A list of configurations that have been studied and are suitable for
implementation is provided in [87]. Active control may be applied in two different
ways – directly or indirectly [89]. The direct control involves the application of an
actuator on a solid wheelset or on an axle with independently rotating wheels. A
practical compromise is to apply a yaw torque indirectly on the secondary suspen-
sion. This concept is called ‘Secondary Yaw Control’ (SYC). The actuators may be
designed to replace the traditional passive yaw dampers so that active control of the
running gear can be introduced without a substantial redesign of the bogie [90].

A single objective optimal design of feedback active controls for bogie systems
using the linear-quadratic regulator (LQR) method have been discussed in [82, 91].
Therein, a performance index which includes the integral sum of the states and con-
trol energy is minimized through searching for the full-state feedback gains. In the
design process, it is assumed that all the states are available for feedback, the con-
trolled system is controllable and the external disturbances on the bogie wheelsets
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are known. However, assuming that all the states are measurable is expensive.
Also, presuming that the noises affecting the wheelset motion are known and then
using them as external inputs during the control design is an aggressive assump-
tion. Usually in the control design, the system performance under disturbances and
parametric variations is tested after the control is designed. To account for these
uncertainties, the system sensitivity to disturbances and parameter variations as
well as the relative lateral stability have to be taken into account in the design. In
the active control design for trains, the lateral hunting stability of the vehicle at high
speed is one of the most concerned dynamic problems. Loss of the vehicle lateral
stability will cause poor ride comfort and even derail accidents. For these reasons,
a robust and multi-objective optimal control design has to be considered, leading to
a multi-objective optimization problem (MOP). For a robust and economic control
system, the control effort or its Frobenius norm can be taken as an objective.

In this chapter, we solve the multi-objective optimal control design problem
of the bogie system using the NSGA-II. In summary, we introduce the following
contributions:

a. A MOO design of a feedback control for the bogie system by considering three
objectives: the controlled system relative stability, disturbance rejection and
the control energy consumption. To the best of our knowledge, such a control
design for the bogie system is addressed for the first time in the literature.

b. Only two actuators are used to control the lateral displacements of the bogie
frame and motors with four sensors mounted on the bogie frame to measure
the frame lateral displacement, lateral velocity, yaw angle and its first time-
derivative. With this hardware configuration, the system is not completely
controllable and observable. As a result, the system is partitioned so that the
controllable and observable part can be used to drive the internal modes to
stability.

c. It is demonstrated that the Pareto optimal controls are insensitive to the vari-
ations of the train speed and wheel-rail contact conicity. These two quantities
have huge impact on the bogie lateral stability [91].

4.2 The Bogie Model

In order to design the active control of the bogie, we consider a simplified
model of this system as shown in Figure 4.1. The model describes the lateral move-
ments of the bogie. We assume that the lateral position of the car body is pre-
determined. The lateral degrees of freedom of the bogie frame and driving system
are taken into account in the model. Every bogie has two solid axle wheelsets which
are attached to the bogie frame via suspension springs in the longitudinal and lat-
eral directions. The drive systems which are suspended under the bogie frame are
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coupled to the bogie bodies via suspension springs and dampers in the sidelong di-
rection. Each drive system exhibits lateral and yaw motions in the horizontal plane
with respect to the bogie frame.

The dynamics of the bogie system is described by the following equation,

MẌ+CẊ+KX = Eu, (4.1)

where X = [yw1 , φw1 , yw2 , φw2 , yf , φf , ym1 , ym2 ]
T and u = [u1, u2]

T . yw1 , yw2, yf ,
ym1 , and ym2 are the lateral displacements of wheelset 1, wheelset 2, bogie frame,
motor 1 and motor 2, respectively. φw1 , φw2 , and φf represent the yaw angles of
wheelset 1, wheelset 2, and the bogie frame. u1 and u2 are lateral control forces
applied on the bogie frame. The matrices M, C, and K are the mass, damping
and stiffness components of the system. E is the vector describing the influence
of the controls on the system dynamics. These matrices and vectors are listed in
Appendix A and the values and definitions of system parameters are listed in Table
A.1 [91]. The asymmetric part of the stiffness matrix K involving terms like −2fη
and

2λel0fζ
r0

represents the wheel-rail interaction forces. This is based on a simplified
linear model of the wheel-rail interaction, and behaves like proportional feedback,
which is responsible for the hunting instability.

The state equation of the system can be written as

ẋ(t) = Ax(t) +Bu(t) + Fd(t), (4.2)

y = Cx(t), (4.3)

where d(t) is the external disturbance such as track irregularities applied on the
wheelsets. The state vector is defined as

x = [yw1 , φw1 , yw2 , φw2 , yf , φf , ym1 , ym2 ,
ẏw1 , φ̇w1 , ẏw2 , φ̇w2 , ẏf , φ̇f , ẏm1 , ẏm2 ]

T .
(4.4)

The system matrices A, and B and the vector F are given by,

A =

[
08×8 I8×8

−M−1K −M−1C

]
,

B =

[
08×2

M−1E

]
, F =

[
08×1

M−1W

]
,

(4.5)

where the vector W is defined as

W = [kpy, 0, kpy, 0, 0, 0, 0, 0]
T . (4.6)

It can be shown that the system is not controllable and not observable. For
the purpose of control design, we re-arrange the order of state variables in Equation
(4.2) as follows,

xN = [yf , φf , ẏf , φ̇f , yw1 , φw1 , yw2 , φw2 ,
ym1 , ym2 , ẏw1 , φ̇w1 , ẏw2 , φ̇w2 , ẏm1 , ẏm2 ]

T .
(4.7)
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Let T be a matrix that transforms the state vector x into the new one such that
xN(t) = Tx(t). The matrices and vectors of the transformed system are given by

AN = TAT−1, BN = TB,FN = TF. (4.8)

The transformed state equation of the system reads[
ẋN4×1(t)
ẋN12×1(t)

]
=

[
AN4×4 AN4×12

AN12×4 AN12×12

] [
xN4×1(t)
xN12×1(t)

]
+[

BN4×2

012×2

]
u(t) +

[
04×1

FN12×1

]
d(t), (4.9)

y=
[
CN4×4 04×12

] [ xN4×1(t)
xN12×1(t)

]
. (4.10)

In this equation, it is obvious that the matrix CN4×4 is I4×4 where I de-
notes the identity matrix. The subsystem defined by the following state and output
equations,

ẋN4×1 = AN4×4xN4×1(t) +AN4×12xN12×1(t) +BN4×2u(t), (4.11)

y = CN4×4xN4×1(t), (4.12)

is controllable and observable while the term AN4×12xN12×1(t) acts as a disturbance
to this subsystem.

Consider a partial state feedback control u = −K2×4xN4×1(t). Using this
control law, the closed-loop dynamic matrix of the system reads

Acl = AN −BN

[
K2×4 02×12

]
. (4.13)

We have found that when a control gain K2×4 is selected to stabilize the
subsystem (4.11), the overall closed-loop system Acl is also stable. Hence, the
system is stabilizable Nevertheless, the stability of the closed-loop system puts a
constraint on the control design. In addition to the stability of the closed-loop
system, the robustness of the system to the parametric variations and external
noises, and energy efficiency of the controller should also be taken into account in
the design. These requirements will be set up and defined in the next section.

4.3 Multi-objective Optimal Control Design

We consider the multi-objective optimal control design with the gain k =
[K1, K2, ..., K7, K8] as design parameters for the system discussed in Section 4.2.
The design space for the parameters is chosen as follows,

Q = {k ∈ R8 | 0 ≤ K1,2,3.4,5,7 ≤ 108, −8× 1012 ≤ K6,8 ≤ 0}. (4.14)
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Note that

K2×4 =

[
K1, K2, K3, K4

K5, K6, K7, K8

]
. (4.15)

The multi-objective optimal design problem is stated as,

min
k∈Q
{max(λr), ∥S(jω)∥∞ ,KT

2×4K2×4}, (4.16)

where λr = real(eig (Acl)) are the real parts of eigenvalues of the matrix Acl defined
in Equation (4.13). ∥S(jω)∥∞ describes the disturbance rejection capability of the
closed-loop system as illustrated in Section 3.2.

The term KT
2×4K2×4 denotes the Frobenius norm of the gain matrix K2×4.

Since the control system is optimized for zero initial conditions, the control effort
cannot be included directly in the objective function and its Frobenius norm is used
instead. By minimizing this norm, the total control energy is also minimized.

We apply the NSGA-II algorithm to solve the MOP. The population size is set
to 300, and the number of generation is set to 1500. The results of this optimization
are discussed in the next section.

4.4 Numerical Results

Recently, the speed of trains witnesses striking increases. In China, for in-
stance, CRH380A (CRH: China Railway High-speed) hit operational speed up to
486.1 km/h in 2010. Then CHR380BL broke the record again in 2011, with opera-
tional speeds up to 487.3 km/h on the Beijing–Shanghai High-Speed Railway (HSR)
during a test run on January 10, 2011. When an active control system is designed
for these vehicles, the speed of the train has to be taken into consideration.

To examine the effect of speed on the bogie motion under the active control,
we design the multi-objective optimal controls at four different speeds: 200 km/h,
220 km/h, 350 km/h and 500 km/h. Before presenting the comparison studies of
these controls, we first discuss the properties of the Pareto set and Pareto front. Let
us take the control design at 350 km/h as an example.

4.4.1 Properties of Pareto Optimal Controls

The Pareto front, Pareto set, and dynamics of the system states versus time
before and after applying the control are discussed here. Figures 4.2 and 4.3 show
two projections of the Pareto set. Figure 4.4 shows the corresponding Pareto front.
The color in this figure is mapped to the value of the objective max(λr). The
Pareto front shows a conflicting relationship between ∥S(jω)∥∞ and max(λr) where
the latter is less than one. In this range, the third objective fluctuates between its
minimum and maximum. When max(λr(Acl)) > −1, ∥S(jω)∥∞ and KT

2×4K2×4 are
small indicating better disturbance rejection and less control effort, but the relative
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stability is poor. At max(λr) = −2.5, the control system’s relative stability is high,
but the disturbance rejection competence and the norm KT

2×4K2×4 are low.
Three points of interest are labeled in Figure 4.4. P1 marked in the figure

has a coordinate consisting of the minimum of all three objective functions, and is
thus an ideal point not on the Pareto front. P2 is a point on the Pareto front that
is closest to P1. It is called the knee point. P3 is a point on the Pareto front that
has the largest Euclidian distance from P1. Hence, it is far away from the ideal
solution. These points illustrate the properties of the MOO design.

The Pareto set shows that the state-feedback gains are very large. This result
is expected since a very large force is required to drive such a big system. This can
be seen also in Figure 4.5 where large magnitudes of u1 and u2 are required to
stabilize the bogie system when d(t) = A(H(t) − H(t − T )) with the amplitude
A = 50mm and T = 0.001s. H(t) denotes the Heaviside function. d(t) mimics
an impulse disturbance. This disturbance is applied to the wheelsets. The gain
in this case is k = [9.8377, 5.8565, 5.3573, 7.3632, 3.2938, −2.8595 × 105, 4.6284,
−1.5407× 105]× 107 corresponding to the knee point P2.

The open loop and closed loop response to the disturbance d(t) are shown in
Figures 4.6 to 4.9. It can be seen from the figures that the bogie is unstable without
active controls at 350 km/h. However, the proposed control stabilizes the unstable
states successfully. Initially, the magnitudes of all the responses are small and then
they settle down to zero. The lateral displacements of the motors and frame are
between 0.0325 and 8.224 µm. The wheelset lateral displacements are in the range
of -0.4-2.5 mm. The yaw angles of the frame body and the wheelsets are also small
as shown in the figures.

The main concern in designing an active control of high speed trains is their
lateral stability which changes with the speed of the train v and wheel-rail contact
conicity λe, as shown in Figures 4.10 and 4.11, respectively. The wheel conicity
increases with time due to wear which results in a considerable reduction in the
train lateral stability and in some cases it can cause a derailment. To test the
stability of the train, we changed v from 50 to 800 km/h and λe from 0.15 to 0.3.
The test is conducted with four control designs. Two designs correspond to points
P2 and P3 on the Pareto front. The other two designs represent the best relative
stability min(max(λr)), and the worst relative stability max(max(λr)). The results
show that the controlled system is insensitive to the train speed v and wheel-rail
contact conicity λe. The control design with max(max(λr)) is very close to instability
region, while the design with min(max(λr)) is highly stable. For the knee point P2,
the maximum real part of the eigenvalues of the closed loop dynamic matrix Acl

is almost -2, while that for P3 is at -1, which still indicates a very good relative
stability. The knee point may be more attractive to the engineers since it is the
closest solution to the ideal one, although they have many options from the Pareto
set.
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4.4.2 Effect of Train Speed

Recall that we have obtained the Pareto optimal control designs at four
different speeds: 200 km/h, 220km/h, 350 km/h and 500 km/h. From each Pareto
set, we choose the control gains corresponding to the knee point. Figure 4.12 shows
the train relative stability max(λr) as the function of the train speed for the control
systems designed at the four different speeds. The results indicate that the Pareto
optimal controls designed at various speeds are quite robust to the variations of the
train speed.

The other two design objectives (∥S(jω)∥∞ ,KT
2×4K2×4) are (0.0700, 3.1707e+

24), (0.0698, 2.5949e+24), (0.0662, 4.2340e+24), (0.0760, 1.0550e+25) for v = 200,
220, 350 and 500 km/h, respectively. Although the relative stability suggests that
the design at lower speed is better, the other two objectives clearly indicate that
the knee point of the Pareto front for v =350 km/h represents the best compromise.
We should point out that the knee point is one of many design options in the Pareto
set.

4.5 Concluding Remarks

We have studied the multi-objective optimal design of a partial state feedback
control for an under-actuated high speed train bogie system. The control takes four
measurements of the motion of the bogie frame, i.e. the lateral displacement and
yaw angle and their first derivatives, and two lateral forces to stabilize the system.
The MOP with 8 design parameters and 3 objective functions is solved with the
NSGA-II algorithm. The Pareto set includes multiple design options, from which
the user can choose to implement. Numerical simulations have been carried out. We
have found that the Pareto optimal controls can stabilize the bogie system, and are
robust against the system uncertainties, disturbances and variations of train speed.
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Figure 4.1: The model of the bogie with frame vibration controls.
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Figure 4.2: Projection #1 of the Pareto set when the train speed is v =350 km/h.
The color code indicates the value of K4. Red denotes the highest
value, and dark blue denotes the smallest value.
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Figure 4.3: Projection #2 of the Pareto set when the train speed is v =350 km/h.
The color code indicates the value of K8. Red denotes the highest
value, and dark blue denotes the smallest value.

40



0.2
0.15

0.1

‖S(jω)‖∞

0.05

P2

0

P1

-3

P3

-2

max(λr)

-1

15

10

5

0
0

×1025

K
T 2
×
4
K

2
×
4

Figure 4.4: 3D visualization of the Pareto front when the train speed is v =350
km/h. The color code indicates the value of the objective function
max(λr). Red denotes the highest value, and dark blue denotes the
smallest value. P1, P2, and P3 are the ideal, knee, and far point,
respectively.

41



0 2 4 6 8 10

u
1

-5000

0

5000

10000

15000

Time(s)
0 2 4 6 8 10

u
2

×104

-1

0

1

2

3

Figure 4.5: Lateral control forces when the train speed is v =350 km/h: (a) u1
versus time, (b) u2 versus time.

42



0 5 10

y
f
o

×1014

-4

-2

0

2

4

Time(s)
0 5 10

ψ
f
o

×1014

-2

-1

0

1

0 5 10

y
f
c

×10-6

0

2

4

6

8

Time(s)
0 5 10

ψ
f
c

×10-10

-15

-10

-5

0

5

Figure 4.6: Open loop (yfo , ψfo) and closed loop (yfc , ψfc) dynamics of the bogie
frame lateral displacement and yaw angle under the control corre-
sponding to P1 when train speed is v =350 km/h.

43



0 5 10

ẏ
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Chapter 5

MANY-OBJECTIVE OPTIMAL DESIGN OF SLIDING
MODE CONTROLS

5.1 Introduction

The history of the variable structure control such as the sliding mode control
(SMC) can be traced back to the 1950s when it was first proposed by Emelyanov
and several co-authors in the former Soviet Union [92]. Because feedback controls
are usually designed to achieve multiple and often conflicting performance goals,
extensive investigations are needed to tune control parameters in order to obtain
the best performance [58]. In this chapter, we present a many-objective optimization
approach for the quantitative design of SMCs with parameter adaptation.

The SMC is interesting because it has, to a certain extent, a robust behavior
to parametric uncertainties and external noises. This property comes from the fact
that the SMC implements a switching term which steers the state trajectories to
a predefined stable manifold known as the sliding surface. When the state trajec-
tories hit the surface, they stay on it forever [93]. The SMC can reach the sliding
surface in a finite time and achieve a very good tracking accuracy [94]. To achieve
robustness, one usually applies a discontinuous switching term and high feedback
gain. However, this leads to high frequency switching effect or what is called chatter-
ing. The chattering is undesirable and detrimental because it may cause instability
through triggering high-frequency unmodeled dynamics of the system. To avoid
high-frequency chattering, the boundary layer technique is usually used but at the
expense of the robustness [94]. That is to say, when the SMC is implemented in
real-life applications, the robustness is traded-off for the reduction in the control
system chattering.

The adaptive control can use the response history to estimate constant or
slowly time-varying parameters of the system. When the time-varying disturbances
are present as in many practical systems, the transient response of the controlled
system becomes unpredictable. To overcome this difficulty, an adaptive sliding mode
control (ASMC) was suggested in [95]. This ASMC can resist uncertainties and learn
from the system prior information. Another ASMC that combines the adaptivity
provided by learning algorithms and the robustness of the SMC was presented in [96].
It was also applied in many applications such as non-affine nonlinear vehicle systems
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[97], fault tolerant flight control systems [98], guidance of a homing missiles [99], the
roll-coupled maneuvers of aircrafts [100], fault tolerant control for flexible spacecrafts
[101], speed drives [102], manipulators [103], and mechanical servo systems with
LuGre friction compensation [104]. However, these controllers were designed by
considering a single objective, usually minimizing the tracking error.

In the design of the ASMC, one has to make trade-offs among several con-
flicting objectives such as the performance, robustness, and control effort [105]. The
system performance can be measured by many indices such as the peak time, rise
time, settling time, overshoot and tracking error in the time domain, or crossover
frequency, phase margin and gain margin in the frequency domain. The system
robustness includes stability robustness and disturbance rejection robustness.

In this study, we study a many-objective optimal (MOO) design of the ASMC
and we make the following contributions:

1. A MOO design of the ASMC by considering four design objectives: the rise
time tr, disturbance rejection efficiency ∥S(jω)∥∞, control energy consumption
Eu, and tracking integral absolute error JIAE.

2. An enhancement of the ASMC ability to reject external noises by including the
objective ∥S(jω)∥∞ as one of the design criteria. Furthermore, the stability
robustness is also improved by pushing the poles of the linearized closed-loop
system away from the imaginary axis. These two design criteria have been
always assumed to be guaranteed when the ASMC is implemented, but never
included explicitly in the design to tune the control parameters.

3. A new post-processing algorithm that guides the decision-maker to choose
control designs with the best trade-offs among the different options in the
Pareto set.

5.2 Adaptive Sliding Mode Control

Uncertainties in the system dynamics and unwanted disturbances are un-
avoidable. They are usually difficult to model. In this work, we use a double
integrator system with uncertainties as an example to demonstrate the design of
many-objective optimal ASMCs. Consider

ẋ1 = x2 (5.1)

ẋ2 = f1 (x1, x2) + af2 (x1, x2) + g (x1, x2)u(t) + d(t),

and the output of the system reads

y = h(x1, x2), (5.2)
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where f1, f2 and g are nonlinear functions of their arguments. We assume that
g(x1, x2) ̸= 0 and a is one of the parameters of the system model to be estimated.
We also assume that a is either constant or slowly time-varying parameter, and that
it is the only parameter to be estimated. u(t) denotes the control force. d(t) is
an unknown external disturbance. h is a linear function of its arguments. In this
study, we consider the ASMC because of its robustness in the presence of parametric
uncertainties and external disturbances and its ability to online estimate system
parameters. We assume that y = x1. The control law can be derived by first
constructing a sliding surface s as follows:

s = ė+ ce, c > 0, (5.3)

where e = x1 − xd and ė = x2 − ẋd. xd and ẋd represent the desired tracking signal
and its derivative, respectively. To derive the nominal control un(t), we set ṡ = 0
where ṡ reads,

ṡ = ë+ cė = ẋ2 − ẍd + cė (5.4)

= f (x1, x2) + af2 (x1, x2) + g (x1, x2)un(t)− ẍd + cė.

The nominal control force is given by,

un(t) = 1/g (x1, x2) {−f (x1, x2)− af2 (x1, x2) + ẍd − cė} . (5.5)

We note that d(t) is not included in the nominal control because it is un-
known. The total control u(t) of the ASMC consists of the nominal control un(t),
and a discontinuous switching term. The discontinuous term depends on the choice
of the reaching law which describes how the system trajectory reaches the predefined
sliding surface. Here, we choose the constant rate reaching law given by,

ṡ = −η × sign(s), η > 0, (5.6)

where sign(s) is the signum function. With this choice of the reaching law, the total
control law takes the following form,

u(t) = 1/g (x1, x2) {−f (x1, x2)− âf2 (x1, x2) + ẍd − cė− η × sign(s)} . (5.7)

where â is the estimate of a. The adaptation law to estimate the parameter a can
be derived subsequently. Consider a positive definite Lyapunov function,

V =
1

2
s2 +

1

2γ
ã2, γ > 0, (5.8)

where the estimation error ã is given by

ã = â− a, ˙̃a = ˙̂a. (5.9)
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Taking the time derivative of Equation (5.8), we get

V̇ = sṡ+
1

γ
ã ˙̂a = ã(sf2 (x1, x2) +

1

γ
˙̂a)− η|s|. (5.10)

The closed-loop system is asymptotically stable, i.e. V̇ = −η|s| < 0, if the
adaptation control algorithm of ˙̂a is given by

˙̂a = −γsf2 (x1, x2) . (5.11)

In this equation, γ is the adaptation gain. To avoid chattering caused by the
switching term sign(s), we replace it with sat(s, ϕ) where ϕ represents the width of
the saturation layer.

sat(s, ϕ) =

{
s/ϕ, if |s| ≤ ϕ

sign(s), if |s| > ϕ
(5.12)

The control law becomes

u(t) = 1/g (x1, x2) {−f (x1, x2)− âf2 (x1, x2) + ẍd − cė− η × sat(s, ϕ)} . (5.13)

The analytical design of the ASMC is now complete. Next, we consider the
optimal selection of control gains and parameters c, η, ϕ, and γ to achieve the
robustness against external noises and parameter uncertainties, and to meet the
objectives of low control energy, fast response and accurate tracking. As discussed
previously, this task leads to a many-objective optimization problem.

Before we present the MOO design of the ASMC, we first prepare to deal
with the design of the stability robustness and disturbance rejection robustness for
nonlinear systems. To this end, the closed-loop system of Equation (5.1) is linearized
around the sliding mode surface s = 0 when the system reaches the steady-state
given by

xss = [xd, ẋd]
T . (5.14)

The system linearized at the steady-state xss with a matched unknown ex-
ternal noise reads

δẋ = Aclδx+Bcld(t). (5.15)

The stability robustness of the nonlinear system is defined by the maximum
real part of the eigenvalues of the closed-loop dynamic matrix, Acl in the steady-
state. The noise rejection robustness is measured by ∥S(jω)∥∞, which represents
the infinity norm of the transfer function between the system output δx1 and the
unknown input disturbance d(t). We have omitted the detail expressions for Acl

and Bcl in this section. These expressions will be provided for the examples.
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5.3 Many-objective Optimal Design

In the MOO design, we take k = [c, η, γ, ϕ] as the design parameters. The
MOP is stated as,

min
k∈Q
{tr, ∥S(jω)∥∞ , Eu, JIAE}, (5.16)

where tr is the rise time when the system output y = x1 takes to cross from the 10%
to 90% of the step reference xd. As we explained in Section 3.2, ∥S(jω)∥∞ describes
the disturbance rejection capability of the closed-loop system. The objectives Eu
and JIAE are the control energy given by Equation (3.10), and integral absolute
error defined in Equation (3.11), respectively.

5.4 A Numerical Example

Consider a Duffing system with dry friction such that

ẋ1 = x2, (5.17)

ẋ2 = −p1x1 − px2 − ax22 × sign(x2)− p2x31 + u(t),

and the output equation
y = x1. (5.18)

The coefficient of the dry friction coefficient a is to be estimated. The com-
plete control law and the adaptation law are given by,

u(t) = p1x1 + px2 + âx22 × sign(x2) + p2x
3
1 + ẍd − cė− η × sat(s, ϕ), (5.19)

˙̂a = −γsx22 × sign(x2). (5.20)

The design space of the parameters k = [c, η, γ, ϕ] is chosen as,

Q = {k ∈ R4 | 1 ≤ c ≤ 3, 0 ≤ η ≤ 10, 1 ≤ γ ≤ 100, 0.01 ≤ ϕ ≤ 0.1} (5.21)

The solutions of the MOP in Equation (5.16) are searched with the help of time-
domain responses generated by the Runge–Kutta fourth order algorithm. The time
duration of the integrals in the objective functions is 0 ≤ t ≤ 5 seconds. The
integration time step is 0.001. We have taken the nominal values of the system
parameters as p1 = −1.0, p = 0.25, p2 = 1 and a = 2.

We consider a unit step input as a reference signal in the design. So, the
steady-state vector in Equation (5.14) is given by

xss = [xd, 0]
T (5.22)

The closed-loop system matrices in Equation (5.15) read

Acl =

[
0 1
−c η

ϕ
−( η

ϕ
+ c)

]
, Bcl =

[
0
1

]
. (5.23)
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We impose a constraint for the stability robustness,

max(λr(Acl)) 6 −2, (5.24)

where λr(Acl) denotes the real part of eigenvalues of the matrix Acl.
Searching for the optimal parameters of the ASMC in the MOP setting is

a laborious task [106]. In this study, the NSGA-II algorithm is used to solve the
MOP. The population size is set to 100, and the number of generation is set to 600.

Next, we discuss the results of this optimization problem. The Pareto front
is shown in Figure 5.1. The color in the subplots a, c and d is mapped to the value
of JIAE while that of the subplot b denotes the value of ∥S(jω)∥∞. The color is
used to add a 3D visualization of the 4D Pareto front.

The Pareto front demonstrates a competing relationship between Eu and each
of tr, JIAE , and ∥S(jω)∥∞ [79]. The relationships between the other objectives
may not clear because of the dimension of the objective space. However, conflicting
nature can be recorded at specific regions. For instance, tr and ∥S(jω)∥∞ are
competing when the latter is very small, that is ∥S(jω)∥∞ ∈ [3.0× 10−4, 3.5× 10−4].
As shown in Figure 5.2, in this region all the design parameters are large except the
saturation layer ϕ is small. Beyond this region, an increase in tr is associated with
an increase in ∥S(jω)∥∞ and JIAE, with a reduction in the control effort, suggesting
that the system tends to have a slower response, less noise rejection ability and less
tracking accuracy when ∥S(jω)∥∞ > 3.5× 10−4, but the control energy is reduced.

The Pareto set is shown in Figure 5.2. To show the corresponding design
variables for each point in the Pareto front, the Pareto set is also colored with
respect to JIAE values. At the right up corner of the subplots a and b and at the
right low corner of the subplot c of this figure, it can be observed that the tracking
error indicated by the dark blue color is small which means, according to Figure
5.1-b, that a very high control effort is required to achieve that. The disturbance
rejection and stability robustness are also very good in this region. Some of these
findings can be explained by Equation (5.3). It can be noted that the larger the
value of c, the smaller the magnitude of the tracking error. Also, by calculating
the eigenvalues of the matrix Acl, it can be found that increasing the values of the
parameters c and η or decreasing ϕ improves the system robustness. Similarly, the
disturbance rejection ability goes up when c and η go up or ϕ goes down [107]. This
can be confirmed by analytically calculating ∥S(jω)∥∞ from Equation (5.15) with
Acl given in Equation (5.23). The parameter adaptation gain γ has an effect on the
design objectives only during the transient stage.

The system responses are shown in Figure 5.3 with the extremum objectives
including

1. The fastest speed response k = [0.7321, 0.0003, 113.1871, 0.4513],

2. The best disturbance rejection k = [0.7437, 0.0003, 162.5056, 0.4544],
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3. The smallest energy expenditure k = [0.9945, 0.0009, 7.9028, 0.6912] and

4. The smallest tracking error k = [0.7328, 0.0004, 123.6633, 0.4508].

Each subplot of Figure 5.3 shows two curves of the system response before
and after adding disturbance and 20% uncertainty in the system parameter. To
test the disturbance rejection, we introduce a white noise with variance σ2

w = 20
to the system in the numerical simulation. We should point out that this is a very
strong noise. In this figure, JIAEdu

denotes the system tracking error after applying
the uncertainty and disturbance. A slight increase in JIAEdu

can be observed. It
should be noted that JIAEdu

in subplots a, b and d is the same as JIAE. In general,
the system performs well in the existence of the assumed uncertainty because the
ASMC is designed such that the disturbance rejection and stability robustness are
explicitly considered. The optimal values of ∥S(jω)∥∞ fall between 3 × 10−4 and
9× 10−4, which indicates an excellent disturbance rejection ability. The real part of
the largest eigenvalue of the steady-state linearized system is at least 2 units away
from the imaginary axis as imposed by Equation (5.24). This provides an adequate
stability margin for robustness.

5.5 A Post-Processing Algorithm

As we know, the solution of MOPs is a set of solutions. All the points on
the Pareto front are equally important. Even though the decision-maker has the
authority to pick up any solution from this set, the selection process is not easy.
To facilitate this operation, we introduce an algorithm that operates on the Pareto
front. The pseudo code of the algorithm is listed in Table 5.1. The algorithm starts
by finding the ideal point made of the minimum values of all the objectives of the
Pareto front. Then, the L2-norm distance d between the ideal point and points
on the Pareto front is calculated. The maximum distance dmax and the minimum
distance dmin are found. The difference dmax − dmin is divided by a pre-specified
number nDiv such that h = (dmax− dmin)/nDiv. Circles centered at the ideal point
with radii ri = dmin + i ∗ h for i = 0, 2, .., nDiv are used to section the Pareto front
and rank the control design by the radius ri.

The post-processing algorithm is applied to the Pareto front in Figure 5.1
with nDiv = 200. Top 20% of the Pareto optimal designs are shown in Figures 5.4
and 5.5 with the objectives falling in the following range,

0.7370 ≤ tr ≤ 0.7780,

0.0004 ≤ ∥S(jω)∥∞ ≤ 0.0005,

36.6848 ≤ Eu ≤ 66.2776, (5.25)

0.4999 ≤ JIAE ≤ 0.4599.
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The system responses before and after adding uncertainties and disturbances
to the system are shown in Figure 5.6 for four randomly chosen designs. The system
has very good closed-loop performances even in the existence of the parametric and
dynamic uncertainties.

5.6 Conclusions

A many-objective optimal design of an adaptive sliding mode control applied
to a second-order uncertain system is studied. The objectives include some of the
most important properties of a control system such as maximizing the stability
robustness and disturbance rejection ability, and minimizing the rise time, control
energy and integrated absolute tracking error. The optimal control is shown to
be truly robust with respect to model uncertainties and external disturbances in
the numerical simulations. To facilitate users to choose the best trade-offs from
the Pareto optimal designs, we have developed a post-processing algorithm. The
numerical simulations show that the proposed many-objective optimization method
and post-processing algorithm offer a novel alternative to quantitative design of
nonlinear controls.
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Table 5.1: Pseudo code of post-processing algorithm .

Program: Postprocessing algorithm
Input: Pareto front pf , Pareto set ps,

Number of divisions nDiv,
Number of solutions nsol

Output: Selected Pareto front pf sel,
Selected Pareto set ps sel

1: Normalize pf
2: Find the ideal point of the Pareto front min(norm(pf)).
3: Calculate the distance d from the ideal point to a point in the Pareto front
4: Find dmax and dmin

5: Calculate h = dmax−dmin

nDiv

6: r ←− dmin

7: while r ≤ dmax and n < nsol
8: Cut pf with a circle of radius r and its center at the ideal point
9: for d ≤ r
10: n← n+ 1
11: pf sel←− pf(d)
12: ps sel←− ps(d)
13: end for
14: r ←− r + h
15: end while
16: Denormalize pf sel
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Figure 5.1: Different projections of the Pareto front : (a) Eu versus tr, (b) Eu
versus the JIAE, (c) Eu versus ∥S(jω)∥∞, (d) tr versus ∥S(jω)∥∞.
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Chapter 6

A MULTI-OBJECTIVE OPTIMAL PID CONTROL FOR
THE DUFFING SYSTEM WITH TIME DELAY

6.1 Introduction

There have been many studies of feedback controls of dynamic systems with
time delay. It is particularly difficult to explicitly design feedback controls of non-
linear systems with time delay to meet time domain specifications such as rise time,
overshoot and tracking error. Furthermore, these time domain specifications tend
to be conflicting to each other to make the optimal feedback control design even
more challenging.

In this chapter, we use the SCM method proposed in Section 2.3 for multi-
objective optimal design of a delayed PID control applied to a Duffing system. Such
a control problem has not been studied before to our best knowledge. In particular,
we consider the time domain specifications of PID control for the Duffing system.

6.2 Time-Delayed Control System

Consider a second order nonlinear dynamic system with time delays given
by,

ẋ1 = x2 (6.1)

ẋ2 = f (x1, x2, x1 (t− τs) , x2 (t− τs)) + u (t− τc) ,

where f is a nonlinear function of its arguments. τs is a system delay, and τc is a
control delay. We consider a PID feedback control given by

u(t) = kp [r(t)− x1(t)] + ki

∫ t

0

[
r(t̂)− x1(t̂)

]
dt̂− kdx2(t), (6.2)

where r(t) is a reference input, kp, ki and kd are the PID control gains. We introduce
a third state variable x3 such that ẋ3(t) = r(t) − x1(t). The extended system is
governed by the following equations.

ẋ1 = x2,

ẋ2 = f (x1, x2, x1 (t− τs) , x2 (t− τs)) + u (t− τc) ,
ẋ3 = r(t)− x1(t), (6.3)
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where
u(t) = kp [r(t)− x1(t)] + kix3 − kdx2(t). (6.4)

Assume that the closed-loop system is stable and r(t) is a step function. In
steady-state, we have a unique equilibrium solution,

x∗1 = 1, x∗2 = 0,

x∗3 = −
1

ki
f(1, 0, 1, 0). (6.5)

It should be pointed out that the uncontrolled nonlinear system may have multiple
equilibrium solutions. The stability of the steady state response can be analyzed by
linearizing the system. Let z = [z1, z2, z3]

T be the perturbation of the system away
from the steady state x∗ = [x∗1, x

∗
2, x

∗
3]
T . We have

ż(t) = Az(t) +Asz (t− τs) +Acz (t− τc) , (6.6)

where A, As and Ac are matrices of the linearized system and are functions of the
control gains. The stability of the linearized system can be analyzed by the method
of continuous time approximation [108,109].

6.3 Multi-objective Optimal Design

We consider the multi-objective optimal control design with the gains k =
[kp, ki, kd]

T as design parameters for the system discussed in Section 6.2. Peak time
and overshoot are common objectives in time domain control design [45, 110, 111].
We consider the MOP for the optimal control gain k to minimize the following three
objectives

min
k∈Q
{tp,Mp, eIAE} subject to the stability of the system (6.6), (6.7)

where Mp stands for the overshoot of the response to a step reference input, tp is
the corresponding peak time and eIAE is the integrated absolute tracking error

eIAE =

∫ Tss

0

∣∣r(t̂)− x1(t̂)∣∣ dt̂. (6.8)

where r(t) is a reference input and Tss is the time when the response is close to be
in the steady state. The closed-loop response of the system for each design trial can
be computed with the help of numerical integration programs of delayed differential
equations.
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6.4 A Numerical Example

Consider the Duffing system given by

f (x1, x2, x1 (t− τs) , x2 (t− τs)) = −ax1 − bx31 − cx2, (6.9)

where a = −1, b = 0.25 and c = 0.01. Note that the system at the origin of the state
space is unstable. The control time delay is 0.05 seconds. The system is under the
delayed PID control in Equation (6.4). We study the multi-objective optimization
problem defined in Equation (6.7) to design the control gain k. The time-domain
response of the Duffing system for each selection of the control gain is generated
with the delayed differential equation integration algorithm (dde23) in Matlab. The
integrated absolute tracking error eIAE is calculated over time with Tss = 4 seconds.
The design space for the parameters is chosen as follows,

Q = {k ∈ [80, 120]× [10, 30]× [10, 30] ⊂ R3}. (6.10)

We impose the constraints

[tp,Mp, eIAE, λss] ≤ [2.5, 6%, 0.75,−0.25], (6.11)

where λss denotes the largest real part of the eigenvalues of the linearized steady-
state system (6.6). The eigenvalues of the linearized system are computed with
the method of continuous time approximation and the Chebyshev interpolation
[108, 112]. The constraint on the eigenvalues is intended to provide the stability
robustness of the optimized control system. Since the original system is nonlinear,
the stability condition should be imposed on the steady-state equilibrium solutions.

Initially, we select the number of divisions of the three control gain space
as N = [30, 15, 15]. The cells of the rough Pareto set is sub-divided into 27 cells
(3 × 3 × 3). The first run of the SCM method on the rough grid finds 460 cells
representing the Pareto set shown in Figure 6.1. The corresponding Pareto front is
shown in Figure 6.2. The CPU time of the first run is 1382.4 seconds. The second
run on the sub-divided cells finds the Pareto set with 2386 cells shown in Figure 6.3.
The refined Pareto front is shown in Figure 6.4. The CPU time of the second run
is 5695.5 seconds.

We should point out that the Pareto fronts obtained by the SCM method
have fine global structures. Such fine structures of Pareto fronts are not often found
in the literature before. Finally, we present an example of step response under the
delayed control with the gain [kp, ki, kd] = [82.4444, 21.7778, 14.2222]. The result is
shown in Figure 6.5. The step response shows excellent time-domain performance
with [tp,Mp, eIAE, λss] = [0.3300, 4.8829%, 0.2155,−0.2781].

68



6.5 Concluding Remarks

We have presented a multi-objective PID control design for the Duffing sys-
tem by using the simple cell mapping (SCM) method applied to MOPs. The time-
domain specifications of the step response are used as the objective functions. A
constraint on the closed-loop eigenvalue of the linearized system about the steady-
state equilibrium solution is also imposed that provides the stability robustness of
the optimized PID controls. The SCM method is implemented in a hybrid manner
as described earlier. In the first run of the hybrid algorithm, the SCM method de-
livers a set of cells that cover the Pareto set. In the second run, a gradient search
is applied to the covering set of cells and delivers much fine resolution of the global
optimal solutions of Pareto set and Pareto front. We have found that the hybrid
algorithm for the SCM method delivers substantial computational savings while
obtaining comparably accurate solutions for the Pareto set and Pareto front.
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Figure 6.1: The Pareto set obtained on the rough grid by the SCM method for
the Duffing system with delayed control.

70



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
3

4

5

6

O
v
er
sh
o
o
t
M

p
(%

)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.1

0.2

0.3

0.4

0.5

E
rr
o
r
e
I
A
E

Peak Time tp (second)

Figure 6.2: The Pareto front of the Duffing system corresponding to the Pareto
set in Figure 6.1.
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Figure 6.3: The refined Pareto set shown in Figure 6.1 of the Duffing system with
delayed control by the SCM method.
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Figure 6.4: The refined Pareto front of the Duffing system corresponding to the
Pareto set in Figure 6.3.
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Figure 6.5: An example of the step response of the Duffing system under the
delayed PID control with [kp, ki, kd] = [82.4444, 21.7778, 14.2222].
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Chapter 7

FUTURE WORK

My future research would expand to include the use of the multi-objective
optimization concept in the design of real-life applications including, but not lim-
ited to, robotics, cruise control systems, and aircrafts. The optimization of these
systems involves many conflicting objectives. In robotics, designing a robot that has
the highest possible speed of response, smallest tracking error and lowest energy ex-
penditure is a challenging mission. In cruise control system design, objectives such
as small tracking error, low fuel consumption and high ride comfort are well-known
conflicting goals. In aircrafts, the aerodynamic design of airfoils and wings involve
competing design objectives such as maximization of lift to drag ratio and rate of
change of lift to attack angle to increase the lift at takeoff/landing condition and
minimization of pitching moment.

I also plan to explore the area of multi-objective optimization of high dimen-
sional problems such as the fuzzy control systems. Such systems incorporate a large
number of design parameters, which means a huge computational effort is needed
to tune them.

Another interesting field is the multi-objective optimal design of fractional-
order controls. These controllers introduce more free parameters to be tuned com-
pared to their counterparts of integer order control systems.

Both of the SCM method and the hybrid algorithm of the NSGA-II and SCM
can be used to solve these problems accurately regardless of their complexity, and
guarantee the discovery of the global Pareto optimal solutions.
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Appendix A

MATRICES OF THE BOGIE SYSTEM

The matrices of the bogie system in Equation (4.1) are listed below.

M =



mw

Iw
mw

Iw
mf

If
md

md



C =



2fη
v

2l20fζ
v

2fη
v

2L2
0fζ
v

csy + 2cy −cy −cy
l22csx + l2mcy −lmcy lmcy

−cy −lmcy cy
−cy lmcy cy



E =

[
0 0 0 0 1 le 0 0
0 0 0 0 1 −le 0 0

]T

76



K
=

            k
p
y
+
k
g
y

−
2f
η

−
k
p
y

−
bk

p
y

2
λ
e
l 0
f
ζ

r 0
l2 1
k
p
x
+
k
g
ψ

−
l2 1
k
p
x

k
p
y
+
k
g
y

−
2f
η

−
k
p
y

bk
p
y

2
λ
e
l 0
f
ζ

r 0
l2 1
k
p
x
+
k
g
ψ

−
l2 1
k
p
x

−
k
p
y

−
k
p
y

2k
p
y
+
k
sy
+
2k

y
−
k
y
−
k
y

−
bk

p
y

−
l2 1
k
p
x

bk
p
y

−
l2 1
k
p
x

l2 2
k
sx
+
2l

2 1
k
p
x
+
2b

2
k
p
y
+
2l

2 m
k
y
−
l m
k
y
l m
k
y

−
k
y

−
l m
k
y

k
y

−
k
y

l m
k
y

k
y

            

77



Table A.1: The bogie model parameters.

Symbol Definition Value

mw Mass of the wheelset 285 kg
Iw Yaw inertia of the wheelset yaw inertia 2024 kg.m2

mf Mass of bogie & non-flexible part of the drive system 7186 kg
If Yaw inertia of bogie & non-flexible part of the drive system 9571 kg.m2

md Mass of flexible suspended part of the drive system 1765 kg
Id Yaw inertia of flexible suspended part of the drive system 1019 kg.m2

le Distance between the actuator and bogie center 1.5 m
lm the longitudinal distance from motor to bogie center 0.5 m
kpx Primary longitudinal stiffness per axle 40 kN/mm
kpy Primary lateral stiffness per axle 6 kN/mm
ksx Secondary longitudinal stiffness 0.8 kN/mm
ksy Secondary lateral stiffness 0.8 kN/mm
csx Secondary longitudinal damping 1000 N.s/m
csy Secondary lateral damping 60 kN.s/m
2b Wheel base 2.5 m
2l0 Distance of the Contact spot 1493 mm
2l1 Lateral spacing of the primary suspension 2200 mm
2l2 Lateral spacing of the secondary suspension 2200 mm
r0 The wheel rolling radius 0.625 m
λe The wheel-rail contact conicity 0.15
fζ The longitudinal creep coefficient 8.624e6 N
fη The lateral creep coefficient 8.144e6 N
kgy The gravitational stiffness 41.4 kN/m
kgψ The gravitational angular stiffness −23 kN/rad
kr The contact stiffness of the wheel-rail 50 kN/mm
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[90] A. Alonso, J. G. Giménez, E. Gomez, Yaw damper modelling and its influence
on railway dynamic stability, Vehicle System Dynamics 49 (9) (2011) 1367–
1387.

[91] Y. Yao, X. Zhang, X. Liu, The active control of the lateral movement of a mo-
tor suspended under a high-speed locomotive, Proceedings of the Institution
of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit (2015)
0954409715605138.

[92] J. Y. Hung, W. Gao, J. C. Hung, Variable structure control: A survey, IEEE
Transactions on Industrial Electronics 40 (1) (1993) 2–22.

[93] R. Cristi, F. A. Papoulias, A. J. Healey, Adaptive sliding mode control of
autonomous underwater vehicles in the dive plane, IEEE Journal of Oceanic
Engineering 15 (3) (1990) 152–160.

[94] Y.-J. Huang, T.-C. Kuo, S.-H. Chang, Adaptive sliding-mode control for non-
linear systems with uncertain parameters, IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 38 (2) (2008) 534–539.

86



[95] L. Xu, B. Yao, Adaptive robust control of mechanical systems with non-linear
dynamic friction compensation, International Journal of Control 81 (2) (2008)
167–176.

[96] H. Babaee, A. Khosravi, Multi-objective COA for design robust iterative learn-
ing control via second-order sliding mode, International Journal of Control
Science and Engineering 2 (6) (2012) 143–149.

[97] C. Ahn, H. Kim, Y. Kim, Adaptive sliding mode control for non-affine non-
linear vehicle systems, in: Proceedings of AIAA Guidance, Navigation and
Control Conference and Exhibit, Hilton Head, South Carolina, 2007.

[98] C.-I. Ahn, Y. Kim, H. Kim, Adaptive sliding mode controller design for fault
tolerant flight control system, in: Proceedings of AIAA Guidance, Navigation,
and Control Conference and Exhibit, 2006.

[99] D. Zhou, C. Mu, W. Xu, Adaptive sliding-mode guidance of a homing missile,
Journal of Guidance, Control, and Dynamics 22 (4) (1999) 589–594.

[100] L. Keum, N. Pradeep, S. Sahjendra, Integrated adaptive sliding mode flight
control via SDU gain matrix decomposition, in: Proceedings of the 46th AIAA
Aerospace Sciences Meeting and Exhibit, 2008.

[101] Q. Hu, Adaptive integral sliding mode fault tolerant control for flexible space-
craft, in: Proceedings of AIAA Guidance, Navigation, and Control Conference,
Chicago, Illinois, 2009.

[102] R. M. DeSantis, An adaptive PI/sliding mode controller for a speed drive,
Journal of Dynamic Systems, Measurement, and Control 111 (3) (1989) 409–
415.

[103] B. Yao, M. Tomizuka, Smooth robust adaptive sliding mode control of manip-
ulators with guaranteed transient performance, Journal of Dynamic Systems,
Measurement, and Control 118 (4) (1996) 764–775.

[104] Q. Chen, L. Tao, Y. Nan, X. Ren, Adaptive nonlinear sliding mode control
of mechanical servo system with LuGre friction compensation, Journal of Dy-
namic Systems, Measurement, and Control 138 (2) (2016) 021003.

[105] T. Ashish, Modern Control Design with Matlab and Simulink, John Wiley &
Sons, 2002.

[106] M. A. Sahnehsaraei, M. J. Mahmoodabadi, M. Taherkhorsandi, Optimal ro-
bust decoupled sliding mode control based on a multi-objective genetic algo-
rithm, in: Proceedings of IEEE International Symposium on Innovations in
Intelligent Systems and Applications (INISTA), 2013, pp. 1–5.

87



[107] J.-J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall Englewood
Cliffs, New Jersey, 1991.

[108] J. Q. Sun, A method of continuous time approximation of delayed dynami-
cal systems, Communications in Nonlinear Science and Numerical Simulation
14 (4) (2008) 998–1007.

[109] J. Q. Sun, B. Song, Some control studies of dynamical systems with time delay,
in: A. C. J. Luo (Ed.), Dynamics and Vibrations of Discontinuous, Stochastic
and Time Delay Systems, Springer, New York, 2010, pp. 135–157.

[110] G. P. Liu, S. Daley, Optimal-tuning nonlinear PID control of hydraulic sys-
tems, Control Engineering Practice 8 (9) (2000) 1045–1053.

[111] S. Panda, Multi-objective PID controller tuning for a FACTS-based damp-
ing stabilizer using non-dominated sorting genetic algorithm-II, International
Journal of Electrical Power & Energy Systems 33 (7) (2011) 1296–1308.

[112] B. Song, J. Q. Sun, Lowpass filter-based continuous-time approximation of
delayed dynamical systems, Journal of Vibration and Control 17 (8) (2011)
1173–1183.

88




