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Abstract

From among
(

n

3

)

triangles with vertices chosen from n points in the unit square, let T be the
one with the smallest area, and let A be the area of T . Heilbronn’s triangle problem asks for
the maximum value assumed by A over all choices of n points. We consider the average-case: If
the n points are chosen independently and at random (with a uniform distribution), then there
exist positive constants c and C such that c/n3 < µn < C/n3 for all large enough values of
n, where µn is the expectation of A. Moreover, c/n3 < A < C/n3, with probability close to
one. Our proof uses the incompressibility method based on Kolmogorov complexity; it actually
determines the area of the smallest triangle for an arrangement in “general position.”

1 Introduction

From among
(n
3

)

triangles with vertices chosen from among n points in the unit circle, let T be
the one of least area, and let A be the area of T . Let ∆n be the maximum assumed by A over
all choices of n points. H.A. Heilbronn (1908–1975) asked for the exact value or approximation
of ∆n. The list [1, 2, 3, 4, 7, 8, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] is a selection
of papers dealing with the problem. Obviously, the value of ∆n will change only by a small
constant factor for every unit area convex shape, and it has become customary to consider the
unit square [22]. A brief history is as follows. Heilbronn observed the trivial upper bound 1

∆n = O(1/n) and conjectured that ∆n = O(1/n2), and P. Erdős proved that this conjecture—if
true—would be tight since ∆n = Ω(1/n2) [18]. The first nontrivial result due to K.F. Roth in 1951
established the upper bound ∆n = O(1/(n

√
log log n)) [18], which was improved in 1972 by W.M.

Schmidt to O(1/(n
√

log n)) [23] and in the same year by Roth first to O(1/n1.105...) [19] and then

∗A preliminary version of this work was presented at the 14th Computational complexity Conference held in
Atlanta in 1999.
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1We use Omega in the Hardy and Littlewood sense of “infinitely often” as opposed to the Knuth sense of “always:”
If f and g are functions on the real numbers, then f(x) = O(g(x)) if there are constants c, x0 > 0 such that
|f(x)| ≤ c|g(x)|, for all x ≥ x0; f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0; f(x) = Ω(g(x)) if f(x) 6= o(g(x)).
f(x) = Θ(g(x)) if both f(x) = O(g(x)) and f(x) = Ω(g(x)).
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to ∆n = O(1/n1.117...) [20]. Roth simplified his arguments in 1973 and 1976 [21, 22]. Exact values
of ∆n for n ≤ 15 were studied in [7, 25, 26, 27]. In 1981, J. Komlós, J. Pintz, and E. Szemerédi
[13] improved Roth’s upper bound to O(1/n8/7−ǫ), using the simplified arguments of Roth. The
really surprising news came in 1982 when the same authors [14] derived a lower bound Ω(log n/n2),
narrowly refuting Heilbronn’s original conjecture. Some believe that this lower bound is perhaps
the best possible [5, 6]. In 1997 C. Bertram-Kretzberg, T. Hofmeister, and H. Lefmann [3] gave
an algorithm that finds a specific set of n points in the unit square whose ∆n (as defined above)
is Ω(log n/n2) for every fixed n, using a discretization of the problem. In 1999 G. Barequet [1]
derived lower bounds on d-dimensional versions of Heilbronn’s problem where d > 2. All of this
work concerns the worst-case value of the minimal triangle area.

Results: Here we consider the expected value: If the n points are chosen independently and at
random (uniform distribution) then there exist positive constants c and C such that c/n3 < µn <
C/n3 for all large enough n, where µn is the expectation of the area A of the smallest triangle
formed by any three points. Moreover, with probability close to one, c/n3 < A < C/n3. This
follows directly from corollaries 2 and 4 of Theorems 1 and 2. Our technique is to discretize the
problem and show that all Kolmogorov-random arrangements (see below) of n points in the unit
square satisfy this range of area of the smallest triangle, where the constants c, C are functions of
the “randomness deficiency” of the arrangement—that is, how far the Kolmogorov complexity of
the arrangement falls short of the maximum attainable Kolmogorov complexity. A Kolmogorov-
random arrangement is a rigorous way to say that the arrangement is in “general position” or
“typical”: there are no simple describable properties that can distinguish any such arrangement
from another one [15]. As a consequence, every arrangement in which the smallest triangle has
area outside this range—smaller or larger—cannot be Kolmogorov random. According to a recent
article [16], this result can act as a mathematical guarantee of the afficacy of certain pseudo Monte
Carlo methods to determine the fair market value of derivatives (on the stock market)—these
methods give a sequence of points satisfying certain pseudo-randomness properties but having less
clustering and larger smallest triangles than to be expected from truly random sequences. For its
use in geometrical modeling see [1].

Technique: Our analysis uses the incompressibility method based on Kolmogorov complexity.
The argument proceeds by using some property to be contradicted to obtain a short encoding for
some object. In the present paper the object concerned is usually an arrangement of n pebbles
on a K × K grid. The Kolmogorov complexity of the object is a lower bound on the length of
an encoding of the object. A contradiction arises by the short encoding having length below the
Kolmogorov complexity. We have found that thinking in terms of coding is often helpful to solve
our problems. Afterwards, there may arise alternative proofs using counting, as in the case of [11],
or the probabilistic method with respect to the present result 2. In some cases [9] no other proof
methods seem to work. Thinking in terms of code length and Kolmogorov complexity enabled
advances in problems that were open for decades, like for example [9, 11]. Although the technique
has been widely used in a plethora of applications, see the survey [15], it is not yet as familiar
as the counting method or the probabilistic method. One goal of the present paper is to widen
acquaintance with it by giving yet another nontrivial example of its application.

2John Tromp has informed us in December 1999 that, following a preliminary version [10] of this work, he has
given an alternative proof of the main result based on the probabilistic method.
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2 Kolmogorov Complexity and the Incompressibility Method

We give some definitions to establish notation. For introduction, details, and proofs, see [15].
We write string to mean a finite binary string. Other finite objects can be encoded into strings in
natural ways. The set of strings is denoted by {0, 1}∗. The length of a string x is denoted by l(x),
distinguishing it from the area |PQR| of a triangle on the points P,Q,R in the plane.

Let x, y, z ∈ N , where N denotes the set of natural numbers. Identify N and {0, 1}∗ according
to the correspondence

(0, ǫ), (1, 0), (2, 1), (3, 00), (4, 01), . . . .

Here ǫ denotes the empty word with no letters. The length l(x) of x is the number of bits in the
binary string x.

The emphasis is on binary sequences only for convenience; observations in any alphabet can be
so encoded in a way that is ‘theory neutral’.

Self-delimiting Codes: A binary string y is a proper prefix of a binary string x if we can write
x = yz for z 6= ǫ. A set {x, y, . . .} ⊆ {0, 1}∗ is prefix-free if for any pair of distinct elements in the
set neither is a proper prefix of the other. A prefix-free set is also called a prefix code. Each binary
string x = x1x2 . . . xn has a special type of prefix code, called a self-delimiting code,

x̄ = 1n0x1x2 . . . xn.

This code is self-delimiting because we can determine where the code word x̄ ends by reading it
from left to right without backing up. Using this code we define the standard self-delimiting code
for x to be x′ = l(x)x. It is easy to check that l(x̄) = 2n + 1 and l(x′) = n + 2 log n + 1.

Let 〈·, ·〉 be a standard one-one mapping from N × N to N , for technical reasons chosen such
that l(〈x, y〉) = l(y) + l(x) + 2l(l(x)) + 1, for example 〈x, y〉 = x′y = 1l(l(x))0l(x)xy.

Kolmogorov Complexity: Informally, the Kolmogorov complexity, or algorithmic entropy,
C(x) of a string x is the length (number of bits) of a shortest binary program (string) to compute x
on a fixed reference universal computer (such as a particular universal Turing machine). Intuitively,
C(x) represents the minimal amount of information required to generate x by any effective process,
[12]. The conditional Kolmogorov complexity C(x | y) of x relative to y is defined similarly as the
length of a shortest program to compute x, if y is furnished as an auxiliary input to the compu-
tation. The functions C(·) and C(· | ·), though defined in terms of a particular machine model,
are machine-independent up to an additive constant (depending on the particular enumeration of
Turing machines and the particular reference universal Turing machine selected). They acquire an
asymptotically universal and absolute character through Church’s thesis, and from the ability of
universal machines to simulate one another and execute any effective process, see for example [15].
Formally:

Definition 1 Let T0, T1, . . . be a standard enumeration of all Turing machines. Choose a universal
Turing machine U that expresses its universality in the following manner:

U(〈〈i, p〉, y〉) = Ti(〈p, y〉)

for all i and 〈p, y〉, where p denotes a Turing program for Ti and y an input. We fix U as our
reference universal computer and define the conditional Kolmogorov complexity of x given y by

C(x | y) = min
q∈{0,1}∗

{l(q) : U(〈q, y〉) = x},
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for every q (for example q = 〈i, p〉 above) and auxiliary input y. The unconditional Kolmogorov
complexity of x is defined by C(x) = C(x | ǫ). For convenience we write C(x, y) for C(〈x, y〉), and
C(x | y, z) for C(x | 〈y, z〉).

Incompressibility: Since there is a Turing machine, say Ti, that computes the identity function
Ti(x) ≡ x, it follows that U(〈i, p〉) = Ti(p). Hence, C(x) ≤ l(x) + c for fixed c ≤ 2 log i + 1 and all
x. 3 4

It is easy to see that there are also strings that can be described by programs much shorter
than themselves. For instance, the function defined by f(1) = 2 and f(i) = 2f(i−1) for i > 1
grows very fast, f(k) is a “stack” of k twos. Yet for every k it is clear that f(k) has complexity
at most C(k) + O(1). What about incompressibility? For every n there are 2n binary strings of
length n, but only

∑n−1
i=0 2i = 2n − 1 descriptions in binary string format of length less than n.

Therefore, there is at least one binary string x of length n such that C(x) ≥ n. We call such strings
incompressible. The same argument holds for conditional complexity: since for every length n
there are at most 2n − 1 binary programs of length < n, for every binary string y there is a binary
string x of length n such that C(x | y) ≥ n. Strings that are incompressible are patternless, since
a pattern could be used to reduce the description length. Intuitively, we think of such patternless
sequences as being random, and we use “random sequence” synonymously with “incompressible
sequence.” Since there are few short programs, there can be only few objects of low complexity:
the number of strings of length n that are compressible by at most δ bits is at least 2n − 2n−δ + 1.

Lemma 1 Let δ be a positive integer. For every fixed y, every set S of cardinality m has at least
m(1 − 2−δ) + 1 elements x with C(x | y) ≥ ⌊log m⌋ − δ.

Proof. There are N =
∑n−1

i=0 2i = 2n − 1 binary strings of length less than n. A fortiori there
are at most N elements of S that can be computed by binary programs of length less than n, given
y. This implies that at least m − N elements of S cannot be computed by binary programs of
length less than n, given y. Substituting n by ⌊log m⌋ − δ together with Definition 1 yields the
lemma. ✷

If we are given S as an explicit table then we can simply enumerate its elements (in, say,
lexicographical order) using a fixed program not depending on S or y. Such a fixed program can
be given in O(1) bits. Hence the complexity satisfies C(x | S, y) ≤ log |S| + O(1).

Incompressibility Method: In a typical proof using the incompressibility method, one first
chooses an incompressible object from the class under discussion. The argument invariably says
that if a desired property does not hold, then in contrast with the assumption, the object can be
compressed. This yields the required contradiction. Since most objects are almost incompressible,
the desired property usually also holds for almost all objects, and hence on average.

3 Grid and Pebbles

In the analysis of the triangle problem we first consider a discrete version based on an equally
spaced K × K grid in the unit square. The general result for the continuous situation is then
obtained by taking the limit for K → ∞. Call the resulting axis-parallel 2K lines grid lines and

3“2 log i” and not “log i” since we need to encode i in such a way that U can determine the end of the encoding.
One way to do that is to use the code 1l(l(i))0l(i)i which has length 2l(l(i)) + l(i) + 1 < 2 log i bits.

4In what follows, “log” denotes the binary logarithm. “⌊r⌋” is the greatest integer q such that q ≤ r.
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their crossing points grid points. We place n points on grid points. These n points will be referred
to as pebbles to avoid confusion with grid points or other geometric points arising in the discussion.

There are
(K2

n

)

ways to put n unlabeled pebbles on the grid where at most one pebble is put on
every grid point. We count only distinguishable arrangements without regard for the identities of
the placed pebbles. Clearly, the restriction that no two pebbles can be placed on the same grid
point is no restriction anymore when we let K grow unboundedly.

Erdős [18] demonstrated that for the special case of p×p grids, where p is a prime number, there
are necessarily arrangements of p pebbles with every pebble placed on a grid point such that no
three pebbles are collinear. The least area of a triangle in such an arrangement is at least 1/(2p2).
This implies that the triangle constant ∆n = Ω(1/n2) as n → ∞ through the special sequence of
primes.

We now give some detailed examples—used later—of the use of the incompressibility method.
By Lemma 1, for every integer δ independent of K, every arrangement X1, . . . ,Xn (locations of
pebbles), out of at least a fraction of 1− 1/2δ of all arrangements of n pebbles on the grid, satisfies

C(X1, ...,Xn | n,K) ≥ log

(

K2

n

)

− δ. (1)

Notation 1 For convenience we abbrieviate the many occurrences of the phrase “Let X1, . . . ,Xn

be an arrangement of n pebbles on the K ×K grid, let n be fixed and K be sufficiently large, and
let δ be a positive integer constant such that (1) holds” to “If (1) holds” in the remainder of the
paper.

Note that, for every arrangement X1, . . . ,Xn of n pebbles on a K×K grid, we have C(X1, ...,Xn |
n,K) ≤ log

(K2

n

)

+O(1)— there is a fixed program of O(1) bits for the reference universal computer
that reconstructs the X1, . . . ,Xn from n,K and its index in the lexicographical ordering of all
possible arrangements. That (1) holds with δ small means that the arrangement X1, . . . ,Xn of
pebbles on the grid has no regularity that can be used to prepare a description that is significantly
shorter than simply giving the index in the lexicographical ordering of all possible choices of n
positions from the available K × K grid positions. We can view such an arrangement as being
“random” or “in general position.”

Lemma 2 If (1) holds, then no three pebbles can be collinear, and so the area of a smallest triangle
is at least 1/(2(K − 1)2).

Remark 1 This is the first proof of the paper using the incompressibility argument. Let us explain
the proof idea in detail: On the one hand, we construct a description d such that the arrangement
X1, . . . ,Xn can be reconstructed from d by a fixed program p for the universal reference computer,
given also n and K. If p is in self-delimiting format, then the universal reference computer can
parse pd into its constituent parts p and d, and then execute p to reconstruct X1, . . . ,Xn from the
auxiliary information n,K, together with the description d. On the other hand, by definition the
Kolmogorov complexity of an object is the length of its shortest program for the reference universal
computer and we have assumed a lower bound on the Kolmogorov complexity. Since the description
pd is a program for the reference universal computer, its length l(pd) must be at least as large as
the Kolmogorov complexity (the auxiliary information n,K being the same in both cases). By the

lower bound (1) this shows that l(pd) ≥ log
(K2

n

) − δ. Since l(p) is independent of n,K we can

5



set l(p) = O(1) in this context, and obtain l(d) ≥ log
(K2

n

) − δ − O(1). By exploiting collinearity
of pebbles in the description d, to make it as compact as possible, this inequality will yield the
required contradiction for n fixed and K large enough.

Proof. Place n−1 pebbles at positions chosen from the total of K2 grid points—there are
(K2

n−1

)

choices. Choose two pebbles, P and Q, from among the n − 1 pebbles—there are
(n−1

2

)

choices.
Choose a new pebble R on the straight line determined by P,Q. The number of grid points on this
line between P (or Q) and R, which number is < K, identifies R uniquely in ≤ log K bits. There
is a fixed algorithm that, on input n and K, decodes a binary description consisting of the items
above—each encoded as the logarithm of the number of choices—and computes the positions of
the n pebbles. By (1) this implies

log

(

K2

n − 1

)

+ log

(

n − 1

2

)

+ log K + O(1) ≥ log

(

K2

n

)

− δ.

Using the asymptotic expression

log

(

a

b

)

− b log
a

b
→ b log e − 1

2
log b + O(1) (2)

for b fixed and a → ∞, one obtains 3 log n ≥ log K − δ + O(1), which is a contradiction for n fixed
and K sufficiently large. ✷

Lemma 3 If (1) holds, then no two pebbles can be on the same (horizontal) grid line.

Proof. Place n−1 pebbles at positions chosen from the total of K2 grid points—there are
(K2

n−1

)

choices. Choose one pebble P from among the n−1 pebbles—there are n−1 choices. Choose a new
pebble R on the (horizontal) grid line determined by P—there are K − 1 choices. There is a fixed
algorithm that, on input n and K, reconstructs the positions of all n pebbles from a description of
these choices. By (1) this implies

log

(

K2

n − 1

)

+ log(n − 1) + log K + O(1) ≥ log

(

K2

n

)

− δ.

Using (2) with fixed n and K → ∞ we obtain 2 log n ≥ log K − δ + O(1), which is a contradiction
for large enough K. ✷

4 Lower Bound

Our strategy is to show that if we place n pebbles on a K × K grid, such that the arrangement
has high Kolmogorov complexity, then every three pebbles form a triangle of at least a certain
size area. If the area is smaller, then this can be used to compress the description size of the
arrangement to below the assumed Kolmogorov complexity.

Theorem 1 If (1) holds, then there is a positive constant c1 such that the least area of every
triangle formed by three pebbles on the grid is at least c1/(2

δn3).
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Proof. Place n − 1 pebbles at positions chosen from the total of K2 grid points—there are
(K2

n−1

)

choices. Choose two pebbles, P and Q, from among the n pebbles—there are
(n
2

)

choices.
Place a new pebble R at one of the remaining grid points. Without loss of generality, let the
triangle PQR have PQ as the longest side. Center the grid coordinates on P = (0, 0) with Q =
(q1, q2) and R = (r1, r2) in units of 1/(K − 1) in both axes directions. Then R is one of the

grid points on the two parallel line segments of length L = |PQ| =
√

q2
1 + q2

2/(K − 1) at distance

H = |q2r1−q1r2|/((K−1)
√

q2
1 + q2

2) from the line segment PQ, as in Figure 1. The number of grid

points on each of these line segments (including one endpoint and excluding the other endpoint) is
a positive integer g = gcd(q1, q2)—the line q2x = q1y has g integer coordinate points between (0, 0)
and (q1, q2) including one of the endpoints. This implies that f defined by LH(K − 1)2 = fg is a
positive integer as well.

P

Q

Figure 1: Smallest triangle based on pebbles P,Q.

Enumerating the grid points concerned in lexicographical order, the index of R takes at most
log(2gf) = log(2g)+log f = log(4|PQR|(K−1)2) bits, where |PQR| denotes the area of the triangle
PQR. Altogether this constitutes an effective description of the arrangement of the n pebbles. By
the assumption in the theorem the arrangement satisfies (1), that is, the number of bits involved
in any effective description of the arrangement is lower bounded by the righthand side. Then,

log

(

K2

n − 1

)

+ log

(

n

2

)

+ log(4|PQR|(K − 1)2) + O(1) ≥ log

(

K2

n

)

− δ.

By approximation (2),

log

(

K2

n

)

− log

(

K2

n − 1

)

→ log
K2

n
+ O(1)

for large enough fixed n and K → ∞. Therefore, log |PQR|+ O(1) ≥ −3 log n− δ + O(1),K → ∞.
Consequently, there exists a positive constant c1, independently of the particular triangle PQR,
such that |PQR| > c1/(n

32δ) for all large enough n and K. Since this holds for every triangle
PQR, constructed as above, it holds in particular for a triangle of least area A. ✷

By Lemma 1 the probability concentrated on the set of arrangements satisfying (1) is at least
1 − 1/2δ :

7



Corollary 1 If n points are chosen independently and at random (uniform distribution) in the
unit square, and A is the least area of a triangle formed by three points, then there is a positive
constant c1 such that for every positive δ we have A > c1/(2

δn3) with probability at least 1 − 1/2δ.

In the particular case of δ = 1 the probability concentrated on arrangements satisfying (1) is at
least 1

2 which immediately implies:

Corollary 2 If n points are chosen independently and at random (uniform distribution) in the
unit square, then there is a positive constant c such that the least area of some triangle formed by
three points has expectation µn > c/n3.

5 Upper Bound

Every pair of pebbles out of an incompressible arrangement of n pebbles on a K×K grid defines
a distinct line by Lemma 2. The two pebbles defining such a line together with any other pebble
forms a triangle. If A is the least area of a triangle formed by three pebbles, then this constrains
the possibilities of placing a third pebble close to a line defined by two pebbles. Thus, every such
line defines a forbidden strip on both sides of the line where no pebbles can be placed. It is easy
geometry to see that every forbidden strip covers an interval of length 2A of every grid line on
both sides of the intercept of the “forbidding” line concerned. Our strategy is as follows: Divide
the pebbled unit square by a straight line parallel to the horizontal sides into two parts containing
about one half of the n pebbles each. Show that the pebbles in the larger half (the halves may
not have equal area) of the unit square define Ω(n2) distinct “forbidding lines”, that cross both
the dividing line and the opposite parallel side of the unit square. While the associated forbidden
grid point positions can overlap, we show that they don’t overlap too much. As a consequence the
set of grid points allowed to place the remaining n/2 pebbles in the smaller remaining half of the
unit square, gets restricted to the point that the description of the arrangement can be compressed
too far. This argument is so precise that for small δ in (1) the upper bound is the same order of
magnitude as the previously proven lower bound.

Theorem 2 If (1) holds with δ < (2− ǫ) log n for some positive constant ǫ, then there is a positive
constant C1 such that the least area of some triangle formed by three pebbles on the grid is at most

A(δ) =
14δ + O(1)

4C1n3 log e
. (3)

Proof. Choose n pebbles at positions chosen from the total of K2 grid points such that (1)
is satisfied. Divide the unit square by a horizontal grid line into an upper and a lower half, each
of which contains n/2 ± 1 pebbles—there are no grid lines containing two pebbles by Lemma 3.
We write forbidding line for a line determined by two pebbles in the upper half that intersects all
horizontal grid lines in the lower half of the unit square.

Claim 1 If (1) holds, then there is a positive constant C1 such that there are at least C1n
2 forbid-

ding lines.

Proof. Take the top half to be the larger half so that it has area at least 1/2. Divide the top
half into five vertical strips of equal width of 1/5 and five horizontal strips of equal width 1/10
starting from the top—ignore the possibly remaining horizontal strip at the bottom of the top half.

8



Clearly, a forbidding line determined by a pebble in the upper rectangle and a pebble in the lower
rectangle of the middle vertical strip intersects the bottom horizontal grid line. We show that these
rectangles contain at least n/100 points each, and hence the claim holds with C1 = 1/10, 000.

Consider either rectangle (the same argument will hold for the other rectangle). Let it contain
m ≤ n pebbles. Since the area of the rectangle is 1/5× 1/10 it contains K2/50 grid points (plus or
minus the grid points on the circumference of length 3K/5 which we ignore). Place n−m pebbles at

positions chosen from 49K2/50 grid points outside the rectangle—there are
(49K2/50

n−m

)

choices—and

place m pebbles at positions chosen from the total of K2/50 grid points in the rectangle—there are
(K2/50

m

)

choices. Given n and K, the n pebble positions are determined by m, the position of the
rectangle and an index number i of log i bits with

log i = log

(

49K2/50

n − m

)(

K2/50

m

)

→ (n − m) log
49K2/50

n − m
+ m log

K2/50

m
+ n log e − 1

2
log nm + O(1),

for K → ∞ with n,m fixed, by (2). Given n we can describe m in log n bits. Thus, given
n and K, the total description length of the description of the arrangement of the n pebbles is
log n + log i + O(1) bits. This must be at least the Kolmogorov complexity of the arrangement.
Then, by (1),

(n − m) log
49K2/50

n − m
+ m log

K2/50

m
− 1

2
log m + O(1) ≥ n log

K2

n
− δ.

This implies

δ ≥ (n − m) log
50(n − m)

49
+ m log 50m +

1

2
log m − n log n − O(1)

> (n − m) log
50(n − m)

49
+ m log 50m − n log n − O(1).

Assume, by way of contradiction, m ≤ n/100. Then,

δ ≥ 99

100
n log

4950

4900
n +

1

100
n log

50

100
n − n log n − O(1)

= n(
99

100
log

4950

4900
+

1

100
log

50

100
) − O(1)

> n(0.0145 − 0.01) − O(1),

which contradicts δ = O(log n) in the statement of the theorem. Hence the top rectangle and the
bottom rectangle of the middle strip in the top half contain at least n/100 pebbles each. Each
pair of pebbles, one in the top rectangle and one in the bottom rectangle, determine a distinct
forbidding line by Lemma 2 (no three pebbles can be collinear under assumption (1)). The claim
is proven with C1 = (1/100) · (1/100) = 1/104. ✷

Claim 2 Let w1, w2, w3, w4, w5 be the spacings between the six consecutive intercepts of a sextuplet
of forbidding lines with a horizontal grid line in the bottom half containing a pebble, and let
D = w1 + w2 + w3 + w4 + w5. If (1) holds, then there is a positive C2 such that D > C2/n

3−ǫ/5

with ǫ as in the statement of the theorem.
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Proof. Place n−5 pebbles at positions chosen from the total of K2 grid points—there are
(K2

n−5

)

choices. Choose eight pebbles, Pi (i = 0, 1, 2, 3, 5, 7, 9, 11) from among the n − 5 pebbles—there
are at most

(n−5
8

)

choices—and five new pebbles Pj (j = 4, 6, 8, 10, 12) such that P1P2, P3P4, P5P6,
P7P8, P9P10, P11P12 is the sextuplet of forbidding lines in the claim, and P0 is a pebble in the
lower half. Without loss of generality we assume that the “middle” pebbles of unknown position
Pj (j = 4, 6, 8, 10, 12), as well as P2 in known position, are in between the other defining pebble
of the forbidding line concerned and its intercept with the lower grid line containing P0. That is,
the top-to-bottom order a forbidding line is P1, P2, intercept1, P3, P4, intercept2, and so on. Then,
a forbidding line determined by an outermost pebble and an intercept, together with the grid line
containing the middle pebble, enables us to determine the grid point on which the middle pebble
is located. An error in the position of the intercept leads to a smaller error in the position of the
middle pebble. Thus, a precision of the position of the intercept up to 1/(4(K − 1)), together with
the precise position of the outermost pebble, enables us to determine the grid point containing the
middle pebble as the unique grid point in a circle with radius 1/(4(K−1)) centered on the computed
geometric point. The coordinates of the five unknown Pj ’s are determined by (i) the locations of
the five intercepts of the associated quintuplet of forbidding lines with the lower half horizontal
grid line on which P0 is located, and (ii) the five unknown distances between these intercepts and
the Pj ’s along the five associated forbidding lines. The grid point positions of the Pj ’s are uniquely
determined if we know the latter distances up to precision 1/4(K − 1). All six intercepts in the
statement of the theorem are in an interval of length D which contains DK grid points (rounded
to the appropriate close entier value). We can describe every intercept in this interval (up to the
required precision) in log DK +O(1) bits. Relative to the intersection of the known forbidding line
P1P2, therefore, item (i) uses 5 log DK + O(1) bits. Item (ii) uses 5 log K + O(1) bits. Given n,K,

we can describe the placement of the n− 5 pebbles in log
(K2

n−5

)

bits; the choice of the eight pebbles

among them in log
(n−5

8

)

bits; and we have shown that the placement of the five unknown pebbles
can be reconstructed from an additional 5 log DK + 5 log K + O(1) bits. Together this forms a
description of the complete arrangement. By (1) this implies:

log

(

K2

n − 5

)

+ 8 log n + 5 log DK + 5 log K + O(1) ≥ log

(

K2

n

)

− δ.

A now familiar calculation using (2) yields 5 log D + O(1) ≥ −13 log n− δ, for fixed n and K → ∞.
This shows D > C22

(2 log n−δ)/5/n3 for some positive constant C2. Substituting δ < (2 − ǫ) log n
proves the claim. ✷

We have now established that there are C1n
2 distinct forbidding lines (with C1 as in Claim 1)

determined by pairs of pebbles in the upper half, and by construction every such forbidding line
intersects every lower half horizontal grid line. Moreover, every D-length interval (with D as in
Claim 2) on a lower half horizontal grid line—that contains a pebble—contains at most six intercepts
of forbidding lines. This means that we can select C1n

2/7 consecutive intercepts on such a grid line
that are separated by intervals of at least length D. The two pebbles P,Q defining the forbidding
line l1, together with any pebble R on a lower half horizontal grid line l2, determine a triangle. If
d is the distance between the intercept point of l1 with l2 and the pebble R, and α is the angle
between the forbidding line l1 and grid line l2, then the triangle side located on the forbidding line
has length ≤ 1/ cos α while the height of the triangle with respect to that side is d cos α. Thus, if
A is the area of the smallest triangle formed by any three pebbles, then d ≥ 2A. Consequently,
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all grid positions in intervals of length 2A on both sides of an intercept of a forbidding line with
a lower half grid line—that contains a pebble— are forbidden for pebble placement. As long as
2d ≤ D, or

4A ≤ D, (4)

this means that the C1n
2/7 consecutive intercepts exclude 4AC1n

2/7 grid positions from pebble
placement on the horizontal lower grid line concerned. If (4) does not hold, that is, 4A > D, then
at least DC1n

2/7 grid positions are excluded. Given the pebbles in the upper half, and therefore
the forbidding lines, the excluded grid points in the lower half are determined. Therefore, with

B = min{4A,D} (5)

and also given the horizontal lower half grid line concerned, we can place a pebble on the grid line
in at most

K(1 − C1n
2B/7) (6)

positions. We now use this fact to construct a short encoding of the total arrangement of the n
pebbles satisfying (1): Select n horizontal grid lines (there can be only one pebble per grid line
by Lemma 2) chosen from the total of K grid lines—there are

(K
n

)

choices. Select on everyone

of the upper n/2 horizontal grid lines a grid point to place a pebble—there are Kn/2 choices.
Finally, select in order from top to bottom on the lower n/2 horizontal grid lines n/2 grid points
to place the pebbles—there are only (K(1 − C1n

2B/7))n/2 choices by (6). Together these choices
form a description of the arrangement. Given the values of n,K we can encode these choices in
self-delimiting items, and by (1) this implies:

log

(

K

n

)

+
n

2
log K +

n

2
log K(1 − C1n

2B/7) + O(1) ≥ log

(

K2

n

)

− δ.

Using (2) with n fixed yields

n

2
log(1 − C1n

2B/7) ≥ −δ − O(1), K → ∞.

The left-hand side

log

(

1 − C1n
3B/14

n/2

)n/2

= log e−C1n3B/14, n → ∞,

so that

B ≤ 14δ + O(1)

C1n3 log e
(7)

Since δ < 2 log n in the right-hand side, Claim 2 shows that D > B. Therefore, (5) implies B = 4A
so that (7) establishes the theorem. ✷

Together with Lemma 1, Theorem 2 implies that the smallest triangle in an arrangement has an
area below a particular upper bound with a certain probability.

Corollary 3 If n points are chosen independently and at random (uniform distribution) in the
unit square, and A is the least area of a triangle formed by three points, then for every positive
δ < (2 − ǫ) log n (ǫ > 0), we have

A < A(δ)

with probability at least 1 − 1/2δ.
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That is, the probability that A < A(1) at least 1
2 (δ = 1), the probability that A < A(2) is at least

3
4 (δ = 2), and so on. Since A(δ+1) ≥ A(δ), we can upper bound the expectation µn of A by upper
bounding the probability of A with A(δ) < A ≤ A(δ + 1) by 2−δ+1 = [(1− 2−δ)− (1− 2−δ−1)]. We
do this for δ ≤ 1.9 log n. The remaining probability is 1/n1.9 or slightly less (because δ is integer).
This probability is so small that, even if we assume the known worst-case upper bound on A for
the remaining cases, known to be C3/n

8/7−ǫ′ for some positive constant C3 for every ǫ′ > 0, [13],
the result is insignificant. There is a positive constant C such that:

µn ≤
1.9 log n
∑

δ=1

2−δA(δ) +
1

n1.9

C3

n8/7−ǫ′
<

C

n3
.

Corollary 4 If n points are chosen independently and at random (uniform distribution) in the
unit square, then there is a positive constant C such that the least area of some triangle formed by
three points has expectation µn < C/n3.
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[6] P. Erdős and G. Purdy, Extremal problems in combinatorial theory, In: Handbook of Combi-
natorics, R.L. Graham, M. Grötschel, L. Lovász, Eds., Elsevier/MIT Press, 1995, pp. 861–862.

[7] M. Goldberg, Maximizing the smallest triangle made by N points in a square, Math. Magazine,
45(1972), 135-144.

[8] R.K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag 1994, pp. 242-244.
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