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The spinal cord demonstrates several forms of plasticity that resemble brain-dependent
learning and memory. Among the most studied form of spinal plasticity is spinal memory
for noxious (nociceptive) stimulation. Numerous papers have described central pain as
a spinally-stored memory that enhances future responses to cutaneous stimulation.
This phenomenon, known as central sensitization, has broad relevance to a range of
pathological conditions. Work from the spinal cord injury (SCI) field indicates that the
lumbar spinal cord demonstrates several other forms of plasticity, including formal learning
and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by
delivering stimulation to the hindleg when the leg is extended. In the presence of
this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a
flexed position, a centrally mediated effect that meets the formal criteria for instrumental
(response-outcome) learning. Instrumental flexion training produces a central change in
spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral
leg. However, if stimulation is given in a response-independent manner, the spinal cord
develops central maladaptive plasticity that undermines future spinal learning on both
legs. The present paper tests for interactions between spinal cord training and central
nociceptive sensitization after complete spinal cord transection. We found that spinal
training alters future central sensitization by intradermal formalin (24 h post-training).
Conversely intradermal formalin impaired future spinal learning (24 h post-injection).
Because formalin-induced central sensitization has been shown to involve NMDA receptor
activation, we tested whether pre-treatment with NMDA would also affect spinal learning
in manner similar to formalin. We found intrathecal NMDA impaired learning in a
dose-dependent fashion, and that this effect endures for at least 24 h. These data
provide strong evidence for an opposing relationship between nociceptive plasticity and
use-dependent learning in the spinal cord. The present work has clinical implications
given recent findings that adaptive spinal training improves recovery in humans with SCI.
Nociception below the SCI may undermine this rehabilitation potential.

Keywords: pain, nociception, plasticity, spinal cord injury, spinal cord learning, recovery of function

INTRODUCTION
Research over the past 50 years has revealed the spinal cord
to be surprisingly plastic. The spinal cord has been shown to
support a number of simple forms of learning, including habit-
uation and sensitization, as well as Pavlovian and instrumen-
tal conditioning (Thompson and Spencer, 1966; Fitzgerald and
Thompson, 1967; Grau et al., 1998). This remarkable capac-
ity for adaptability in response to stimuli has led researchers to
investigate how spinal plasticity might be utilized to promote
functional recovery after spinal cord injury (SCI). To this end,
researchers have designed behavioral training programs to engage
the inherent plasticity in spinal motor systems. Training on a

treadmill has been shown to evoke locomotor activity, and induce
weight-supported stepping in completely transected cats (Lovely
et al., 1986; Barbeau and Rossignol, 1987; De Leon et al., 1998).
Similar effects have been observed in a variety of species, and
under varying conditions, demonstrating that multiple forms of
locomotor training can induce adaptive alterations in spinal plas-
ticity that improves recovery after SCI (Edgerton et al., 1992;
Bregman et al., 1997; Raineteau and Schwab, 2001; Edgerton and
Roy, 2009). In order for functional recovery to be successful,
appropriate sensory feedback, including proprioceptive and cuta-
neous afferent input, is necessary (Bouyer et al., 2001; Bouyer and
Rossignol, 2003). Unilateral deafferentation of spinally transected
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cats results in impaired locomotor recovery (Giuliani and Smith,
1987). Likewise, the disruption of even a small number of periph-
eral nerves prior to SCI can greatly limit adaptive locomotor
recovery (Bouyer and Rossignol, 2003; Frigon and Rossignol,
2009). These findings highlight the essential role of afferent input
in inducing plasticity within locomotor circuits. If the delicate
interaction between sensory input and motor output is disturbed,
recovery of spinal function can be severely impaired (Frigon and
Rossignol, 2009).

These findings illustrate the plastic nature of the spinal cord,
and highlight the importance of promoting adaptive spinal mod-
ifications in order to combat the deleterious effects of SCI.

The capacity for plasticity after SCI also creates an envi-
ronment in which the spinal cord is vulnerable to maladaptive
changes. Potentiation of the response to nociceptive afferent input
in the superficial dorsal horn can produce lasting changes in pain
reactivity. This phenomenon, known as central sensitization, may
be a mechanism by which intractable neuropathic pain is induced
(Woolf, 1983; Woolf and Salter, 2000). Interestingly, this effect
bears a striking resemblance to long-term potentiation (LTP), an
NMDA-mediated process that has been long-believed to be the
neurobiological basis for learning and memory (Bliss and Lomo,
1973; Ikeda et al., 2003; Ji et al., 2003; Woolf, 2007). The similar-
ity between LTP in the brain and central sensitization in the spinal
cord has raised the possibility that nociceptive plasticity is akin to
a form of learning, and lasting pain states are in essence a noci-
ceptive memory (Sandkuhler et al., 2000; Ji et al., 2003; Crown
et al., 2005, 2006, 2008).

From the evidence presented above, it is apparent that the
spinal cord is capable of supporting a wide range of plastic
processes that, depending on the type of stimulus, can either
promote adaptive changes or exacerbate nociceptive activity.
Despite our knowledge of these opposing processes, the relation-
ships between spinal nociceptive memory and spinal memory for
adaptive training are not well-understood. Yet, uncovering the
interactions between these different forms of spinal neuroplas-
ticity has clinical relevance for developing rehabilitative therapies
that maximize beneficial recovery and minimize harmful side
effects such as pain. To study spinal plasticity mechanistically
we have used a simple model of instrumental learning in the
isolated spinal cord (Buerger and Fennessy, 1970; Grau et al.,
1998). Rats with complete spinal transections receive electrical
stimulation to the tibialis anterior muscle of one hindlimb when-
ever that limb is extended (controllable stimulation). Rats learn
over time to keep the limb flexed in order to reduce stimula-
tion exposure, thus exhibiting a simple form of instrumental
(response-outcome) learning. This training paradigm has been
shown to produce a number of beneficial effects on spinal func-
tion (see Ferguson et al., 2012 and Grau et al., 2012, in this
issue).

Conversely, if rats receive electrical stimulation of the tibialis
anterior muscle that is independent of leg position (uncontrol-
lable stimulation), they are unable to learn the instrumental
response. Further, when these rats are later tested with control-
lable stimulation, they continue to exhibit a learning deficit, even
if rats are tested on the contralateral limb (Joynes et al., 2003).
This finding, along with a series of other pharmacological and

physiological studies, indicates that prior exposure to uncontrol-
lable stimulation does not simply produce a peripheral, motoric
effect, but instead induces a lasting maladaptive alteration in
spinal plasticity (Crown et al., 2002a; Baumbauer et al., 2009; for
review see Grau et al., 2006). Interestingly, prior work indicates
that uncontrollable stimulation also induces nociceptive plasticity
(Ferguson et al., 2006; Huie et al., 2012a). Tests of tactile reactivity
with von Frey filaments have shown that uncontrollable (yoked)
stimulation can induce mechanical allodynia (Ferguson et al.,
2006; Huie et al., 2012a). Interestingly, both the induction of the
spinal learning response and the induction of the learning deficit
have been shown to require NMDA activation, providing further
mechanistic similarities between adaptive and nociceptive plastic-
ity and learning in the spinal cord. To further elucidate whether
uncontrollable stimulation induces spinal nociceptive activity,
we have previously used electrophysiological and pharmacolog-
ical methods to investigate the fiber types that are engaged by
this stimulation regimen. Baumbauer et al. (2007), found that
intrathecal blockade of the NK1 (substance P) receptor blocked
the induction of a learning deficit normally produced by uncon-
trollable stimulation. Likewise, electrical stimulation of the sciatic
nerve did not induce a learning impairment until shock inten-
sity was increased to a level that engaged C-fibers (Baumbauer
et al., 2008). While instrumental learning is not blocked by pre-
treatment with a NK1 antagonist, the shock intensity needed to
elicit an intermediate flexion force is well within the range that
Baumbauer et al. (2008) found to elicit some C-fiber activity and
a robust A-delta response. On the basis of these observations, we
have suggested that the induction of the learning deficit requires
C-fiber activity.

Prior work has also shown that spinal learning deficits can
be induced by the peripheral administration of inflammatory
agents known to induce central sensitization, such as carrageenan,
and capsaicin (Ferguson et al., 2006; Hook et al., 2008). As with
uncontrollable stimulation, peripheral inflammation induced a
learning deficit that was observed when testing was adminis-
tered on the contralateral limb, yielding further evidence for
central nociceptive plasticity. Thus, using this simple behavioral
model of spinal plasticity provides a mechanism to study both
maladaptive nociceptive plasticity and adaptive alterations in
spinal learning. The present study is designed to gain further
insight into these opposing processes, by testing the interaction
between spinal training and nociceptive plasticity. We first ask
how spinal training history affects nociceptive plasticity, and then
conversely, how nociceptive activity may alter the capacity for
spinal learning.

We first assessed the capacity for an inflammatory agent
known to induce central sensitization (intradermal formalin) to
produce tactile hyper-reactivity in the spinally transected rat. We
then tested what effect spinal training (with either controllable or
uncontrollable stimulation) prior to formalin administration may
have on nociceptive responding. To further assess the interaction
between nociceptive plasticity and spinal learning, we then tested
whether formalin administration is sufficient to undermine spinal
learning, and whether this effect is centrally-mediated. Finally,
given the findings that central sensitization is an NMDA receptor-
mediated process (Dickenson and Sullivan, 1991), we tested
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whether direct central activation of NMDA receptors induces a
spinal learning deficit.

MATERIALS AND METHODS
We performed three independent experiments to investigate
the relationship between spinal learning and nociceptive sen-
sitization. In the first experiment we delivered three different
spinal cord training procedures and then 24 h later delivered
intradermal formalin or vehicle (3 training groups × 2 formalin
conditions; n = 7/group; N = 42 total). We then evaluated
tactile responsiveness (Figures 2–4). In a separate group of
rats we delivered intradermal formalin and then evaluated
spinal learning potential immediately as a function of formalin
dose-response (Figure 5; n = 2–6/dose group; N = 17 total).
In an independent replication of the most effective dose, we
tested the effects of formalin on spinal learning 24 h later
(n = 6/group, N = 12 total). Finally, in a third set of rats we
delivered intrathecal NMDA at doses that are known to produce
spontaneous nociception and tested spinal training potential 24 h
later (n = 12/group; N = 48 total). The experimental designs for
each study are depicted in Figures 2, 5A,C, and 6A. The specific
procedures are described below.

ANIMALS
Subjects were adult (100–120 day old, N = 119) male Sprague-
Dawley rats (Harlan, Houston, TX, USA). Rats were individually
housed in an AAALAC-approved, temperature-controlled envi-
ronment with ad libitum access to food and water. Rats were
maintained on a 12 h light/dark cycle with experiments per-
formed during the last 6 h of the light cycle. All experiments
adhered to the NIH Guide and were approved by the Animal Care
Committee at Texas A&M University.

SPINAL CORD TRANSECTION AND INTRATHECAL CANNULA
INSERTION
Surgery was performed under pentobarbital anesthesia
(50 mg/kg, i.p.). Rats were placed in a stereotaxic instrument and
a small gauze “pillow” was placed under the chest to raise and
support the area around the second thoracic vertebra (T2). After
localizing T2 through the skin, a rostro-caudal incision was made
and the muscles were blunt dissected to reveal the intervertebral
space rostral to T2. Rongeurs were used to clear ligaments and
expose the spinal cord in between T1 and T2 and the spinal
cord was transected by cauterization. Gel foam was placed in the
transection site. For intrathecal drugs delivery experiments, a
cannula was implanted after spinal transection. The cannula con-
sisted of 25 cm of PE-10 tubing fitted with a 0.23 mm (diameter)
stainless steel guide wire (Small Parts, USA) that was threaded
9 cm caudally from T2 into the subarachnoid space between
dura and white matter to lie on the dorsal cord. The exposed
end of the tubing was secured with cyanoacrylate and the guide
wire was gently pulled from the tubing. Spinal transections
were confirmed by (1) inspecting the cord during the operation,
(2) observing the behavior of the rats after recovery to ensure
that they exhibited paralysis below the level of the forepaws and
did not vocalize to the leg shock, and (3) examining the spinal
cord post-mortem in a randomly selected subset of the animals.

BEHAVIORAL APPARATUS
We assessed spinal learning capacity as well as tactile
responsiveness using a behavioral apparatus previously described
(Grau et al., 1998; Ferguson et al., 2006; Figure 1). Briefly,
spinally transected rats were placed in plexiglas tubes con-
taining slots to allow the hindlimbs to hang freely. Rats were
secured with an insulated wire belt that was gently wrapped
around the rat and passed through holes on the side of
the tube.

SPINAL LEARNING PARADIGM
For spinal training studies, stainless steel leads from a BRS/LVE
AC stimulator (Model SG-903; Laurel, MD, USA) were implanted
into the tibialis anterior muscle, and the skin 1.5 cm above the
ankle. Stimulation (60 Hz, constant current biphasic AC) inten-
sity was initially set to 0.1 mA and then adjusted so that a single
0.3 s stimulus yielded a standardized flexion force of 0.4 N. Force
was measured using strain gauge (Fort-1000; World Precision
Instruments) attached to the foot with a monofilament plas-
tic line (4-lb test; Stren, DuPont). The strain gauge output was
fed through a multimeter calibrated to allow conversion between
voltage and force in N. Instrumental (response-outcome) learn-
ing in the spinal cord was evaluated by arranging a relationship
between leg position (response) and shock to the tibialis anterior
muscle (outcome). Prior work has shown that in the presence
of this controllable stimulation the spinal cord rapidly learns
to hold the leg in a flexed position, minimizing shock expo-
sure (Buerger and Fennessy, 1970; Grau et al., 1998; Jindrich
et al., 2009). We assessed leg position by attaching a stainless
steel contact electrode (7 cm × 0.46 mm) to the plantar sur-
face of one hind leg and submerging the tip of the electrode
4 mm below the surface of an underlying saline solution. By plac-
ing a ground wire in the solution and attaching a fine wire to
the contact electrode, we can monitor whether the leg is in an
extended position, completing the circuit, or in a flexed posi-
tion. The state of the circuit was monitored using an analog to
digital converter (sample rate = 30 Hz) with digital outputs sent
to a Macintosh computer. Stimulation was delivered each time
the contact electrode touched the underlying solution. Stimulus
onset occurred upon contact with the solution and stimulus offset
occurred when the leg was lifted (minimum stimulus duration =
80 ms). Stimulation occurred for the duration of contact. Using
this simple dichotomous measure of leg position (up vs. down)
allows us to measure the time in the down position and the num-
ber of flexion responses. From these two measures we derive the
mean response duration for each animal within 60 s time bins
over the 30 min instrumental training period (Grau et al., 1998).
Response duration for each animal was determined using the
following formula:

Response duration = (60 − seconds in solutioni)/

(flexion numberi + 1),

where i is the current training bin.

MASTER/YOKED TRAINING PROCEDURES
The spinal cord was trained using a well-established three-
group design consisting of master, yoked, and unshocked rats
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FIGURE 1 | Modes of stimulation and testing. (A) Instrumental spinal
training. Master rats receive stimulation to the tibialis anterior muscle of one
hindlimb that is contingent upon leg position. When the limb is extended,
stimulation is delivered, when the limb is flexed, stimulation is terminated.
Master rats learn over time to keep the limb flexed to reduce stimulation
exposure (spinal learning). (B) Uncontrollable stimulation. Yoked rats receive

stimulation at the same time as their Master counterparts, regardless of limb
position. These rats do not learn a response-outcome association and continue
to fail when later tested with controllable stimulation. (C) Tactile testing. To
assess hyper-reactivity, calibrated von Frey filaments are used to probe the
ventral surface of the hindlimb. Filaments of increasing stiffness are used, until
a response is made, and the force necessary to elicit a response is recorded.

run simultaneously in sets of three rats (Figures 1A and 1B;
Horridge, 1962; Buerger and Fennessy, 1970; Grau et al., 1998).
All rats were prepared for spinal training as described above
and then randomized to the three different conditions. Master
rats received response-contingent stimulation: stimulation was
delivered to the leg when it was in an extended position. Yoked
rats received uncontrollable leg stimulation: the tibialis ante-
rior was stimulated whenever their paired master extended the
leg. Unshocked rats received no leg stimulation. Prior work
has shown that under these conditions the master rats will
acquire the flexion response, and yoked rats will fail (Horridge,
1962; Buerger and Fennessy, 1970; Grau et al., 1998; Jindrich
et al., 2009). When all three groups are later re-tested with
response-contingent stimulation, the master animals re-acquire
the response at a faster rate than unshocked controls and the
yoked animals fail to learn (Grau et al., 1998, 2004; Crown and
Grau, 2001; Huie et al., 2012a). The learning deficit produced
by yoked training represents a lasting form of maladaptive spinal
plasticity that endures for >24 h in complete transection injuries,
and produces long-term (>6 week) impairments in locomotor
recovery after contusive SCI (Crown et al., 2002a; Grau et al.,
2004).

INTRADERMAL FORMALIN
To test for interactions between central sensitization and spinal
training, we used the formalin test, a well-characterized central
sensitization model from the pain literature (reviewed in Le Bars
et al., 2001). Spinalized rats were given a single 50 μl subcuta-
neous injection of formalin in 1 of 4 concentrations (0, 5, 10,
or 15%) in 0.9% saline into the dorsal surface of one hindpaw
(in contrast to the plantar surface where tactile testing was per-
formed). This manipulation produces a well-documented sensi-
tization of spinal neurons (Coderre, 2001) that can be blocked by
N-methyl-D-aspartate receptor (NMDAR) antagonists (Coderre
and Melzack, 1992; Yamamoto and Yaksh, 1992).

TACTILE TESTING
Hindpaw tactile testing was performed on spinalized rats placed
in loose restraint tubes and secured as described the “Behavioral
Apparatus” section (Figure 1C). After a 5 min acclimation period
baseline tactile reactivity was established using von Frey stimuli
(Semmes-Weinstein). Von Frey stimuli consisted of standardized
polymer monofilaments of differing diameters that were delivered
serially with increasing von Frey filament forces until the stimu-
lation elicited a flexion response. When flexed against the skin,
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each filament delivers a standard force of a known intensity. All
tactile reactivity testing was performed on the plantar surface of
the hindpaw (in contrast to the dorsal surface where formalin was
delivered). All tactile testing was performed by raters who were
blind to experimental conditions. Baselines were established prior
to spinal training (Figure 2). Baseline was established twice on
both the ipsilateral (shocked) and contralateral leg in a counter-
balanced ABBA order and then averages were produced for each
leg. Rats were then given master/yoked/unshocked training to one
leg. Experimenters who were blind experimental condition per-
formed threshold testing using calibrated von Frey filaments on
the ipsilateral and contralateral limb in a counterbalanced ABBA
sequence every 5 min for 60 min post-injection. Re-testing of the
same paw was spaced 2 min apart. Further details can be found in
prior studies (Ferguson et al., 2006).

INTRATHECAL NMDA DELIVERY
Spinalized rats received intrathecal injections of NMDA (Tocris,
Ellisville, MO) in 1 of 3 doses (1.0, 10.0, or 100 nmol) with a
control of 15 μl 0.9% saline. The drug was delivered over the
course of 3 min followed by a 10 μl saline flush over 2 min.
Immediately after drug delivery rats were placed in Plexiglas
tubes. Twenty-four hours later rats were prepared as described
above under “Spinal Learning Paradigm” and tested with 30 min
of response-contingent leg stimulation.

STATISTICS
Results were analyzed using balanced experimental designs and
mixed, factorial analyses of variance (ANOVA) by the GLM pro-
tocol in SPSS v.19 (IBM). The general statistical workflow adhered
to highly-cited analytical standards (Keppel and Wickens, 2004).
The statistical plan consisted of testing higher-order interactions
that were intrinsic to the a priori experimental design, and then
significant effects were distilled in waves of lower order interac-
tion testing, and ultimately testing of main effects followed by
Tukey’s post-hocs on group means where appropriate. Significance
was assessed at p < 0.05. All graphs reflect group means and error
bars reflect standard error of the mean (SEM).

RESULTS
The experiments were designed to test for cross-talk between
spinal training and nociceptive plasticity in complete SCI. The

experiments are complementary to those reported elsewhere
and interested readers are encouraged to examine comple-
mentary studies in Ferguson et al. (2006, 2008a) and Huie
et al. (2012a). The present paper is also linked to compan-
ion reviews by Grau et al. (2012) and Ferguson et al. (2012)
in the present issue of Frontiers in Integrative Physiology
which provide further theoretical background for the present
studies.

IRRITANT-INDUCED SENSITIZATION OF TACTILE SENSITIVITY
BELOW COMPLETE SCI
To test whether a nociceptive barrage could undermine normal
spinal function below a complete SCI we used a well-established
chemical irritant that directly drives nociceptors: intradermal
formalin. Numerous papers have shown that a dilute forma-
lin solution injected into the dorsal surface of the hindpaw
strongly activates primary nociceptive afferents resulting in both
peripheral and central sensitization (Hunskaar and Hole, 1987;
Coderre and Melzack, 1992; Yamamoto and Yaksh, 1992; Le Bars
et al., 2001; Yashpal et al., 2001). Behaviorally, the formalin test
results in tactile hyper-reactivity as well as spontaneous nocif-
ensive behaviors such as licking the paw, or hind limb guarding
(Dubuisson and Dennis, 1977). In intact animals these nocif-
ensive behaviors occur in two phases: an early phase (5 min),
followed by a quiescent period and then re-emergence of a late
phase (25–60 min). It has been argued that the different phases
of formalin pain involve different mechanisms that may be orga-
nized at different anatomical levels. The early phase reflects
hyperactivity in spinal nociceptive system that is then inhibited
by segmental and descending brain stem pathways. The second
phase is thought to reflect a brain-mediated change that alters
descending control over spinal nociception, resulting in a sec-
ondary phase of hyper-reactivity (Abbadie et al., 1997; Xu et al.,
2010). Accordingly, prior work has shown that complete spinal
transection abolishes the late phase response whereas the early
phase hyper-reflexia remains largely intact (Wheeler-Aceto and
Cowan, 1991).

To confirm that formalin alters spinal nociceptive function in
our complete transection model of SCI, (Grau et al., 1998), we
performed a complete T2 transection by cautery and performed
hindpaw formalin testing 48 h post-injury (Figure 2, unshocked
group). Because complete transection abolishes supraspinal

FIGURE 2 | Experimental design used to test whether spinal training history alters future nociceptive responsiveness in the formalin test.
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responses to hind-paw formalin, we limited our behavioral testing
to tactile responses of the plantar hindpaw.

Formalin produced persistent tactile hyper-sensitivity on the
ipsilateral hind paw relative to vehicle injection (Figure 3). This
hyper-reactivity to formalin was significant on the ipsilateral leg
(Figure 3A) but not the contralateral leg (Figure A1). Because
the early phase (first 5 min) and the late phase (25–60 min)
of the formalin response involve distinct mechanisms (Coderre
and Melzack, 1992; Yamamoto and Yaksh, 1992), we next
performed separate analyses of the different phases on the
ipsilateral leg (Figures 3B,C). Analysis of the early phase con-
firmed a pronounced hyper-sensitivity (Figure 3B), however,
the late phase response was diminished (Figure 3C). Together
the data confirm that formalin produces a behaviorally dis-
cernible nociceptive response in our complete transection SCI
model. It is noteworthy that the most pronounced sensi-
tivity was observed on the ipsilateral leg and in the early
phase of the formalin test, replicating previous observations
in complete transection injuries (Wheeler-Aceto and Cowan,
1991).

SPINAL TRAINING HISTORY AFFECTS IRRITANT RESPONSE IN
COMPLETE SCI
To test whether spinal cord training produces central changes
that alter formalin nociceptive reactivity, we randomized a new
group of rats into master/yoked training pairs at 24 h post-injury
(24 h pre-formalin; for design see Figure 2). For each train-
ing pair, master rats received leg position-dependent stimulation
and yoked animals received stimulation along with the master,
irrespective of leg position. This experimental design ensures
that master rats and yoked rats receive the same amount of leg
stimulation, yet the master experiences stimulation that is depen-
dent upon their leg position while the yoked experiences leg
stimulation that is uncontrollable (Horridge, 1962; Buerger and
Fennessy, 1970; Grau et al., 1998). We have previously found that
uncontrollable stimulation of one leg produces a bilateral tac-
tile hyper-sensitivity in complete SCI (Ferguson et al., 2006), and
the same response is observed with direct activation of nocicep-
tors using intradermal capsaicin (Hook et al., 2008). It has been
argued that ipsilateral hyper-reactivity reflects both peripheral
and central changes, whereas only contralateral changes provide a

FIGURE 3 | Intradermal formalin produces ipsilateral hyper-reactivity in

rats with complete SCI. (A) Time-course of hyper-reactivity with repeated
von Frey testing on the plantar surface of ipsilateral hindpaw after intradermal
formalin injection. Mixed factorial Three-Way ANOVA revealed significant
interaction of testing side × condition, F(1, 12) = 5.59, p < 0.05.

(B) Significant hyper-reactivity on the early phase formalin response ipsilateral
to injection F(1, 12) = 13.11, ∗p < 0.01, n = 7 rats/formalin condition.
(C) Non-significant trend of hyper-reactivity in the late phase response,
p = 0.059. Points and bars represent group means (± SEM), gray points
reflect the individual animals.
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pure measure of central sensitization (Woolf, 1983; Milligan et al.,
2003). For this reason we contrasted the effects of master/yoked
training on formalin reactivity ipsilateral and contralateral to
the injection. Laterality of the training leg was counterbalanced
with respect to the injection, thereby controlling for peripheral
effects of training history. As shown in Figure 4A, early phase
formalin responses on the ipsilateral limb did not differ across
master/yoked training groups, and both groups showed similar
hyper-sensitivity as unshocked rats (compare with Figure 3B).
The findings suggest that spinal training history does not alter
peripheral sensitization in the formalin test.

To assess central sensitization we used the classic approach
of testing tactile responsiveness on the contralateral leg (Woolf,
1983). This analysis revealed that yoked (uncontrollable stim-
ulation) training enhanced future hyper-reactivity contralateral
to formalin injection (Figure 4B). Specifically, yoked animals
demonstrated a significant tactile hyper-reactivity on the con-
tralateral limb that was not observed in either master or
unshocked rats. In addition the modulatory effect of training
history on formalin hyper-reactivity was not significantly differ-
ent between ipsilateral and contralateral sides, confirming prior
findings that training on one leg induces a central change that
alters bilateral responsiveness. This is in contrast to the unilat-
eral effects observed in the untrained (unshocked) rats shown in
Figure 2. The bilateral nature of the training effects underscores
that nociceptive hyper-reactivity produced by yoked training his-
tory is indeed a form of central sensitization (Grau et al., 1998;
Crown et al., 2002b; Joynes et al., 2003; Ferguson et al., 2006;
Baumbauer et al., 2008; Hook et al., 2008; Young et al., 2008; Huie
et al., 2012a).

The findings strongly suggest that prior exposure to uncon-
trollable (yoked) stimulation in SCI rats primes them for later

central sensitization by formalin injection. Notably the equivalent
amount of response-specific instrumental (master) training did
not sensitize the central nociceptive system.

FORMALIN NOCICEPTION PRODUCES IMPAIRMENT IN SPINAL
LEARNING ON THE CONTRALATERAL LEG
The preceding experiments indicate that spinal training history
influences the degree of central sensitization produced by for-
malin. We next tested the converse: whether formalin produces
a central change that influences spinal cord learning in com-
plete SCI. We performed a set of two independent experiments
(Figures 5A,B). We first delivered formalin to the hind-paw at
a range of concentrations after complete SCI and then assayed
spinal learning on the contralateral leg. As shown in Figure 5C
formalin produced a dose-dependent impairment of spinal learn-
ing on the contralateral limb.

To test whether formalin induced a lasting central change,
we performed an independent study where we delivered 15%
formalin or vehicle and then assayed spinal cord learning on
the contralateral leg 24 h later. As shown in Figure 5D formalin
produced a long-term deficit in spinal learning. To contrast the
long-term and short-term effects of formalin we performed an
additional analysis comparing all doses and post-injection time
points. The findings revealed equivalent deficits in spinal learning
in immediate and 24 h post-formalin conditions (Figure 5E).

The findings indicate that peripheral nociceptive activation
with formalin induces a lasting central change in spinal cord
learning in rats with complete SCI. Together with the prior
findings the data suggest that the specific pattern of peripheral
stimulation dictates the form of central plasticity that is invoked
after injury, leading to either central sensitization or adaptive
spinal cord learning, depending on stimulus type.

FIGURE 4 | Spinal training history alters formalin hyper-reactivity

contralateral to the injection. (A) Significant hyper-reactivity response to
formalin but no differential effect of master/yoked training history on the
ipsilateral leg, ∗p < 0.05 from saline, n = 7 rats/group. There was also no
significant difference between master/yoked/unshocked on ipsilateral
hyper-reactivity, all p > 0.05, (compare to Figure 3B). (B) Significant
enhancement of formalin hyper-reactivity in yoked group contralateral to
injection, ∗p < 0.05 from yoked saline, n = 7 rats/group. Bars represent
group means (± SEM) gray points reflect the individual animals. Four-Way

mixed, double repeated measures ANOVA was used for an integrative
test of full experimental design including: training history (between
subjects), formalin condition (between subjects), leg laterality (within
subjects), time (within subjects). Modulatory effects of training history on
formalin reactivity were re-affirmed by significant interaction of training
history × formalin × time, (p < 0.05). The Four-Way interaction of leg
laterality × training history × formalin × time did not reach significance,
p > 0.05, reinforcing the bilateral (central) nature of training-enhanced
nociception.
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FIGURE 5 | Intradermal formalin produces contralateral impairments

in spinal learning. (A) Experimental design used to test immediate
dose-response characteristics of formalin concentration on spinal learning
potential. (B) Concentration-dependent impairment in spinal learning
contralateral to formalin injection (0%, n = 4; 5%, n = 6; 10%, n = 2; 15%,
n = 5; the numbers of subjects is supported by statistical power analysis,
partial eta squared = 0.58, power = 0.89). Mixed repeated measures ANOVA
revealed a significant effect of time, F(29, 377) = 2.46, p < 0.05, and formalin
concentration, F(3, 13) = 6.15, p < 0.05. Tukey’s post-hoc test revealed that
10% and 15% formalin significantly impaired spinal cord learning relative to

5% formalin and vehicle, p < 0.05. (C) Experimental design used to test
effects of formalin on spinal learning potential. (D) Spinal learning impairment
on the contralateral leg 24 h after formalin injection (n = 6 rats/group). Mixed
repeated measures ANOVA revealed significant main effects of time,
formalin, and time × formalin, all p < 0.05. (E) Group means for all formalin
conditions, One-Way ANOVA confirmed effect of formalin condition
F(5, 23) = 8.64, p < 0.0001. Post-hoc Tukey’s revealed saline groups did not
differ, whereas 10, 15, and 15% 24 h formalin groups had significant learning
impairments,∗p < 0.05 from saline groups. Points and bars represent group
means (± SEM), gray points reflect the individual animals.

CENTRAL ACTIVATION OF SPINAL NMDA RECEPTORS PRODUCES
ENDURING SPINAL LEARNING IMPAIRMENTS IN SCI ANIMALS
The preceding experiments demonstrated that chemical noci-
ception with hindpaw formalin injection impairs spinal cord
learning in complete SCI. The fact that this effect is observed
contralateral to the irritant strongly suggests that a form of
central sensitization is involved. Central sensitization by forma-
lin is known to require activation of spinal NMDA receptors
(Haley et al., 1990; Dickenson and Sullivan, 1991). In addi-
tion, direct intrathecal delivery of NMDA ligand (5–50 mM)
sensitizes dorsal horn neurons and produces spontaneous noci-
ceptive behaviors in intact rats (Raigorodsky and Urca, 1987;
Dougherty et al., 1992; Bjorkman et al., 1994; Menendez et al.,

1997; Alvarez-Vega et al., 2000; Sato et al., 2003; Kim et al., 2008;
Roh et al., 2009).

To test whether NMDA-induced central sensitization impacts
spinal cord learning, we delivered intrathecal NMDA at three
doses (0.06, 0.6, or 6.0 mM) and assayed spinal learning 24 h
later (Figure 6A). If NMDA produces a central sensitization
that mimics the enduring effects of uncontrollable stimula-
tion and formalin, then NMDA should alter spinal learning at
this delayed time point. As shown in Figure 6B, NMDA pro-
duced a dose-dependent impairment in spinal learning when
tested at 24 h post-injection. The most robust deficit was
observed with 6 mM. Together the data indicate that central
sensitization by NMDAR activation generates an impairment in
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FIGURE 6 | Direct overactivation of spinal NMDA receptors impairs

spinal learning 24 h later. (A) Experimental design used to test the
effect of intrathecal NMDA on spinal learning potential 24 h after delivery.
(B) Dose-response function for NMDA-induced impairment of spinal
learning. Mixed-repeated measures ANOVA revealed a significant effect of

time F(29, 1276) = 10.69, p < 0.0001 and NMDA dose F(3, 44) = 4.08,
p < 0.05. Tukey’s post-hoc revealed that the 6 mM dose produced a
significant impairment relative to the other doses, ∗p < 0.05 from other
doses (n = 12 subjects/dose) gray points reflect the individual
animals.

spinal learning. The findings strongly suggest that direct cen-
tral sensitization undermines spinal cord learning in the injured
spinal cord.

It is important to note that the dose necessary to impair spinal
learning was relatively high when compared to prior studies of
spontaneous nociceptive behaviors in intact animals, which have
typically used doses ranging from 0.1 to 1 mM. This raises the
possibility that the current effects could be due to an NMDA-
induced excitotoxicity, which has been observed in primary cell
culture at doses as low as 1 mM (Koh and Choi, 1988; Dawson
et al., 1993). However, several lines of data suggest that our
6 mM intrathecal dose still falls within a normal physiological
range in vivo. Studies of the locomotor central pattern genera-
tor (Grillner et al., 1981) have used intrathecal doses five times
higher than our highest dose to elicit fictive locomotion in in vivo
spinal rat preparations (Giroux et al., 2001). In addition studies
in primate models have shown central sensitization of nocicep-
tive responses with intrathecal NMDA doses of up to 50 mM.
Together, this suggests our doses fall within a reasonable range for
central sensitization and the learning deficits observed are more
consistent with maladaptive plasticity than a wholesale excitotoxic
lesion (Villanueva et al., 2002; Yoon et al., 2010). In combina-
tion with the other experimental findings and prior literature the
NMDA findings reinforce the concept that central sensitization
impairs adaptive spinal cord learning.

DISCUSSION
Prior literature and the new experimental findings presented
here reinforce the concept that nociceptive plasticity opposes
spinal learning adaptations after complete SCI. The results indi-
cate that spinal training history can influence future nociceptive
responsiveness in the formalin test. In particular pre-training
with inappropriate uncontrollable (yoked) stimulation, but not

instrumental (master) training, enhances later tactile hyper-
reactivity produced by intradermal formalin into the hind paw.
This training-enhanced reactivity was evident on the contralateral
paw, strongly suggesting a central mechanism. Follow up experi-
ments revealed that intradermal formalin, delivered at doses that
enhance tactile reactivity, disrupts future spinal learning on the
contralateral paw for at least 24 h. Finally, directly driving central
NMDA receptors, which produces central nociceptive sensitiza-
tion, generates a lasting (>24 h) impairment in spinal learning.
Taken together the findings indicate that central sensitization and
adaptive spinal learning are opposing forms of spinal plasticity.

The existing literature indicates many similarities between
central sensitization within spinal pain pathways and stimulus-
induced maladaptive spinal plasticity that prevents future spinal
learning after SCI. As with many other forms of plasticity, both
central sensitization and the spinal learning deficit are medi-
ated by changes in glutamatergic activity. The NMDA receptor
antagonist MK-801 has been used to block central sensitization,
as well as to inhibit the induction of the spinal learning deficit
induced by uncontrollable stimulation (Woolf and Thompson,
1991; Ferguson et al., 2006). Further, group I metabotropic glu-
tamate receptors (mGluR1 and mGluR5) have been shown to
be necessary for formalin-induced nociception, as well playing
a key role in the development of chronic pain following spinal
contusion injury (Fisher and Coderre, 1996; Mills et al., 2002).
We have previously shown that these same mGluR subtypes are
also necessary in order for uncontrollable stimulation to pro-
duce a spinal learning deficit. Taken together with the current
experiments demonstrating formalin-induced undermining of
adaptive spinal learning, these findings provide further behavioral
evidence that central sensitization and the maladaptive spinal
plasticity that inhibits spinal learning engage common central
mechanisms.
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It should be noted that the main focus of the work with this
spinal learning model has been behavioral and pharmacologi-
cal, rather than strictly physiological. Historically, those studying
spinal plasticity with this model have focused on the central neu-
rochemical factors that mediate the behavioral effects, while the
physiological circuitry that is engaged by stimulation of the tib-
ialis anterior muscle has been investigated less extensively. Our
goal is to understand the training potential of the spinal cord and
all of our experiments are designed to rule out peripheral effects
by testing all effects on the contralateral limb. The current study
evaluated the potential for established nociceptive stimuli (forma-
lin and TA stimulation) to alter the future capacity for spinal cord
training of a flexion response on the contralateral limb. Similarly,
our evidence for central nociceptive plasticity in the current study
has been provided by behavioral outcomes on the contralateral
limb, rather than direct testing of fiber activation. Although we
have previously found that these behavioral effects depend on
stimulation of c-fibers, direct electrophysiological confirmation
for the recruitment of fiber types and muscle group activation fol-
lowing stimulation of the tibialis anterior represents an important
area for further research.

An improved understanding of the fiber types could also
potentially help explain some of the formalin dose-response fea-
tures observed in the present study. We found that the most
profound learning deficits were observed at a relatively high dos-
ing range (5–15% formalin). Recent work suggests that lower
doses (0.5%) of formalin selectively engage primary nocicep-
tors that express transient receptor potential (TRP) channel
subtype TRPA1, whereas increasing doses (2–5%) engage a
wider range that includes non-TRPA1 nociceptors (Braiz and
Bausbaum, 2010). Based on the dose-response function in the
present study, one might hypothesize that spinal cord learning
is more impaired when a broad range of different nociceptive
fiber populations are engaged. However, the relative role of differ-
ent nociceptive populations remains an open question for further
research.

Much of the work to understand the neurobiology of our
observed behavioral effects has come from pharmacological
manipulation of known mediators of plasticity and nociception.
Several nociception-inducing substances have been implicated in
spinal learning deficits in our model including substance P, cap-
saicin, carrageenan, intrathecal glutamate agonists, and intrathe-
cal delivery of the cytokine tumor necrosis factor alpha (TNFα)
(Ferguson et al., 2006, 2008a,b; Baumbauer et al., 2007; Hook
et al., 2008; Huie et al., 2012b) Our recent interest in TNFα as
a modulator of spinal learning provides additional links between
spinal cord learning impairments and nociception. Findings from
the pain literature indicate that TNFα is a potent mediator of
nociceptive plasticity (Czeschik et al., 2008; Choi et al., 2010; Park
et al., 2011; Zhang et al., 2011). TNFα is known to modulate
synaptic strength by acting to increase glutamatergic signaling,
and we have demonstrated this effect to play a role in excitotox-
icity following SCI (Beattie et al., 2002; Ferguson et al., 2008b).
We have recently shown that blocking TNFα activity prior to
uncontrollable stimulation protects against maladaptive spinal
plasticity, and that administration of exogenous TNFα is suffi-
cient to undermine adaptive spinal learning (Huie et al., 2012b).

Beyond a protective effect, inhibition of TNFα activity can also
restore adaptive plasticity after stimulation-induced maladaptive
plasticity has been induced (Huie et al., 2012b). The use of TNFα

inhibitors after SCI to aid in recovery is showing promise, and
these recent findings suggest that TNFα may work to improve
recovery of sensory and locomotor function not only by atten-
uating nociception and excitotoxicity, but perhaps by rescuing
the capacity for adaptive plasticity in the injured spinal cord
(Genovese et al., 2006; Ferguson et al., 2008b; Marchand et al.,
2009). Together these data provide a potential molecular mecha-
nism for observed commonalities between spinal learning deficits
and nociceptive sensitization. Further work is needed to provide
further mechanistic support.

It is important to recognize the potential negative conse-
quences of inappropriate training and nociceptive input for
individuals with SCI. Even in complete SCI where a patient
does not consciously experience pain below an injury, noci-
ceptive input to the spinal cord may promote a maladaptive
plasticity that undermines future spinal cord training and reha-
bilitation potential. Perhaps even more troubling, the present
findings and prior studies suggest that inappropriate training
of the spinal cord can generate a lasting central sensitization of
nociceptive reactivity. Caudle et al. recently demonstrated that
passive stretch therapy in rats after SCI hindered locomotor
recovery, as did limb immobilization in a wheelchair (Caudle
et al., 2011). Likewise, Petruska et al. found that in step-trained
transected rats, the introduction of noxious stimuli (due to cuta-
neous hindpaw lesions) undermined the beneficial locomotor
effects of step-training (Petruska et al., 2007). Thus, it is possi-
ble that impairment of recovery after SCI may reflect nociceptive
plasticity induced by the uncontrollable afferent input, arising
from numerous possible sources. Care must be taken in design-
ing rehabilitative strategies for SCI patients to avoid therapies
that might produce uncontrolled nociceptive input. One must
be aware of the injured spinal cord’s vulnerability to central
sensitization, so that rehabilitation strategies that are intended
to promote recovery do not end up creating new problems.
Central sensitization can lay down an enduring pain memory in
the spinal cord that interferes with the re-acquisition of adap-
tive behavior and fosters the development of neuropathic pain
(Woolf, 1983). The supraspinal experience of neuropathic pain
could be unveiled if future regenerative therapies successfully
reconnect the brain to a lumbar spinal cord containing sensi-
tized nociceptive circuitry. Further research is needed to ensure
therapies that promote adaptive spinal plasticity while limiting
central pain.
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APPENDIX

FIGURE A1 | Intradermal formalin does not produce a significant

contralateral hyper-reactivity in untrained subjects with complete SCI.

(A) Time-course of tactile response with repeated von Frey testing on the
plantar surface of ipsilateral hindpaw after intradermal formalin injection.

(B) Non-significant trend toward hyper-reactivity on the early phase
formalin response contralateral to injection [F(1,12) = 2.17, p = 0.166,
n = 7] rats/formalin condition. (C) Lack of hyper-reactivity in the late phase
response, P � 0.05. Points and bars represent group means (±SEM).
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