
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards Faster and More Accurate Neural ODEs

Permalink
https://escholarship.org/uc/item/1rn6x024

Author
Xia, Hedi

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rn6x024
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Faster and More Accurate Neural ODEs

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Hedi Xia

2023

© Copyright by

Hedi Xia

2023

ABSTRACT OF THE DISSERTATION

Towards Faster and More Accurate Neural ODEs

by

Hedi Xia

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Stanley J. Osher, Co-Chair

Professor Andrea L. Bertozzi, Co-Chair

Neural Ordinary Differential Equations (NODEs) [Che+18] have improved accuracy and

memory efficiency over general deep neural networks but suffer from the vanishing gradient

problem and the large number of function evaluations (NFEs) problem. In chapter 3, we

proposed Heavy Ball NODEs (HBNODEs), leveraging the continuous limit of classical

momentum-accelerated gradient descent, to improve NODEs training and inference. We show

that HBNODEs has two major advantages: (1) The adjoint of HBNODEs also satisfies Heavy

Ball ODEs, accelerating both forward and backward solvers; (2) the spectrum of HBNODEs

is well-structured so that HBNODEs is capable of learning long-term dependencies from

long time series. In chapter 4, we proposed Graph Neural Diffusion with a Source Term

(GRAND++), a class of NODEs on graphs, for deep learning on graphs with a limited number

of labels. We study the limiting behavior of GRAND++ and show that it does not converge

to a constant even when the depth goes to infinity. We provide experiments to show that

GRAND++ can provide accurate classification even when the number of labels is limited.

In chapter 5, we study how proximal implicit solvers can improve NODEs training in some

ii

scenarios. We show that for stiff NODEs, proximal implicit solvers have smaller NFEs than

commonly used explicit solvers, and thus speed up training.

iii

The dissertation of Hedi Xia is approved.

Bao Wang

Lin Yang

Guido Montufar

Andrea L. Bertozzi, Committee Co-Chair

Stanley J. Osher, Committee Co-Chair

University of California, Los Angeles

2023

iv

To my family, friends, collaborators,

and everyone who supports me

v

TABLE OF CONTENTS

List of Figures . x

List of Tables . xiv

1 Introduction . 1

1.1 Neural Ordinary Differential Equations . 2

1.1.1 Challenges with NODEs . 4

1.2 Graph Neural Diffusion . 6

2 Background . 9

2.1 Residual Networks (ResNets) . 9

2.2 Neural Ordinary Differential Equations (NODEs) 10

2.2.1 Proof of Existence and Uniqueness of Solutions of NODEs 11

2.2.2 Bijection Property of NODEs . 12

2.2.3 Adjoint Solutions . 13

2.2.4 ODE-RNN . 16

3 Heavy Ball Neural Ordinary Differential Equations (HBNODEs) 17

3.1 Introduction . 17

3.1.1 Contribution . 19

3.1.2 Organization . 20

3.2 Heavy Ball Neural Ordinary Differential Equations 20

3.2.1 Heavy ball ordinary differential equation 20

vi

3.2.2 Adjoint Equation for the First- and Second-order ODEs 22

3.2.3 Heavy ball neural ordinary differential equations 28

3.3 Generalized Heavy Ball Neural Ordinary Differential Equations 30

3.4 Learning long-term dependencies – Vanishing gradient 33

3.4.1 Linear Analysis on NODEs and HBNODEs 34

3.4.2 Generic Analysis on Vanishing Gradients of NODEs and (G)HBNODEs 34

3.5 Experimental Results . 38

3.5.1 Point cloud separation . 40

3.5.2 Image classification . 41

3.5.3 Learning dynamical systems from irregularly-sampled time series . . . 46

3.6 Related Work . 51

3.7 Concluding Remarks . 52

4 GRAND++: Graph Neural Diffusion with A Source Term 54

4.1 Introduction . 54

4.1.1 Our contribution . 56

4.1.2 Related work . 56

4.1.3 Notation . 58

4.1.4 Organization . 58

4.2 Background . 58

4.3 A Brief Review of GRAND . 61

4.4 Random walk viewpoint of GRAND . 62

4.5 GRAND++: Graph Neural Diffusion with A Source Term 65

4.5.1 Algorithm and formulation . 65

vii

4.5.2 The random walk perspective of GRAND++ 67

4.6 Experiments . 71

4.6.1 GRAND++ is more resilient to deep architectures 72

4.6.2 GRAND++ is more accurate with limited labeled training data . . . 73

4.6.3 Time-dependent attention and graph rewiring 79

4.6.4 Datasets and experimental settings 80

4.7 Concluding Remarks . 82

5 Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs 83

5.1 Introduction . 83

5.1.1 Computational bottlenecks of neural ODEs 84

5.1.2 Our contribution . 86

5.1.3 More related works . 88

5.1.4 Notation . 89

5.2 Proximal Algorithms for Learning Neural ODEs 90

5.2.1 A proximal viewpoint of the backward Euler solver 90

5.2.2 Proximal form of Crank-Nicolson . 94

5.2.3 The proximal backward differentiation formula (BDF) methods . . . 94

5.3 Stability and Convergence Analysis . 95

5.3.1 Linear stability: Implicit vs. explicit solvers 95

5.3.2 Effects of the error of the inner solver 96

5.3.3 Energy stability and convergence . 98

5.4 Experimental Results . 101

5.4.1 Solving 1D diffusion equation . 101

viii

5.4.2 Learning CNFs . 105

5.4.3 Training GRAND . 107

5.5 Single-step, Multi-stage Implicit Schemes . 107

5.6 Concluding Remarks . 109

6 Conclusion . 110

ix

List of Figures

1.1 Comparison between ResNets (left) and NODEs (right). NODEs learn smooth

trajectories whereas ResNets learn discrete dynamics. Image from Neural Ordinary

Differential Equations [Che+18]. 2

1.2 Change of dynamics of circles during training. To classify blue and red parts,

NODEs needs to transform them into linearly separable parts. Because NODEs

preserve topology, it needs to break through the circle, resulting in increase in

NFEs. Image from Augmented Neural ODEs [DDT19]. 5

3.1 Contrasting NODE, ANODE, SONODE, HBNODE, and GHBNODE for CIFAR10

classification in NFEs, training time, and test accuracy. (Tolerance: 10−5, see Sec. 3.5.2

for experimental details.) . 18

3.2 Comparing the trajectory of ODE and HBODE when F (x) is the Rosenbrock

(left) and Beale (right) functions. 22

3.3 Contrasting h(t) for different models. h(t) in ANODE, SONODE, and HBNODE

grows much faster than that in NODE. GHBNODE controls the growth of h(t)

effectively when t is large. 31

3.4 1-D linear example of NODEs satisfying dh
dt
(t) = −h(t), with initial condition

h(0) = 1 and loss function L(h(1)) = 1
2
h(1)2. Upper left is the solution of h

during forward iteration, solved from left to right. Lower left is the solution

of h during backward iteration, solved from right to left. Lower right is the

solution of h during backward iteration with t → −t flip, solved from left to

right. When integrating from left to right, state equation in forward iteration

is qualitatively similar to adjoint equation in backward iteration, whereas state

equation in backward iteration is qualitatively different. 35

x

3.5 Plot of the the L2-norm of the adjoint states for ODE-RNN and (G)HBNODE-RNN back-

propagated from the last time stamp. The adjoint state of ODE-RNN vanishes quickly

when the gap between the final time T and intermediate time t becomes larger, while

the adjoint states of (G)HBNODE-RNN decays much more slowly. This implies that

(G)HBNODE-RNN is more effective in learning long-term dependency than ODE-RNN. 39

3.6 Comparison between NODE, ANODE, SONODE, HBNODE, and GHBNODE for two-

dimensional point cloud separation. HBNODE and GHBNODE converge better and

require less NFEs in both forward and backward propagation than the other benchmark

models. 42

3.7 Contrasting NODE [Che+18], ANODE [DDT19], SONODE [Nor+20], HBNODE, and

GHBNODE for MNIST classification in NFE, training time, and test accuracy. (Toler-

ance: 10−5). 44

3.8 NFE vs. tolerance (shown in the colorbar) for training ODE-based models for CIFAR10

classification. Both forward and backward NFEs of HBNODE and GHBNODE grow

much slower than that of NODE, ANODE, and SONODE; especially the backward

NFEs.As the tolerance decreases, the advantage of HBNODE and GHBNODE in reducing

NFEs becomes more significant. 45

3.9 Example of Change of Time Intervals for solutions of ODEs d2h
dt2

(t) = −h(t) with

different initial condition. If we compute all of the equations within the same

batch, without change of time we need to capture O(MNT) output time, using

O(M2NT) memory, where M is the number of samples in batch, and NT is the

average timestamps needed for each sample, whereas with change of time we only

need O(NT) output time and O(MNT) memory. 47

3.10 Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-

RNN for learning a vibrational dynamical system. Left most: The learned curves of

each model vs. the ground truth (Time: <66 for training, 66-75 for testing). 49

xi

3.11 Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-

RNN for the Walker-2D kinematic simulation. 51

4.1 Test accuracy of GCN, GAT, and GraphSage vs. the number of labeled nodes

per class. All networks have 2 layers, and each experiment is run with 100 splits

and 20 random seeds following [Cha+21a]. The accuracy drops rapidly with fewer

labeled data for training. CORA, CiteSeer, and PubMed have 2485, 2120, and

19717 nodes in total respectively. Results on more benchmark GNN architectures

are in 4.6.2.1. 55

4.2 Test accuracy vs. the “depth” (T in (4.5)) of GRAND-l and GRAND++-l on

the four graph node classification tasks. We see that GRAND++-l is much more

resilient to deep architectures than GRAND-l. These results show that GRAND++

is better suited for learning with a very deep architecture than GRAND. 73

4.3 Accuracy of GRAND++-l and GRAND-l for CORA and CiteSeer, where both

models, with different depth (T), are train with 1 labeled node per class. These

results show that GRAND++ is more effective in learning with low-labeling rates

than GRAND. 74

5.1 Error tolerance vs. forward and backward NFEs of different adaptive solvers for

training the GRAND model for CoauthorCS graph node classification. 87

xii

5.2 (a)/(c) Time vs. numerical errors of the backward Euler method and the proximal

backward Euler (Prox) with different inner error tolerances for solving ODE

(5.10)/(5.11). As the error of the inner solver decreases, the proximal backward

Euler approaches the backward Euler. (b)/(d) Comparison of proximal backward

Euler using different inner solver accuracy against the forward Euler for solving

the same problem in (a)/(c). We see that the proximal backward Euler method

remarkably outperforms the forward Euler scheme. In (d), the error of proximal

and backward Euler decays as time increases dues to the ODE’s stiff behavior and

the solution profile. 93

5.3 Final step error vs. NFEs of different solvers in solving the 1D diffusion equation

(5.18). Adaptive solvers require many more NFEs than proximal solvers, and

NFEs required by explicit solvers are almost independent of the error since the

step sizes here are constrained by numerical stability. 101

5.4 Convergence comparison of different inner solvers for the proximal backward Euler.

(a) Convergence of ∥zi+1 − zi∥, and (b) convergence of ∥zi − hk+1∥ for k = 0. . 104

5.5 Computational time of solving 1D diffusion equation with different number of

grids by backward Euler (BE) using proximal, FP, and NR solvers. 104

5.6 Contrasting BDFs with DOPRI5 using different error tolerances for training CNFs

for MNIST image generation. BDFs converge as well as DOPRI5 using very

small error tolerances (a) but require much fewer NFEs (c) and (d) and take less

computational time (b) in solving both neural ODE and its adjoint ODE. 105

5.7 Comparison of proximal solvers with adaptive solvers in training GRAND for

the CoauthorCS node classification. Proximal solvers require much fewer NFEs

in each iteration (a) and takes less total computational time (b) than adaptive

solvers but converges as well as adaptive solvers in training loss (c) and validation

accuracy (d). 106

xiii

List of Tables

3.1 The batch size and learning rate for different datasets. 39

3.2 The hyper-parameters and the number of parameters for point cloud separation. 41

3.3 The hyper-parameters and the number of parameters for image classification. . . 43

3.4 The hyper-parameters for ODE-RNN integration models. 48

3.5 The hyper-parameters for ODE-RNN integration models. 50

4.1 Classification accuracy of different GNN models with different depths on six

benchmark graph node classification tasks. NA: neural ODE solver failed. These

results show that GRAND++ is better suited for learning with a very deep

architecture than GRAND. (Unit: %) . 75

4.2 Classification accuracy of the linear GRAND and GRAND++ models trained with

different depth on the OGBN-arXiv graph node classification task. Compared to

the GRAND model used in [Cha+21a], we reduce the hidden dimension from 162

to 81 to fit the model into the GPU in our lab. (Unit: %) 76

4.3 Classification accuracy of different GNNs trained with different number of labeled

data per class (label #) on six benchmark graph node classification tasks. The

highest accuracy is highlighted in bold for each number of labeled data per class.

These results show that GRAND++ is more effective in learning with low-labeling

rates than GRAND. (Unit: %) . 77

4.4 Unpaired t-test scores of GRAND++ v.s. GRAND on six different benchmark

graph node classification tasks. With n = 100, over 0.95 confidence is equivalent

to exceed roughly 1.66 t-test scores. Highlighted are the ones passing the test. . 78

4.5 Paired t-test scores of GRAND++ v.s. GRAND on datasets where unpaired t-test

scores are not significant enough. 78

xiv

4.6 Classification accuracy of different GNNs trained with different numbers of labeled

nodes per class. Dataset: CORA. 78

4.7 Classification accuracy of different GNNs trained with different numbers of labeled

nodes per class. Dataset: CiteSeer. 79

4.8 Classification accuracy of different GNNs trained with different numbers of labeled

nodes per class. Dataset: PubMed. 79

4.9 Classification accuracy of GRAND and GRAND++ variants of different depth

trained 20 labeled data per class. The highest accuracy is highlighted in bold

for each of the depths T = 1, 4, 16, 32, 64, and 128. We test T only up to 16 for

PubMed and up to 32 for 32 since the neural ODE solver failed for larger T . (Unit:

%) . 80

4.10 Classification accuracy of the variants of GRAND and GRAND++ models trained

with different numbers of labeled data per class (#per class) on graph node

classification tasks. (Unit: %) . 81

4.11 Summary of the graph node classification datasets. 81

4.12 The value of the fine-tuned T , i.e. depth of the continuous-depth GNNs, for

GRAND and GRAND++ in learning with different labeling results, and the

corresponding accuracy are reported in Table 4.3. The values of T for GRAND++

are adopted from the paper [Cha+21a]. 82

5.1 Linear stability domains of several single step numerical ODE solvers. |F1/2(z)| < 1

stands for |F1(z)| < 1 and |F2(z) < 1| where F1(z) =
∑5

r=0
zr

r!
+ z6

600
and F2(z) =∑4

r=0
zr

r!
+ 1097z5

120000
+ 161z6

120000
+ z7

24000
, see [Ise09; DP80a] for details. 96

xv

5.2 The configuration of different solvers for solving the 1D Diffusion equation in

Section 5.4.1. We use GD with FR optimization to solve the inner optimization

problem with the step size 0.1. Figure 5.3 is generated by considering a range of

inner optimization tolerances from 10−3 to 10−7. The final step error is the error

between the numerical solution at t = 1 and the exact solution. We report in the

following figure the smallest final step error for each proximal algorithm. 103

xvi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisors, Professor Stanley J. Osher and

Professor Andrea L. Bertozzi, for their supervision, support, and encouragement during my

research. Professor Osher introduced me to working on the intersection of deep learning and

differential equations, and Professor Bertozzi introduced me to working on graph-related deep

learning problems. I would like to pay special regards to Professor Bao Wang for his hands-on

help with experiments and paper writing. I would also like to thank the other members of my

committee, Professor Guido Montufar and Professor Yang Lin, for their advice and feedback.

I would like to thank Vai Suliafu, Tan Nguyen, Matthew Thorpe, Justin Baker, Bohan

Chen, Hangjie Ji, and all of my collaborators for their ideas and hard work on our shared

projects. Chapter 3 is based on "Heavy Ball Neural ODEs" [Xia+21] by Hedi Xia, Vai Suliafu,

Hangjie Ji, Tan M. Nguyen, Andrea L. Bertozzi, Stanley J. Osher, and Bao Wang. Hedi Xia

contributed to the model design, theory, coding and numerical experiments in section 3.3 and

3.5.3in the paper. Vai Suliafu contributed to the experiments in 3.5.1 and 3.5.2. Bao Wang

provided the general idea and helped with model and experiment designs. All authors assisted

with manuscript preparation. Chapter 4 is based on "GRAND++: Graph Neural Diffusion

with A Source Term" [Tho+22] by Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas

Strohmer, Andrea Bertozzi, Stanley Osher and Bao Wang. Matthew Thorpe contributed to

the theory and ideas. Tan Nguyen and Hedi Xia cooperated on the experiments on CORA,

CiteSeer, PubMed, CoauthorCS, Computer, Photo. Tan Nguyen also contributed to the

experiments on OGBN-arXiv. Hedi Xia also contributed to the coding and statistical testing

of the results. Bao Wang provided the general idea and helped with model and experiment

designs. All authors assisted with manuscript preparation. This research is sponsored

by NSF grants DMS-1924935, DMS-1952339, DMS-2027248 and NSF CCF-1934568, DOE

grant DE-SC0021142, ONR grant N00014-18-1-2527, and the MURI grant N00014-20-1-2787.

Chapter 5 is based on "Proximal Implicit ODE Solvers for Accelerating Learning Neural

xvii

ODEs" [Bak+22b] by Justin Baker, Hedi Xia, Yiwei Wang, Elena Cherkaev, Akil Narayan,

Long Chen, Jack Xin, Andrea L. Bertozzi, Stanley J. Osher, and Bao Wang. Justin Baker

contributed to coding, model design, and experiments in section 5.4.1, 5.4.2. Hedi Xia

contributed to experiments in section 5.4.3. Justin Baker, Hedi Xia, Yiwei Wang, and Bao

Wang all contributed to the theory in the paper. Bao Wang provided the general idea and

helped with model and experiment designs. All authors assisted with manuscript preparation.

This research is sponsored by NSF grants DMS-1924935, DMS-1952339, DMS-2110145,

DMS-2152762, and DMS-2208361, and DOE grant DE-SC0021142.

I would also like to thank Yizhou Chen, Yanli Liu, Mingtao Xia, and Xia Li for their

academic discussions and suggestions. I would like to thank all of my friends for their

friendship and emotional support, including Yushan Han, Haiyu Huang, Haoling Xiang, Weiyi

Liu, Ben Spitz, and Jerry Luo.

Last but not least, I am very grateful for my family. It has been a rough time, and I was

not able to be with them due to COVID-19 when they needed me the most. Nevertheless,

they still provide me with unconditional support and love.

xviii

VITA

2015–2019 B.S. (Mathematics) and minor (Statistics), University of California, Santa

Barbara

2019–2021 M.A. (Mathematics), University of California, Los Angeles

2019–2022 Teaching assistant in Mathematics Department, University of California,

Los Angeles

2019–present Graduate Research assistant in Mathematics Department, University of

California, Los Angeles

PUBLICATIONS

Justin Baker*, Hedi Xia*, Yiwei Wang, Elena Cherkaev, Akil Narayan, Long Chen, Jack Xin,

Andrea Bertozzi, Stanley Osher, Bao Wang. Proximal Implicit ODE Solvers for Accelerating

Learning Neural ODEs. Submitted. (* co-first author)

Matthew Thorpe*, Tan Nguyen*, Hedi Xia*, Thomas Strohmer, Andrea Bertozzi, Stanley

Osher, Bao Wang. GRAND++: Graph Neural Diffusion with A Source Term. International

Conference on Learning Representations, 2022. (* equal contribution)

Bao Wang, Hedi Xia, Tan Nguyen, Stanley Osher. How Does Momentum Benefit Deep Neural

Networks Architecture Design? A Few Case Studies. Research in Mathematical Sciences, 9

(3) 1-37, 2022.

xix

Hedi Xia*, Vai Suliafu*, Tan Nguyen, Hangjie Ji, Andrea Bertozzi, Stanley Osher and Bao

Wang. Heavy Ball Neural Ordinary Differential Equations. Neural Information Processing

Systems, 2021. (* co-first author)

xx

CHAPTER 1

Introduction

In recent years, neural networks have been widely used to model a variety of problems, such as

computer vision [He+16a; Wan+22; Sha+22], natural language processing [Vas+17; Wan+22;

LHE22], and recommendation systems [PAC18; Pal+20; ASS20]. Challenging datasets,

such as ImageNet [Rus+15], call for more complicated neural networks [ZF13]. Thus, by

increasing the number of stacked layers (depth), deep neural networks were invented. Deeper

neural networks can better incorporate multi-level features [ZF13], and as a result, they show

promising performance and robustness, while also increasing the complexity of model training

and inference [SZ15; Sze+15; He+15; IS15]. Thus, the depth of neural networks becomes an

important hyper-parameter to study [SZ15; Sze+15]. The promising performances of deep

neural networks give rise to a question: can we construct neural networks with infinite depth?

As the general designs of deep neural networks do not converge as depth tends to infinity,

various classes of deep neural networks with convergence guaranteed designs have been studied.

Deep Equilibrium Models [BKK19] study the limits of deep neural networks that follow the

contraction mapping theorem. Differentiable Convex Optimization Layers [Agr+19] study

the limits of deep neural networks where each layer acts as an optimization step of some

scalar-value function, and Neural Ordinary Differential Equations (NODEs) [Che+18] study

the limit of deep neural networks as Euler discretization of ordinary differential equations.

The focus of this thesis is to discuss a set of approaches to improve the performance and

reduce computation cost in training and inference of NODEs.

1

Figure 1.1: Comparison between ResNets (left) and NODEs (right). NODEs learn smooth

trajectories whereas ResNets learn discrete dynamics. Image from Neural Ordinary Differential

Equations [Che+18].

1.1 Neural Ordinary Differential Equations

NODEs [Che+18] takes its name from ordinary differential equations (1.1). For decades,

differential equations have been the center of mathematical modeling for various application

fields, such as physics [Ghi+81; DP78; PP10], biology [Ahm+20; DHS11; XGC20], and finance

[TT13; RG15; GRK10]. Differential equations vary in their structure, including ordinary

differential equations, partial differential equations, and stochastic differential equations.

2

There have been extensive studies on their well-posedness [Hil13], dynamical systems [For98],

and numerical solvers [BCP95]. NODEs [Che+18] combine deep learning and ordinary

differential equations by solving the θ-parametrized initial value problem

dh

dt
(t) = f(h(t), t, θ), for t ∈ [t0, T]. (1.1)

Thus, NODEs can be considered as a neural network layer with h(t0) as the input, h(T) as

the output, and θ as the set of parameters. The Euler discretization of NODEs with step size
T−t0
N

takes the form

h

(
t+

1

N

)
= h(t) +

1

N
f(h(t), t, θ), for t = t0 +

k

N
, k = 0, 1, ..., N − 1, (1.2)

with input h(t0) and output h(T), respectively. The Euler discretization is a deep neural

network with N layers, and more precisely, it is a class of Residual Networks (ResNets)

[He+16a] according to the residual patterns of each block. Therefore, when the limit of Euler

discretization exists, the sequence of ResNets as the number of steps/depth goes to infinity

will converge to NODEs.

Compared to other deep learning models, NODEs greatly benefit from their ODEs

structure. Since trajectories of ODEs cannot intersect, NODEs are guaranteed to be a

continuous bijection whose inverse can be calculated through solving the exact same equation

backward in time. This property enables memory-efficient adjoint methods for gradient

computation. The adjoint method solves the adjoint ODEs

dr

dt
(t) = −r(t)

∂f

∂h
(h(t), t, θ), for t ∈ [t0, T], (1.3)

with a terminal condition of r(T) = dL
dh(T)

backward in time. As the adjoint ODEs (1.3)

require evaluation of h(t), the adjoint method reconstructs h(t) by solving equation (1.1)

but with a terminal condition of h(T) and backward in time [Che+18]. Continuous bijection

functions are also topology-preserving, and thus NODEs can be applied to generative modeling

by creating continuous normalizing flows [Gra+18]. By evaluating h(t) at multiple times

t, NODEs also naturally apply to time series, and in particular, irregularly sampled time

3

series, which can be challenging for traditional time series models [RCD19]. As shown in

figure 1.1, NODEs also have smoother trajectories compared to their discrete counterpart, the

Residual Networks (ResNets). For problems with smooth trajectories or even with physical

laws, NODEs approximate the underlying differential equations better in both interpolation

and extrapolation [ZDC20; LP21]. NODEs also generalize to a broader context beyond ODEs,

such as control differential equations [Kid+20], stochastic differential equations [Liu+19;

JB19; Son+20], and differential equations on graphs [Cha+21a; Cha+21b].

1.1.1 Challenges with NODEs

The benefits of NODEs also come with challenges. One of the major concerns with

NODEs is the number of function evaluations (NFEs) problem [Che+18]. Compared to deep

neural networks with finite depth, where computation and memory costs are proportional to

their depth, NODEs are implicitly defined by an initial value problem with no bound on their

computation and memory costs. As general nonlinear ODEs do not have general solutions,

numerical solvers are needed to approximate the solutions of the NODEs. NFEs are defined

as the number of function evaluations of f in equation (1.1) needed by the solver [Che+18].

As the computation cost of the neural network f generally dominates the computation cost

of other operations in numerical solvers, NFEs are roughly proportional to the computation

time of NODEs’ forward pass, as well as memory usage when the adjoint method is not used.

Under a given tolerance, the number of function evaluations depends on the maximum step

size the solver can take, which is largely dependent on the dynamics of the ODEs and could

potentially grow unbounded during training. Large NFEs could lead to long computation

time, as well as unreliable results, as numerical error could potentially be amplified during

successive computation.

There are many causes of the NFEs problems, and one of them is the topological-preserving

property of ODEs. Dupont et al [DDT19] show in Figure 1.2 that if there are topological

differences between the input space and output features, NODEs may force topology change

by creating large distortions in space through gaps in the dataset. During training, this can

4

cause the learned NODEs to become stiff and hard to solve, leading to a large increase in

NFEs and slow computation. The NFEs problems can also occur when computing gradients

with the adjoint method. Although the adjoint equation (1.3) is linear in r and thus easier to

compute, backward solving the state equation (1.1) can be difficult or even harder than the

forward pass. For example, when the forward initial value problem approximates diffusion

equations, solving backward-time diffusion equations is not possible as it is not a well-posed

problem, making inverting the ODEs numerically unstable.

Figure 1.2: Change of dynamics of circles during training. To classify blue and red parts,

NODEs needs to transform them into linearly separable parts. Because NODEs preserve

topology, it needs to break through the circle, resulting in increase in NFEs. Image from

Augmented Neural ODEs [DDT19].

Another concern with NODEs is the vanishing gradient problem. The vanishing gradient

problem occurs during the training of deep neural networks with gradient-based methods

[Hoc+01], which can lead to stopped convergence from the start [GB10; Hoc91]. When

training deep neural networks, computing the gradient with the chain rule requires back-

propagation step by step through all layers. This successive operation might lead to a

diminishing size of the final gradients, which can cause the gradient-based optimizer to fail in

5

accurately estimating the gradient and taking proper steps to train the model.

Since NODEs are unbounded in their depth and complexity, they could suffer from the

vanishing gradient problem during the training phase. There is also the issue of the exploding

gradient problem, where the final gradients become too large for optimizers. As the directions

of the exploding gradients are still reliable, gradient clipping [Sze+16] is proposed to solve

the problem by normalizing the gradients. However, the vanishing gradient problem does not

have a similar general solution because when the gradients are smaller than the floating point

error, the gradient no longer provides any valid information. Therefore, we are interested in

architectures that can alleviate the vanishing gradient problem in modeling with NODEs.

In this thesis, we will look into model designs and numerical solvers to alleviate the NFEs

problem and the vanishing gradient problem for general NODEs in chapter 3 and 5.

1.2 Graph Neural Diffusion

Graphs are inherent structures in many datasets, such as co-purchase graphs in Amazon

Photos datasets [Shc+18], citation graphs in Pubmed datasets [Nam+12], knowledge graphs

in WikiGraphs dataset [Wan+21a], social networks in Reddit dataset [PAS17], and protein

structure graphs in Enzymes dataset [DD03]. The nodes of a graph usually represent an item

and are typically provided with an associated representation vector, while edges indicate

the relationships between the items represented by the two connected nodes and could be

directed, undirected, or even carry a vector representing the properties of the relation. Graph

learning problems generally fall into three categories: node prediction, which predicts the

properties of each node; edge prediction, which predicts the existence and properties of edges;

and graph prediction, which predicts the properties of the entire graph.

One mathematical approach to solving graph learning problems is Spectral Graph Theory

[Chu], which studies the properties of the adjacency matrix and Laplacian matrix of the

graph. By studying the Laplace operator on graphs [Moh+91], partial differential equations

with space derivatives in the form of Laplacian operators can be generalized to graphs, such

6

as Laplace equations, Poisson equations, and Diffusion equations. Based on these graph

differential equations, graph learning algorithms like Laplace learning [ZGL03], Poisson

learning [Cal+20], and the graph Merriman–Bence–Osher (MBO) scheme [MKB13] have

been designed.

In deep learning, Message-Passing neural networks are used to solve graph learning

problems, such as Graph Convolutional Neural Network (GCN) [Zha+19a], Graph Attention

Network (GAT) [Vel+], and GraphSAGE [HYL17]. Each layer of a message passing neural

network consists of an aggregation step, which collects information from adjacent nodes, and

an update step, which updates the vector representation of each node with information from

the aggregation step using some neural network. Compared to spectral models, these models

better utilize feature vectors on nodes and edges and are generally shallower. In fact, in the

experiments with GAT by Veličković et al [Vel+], only 2 to 3 layers of GAT are used, and

in the experiments with GCN by Yao et al [YML19], only 2 layers of GCN are used. Some

experiments show that adding more layers does not improve performance [KW17; LHW18].

While shallow graph neural networks cannot capture relations between nodes with a distance

greater than their depth, deep graph neural networks, achieved by simply stacking layers,

result in large memory costs and worse performance due to over-smoothing [Che+20].

Graph Neural Diffusion (GRAND) [Cha+21a] is a class of NODEs [Che+18] on graphs that

combines a neural network with the graph diffusion equation by estimating the diffusivity term

in the Perona-Malik diffusion equation [PM90] using a graph attention network [Vel+] with

transformer-type attention [Vas+17]. This allows GRAND to nicely utilize feature vectors

on nodes like other graph neural networks while also achieving a depth greater than 2 to 3

layers, resulting in improved performance on various tasks. The NODEs nature of GRAND

also enables the adjoint method during training, which alleviates memory requirements for

deep neural networks.

However, GRAND still suffers from the over-smoothing problem [Che+20]. In particular,

on sparsely labeled graphs, some unlabeled nodes are distant from all of the labeled ones and

7

require a very deep graph neural network for the node to gather any label information from

the graph. In this thesis, we will discuss improvements on GRAND that can enable even

deeper modeling of sparsely labeled graphs in Chapter 4.

8

CHAPTER 2

Background

2.1 Residual Networks (ResNets)

Residual Networks [He+16a] are a class of deep neural networks [KSH17] with shortcut

connections. A cell in a residual network is a layer Rm × Rr → Rm such that

y = x+ f(x, θ), (2.1)

where f is some neural network cell, x is the input, θ is the parameter, and y is the output.

A residual network with N cells is a successive operation from input x0 to output xN , such

that

xi = xi−1 + fi(xi−1, θ), i = 1, . . . , N, (2.2)

where fi are neural network cells corresponding to each residual cells. The gradients of

ResNets satisfy the successive relation

dL
dxi−1

=
dL
dxi

+
dL
dxi

∂fi
∂x

(xi−1, θ). (2.3)

This implies the overall relation

dL
dx1

=
dL
dxN

N−1∏
i=1

(
I +

∂fi
∂x

(xi, θ)

)
, (2.4)

where I denotes the identity matrix. Because of the design of the skip connection, an extra

identity matrix term is included during gradient computation, making the multiplication less

likely to vanish. Thus, ResNets are easier to train compared to plain deep neural networks

due to fewer issues with vanishing gradients.

9

2.2 Neural Ordinary Differential Equations (NODEs)

Similar to ResNets [He+16a], NODEs [Che+18] are also defined based on a neural

network cell f . Let Rm be the hidden space and Rr be the parameter space. We define

f : Rm×R×Rr → Rm as a continuously differentiable neural network (see 3.2.2.3 for Lipchitz

continuous generalization). Given an interval [t0, T], a Neural Ordinary Differential Equations

(NODE) layer is defined as F : Rm × Rr → Rm, where the output is the terminal value

F (x, θ) := h(T). (2.5)

of the initial value problem satisfying

h(t0) = x,

dh

dt
(t) = f(h(t), t, θ), ∀t ∈ [t0, T].

(2.6)

The definition (2.5) is well-defined if equation (2.6) has a unique solution for all x ∈ Rm and

θ ∈ Rr, which can be guaranteed by Lipchitz assumptions on f (detailed proofs in 2.2.1).

NODEs can be seen as a continuous limit of a particular classes of ResNets. Suppose

layers of ResNets satisfy
1

N
fi(xi−1, θ) = f

(
xi−1,

i

N
, θ
)

(2.7)

Then equation (2.2) becomes

xi − xi−1

N
=

1

N
fi(xi−1, θ) = f

(
xi−1,

i

N
, θ
)
. (2.8)

If we take the limit as N → +∞, we arrive at

dx

dt
(t) = f(x(t), t, θ), (2.9)

which is equivalent to NODEs equation (2.6).

There is no analytical solution to Equation (2.6) for a generic neural network f . Therefore,

NODEs use numerical solvers for ODEs to solve the initial value problem (2.6) during training

and inference. Generic ODE solvers, such as Runge-Kutta methods [RK95], or those tailored

10

to the structure of f , can be used for solving the equation. When the Forward Euler method

is used, NODEs degenerate into ResNets [He+16a]. In the majority of experiments [Che+18],

a 5th-order Dormand-Prince method [DP80b], which is a class of multi-step Runge-Kutta

methods, is used for training and inference of NODEs as default, unless explicitly noted.

2.2.1 Proof of Existence and Uniqueness of Solutions of NODEs

In this section, we will review a direct corollary of Picard Lindelöf theorem that can be

used to guarantee that NODEs are well defined by the initial value problem (2.6). Suppose

f : Rm× [t0, T] → Rm (with fixed parameter θ) is uniformly Lipchitz continuous with Lipchitz

constant L, then there exists an unique solution to the equation

dh

dt
(t) = f(h(t), t), for t ∈ [t0, T], (2.10)

with initial condition h(t0) = h0. Compared to Picard Lindelöf theorem that guarantees

local existence and uniqueness properties, to obtain global existence and uniqueness property,

we make further assumption on uniformly Lipchitz condition. This assumptions is reasonable

for neural networks, as a majority of neural networks, such as multiple layer perceptrons,

convolutional neural networks, attention neural networks, are all uniformly Lipchitz continuous.

The proof follows similar pattern as that of Picard Lindelöf. Define operator Γ as

Γh(t) = h0 +

∫ t

t0

f(h(s), s)ds. (2.11)

We will prove by induction on the following inequality∥∥Γkϕ1(t)− Γkϕ2(t)
∥∥ ≤ Lk(t− t0)

k

k!
∥ϕ1 − ϕ2∥∞ , (2.12)

for all ϕ1, ϕ2 : Rm × [t0, T] → Rm such that ϕ1(t0) = ϕ2(t0) = h0. For k = 0, it follows by

definition on the infinity norm. For general k, we have∥∥Γkϕ1(t)− Γkϕ2(t)
∥∥ =

∥∥∥∥∫ t

t0

(
f(Γk−1ϕ1(s), s)− f(Γk−1ϕ2(s), s)

)
ds

∥∥∥∥ . (2.13)

By Lipchitz continuity of f , we have∥∥∥∥∫ t

t0

(
f(Γk−1ϕ1(s), s)− f(Γk−1ϕ2(s), s)

)
ds

∥∥∥∥ ≤
∥∥∥∥∫ t

t0

L
(
Γk−1ϕ1(s)− Γk−1ϕ2(s)

)
ds

∥∥∥∥ . (2.14)

11

By induction hypothesis (2.12), we have

∥∥Γk−1ϕ1(s)− Γk−1ϕ2(s)
∥∥ ≤ Lk−1(s− t0)

k−1

(k − 1)!
∥ϕ1 − ϕ2∥∞ . (2.15)

Therefore, combining these inequalities, we have

∥∥Γkϕ1(t)− Γkϕ2(t)
∥∥ ≤ L

∫ t

t0

Lk−1(s− t0)
k−1

(k − 1)!
∥ϕ1 − ϕ2∥∞ ds =

Lk(t− t0)
k

k!
∥ϕ1 − ϕ2∥∞ ,

(2.16)

which proves the inequality through induction. A direct corollary of the induction is that

∥∥Γkϕ1 − Γkϕ2

∥∥
∞ ≤ Lk(T − t0)

k

k!
∥ϕ1 − ϕ2∥∞ . (2.17)

For sufficiently large M , for every k > M , Lk(T−t0)k

k!
< 1, and thus Γk is a contraction mapping.

By contraction mapping theorem, there exists an unique fix point. Let hk,hk+1,hk(k+1) be

the unique fix point for contraction mappings Γk,Γk+1,Γk(k+1). Notice that both hk and hk+1

has to be fix point of contraction mapping Γk(k+1), and because hk(k+1) is unique, these three

fix point has to be the same. Thus

hk = hk+1 = Γk+1hk+1 = ΓΓkhk = Γhk, (2.18)

which means that hk is a fix point of Γ. Also, it is the unique fix point of Γ because every fix

point of Γ has to be fix point of Γk and thus has to be unique. Therefore, there exists an

unique solution to the equation

h(t) = h0 +

∫ t

t0

f(h(s), s)ds, (2.19)

which implies that (2.6) is well-defined.

2.2.2 Bijection Property of NODEs

The bijective property of NODEs allows for the use of adjoint method for gradient

computation (details in 2.2.3) and the application of continuous normalizing flows [Che+18].

To prove that NODEs with uniformly Lipchitz condition is a bijection between the input

12

h(t0) and output h(T), we simply need to find its inverse. If we define the forward function

that solves
dh

dt
(t) = f(h(t), t, θ), for t ∈ [t0, T], (2.20)

with initial condition h(t0) = h0 be the input and F (h0) = h(T) be the output, the inverse

function can be defined as that solves the same equation with terminal condition h(T) = hT

be the input and F−1(hT) = h(t0) be the output. In section 2.2.1, we have already proved

that the forward initial value problem has an unique solution under Lipchitz continuous f .

To prove that the terminal value problem also has an unique solution, consider the mirror

initial value problem as

dg

dτ
(τ) = −f(g(τ), τ, θ), for τ ∈ [−T,−t0], (2.21)

with initial condition g(−T) = hT . Since −f has the same Lipchitz constant as f , the

initial value problem has an unique solution. Therefore, by the equivalence h(t) = g(−τ),

we know that the terminal value problem has an unique solution as well. Notice that if

F (h0) = hT , then the solution to the forward initial value problem is also a solution to the

terminal value problem. Since the solution to the terminal value problem is unique, we have

F−1(hT) = h(t0) = h0, which means that the terminal value problem defines the inverse of

the forward initial value problem. Thus, NODEs is a bijection with an inverse implicitly

defined by another set of ODEs.

2.2.3 Adjoint Solutions

Computing gradients for Neural ODEs can be done by Automatic Differentiation [Pas+17]

through its forward numerical solver. However, similar to other deep neural networks, such

methods require storing all the intermediate steps in order to compute gradients backwards.

This leads to prohibitively large memory costs when both the hidden dimension m and the

number of steps used are large. Chen et al [Che+18] proposed an adjoint method to compute

the gradient as follows: Suppose a set of NODEs satisfies the equation (2.6), and L is the

13

loss depending on the output of NODEs, then by chain rule,

dL
dh(t)

=
dL

dh(t+∆t)

dh(t+∆t)

dh(t)
. (2.22)

To compute dh(t+∆t)
dh(t)

, we can rewrite equation (2.6) in integral form

h(t+∆t) = h(t) +

∫ t+∆t

t

f(h(s), s, θ)ds. (2.23)

Assuming f is analytic, we have the approximation

f(h(s), s, θ) = f(h(t), t, θ) +O(∆t). (2.24)

Substituting into equation (2.23), we have

h(t+∆t) = h(t) + ∆t(f(h(t), t, θ) +O(∆t)) = h(t) + ∆tf(h(t), t, θ) +O(∆t2). (2.25)

Taking derivative with respect to h(t) with analytic assumption on f yields

dh(t+∆t)

dh(t)
= I+∆t

∂f

∂h
(h(t), t, θ) +O(∆t2). (2.26)

Define gradient r as

r(t) =
dL
dh(t)

, (2.27)

we can rewrite equation (2.22) as

r(t) = r(t+∆t)
dh(t+∆t)

dh(t)
. (2.28)

If we consider the limiting behavior

dr

dt
(t) = lim

∆t→0

r(t+∆t)− r(t)

∆t
= lim

∆t→0

r(t+∆t)− r(t+∆t)dh(t+∆t)
dh(t)

∆t
, (2.29)

we can combine with equation (2.26) and get the adjoint equations

dr

dt
(t) = lim

∆t→0

r(t+∆t)(−∆t df
dh
(h(t), t, θ)−O(∆t2))

∆t
= −r(t)

∂f

∂h
(h(t), t, θ). (2.30)

14

This leads to the following reverse-time initial value problem

h(T) = F (x, θ),

r(T) =
dL

dh(T)
,

dh

dt
(t) = f(h(t), t, θ), ∀t ∈ [t0, T],

dr

dt
(t) = −r(t)

∂f

∂h
(h(t), t, θ), ∀t ∈ [t0, T],

(2.31)

where the terminal conditions F (x, θ) is computed and stored while solving the forward

equation, dL
dh(T)

is computed through automatic differentiation of loss function, and the

vector-Jacobi product r(t) df
dh

is computed through automatic differentiation through neural

network f . By solving the adjoint equations (2.31), we can directly obtain the gradient at

initial value dL
dh(t0)

. To obtain the gradient with respect to parameter θ, we define h̃ as the

concatenation of h and θ

h̃ :=

h
θ

 , (2.32)

and the ODEs become
dh̃

dt
=

dh
dt

0

 =

f(h(t), t, θ)
0

 . (2.33)

Then the corresponding r̃ will satisfy equation (2.31)

dr̃

dt
(t) = −r̃(t)

 ∂f
∂h
(h(t), t, θ) ∂f

∂θ
(h(t), t, θ)

0 0

 . (2.34)

By definition of r̃,

r̃(t) =
[
dL
dh
(t) dL

dθ
(t)
]
=
[
r(t) dL

dθ
(t)
]
, (2.35)

we can combine equations (2.34) and (2.35), we arrive at

d2L
dtdθ

= −r(t)
∂f

∂θ
(h(t), t, θ). (2.36)

Which integrates against t provides us with

dL
dθ

(t0)−
dL
dθ

(T) = −
∫ t0

T

r(t)
∂f

∂θ
(h(t), t, θ)dt. (2.37)

15

By definition, dL
dθ

= dL
dθ
(t0), and dL

dθ
(T) = 0, providing the equation

dL
dθ

= −
∫ t0

T

r(t)
∂f

∂θ
(h(t), t, θ)dt. (2.38)

2.2.4 ODE-RNN

ODE-RNN is a combination of NODEs and Recurrent Neural Network (RNN) to model

time series. To model a time series {(ti,xi), i = 0, ..., N} with t0 < t1 < · · · < tN ≤ T ,

ODE-RNN uses a NODEs cell for progression in time that is defined except the nodes points

dh

dt
(t) = fNODEs(h(t), t, θ), for t ∈ [t0, T], t ̸= ti for i = 0, ..., N, (2.39)

and an RNN cell that defines the jump on those nodes due to observation

h+(ti) = fRNN(h
−(ti),xi, θ), for i = 0, ..., N. (2.40)

For each interval [ti, ti+1], ODE-RNN solves its NODEs cell with initial condition h+(ti) and

obtains h−(ti+1). It then incorporates observation xi+1 within the RNN cell and obtains

h+(ti+1), which is used as the input for the next interval. ODE-RNN uses h+(ti) as its

hidden layer output and can be stacked with further layers to produce final outputs. For

both interpolation (t ∈ [t0, T]) and extrapolation tasks (t ∈ [T,+∞)), ODE-RNN can make

predictions and forecasts using the hidden information h+(t) if x(t) is provided or h(t)

otherwise.

16

CHAPTER 3

Heavy Ball Neural Ordinary Differential Equations

(HBNODEs)

3.1 Introduction

Neural ordinary differential equations (NODEs) are a family of continuous-depth machine

learning (ML) models whose forward and backward propagations rely on solving an ODE and

its adjoint equation [Che+18]. NODEs model the dynamics of hidden features h(t) ∈ RN

using an ODE, which is parametrized by a neural network f(h(t), t, θ) ∈ RN with learnable

parameters θ, i.e.,

dh(t)

dt
= f(h(t), t, θ). (3.1)

Starting from the input h(t0), NODEs obtain the output h(T) by solving (3.1) for t0 ≤ t ≤ T

with the initial value h(t0), using a black-box numerical ODE solver. The number of function

evaluations (NFEs) that the black-box ODE solver requires in a single forward pass is an

analogue for the continuous-depth models [Che+18] to the depth of networks in ResNets

[He+16a]. The loss between NODE prediction h(T) and the ground truth is denoted by

L(h(T)); we update parameters θ using the following gradient

dL(h(T))
dθ

=

∫ T

t0

a(t)
∂f(h(t), t, θ)

∂θ
dt, (3.2)

where a(t) := ∂L/∂h(t) is the adjoint state, which satisfies the following adjoint equation

da(t)

dt
= −a(t)

∂f(h(t), t, θ)

∂h
. (3.3)

17

0.0 2.5 5.0 7.5
Epoch

30

40

50

60

NF
E

(fo
rw

ar
d)

0.0 2.5 5.0 7.5
Epoch

50

100

150

200

250

300

NF
E

(b
ac

kw
ar

d)

0 2 4 6 8
Epoch

0

2

4

6

8

Tr
ai

ni
ng

 ti
m

e
(x

10
00

s) NODE
ANODE
SONODE
HBNODE
GHBNODE

0.0 2.5 5.0 7.5
Epoch

50

52

54

56

58

60

62

Te
st

 a
cc

 (%
)

Figure 3.1: Contrasting NODE, ANODE, SONODE, HBNODE, and GHBNODE for CIFAR10

classification in NFEs, training time, and test accuracy. (Tolerance: 10−5, see Sec. 3.5.2 for

experimental details.)

18

NODEs are flexible in learning from irregularly-sampled sequential data and particularly

suitable for learning complex dynamical systems [Che+18; RCD19; Zha+19b; Nor+20;

DFD20; Kid+20], which can be trained by efficient algorithms [Qua+20; Dau+20; Zhu+21].

NODE-based continuous generative models have computational advantages over the classical

normalizing flows [Che+18; Gra+19; YHL19; Fin+20]. NODEs have also been generalized

to neural stochastic differential equations, stochastic processes, and graph NODEs [JB19;

Li+20b; Pol+19; TR19; HSW20; Nor+21].

The drawback of NODEs is also prominent. In many ML tasks, NODEs require very

high NFEs in both training and inference, especially in high accuracy settings where a

lower tolerance is needed. The NFEs increase rapidly with training; high NFEs reduce

computational speed and accuracy of NODEs and can lead to blow-ups in the worst-case

scenario [Gra+19; DDT19; Mas+20; Nor+20]. As an illustration, we train NODEs for

CIFAR10 classification using the same model and experimental settings as in [DDT19], except

using a tolerance of 10−5; Fig. 3.1 shows both forward and backward NFEs and the training

time of different ODE-based models; we see that NFEs and computationaltimes increase

very rapidly for NODE, ANODE [DDT19], and SONODE [Nor+20]. More results on the

large NFE and degrading utility issues for different benchmark experiments are available in

Sec. 3.5. Another issue is that NODEs often fail to effectively learn long-term dependencies

in sequential data [LH20], as discussed in Sec. 3.4.

3.1.1 Contribution

We propose heavy ball neural ODEs (HBNODEs), leveraging the continuous limit of the

classical momentum accelerated gradient descent, to improve NODE training and inference.

At the core of HBNODE is replacing the first-order ODE (3.1) with a heavy ball ODE

(HBODE), i.e., a second-order ODE with an appropriate damping term. HBNODEs have

two theoretical properties that imply practical advantages over NODEs:

• The adjoint equation used for training a HBNODE is also a HBNODE (see Prop. 1 and

Prop. 2), accelerating both forward and backward propagation, thus significantly reducing

19

both forward and backward NFEs. The reduction in NFE using HBNODE over existing

benchmark ODE-based models becomes more aggressive as the error tolerance of the ODE

solvers decreases.

• The spectrum of the HBODE is well-structured (see Prop. 4), alleviating the vanishing

gradient issue in back-propagation and enabling the model to effectively learn long-term

dependencies from sequential data.

To mitigate the potential blow-up problem in training HBNODEs, we further propose

generalized HBNODEs (GHBNODEs) by integrating skip connections [He+16b] and gating

mechanisms [HS97] into the HBNODE. See Sec. 3.3 for details.

3.1.2 Organization

We organize the chapter as follows: In Secs. 3.2 and 3.3, we present our motivation,

algorithm, and analysis of HBNODEs and GHBNODEs, respectively. We analyze the

spectrum structure of the adjoint equation of HBNODEs/GHBNODEs in Sec. 3.4, which

indicates that HBNODEs/GHBNODEs can learn long-term dependency effectively. We test

the performance of HBNODEs and GHBNODEs on benchmark point cloud separation, image

classification, learning dynamics, and sequential modeling in Sec. 3.5. We discuss more related

work in Sec. 3.6, followed by concluding remarks.

3.2 Heavy Ball Neural Ordinary Differential Equations

3.2.1 Heavy ball ordinary differential equation

Classical momentum method, a.k.a., the heavy ball method, has achieved remarkable

success in accelerating gradient descent [Pol64] and has significantly improved the training of

deep neural networks [Sut+13]. As the continuous limit of the classical momentum method,

heavy ball ODE (HBODE) has been studied in various settings and has been used to analyze

the acceleration phenomenon of the momentum methods. For the ease of reading and

completeness, we derive the HBODE from the classical momentum method. Starting from

20

initial points x0 and x1, gradient descent with classical momentum searches a minimum of

the function F (x) through the following iteration

xk+1 = xk − s∇F (xk) + β(xk − xk−1), (3.4)

where s > 0 is the step size and 0 ≤ β < 1 is the momentum hyperparameter. For any

fixed step size s, let mk := (xk+1 − xk)/
√
s, and let β := 1− γ

√
s, where γ ≥ 0 is another

hyperparameter. Then we can rewrite (3.4) as

mk+1 = (1− γ
√
s)mk −

√
s∇F (xk); xk+1 = xk +

√
smk+1. (3.5)

Let s→ 0 in (3.5); we obtain the following system of first-order ODEs,

dx(t)

dt
= m(t);

dm(t)

dt
= −γm(t)−∇F (x(t)). (3.6)

This can be further rewritten as a second-order heavy ball ODE (HBODE), which also models

a damped oscillator,
d2x(t)

dt2
+ γ

dx(t)

dt
= −∇F (x(t)). (3.7)

We compare the dynamics of HBODE (3.7) and the following ODE limit of the gradient

descent (GD)
dx

dt
= −∇F (x). (3.8)

In particular, we solve the ODEs (3.7) and (3.8) with F (x) defined as a Rosenbrock [Ros60]

or Beale [Gon71] function. The comparisons show that HBODE can accelerate the dynamics

of the ODE for a gradient system, which motivates us to propose HBNODE to accelerate

forward propagation of NODE.

Rosenbrock function. The Rosenbrock function is given by

F (x) := F (x, y) = 100(y − x2)2 + (1− x)2,

which has the minimum (x, y) = (1, 1). Starting from (0, 0), we apply Dormand–Prince-45

solver using a step size ∆t = 0.001 to solve both ODEs (3.7) and (3.8) for t from 0 to 1. For

the HBODE, we set γ = 0.9 and set the initial value of dx/dt = (0, 0).

21

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
ODE

HBODE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0
ODE

HBODE

Figure 3.2: Comparing the trajectory of ODE and HBODE when F (x) is the Rosenbrock

(left) and Beale (right) functions.

Beale function. The Beale function is given by

F (x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2

which has the minimum (x, y) = (3, 0.5). Starting from (0, 0), we apply Dormand–Prince-45

solver using a step size 0.01 to solve both ODEs in (3.7) and (3.8) for t from 0 to 2. For the

HBODE, we set γ = 0.7 and set the initial value of dx/dt = (0, 0).

To numerically show that the HBNODE (3.7) converges faster to the stationary point than

the ODE limit of gradient descent (3.8), we apply the Dormand–Prince-45 ODE solver, which

is the default solver for NODEs, to solve both ODEs. We set F (x) to be the Rosenbrock

and the Beale functions. Fig. 3.2 shows that with the same numerical ODE solver, HBODE

converges to the stationary point (marked by stars) faster than (3.8).

3.2.2 Adjoint Equation for the First- and Second-order ODEs

The adjoint sensitivity method is the key to assuring constant memory usage in training

neural ODEs [Che+18]. In this section, we present two different proofs for the first-order

adjoint sensitivity equations. The differentiation proof in 3.2.2.2 is adapted from the proof

by Norcliffe et al [Nor+20]. We provide a new integral proof in 3.2.2.3 to extend theoretical

22

support for the Lipschitz continuous functions. We also revisit the proof of the second-order

adjoint sensitivity equations by Norcliffe et al [Nor+20].

3.2.2.1 First-order Adjoint Sensitivity Equation

A Neural ODE for hidden features h(t) ∈ RN takes the form

∂h

∂t
= f(h(t), t, θ), h(t0) = ht0 , h(T) = hT , (3.9)

where f(h(t), t, θ) ∈ RN is a neural network with learnable parameters θ. The corresponding

adjoint equation, with L being a scalar loss function, is defined by the following ODE,

∂A(t)

∂t
= −A(t)

∂f

∂h
, A(T) = −I, a(t) = − dL

dhT

A(t). (3.10)

For gradient-based optimization, we need to compute the following derivatives

dL
dθ

=
dL
dhT

dhT

dθ
,

dL
dht0

=
dL
dhT

dhT

dht0

. (3.11)

In the following sections, we show that

dhT

dθ
=

∫ t0

T

A
∂f

∂θ
dt,

dhT

dht0

= −A(t0). (3.12)

By linearity, we immediately arrive at the following adjoint sensitivity equations

dL
dθ

=

∫ T

t0

a
∂f

∂θ
dt,

dL
dht0

= a(t0). (3.13)

3.2.2.2 Proof of the First-Order Adjoint Sensitivity Equation: Differentiation

Approach

We adapt the proof of the adjoint sensitivity equations from Norcliffe et al [Nor+20].

Assume that f ∈ C1, ϕ is either θ or ht0 , then the following equations hold

∂A(t)

∂t
= −A(t)

∂f

∂h
,

∂2h

∂ϕ∂t
=
∂f

∂θ

dθ

dϕ
+
∂f

∂h

dh

dϕ
,

∂
(
A∂h

∂ϕ

)
∂t

=
∂A

∂t

∂h

∂ϕ
+A

∂2h

∂ϕ∂t
. (3.14)

Combining the three equations in (3.14) yields the differential equation

∂
(
A∂h

∂ϕ

)
∂t

=
∂A

∂t

∂h

∂ϕ
+A

∂2h

∂ϕ∂t
= −A(t)

∂f

∂h

∂h

∂ϕ
+A

(∂f
∂θ

dθ

dϕ
+
∂f

∂h

dh

dϕ

)
= A

∂f

∂θ

dθ

dϕ
. (3.15)

23

Integrating both sides of (3.15) in t from T to t0, we arrive at the integral equation(
A
∂h

∂ϕ

)∣∣∣t0
T
=

∫ t0

T

A
∂f

∂θ

dθ

dϕ
dt. (3.16)

Using the conditions A(T) = −I, h(t0) = ht0 , h(T) = hT , we rewrite the equation (3.16) as

dhT

dϕ
= −A(t0)

dht0

dϕ
+

∫ t0

T

A
∂f

∂θ

dθ

dϕ
dt. (3.17)

Substituting ϕ = ht0 and ϕ = θ respectively in (3.17) leads to

dhT

dht0

= −A(t0),
dhT

dθ
=

∫ t0

T

A
∂f

∂θ
dt. (3.18)

This proof is adapted from the proof provided by Norcliffe et al [Nor+20] for general second-

order neural ODEs by differentiation and this proof only holds for f ∈ C1.

3.2.2.3 Proof of the First-Order Adjoint Sensitivity Equations: Integration

Approach

The proof in 3.2.2.2 requires that f ∈ C1. However, with activation functions like ReLU, f

may not be smooth enough to satisfy this requirement. Meanwhile, the adjoint equation (3.10)

that A satisfies may not have a continuous right hand side, which can fail the Picard-Lindelöf

theorem that guarantees the existence and uniqueness of solutions to the adjoint equation.

To circumvent these deficiencies, we propose a new proof based on integration. Assume

that f(h, t, θ) is continuous in t and Lipschitz continuous in h, θ, and there exists some open

ball around ht0 = s0, θ = θ0 such that for every pair of initial condition and parameters in

the open ball, there exists a unique solution for t ∈ [t0, T]. We denote the solution starting

from ht0 = s0, θ = θ0 as h0. In order to avoid difficulties in proving the existence and

uniqueness of the solution, we explicitly define the adjoint equation through the following

matrix exponential

A(t) = − exp

{
−
∫ t

T

∂f

∂h
(h0(τ), τ, θ0)dτ

}
. (3.19)

By definition, A is Lipschitz continuous and satisfies the differential equation almost every-

where
dA(t)

dt
= −A(t)

∂f

∂h
(h0(t), t, θ0). (3.20)

24

Since h ∈ C1(t) and dA
dt

∈ L1(t), we obtain the following using integration by parts,

Ah|Tt0 =
∫ T

t0

A
∂h

∂t
dt+

∫ T

t0

dA

dt
hdt. (3.21)

Taking partial derivatives with respect to ϕ on both sides of (3.21), as A(t) is only a function

of t, we have

A
∂h

∂ϕ

∣∣∣T
t0
=

∂

∂ϕ

∫ T

t0

A
∂h

∂t
dt+

∂

∂ϕ

∫ T

t0

dA

dt
hdt. (3.22)

In order to exchange integral and derivatives, we use the dominated convergence theorem.

Because f is Lipschitz continuous on h, h is Lipschitz continuous on ϕ, and thus ∂h
∂ϕ

is Lebesgue

integrable. Therefore, by chain rule, the following equation holds almost everywhere,

∂2h

∂t∂ϕ
=

∂2h

∂ϕ∂t
=
df

dϕ
=
∂f

∂θ

dθ

dϕ
+
∂f

∂h

dh

dϕ
. (3.23)

Because t is bounded, the right hand side of equation (3.23) is Lebesgue integrable, and

so is the left hand side. Because both ∂h
∂ϕ

and ∂2h
∂t∂ϕ

are Lebesgue integrable, by dominated

convergence theorem, we have the following exchange of integrals and derivatives

∂

∂ϕ

∫ T

t0

A
∂h

∂t
dt =

∫ T

t0

A
∂2h

∂t∂ϕ
dt,

∂

∂ϕ

∫ T

t0

dA

dt
hdt =

∫ T

t0

dA

dt

∂h

∂ϕ
dt. (3.24)

Combining equation (3.22) with (3.24) gives us

A
∂h

∂ϕ

∣∣∣T
t0
=

∫ T

t0

A
∂2h

∂t∂ϕ
dt+

∫ T

t0

dA

dt

∂h

∂ϕ
dt. (3.25)

By taking Lebesgue integral of equation (3.23), we have the equation∫ T

t0

A
∂2h

∂t∂ϕ
dt =

∫ T

t0

A
(∂f
∂θ

dθ

dϕ
+
∂f

∂h

dh

dϕ

)
dt. (3.26)

Meanwhile, at h0, we can integrate equation (3.20) to a similar form as∫ T

t0

dA

dt

∂h

∂ϕ
dt = −

∫ T

t0

A
∂f

∂h

dh

dϕ
dt. (3.27)

Consequently, at h0, we can sum up equations (3.25), (3.26), and (3.27) and arrive at

A
∂h

∂ϕ

∣∣∣T
t0
=

∫ T

t0

A
∂f

∂θ

dθ

dϕ
dt, (3.28)

which is the same integral equation as equation (3.16) in the differentiation proof in 3.2.2.2.

Thus, plugging in the initial conditions provides us with the same result.

25

3.2.2.4 Corollary of the First-order Gradient Propagation

An immediate corollary of the above proof is that combining equations (3.12) and (3.19)

results in
dhT

dht0

= −A(t0) = exp

{
−
∫ t0

T

∂f

∂h
(h0(τ), τ, θ0)dτ

}
. (3.29)

As (3.29) is true for every choice of t0, we can also generalize it to

dhT

dht

= exp

{
−
∫ t

T

∂f

∂h
(h0(τ), τ, θ0)dτ

}
, (3.30)

which shows the relative gradient between different times in integral.

3.2.2.5 Second-order Adjoint Sensitivity Equation

A SONODE satisfies the following equations

∂h

∂t
= v,

∂v

∂t
= f(h(t),v(t), t, θ), h(t0) = ht0 , v(t0) = vt0 , (3.31)

which can be viewed as a coupled first-order ODE system of the form

∂

∂t

h
v

 =

 v

f(h(t),v(t), t, θ)

 ,
h
v

 (t0) =

ht0

vt0

 . (3.32)

Denote z =

h
v

 and final state as

h(T)
v(T)

 =

hT

vT

 = zT . (3.33)

Using the conclusions from 3.2.2.1, then the adjoint equation is given by

∂A(t)

∂t
= −A(t)

 0 I

∂f
∂h

∂f
∂v

 , A(T) = −I, a(t) = − dL
dzT

A(t). (3.34)

By rewriting A =
[
Ah Av

]
, we have the following differential equations

26

∂Ah(t)

∂t
= −Av(t)

∂f

∂h
,

∂Av(t)

∂t
= −Ah(t)−Av(t)

∂f

∂v
, (3.35)

with initial conditions

Ah(T) = −

I
0

 , Av(T) = −

0
I

 , (3.36)

and adjoint states

ah(t) =
dL
dzT

Ah(t), av(t) =
dL
dzT

Av(t). (3.37)

The gradient equations becomes

dL
dθ

=

∫ T

t0

a

 0

∂f
∂θ

 dt = ∫ T

t0

av
∂f

∂θ
dt,

dL
dht0

= ah(t0),
dL
dvt0

= av(t0). (3.38)

In SONODE, ht0 is fixed, and thus ah disappears in gradient computation. Therefore,

we are only interested in av. Thus the adjoint Av satisfies the following second-order ODE

∂2Av(t)

∂t2
= Av(t)

∂f

∂h
−
∂(Av(t)

∂f
∂v
)

∂t
, (3.39)

and thus

∂2av(t)

∂t2
= av(t)

∂f

∂h
−
∂(av(t)

∂f
∂v
)

∂t
, (3.40)

with initial conditions

av(T) = −dL
dz

Av(T) =
dL
dvT

,
∂av(T)

∂t
= − dL

dhT

− av(T)
∂f

∂v
(T). (3.41)

This proves the second order adjoint equations for av.

27

3.2.3 Heavy ball neural ordinary differential equations

Similar to NODE, we parameterize −∇F in (3.7) using a neural network f(h(t), t, θ),

resulting in the following HBNODE with initial position h(t0) and momentum m(t0) :=

dh/dt(t0),
d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (3.42)

where γ ≥ 0 is the damping parameter, which can be set as a tunable or a learnable

hyperparmater with positivity constraint. In the trainable case, we use γ = ϵ · Sigmoid(ω)

for a trainable ω ∈ R and a fixed tunable upper bound ϵ (we set ϵ = 1 below). According to

(3.6), HBNODE (3.42) is equivalent to

dh(t)

dt
= m(t);

dm(t)

dt
= −γm(t) + f(h(t), t, θ). (3.43)

Equation (3.42) (or equivalently, the system (3.43)) defines the forward ODE for the HBNODE,

and we can use either the first-order (Prop. 2) or the second-order (Prop. 1) adjoint sensitivity

method to update the parameter θ [Nor+20].

Proposition 1 (Adjoint equation for HBNODE). The adjoint state a(t) := ∂L/∂h(t) for

the HBNODE (3.42) satisfies the following HBODE with the same damping parameter γ as

that in (3.42),
d2a(t)

dt2
− γ

da(t)

dt
= a(t)

∂f

∂h
(h(t), t, θ). (3.44)

Remark 1. Note that we solve the adjoint equation (3.44) from time t = T to t = t0 in the

backward propagation. By letting τ = T − t and b(τ) = a(T − τ), we can rewrite (3.44) as

follows,
d2b(τ)

dτ 2
+ γ

db(τ)

dτ
= b(τ)

∂f

∂h
(h(T − τ), T − τ, θ). (3.45)

Therefore, the adjoint of the HBNODE is also a HBNODE and they have the same damping

parameter.

Proof. As HBNODE takes the form

d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (3.46)

28

which can also be viewed as a SONODE. By applying the adjoint equation of SONODE

(3.40), we arrive at
∂2a(t)

∂t2
= a(t)

∂f

∂h
+ γ

∂a(t)

∂t
. (3.47)

As HBNODE only carries its state h to the loss L, we have dL
dvT

= 0, and thus the initial

conditions in equation (3.41) becomes

a(T) = 0,
∂a(T)

∂t
= − dL

dhT

. (3.48)

We can also employ (3.43) and its adjoint for the forward and backward propagations,

respectively.

Proposition 2 (Adjoint equations for the first-order HBNODE system). The adjoint states

ah(t) := ∂L/∂h(t) and am(t) := ∂L/∂m(t) for the first-order HBNODE system (3.43)

satisfy
dah(t)

dt
= −am(t)

∂f

∂h
(h(t), t, θ);

dam(t)

dt
= −ah(t) + γam(t). (3.49)

Remark 2. Let ãm(t) = dam(t)/dt, then am(t) and ãm(t) satisfies the following first-order

heavy ball ODE system

dam(t)

dt
= ãm(t);

dãm(t)

dt
= am(t)

∂f

∂h
(h(t), t, θ) + γãm(t). (3.50)

Note that we solve this system backward in time in back-propagation. Moreover, we have

ah(t) = γam(t)− ãm(t).

Proof. The coupled form of HBNODE is a coupled first-order ODE system of the form

∂

∂t

h

m

 =

 m

−γm+ f(h(t), t, θ)

 ,
h

m

 (t0) =

ht0

mt0

 . (3.51)

Denote the final state as h(T)

m(T)

 =

hT

mT

 = z. (3.52)

29

Using the conclusions from 3.2.2.1, we have the adjoint equation

∂A(t)

∂t
= −A(t)

 0 I

∂f
∂h

−γI

 , A(T) = −I, a(t) = −dL
dz

A(t). (3.53)

Let
[
ah am

]
= a, by linearity we have

∂
[
ah am

]
∂t

= −
[
ah am

] 0 I

∂f
∂h

−γI

 , [
ah(T) am(T)

]
=
[

dL
dhT

dL
dmT

]
, (3.54)

which gives us the initial conditions at t = T , and the simplified first-order ODE system

∂ah

∂t
= −am

∂f

∂h
,

∂am

∂t
= −ah + γam. (3.55)

Similar to [Nor+20], we use the coupled first-order HBNODE system (3.43) and its adjoint first-

order HBNODE system (3.49) for practical implementation, since the entangled representation

permits faster computation [Nor+20] of the gradients of the coupled ODE systems.

3.3 Generalized Heavy Ball Neural Ordinary Differential Equations

In this section, we propose a generalized version of HBNODE (GHBNODE), see (3.56), to

mitigate the potential blow-up issue in training ODE-based models. In our experiments, we

observe that h(t) of ANODEs [DDT19], SONODEs [Nor+20], and HBNODEs (3.43) usually

grows much faster than that of NODEs. The fast growth of h(t) can lead to finite-time

blow up. As an illustration, we compare the performance of NODE, ANODE, SONODE,

HBNODE, and GHBNODE on the Silverbox task as in [Nor+20]. The goal of the task is to

learn the voltage of an electronic circuit that resembles a Duffing oscillator, where the input

voltage V1(t) is used to predict the output V2(t). Similar to the setting in [Nor+20], we first

augment ANODE by 1 dimension with 0-augmentation and augment SONODE, HBNODE,

and GHBNODE with a dense network. We use a simple dense layer to parameterize f for

all five models, with an extra input term for V1(t)1. For both HBNODE and GHBNODE,

1Here, we exclude an h3 term that appeared in the original Duffing oscillator model because including it
would result in finite-time explosion.

30

0 10 20 30 40 50 60
t

100
103
106
109

1012
1015
1018

||h
(t)

|| 2
NODE
ANODE
SONODE
HBNODE
GHBNODE
Exact

Figure 3.3: Contrasting h(t) for different models. h(t) in ANODE, SONODE, and HBNODE

grows much faster than that in NODE. GHBNODE controls the growth of h(t) effectively

when t is large.

we set the damping parameter γ to be Sigmoid(−3). For GHBNODE (3.56) below, we set

σ(·) to be the hardtanh function with bound [−5, 5] and ξ = ln(2). As shown in Fig. 3.3,

compared to the vanilla NODE, the L2 norm of h(t) grows much faster when a higher order

NODE is used, which leads to blow-up during training. Similar issues arise in the time series

experiments (see Sec. 3.5.3.3), where SONODE blows up during long term integration in

time, and HBNODE suffers from the same issue with same initialization.

To alleviate the problem above, we propose the following generalized HBNODE

dh(t)

dt
= σ(m(t));

dm(t)

dt
= −γm(t) + f(h(t), t, θ)− ξh(t), (3.56)

where σ(·) is a nonlinear activation, which is set as tanh in our experiments. The positive

hyperparameters γ, ξ > 0 are tunable or learnable. In the trainable case, we let γ =

ϵ · Sigmoid(ω) as in HBNODE, and ξ = softplus(χ) to ensure that γ, ξ ≥ 0. Here, we

integrate two main ideas into the design of GHBNODE: (i) We incorporate the gating

mechanism used in LSTM [HS97] and GRU [Cho+14], which can suppress the aggregation

31

of m(t); (ii) Following the idea of skip connection [He+16b], we add the term ξh(t) into

the governing equation of m(t), which benefits training and generalization of GHBNODEs.

Fig. 3.3 shows that GHBNODE can indeed control the growth of h(t) effectively.

Proposition 3 (Adjoint equations for GHBNODEs). The adjoint states ah(t) := ∂L/∂h(t),

am(t) := ∂L/∂m(t) for the GHBNODE (3.56) satisfy the following first-order ODE system

∂ah(t)

∂t
= −am(t)

(∂f
∂h

(h(t), t, θ)− ξI
)
,

∂am(t)

∂t
= −ah(t)σ

′(m(t)) + γam(t). (3.57)

Proof. The coupled form of GHBNODE is a first-order ODE system of the form

∂

∂t

h

m

 =

 σ(m)

−γm+ f(h(t), t, θ)− ξh(t)

 ,
h

m

 (t0) =

ht0

mt0

 . (3.58)

Denote the final state as h(T)

m(T)

 =

hT

mT

 = zT . (3.59)

Using the conclusions from 3.2.2.1, we have the adjoint equation

∂A(t)

∂t
= −A(t)

 0 σ′(m)

∂f
∂h

− ξI −γI

 , A(T) = −I, a(t) = − dL
dzT

A(t). (3.60)

Let
[
ah am

]
= a, by linearity we have

∂
[
ah am

]
∂t

= −
[
ah am

] 0 σ′(m)

∂f
∂h

− ξI −γI

 , [
ah(T) am(T)

]
=
[

dL
dhT

dL
dmT

]
,

(3.61)

which gives us the initial conditions at t = T , and the simplified first-order ODE system

∂ah

∂t
= −am

(∂f
∂h

− ξI
)
,

∂am

∂t
= −ahσ

′(m) + γam. (3.62)

Though the adjoint state of the GHBNODE (3.57) does not satisfy the exact heavy ball

ODE, based on our empirical study, it also significantly reduces the backward NFEs.

32

3.4 Learning long-term dependencies – Vanishing gradient

It is known that the vanishing and exploding gradients are two bottlenecks for training

recurrent neural networks (RNNs) with long-term dependencies [BSF94; PMB13]. Recurrent

cells are the building blocks of RNNs, and can be mathematically written as

ht = σ(Uht−1 +Wxt + b), xt ∈ Rd, for t = 1, 2, · · · , T, (3.63)

where ht ∈ Rh is the hidden state, U ∈ Rh×h,W ∈ Rh×d, and b ∈ Rh are trainable

parameters; σ(·) is a nonlinear activation function, e.g., sigmoid. Backpropagation through

time is a popular algorithm for training RNNs, which usually results in exploding or vanishing

gradients [BSF94]. Thus RNNs may fail to learn long term dependencies. As an illustration,

let hT and ht be the state vectors at the timestamps T and t (T ≫ t), respectively. Assume

L is the loss to minimize, then

∂L
∂ht

=
∂L
∂hT

· ∂hT

∂ht

=
∂L
∂hT

·
T−1∏
k=t

∂hk+1

∂hk

=
∂L
∂hT

·
T−1∏
k=t

(DkU
⊤), (3.64)

where Dk = diag(σ′(Uhk +Wxk+1)) is a diagonal matrix with σ′(Uhk +Wxk+1) being its

diagonal entries. ∥
∏T−1

k=t (DkU
⊤)∥2 tends to either vanish or explode [BSF94]. When applying

RNNs to sequence applications with x = (x1, · · · ,xT) be an input sequence of length T and

y = (y1, · · · , yT) be the sequence of labels, we let Lt be the loss at the timestamp t and the

total loss on the whole sequence be

L =
T∑
t=1

Lt, (3.65)

the vanishing or exploding issue can be shown following (3.64).

The exploding gradients issue can be effectively resolved via gradient clipping, training

loss regularization, etc [PMB13; Eri+21]. Thus in practice the vanishing gradient is the

major issue for learning long-term dependencies [PMB13]. As the continuous analogue of

RNN, NODEs as well as their hybrid ODE-RNN models, may also suffer from vanishing in

the adjoint state a(t) := ∂L/∂h(t) [LH20]. When the vanishing gradient issue happens, a(t)

goes to 0 quickly as T − t increases, then dL/dθ in (3.2) will be independent of these a(t).

33

3.4.1 Linear Analysis on NODEs and HBNODEs

Nonlinear ODEs do not have a general analytic solution, making it difficult to estimate

their qualitative behavior. Thus, analyzing their linear counterparts may provide intuition

on how these systems behave. Suppose the linearized system of ODEs satisfies

dh

dt
= L(t, θ)h, (3.66)

then its solution will satisfy

h(t) = exp

{∫ t

t0

L(τ, θ)dτ

}
h(t0). (3.67)

The reverse-time state equation will have the solution

h(t) = exp

{
−
∫ T

t

L(τ, θ)dτ

}
h(T). (3.68)

The adjoint equation will be linear and independent of h

da

dt
(t) = −a(t)L(t, θ), (3.69)

thus with the solution

a(t) = a(T) exp

{∫ T

t

L(τ, θ)dτ

}
. (3.70)

Therefore, the behavior of adjoint of NODEs when linear is associated with the spectral

properties of
∫ T

t
L(τ, θ)dτ . In particular, if h(t) is decaying swiftly, its adjoint a(t) will also

be vanishing.

3.4.2 Generic Analysis on Vanishing Gradients of NODEs and (G)HBNODEs

GHBNODE can be viewed as a system of higher dimensional NODE as in equation (3.58).

With z =

h

m

, z satisfies NODE equation, and therefore it also satisfies the equation for

relative gradient information as in (3.30),

dzT

dzt

= exp

{
−
∫ t

T

∂f

∂z
(z0(τ), τ, θ0)dτ

}
. (3.71)

34

0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

Fo
rw

ar
d

OD
E

0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

Ba
ck

wa
rd

 O
DE

1.00 0.75 0.50 0.25 0.00

State Equation
Adjoint Equation

Figure 3.4: 1-D linear example of NODEs satisfying dh
dt
(t) = −h(t), with initial condition

h(0) = 1 and loss function L(h(1)) = 1
2
h(1)2. Upper left is the solution of h during forward

iteration, solved from left to right. Lower left is the solution of h during backward iteration,

solved from right to left. Lower right is the solution of h during backward iteration with

t→ −t flip, solved from left to right. When integrating from left to right, state equation in

forward iteration is qualitatively similar to adjoint equation in backward iteration, whereas

state equation in backward iteration is qualitatively different.

By definition of multivariate derivatives, we have

dzT

dzt

=

 ∂hT

∂ht

∂hT

∂mt

∂mT

∂ht

∂mT

∂mt

 , (3.72)

and
∂f

∂z
=

 0 ∂σ
∂m

∂f
∂h

− ξI −γI

 . (3.73)

35

With equations (3.72) and (3.73), we can rewrite equation (3.71) in terms of h and m as ∂hT

∂ht

∂hT

∂mt

∂mT

∂ht

∂mT

∂mt

 = exp

−
∫ t

T

 0 ∂σ
∂m

∂f
∂h

− ξI −γI

 ds. (3.74)

In particular, since HBNODEs are GHBNODEs with ξ = 0 and σ being the identity map,

the gradient equation of HBNODEs takes the form ∂hT

∂ht

∂hT

∂mt

∂mT

∂ht

∂mT

∂mt

 = exp

−
∫ t

T

 0 I

∂f
∂h

−γI

 ds. (3.75)

Thus, we have the following expressions for the adjoint states of the NODE and HBNODE:

• For NODE, we have

∂L
∂ht

=
∂L
∂hT

∂hT

∂ht

=
∂L
∂hT

exp
{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
. (3.76)

• For GHBNODE2, from (3.49) we can derive

[
∂L
∂ht

∂L
∂mt

]
=
[

∂L
∂hT

∂L
∂mT

] ∂hT
∂ht

∂hT
∂mt

∂mT
∂ht

∂mT
∂mt

 =
[

∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

 0 ∂σ
∂m(∂f

∂h − ξI
)

−γI

 ds

︸ ︷︷ ︸
:=M

}
.

(3.77)

Note that the matrix exponential is directly related to its eigenvalues. By Schur decom-

position, there exists an orthogonal matrix Q and an upper triangular matrix U , where the

diagonal entries of U are eigenvalues of Q ordered by their real parts, such that

−M = QUQ⊤ =⇒ exp{−M} = Q exp{U}Q⊤. (3.78)

Let v⊤ :=
[

∂L
∂hT

∂L
∂mT

]
Q, then (3.77) can be rewritten as[

∂L
∂ht

∂L
∂mt

]
=
[

∂L
∂hT

∂L
∂mT

]
exp{−M} =

[
∂L
∂hT

∂L
∂mT

]
Q exp{U}Q⊤ = v⊤ exp{U}Q⊤. (3.79)

2HBNODE can be seen as a special GHBNODE with ξ = 0 and σ be the identity map.

36

By taking the L2 norm in (3.79) and dividing both sides by
∥∥∥[∂L

∂hT

∂L
∂mT

]∥∥∥
2
, we arrive at∥∥∥[∂L

∂ht

∂L
∂mt

]∥∥∥
2∥∥∥[∂L

∂hT

∂L
∂mT

]∥∥∥
2

=

∥∥v⊤ exp{U}Q⊤
∥∥
2

∥v⊤Q⊤∥2
=

∥∥v⊤ exp{U}
∥∥
2

∥v∥2
=
∥∥e⊤ exp{U}

∥∥
2
, (3.80)

i.e.,
∥∥∥[∂L

∂ht

∂L
∂mt

]∥∥∥
2
=
∥∥e⊤ exp{U}

∥∥
2

∥∥∥[∂L
∂hT

∂L
∂mT

]∥∥∥
2

where e = v/∥v∥2.

Proposition 4. The eigenvalues of −M can be paired so that the sum of each pair equals

(t− T)γ.

Proof. Let F = 1
t−T

∫ t

T
∂f
∂h

(h(s), s, θ)ds− ξI, J = 1
t−T

∫ t

T
∂σ
∂m

(m(s))ds, and H = 1
t−T

M , then

we have the following equation

H =
1

t− T
M =

 0 J

F −γI

 . (3.81)

As (λ + γ)I commutes with any matrix F , the characteristics polynomials of H and JF

satisfy the relation

chH(λ) = det(λI−H) = det

 λI −J

−F (λ+ γ)I

 = det(λ(λ+ γ)I−JF) = −chJF (λ(λ+ γ)).

(3.82)

Since the characteristics polynomial of JF splits in the field C of complex numbers, i.e.

chJF (x) =
∏n

i=1(x− λJF ,i), we have

chH(λ) = −chJF (λ(λ+ γ)) = −
n∏

i=1

(λ(λ+ γ)− λJF ,i). (3.83)

Therefore, the eigenvalues of H appear in n pairs with each pair satisfying the quadratic

equation

λ(λ+ γ)− λJF ,i = 0. (3.84)

By Vieta’s formulas, the sum of these pairs are all −γ. Therefore, the eigenvalues of M

comes in n pairs and the sum of each pair is −(t− T)γ.

37

For a given constant a > 0, we can group the upper triangular matrix exp{U} as follows

exp{U} :=

exp{UL} P

0 exp{UV }

 , (3.85)

where the diagonal of UL (UV) contains eigenvalues of −M that are no less (greater) than

(t− T)a. Then, we have ∥e⊤ exp{U}∥2 ≥ ∥e⊤
L exp{UL}∥2 where the vector eL denotes the

first m columns of e with m be the number of columns of UL. By choosing 0 ≤ γ ≤ 2a, for

every pair of eigenvalues of −M there is at least one eigenvalue whose real part is no less

than (t− T)a. Therefore, exp{UL} decays at a rate at most (t− T)a, and the dimension of

UL is at least N ×N . We avoid exploding gradients by clipping the L2 norm of the adjoint

states similar to that used for training RNNs.

In contrast, all eigenvalues of the matrix
∫ t

T
∂f/∂hds in (3.76) for NODE can be very

positive or negative, resulting in exploding or vanishing gradients. As an illustration, we

consider the benchmark Walker2D kinematic simulation task that requires learning long-term

dependencies effectively [LH20; Bro+16]. We train ODE-RNN [RCD19] and (G)HBNODE-

RNN on this benchmark dataset, and the detailed experimental settings are provided in

Sec. 3.5.3.3. Figure 3.4.2 plots ∥∂L/∂ht∥2 for ODE-RNN and ∥[∂L/∂ht ∂L/∂mt]∥2 for

(G)HBNODE-RNN, showing that the adjoint state of ODE-RNN vanishes quickly, while that

of (G)HBNODE-RNN does not vanish even when the gap between T and t is very large.

3.5 Experimental Results

In this section, we compare the performance of the proposed HBNODE and GHBN-

ODE with existing ODE-based models, including NODE [Che+18], ANODE [DDT19], and

SONODE [Nor+20] on the benchmark point cloud separation, image classification, learning

dynamical systems, and kinematic simulation. For all the experiments, we use Adam [KB15]

as the benchmark optimization solver (the learning rate and batch size for each experiment

are listed in Table 3.1) and Dormand–Prince-45 as the numerical ODE solver. For HBNODE

and GHBNODE, we set γ = Sigmoid(θ), where θ is a trainable weight initialized as θ = −3.

38

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0

T
- t

ODE-RNN

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0

HBNODE-RNN

0.0

0.006

0.012

0.018

0.024

>0.03

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0
T

- t

GHBNODE-RNN

0 100 200 300 400
Epoch

63

54

45

36

27

18

9

0

T
- t

GHBNODE-RNN

0.0

0.006

0.012

0.018

0.024

>0.03

Figure 3.5: Plot of the the L2-norm of the adjoint states for ODE-RNN and (G)HBNODE-RNN

back-propagated from the last time stamp. The adjoint state of ODE-RNN vanishes quickly when

the gap between the final time T and intermediate time t becomes larger, while the adjoint states of

(G)HBNODE-RNN decays much more slowly. This implies that (G)HBNODE-RNN is more effective

in learning long-term dependency than ODE-RNN.

The network architecture used to parameterize f(h(t), t, θ) for each experiment below are

described in the corresponding sections. All experiments are conducted on a server with 2

NVIDIA Titan Xp GPUs.

Table 3.1: The batch size and learning rate for different datasets.
Dataset Point Cloud MNIST CIFAR10 Plane Vibration Walker2D

Batch Size 50 64 64 64 256
Learning Rate 0.01 0.001 0.001 0.0001 0.003

We first list some common settings below:

• NODE and ANODE do not have initial layers.

• For SONODE n∗ = 2n, and for other ones n∗ = n.

• tpad: Padding with time t within ODE. i.e., transform the shape c×x×y to (c+1)×x×y

by concatenating with a tensor of shape 1× x× y filled with all t.

39

• For all tasks, we use learnable γ with ϵ = 1 for both HBNODE and GHBNODE, and

learnable ξ.

• fcn: a fully connected layer with output dimension to be n.

3.5.1 Point cloud separation

In this subsection, we consider the two-dimensional point cloud separation benchmark.

A total of 120 points are sampled, in which 40 points are drawn uniformly from the circle

∥r∥ < 0.5, and 80 points are drawn uniformly from the annulus 0.85 < ∥r∥ < 1.0. This

experiment aims to learn effective features to classify these two point clouds. Following

[DDT19], we use a three-layer neural network to parameterize the right-hand side of each

ODE-based model, integrate the ODE-based model from t0 = 0 to T = 1, and pass the

integration results to a dense layer to generate the classification results. The details of the

model are specified as follows

• Initial Velocity : input2 → fch → HTanh → fch → HTanh → fcn,

• ODE : inputn∗ → fch → ELU → fch → ELU → fcn,

• Output : inputn → fc1 → Tanh,

where fcn denotes fully connected layers with n dimensional output, HTanh denotes the hard

tanh activation function defined entry-wise as [HTanh(v)]i = min{5,max{−5, vi}}, and ELU

denotes the elu function defined entry-wise as

[ELU(v)]i =


vi if vi ≥ 0,

evi − 1 if vi < 0.

(3.86)

The hidden dimensions are specified in table 3.2 such that models contain similar number of

parameters for fair comparison. To avoid the effects of numerical error of the black-box ODE

solver we set tolerance of ODE solver to be 10−7.

40

Table 3.2: The hyper-parameters and the number of parameters for point cloud separation.
Model NODE ANODE SONODE HBNODE GHBNODE

n (Point Cloud) 2 3 2 2 2
h (Point Cloud) 20 20 13 14 14

#Params 525 567 528 568 568

Figure 3.6 plots a randomly selected evolution of the point cloud separation for each

model; we also compare the forward and backward NFEs and the training loss of these models

(100 independent runs). HBNODE and GHBNODE improve training as the training loss

consistently goes to zero over different runs, while ANODE and SONODE often get stuck at

local minima, and NODE cannot separate the point cloud since it preserves the topology

[DDT19].

3.5.2 Image classification

We compare the performance of HBNODE and GHBNODE with the existing ODE-based

models on MNIST and CIFAR10 classification tasks using the same setting as in [DDT19].

The details of the models are as follows:

MNIST

• Initial Velocity : input1×28×28 → convh,1 → LReLU → convh,3 → LReLU → conv2n−1,1,

• ODE : inputn∗×28×28 → tpad → convh,1 → ReLU → tpad → convh,3 → ReLU →

tpad → convn,1,

• Output : inputn×28×28 → fc10.

CIFAR

• Initial Velocity : input3×28×28 → convh,1 → LReLU → convh,3 → LReLU → conv2n−3,1,

• ODE : inputn∗×32×32 → tpad → convh,1 → ReLU → tpad → convh,3 → ReLU →

tpad → convn,1,

41

NO
DE

AN
OD

E
SO

NO
DE

HB
NO

DE
GH

BN
OD

E

Tol 1e-7: Cloud Separation

0 50 100 150 200 250 3000

100

200

300

Fo
rw

ar
d

NF
Es

0 50 100 150 200 250 3000

100

200

300

Ba
ck

wa
rd

 N
FE

s

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

Lo
ss

NODE ANODE SONODE HBNODE GHBNODE

Figure 3.6: Comparison between NODE, ANODE, SONODE, HBNODE, and GHBNODE for

two-dimensional point cloud separation. HBNODE and GHBNODE converge better and require less

NFEs in both forward and backward propagation than the other benchmark models.

42

• Output : inputn×32×32 → fc10.

In the specification above, convh,i denotes convolution layers with h dimension and i

channels of output, ReLU denotes the ReLU activation function (it is entry-wise defined as

[ReLU(v)]i = max{0, vi}), LReLU denotes the leaky ReLU function defined entry-wise as

[LReLU(v)]i =


vi if vi ≥ 0,

0.3vi if vi < 0,

(3.87)

and tpad denotes padding with time t within ODE. i.e., transform the shape c× x× y to

(c+ 1)× x× y by concatenating with a tensor of shape 1× x× y filled with all t.

The hyper-parameters are chosen so that total number of parameters for each model are

relative similar, as specified in table 3.3. For a given input image of the size c× h× w, we

first augment the number of channel from c to c + p with the augmentation dimension p

dependent on each method3. Moreover, for SONODE, HBNODE and GHBNODE, we further

include velocity or momentum with the same shape as the augmented state.

Table 3.3: The hyper-parameters and the number of parameters for image classification.
Model NODE ANODE SONODE HBNODE GHBNODE

n (MNIST) 1 6 5 5 6
h (MNIST) 92 64 50 50 45
n (CIFAR) 3 13 12 12 12
h (CIFAR) 125 64 50 51 51

#Params (MNIST) 85,315 85,462 86,179 85,931 85,235
#Params (CIFAR10) 173,611 172,452 171,635 172,916 172,916

NFEs. As shown in Figs. 3.1 and 3.7, the NFEs grow rapidly with training of the NODE,

resulting in an increasingly complex model with reduced performance and the possibility

of blow up. Input augmentation has been verified to effectively reduce the NFEs, as both

3We set p = 0, 5, 4, 4, 5/0, 10, 9, 9, 9 on MNIST/CIFAR10 for NODE, ANODE, SONODE, HBNODE, and
GHBNODE, respectively.

43

0.0 2.5 5.0 7.5
Epoch

20

30

40

50

60

NF
E

(fo
rw

ar
d)

0.0 2.5 5.0 7.5
Epoch

40

60

80

NF
E

(b
ac

kw
ar

d)
0 2 4 6 8

Epoch
0

1

2

3

Tr
ai

ni
ng

 ti
m

e
(x

10
00

s) NODE
ANODE
SONODE
HBNODE
GHBNODE

0.0 2.5 5.0 7.5
Epoch

90

92

94

96

98

Te
st

 a
cc

 (%
)

Figure 3.7: Contrasting NODE [Che+18], ANODE [DDT19], SONODE [Nor+20], HBNODE, and

GHBNODE for MNIST classification in NFE, training time, and test accuracy. (Tolerance: 10−5).

ANODE and SONODE require fewer forward NFEs than NODE for the MNIST and CIFAR10

classification. However, input augmentation is less effective in controlling their backward

NFEs. HBNODE and GHBNODE require much fewer NFEs than the existing benchmarks,

especially for backward NFEs. In practice, reducing NFEs implies reducing both training

and inference time, as shown in Figs. 3.1 and 3.7.

Accuracy. We also compare the accuracy of different ODE-based models for MNIST and

CIFAR10 classification. As shown in Figs. 3.1 and 3.7, HBNODE and GHBNODE have

slightly better classification accuracy than the other three models; this resonates with the

fact that less NFEs lead to simpler models which generalize better [DDT19; Nor+20].

NFEs vs. tolerance. We further study the NFEs for different ODE-based models under

different tolerances of the ODE solver using the same approach as in [Che+18]. Figure 3.8

44

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700

NF
E

Ba
ck

wa
rd

NODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 ANODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 SONODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 HBNODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 GHBNODE

10 5

10 3

10 1

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700

NF
E

Ba
ck

wa
rd

NODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 ANODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 SONODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 HBNODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 GHBNODE

10 5

10 3

10 1

Figure 3.8: NFE vs. tolerance (shown in the colorbar) for training ODE-based models for CIFAR10

classification. Both forward and backward NFEs of HBNODE and GHBNODE grow much slower

than that of NODE, ANODE, and SONODE; especially the backward NFEs.As the tolerance

decreases, the advantage of HBNODE and GHBNODE in reducing NFEs becomes more significant.

depicts the forward and backward NFEs for different models under different tolerances. We

see that (i) both forward and backward NFEs grow quickly when tolerance is decreased, and

HBNODE and GHBNODE require much fewer NFEs than other models; (ii) under different

tolerances, the backward NFEs of NODE, ANODE, and SONODE are much larger than the

forward NFEs, and the difference becomes larger when the tolerance decreases. In contrast,

the forward and backward NFEs of HBNODE and GHBNODE scale almost linearly with

each other. This reflects that the advantage in NFEs of (G)HBNODE over the benchmarks

become more significant when a smaller tolerance is used.

45

3.5.3 Learning dynamical systems from irregularly-sampled time series

3.5.3.1 Change of Time Intervals

Change of time interval is a technique we use in time series experiments. While training

or evaluating a neural network consisting of NODEs, the time interval [t0, T] of elements

within a batch might differ. In particular, for irregularly sampled time series, the time

interval between two timestamps of each instance is hardly the same. Directly solving the

equations results in more timestamps being recorded, which increases memory consumption

and potentially introduces more interpolation error. Therefore, for the ease of computation,

we align their time interval using linear change of variable. Suppose for the i-th element in

the batch, we start from ti0 and solve the equation

dhi

dt
(t) = f(hi(t), t) (3.88)

in the time interval [ti0, T i] to obtain hi(T i). In order to solve the set of equations within a

batch, we define the linear change of variable ϕi : [0, 1] → [ti0, T
i] such that

ϕi(τ) = ti0 + (T i − ti0)τ, (3.89)

and let gi = hi ◦ ϕi. Therefore, using the chain rule and equations (3.88) and (3.89), we have

dgi

dτ
(τ) =

dhi

dt
(ϕi(τ))

dϕi

dτ
(τ) = (T i − ti0)f(h

i(ϕi(τ)), ϕi(τ)). (3.90)

With the definition of gi(τ) = hi(ϕi(τ)), we arrive at

dgi

dτ
(τ) = (T i − ti0)f(g

i(τ), ϕi(τ)). (3.91)

Therefore, with initial conditions gi(0) = hi(ti0), we can solve the equation (3.91) in the

interval [0, 1] for all elements in the batch and obtain hi(T i) = gi(1). An example is shown

in Figure 3.9.

3.5.3.2 Vibrational dynamical system

In this subsection, we learn Vibrational dynamical systems from experimental measure-

ments. In particular, we use the ODE-RNN framework [Che+18; RCD19], with the recognition

46

0 1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

Be
fo

re
 C

oT

0 1 2 3 4 5
Time

1.0

0.5

0.0

0.5

1.0

Af
te

r C
oT

Figure 3.9: Example of Change of Time Intervals for solutions of ODEs d2h
dt2

(t) = −h(t) with

different initial condition. If we compute all of the equations within the same batch, without

change of time we need to capture O(MNT) output time, using O(M2NT) memory, where M

is the number of samples in batch, and NT is the average timestamps needed for each sample,

whereas with change of time we only need O(NT) output time and O(MNT) memory.

model being set to different ODE-based models, to study the vibration of an airplane dataset

[NS17]. The dataset was acquired, from time 0 to 73627, by attaching a shaker underneath

the right wing to provide input signals, and 5 attributes are recorded per time stamp; these

attributes include voltage of input signal, force applied to aircraft, and acceleration at 3

47

different spots of the airplane. We randomly take out 10% of the data to make the time series

irregularly-sampled. We use the first 50% of data as our train set, the next 25% as validation

set, and the rest as test set. We divide each set into non-overlapping segments of consecutive

65 time stamps of the irregularly-sampled time series, with each input instance consisting of

64 time stamps of the irregularly-sampled time series, and we aim to forecast 8 consecutive

time stamps starting from the last time stamp of the segment. The input is fed through the

the hybrid methods in a recurrent fashion; by changing the time duration of the last step of

the ODE integration, we can forecast the output in the different time stamps. The output of

the hybrid method is passed to a single dense layer to generate the output time series. In our

experiments, we compare different ODE-based models hybrid with RNNs. The ODE of each

model is parametrized by a 3-layer network whereas the RNN is parametrized by a simple

dense network as follows

• ODE : inputn∗ → fch1 → ReLU → fch2 → ReLU → fcn,

• RNN : inputdn+k → fcdn,

• Output : inputn → fc5,

where fcn denotes fully connected layers with n dimensional output, and ReLU denotes the

ReLU activation function (it is entry-wise defined as [ReLU(v)]i = max{0, vi}). The hidden

dimensions are specified in table 3.4 such that models contain similar number of parameters for

fair comparison. The total number of parameters for ODE-RNN, ANODE-RNN, SONODE-

Table 3.4: The hyper-parameters for ODE-RNN integration models.
Model ODE-RNN ANODE-RNN SONODE-RNN HBNODE-RNN GHBNODE-RNN

d 1 1 2 2 2
n (Plane Vibration) 21 27 19 20 20
h1 (Plane Vibration) 63 83 19 20 20
h2 (Plane Vibration) 84 108 19 20 20

RNN, HBNODE-RNN, and GHBNODE-RNN with 16, 22, 14, 15, 15 augmented dimensions

48

are 15,986, 16,730, 16,649, 16,127, and 16,127, respectively. To avoid potential error due to

the ODE solver, we use a tolerance of 10−7.

In training those hybrid models, we regularize the models by penalizing the L2 distance

between the RNN output and the values of the next time stamp. Due to the second-order

natural of the underlying dynamics [Nor+20], ODE-RNN and ANODE-RNN learn the

dynamics very poorly with much larger training and test losses than the other models even

they take smaller NFEs. HBNODE-RNN and GHBNODE-RNN give better prediction than

SONODE-RNN using less backward NFEs as shown in figure 3.10.

0 10 20 30 40 50 60 70
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Exact

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

N
FE

 (
fo

rw
a
rd

)

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

N
FE

 (
b
a
ck

w
a
rd

)

0 100 200 300 400 500
Epoch

10-2

10-1

100

T
ra

in
in

g
 l
o
ss

0 100 200 300 400 500
Epoch

10-1

100

T
e
st

 l
o
ss

NODE

ANODE

SONODE

HBNODE

GHBNODE

Figure 3.10: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBN-

ODE-RNN for learning a vibrational dynamical system. Left most: The learned curves of each

model vs. the ground truth (Time: <66 for training, 66-75 for testing).

3.5.3.3 Walker2D kinematic simulation

In this subsection, we evaluate the performance of HBNODE-RNN and GHBNODE-RNN

on the Walker2D kinematic simulation task, which requires learning long-term dependency

49

effectively [LH20]. The dataset [Bro+16] consists of a dynamical system from kinematic

simulation of a person walking from a pre-trained policy, aiming to learn the kinematic

simulation of the MuJoCo physics engine [TET12]. The dataset is irregularly-sampled with

10% of the data removed from the simulation. Each input consists of 64 time stamps fed

though the the hybrid methods in a recurrent fashion, and the output is passed to a single

dense layer to generate the output time series. The goal is to provide an auto-regressive

forecast so that the output time series is as close as the input sequence shifted one time

stamp to the right. We compare ODE-RNN (with 7 augmentation), ANODE-RNN (with 7

ANODE style augmentation), HBNODE-RNN (with 7 augmentation), and GHBNODE-RNN

(with 7 augmentation) 4 The RNN is parametrized by a 3-layer network whereas the ODE is

parametrized by a simple dense network as follows:

• ODE : inputn∗ → fcn,

• RNN : inputdn+k → fch1 → Tanh → fch2 → Tanh → fcdn,

• Output : inputn → fc17,

where fcn denotes fully connected layers with n dimensional output, and Tanh denotes the

hyperbolic tangent function. The hidden dimensions are specified in table 3.5 such that

models contain similar number of parameters for fair comparison.

Table 3.5: The hyper-parameters for ODE-RNN integration models.
Model ODE-RNN ANODE-RNN SONODE-RNN HBNODE-RNN GHBNODE-RNN

d 1 1 2 2 2
n (Walker 2D) 24 24 23 24 24
h1 (Walker 2D) 72 72 46 48 48
h2 (Walker 2D) 48 48 46 48 48

4Here, we do not compare with SONODE-RNN since SONODE has some initialization problem on this
dataset; the ODE solver encounters failure due to exponential growth over time.

50

The number of parameters of the above four models are 8,729, 8,815, 8,899, and 8,899,

respectively. In Fig. 3.11, we compare the performance of the above four models on the

Walker2D benchmark; HBNODE-RNN and GHBNODE-RNN not only require significantly

less NFEs in both training (forward and backward) and in testing than ODE-RNN and

ANODE-RNN, but also have much smaller training and test losses.

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

N
FE

 (
fo

rw
a
rd

)

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

N
FE

 (
b
a
ck

w
a
rd

)

0 100 200 300 400 500
Epoch

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

N
FE

 (
te

st
)

0 100 200 300 400 500
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

T
ra

in
in

g
 l
o
ss

0 100 200 300 400 500
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

T
e
st

 l
o
ss

NODE

ANODE

HBNODE

GHBNODE

Figure 3.11: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBN-

ODE-RNN for the Walker-2D kinematic simulation.

3.6 Related Work

Reducing NFEs in training NODEs. Several techniques have been developed to reduce

the NFEs for the forward solvers in NODEs, including weight decay [Gra+19], input aug-

mentation [DDT19], regularizing solvers and learning dynamics [Fin+20; Kel+20; Gho+20;

Pal+21], high-order ODE [Nor+20], data control [Mas+20], and depth-variance [Mas+20].

HBNODEs can reduce both forward and backward NFEs at the same time.

51

Second-order ODE accelerated dynamics. It has been noticed in both optimization

and sampling communities that second-order ODEs with an appropriate damping term, e.g.,

the classical momentum and Nesterov’s acceleration in discrete regime, can significantly

accelerate the first-order gradient dynamics (gradient descent), e.g., [Pol64; Nes83; CFG14;

SBC14; WRJ18]. Also, these second-order ODEs have been discretized via some interesting

numerical schemes to design fast optimization schemes, e.g., [Shi+19].

Learning long-term dependencies. Learning long-term dependency is one of the most

important goals for learning from sequential data. Most of the existing works focus on

mitigating exploding or vanishing gradient issues in training RNNs, e.g., [ASB16; Wis+16;

Jin+17; Vor+17; Mha+17; HWY18; Ngu+20]. Attention-based models are proposed for

learning on sequential data concurrently with the effective accommodation of learning long-

term dependency [Vas+17; Dev+19]. Recently, NODEs have been integrated with long-short

term memory model [HS97] to learn long-term dependency for irregularly-sampled time series

[LH20]. HBNODEs directly enhance learning long-term dependency from sequential data.

Momentum in neural network design. As a line of orthogonal work, the momentum

has also been studied in designing neural network architecture, e.g., [MB17; Ngu+20; Li+18;

San+21], which can also help accelerate training and learn long-term dependencies. These

techniques can be considered as changing the neural network f in (3.1). We leave the

synergistic integration of adding momentum to f with our work on changing the left-hand

side of (3.1) as a future work.

3.7 Concluding Remarks

We proposed HBNODEs to reduce the NFEs in solving both forward and backward

ODEs, which also improve generalization performance over the existing benchmark models.

Moreover, HBNODEs alleviate vanishing gradients in training NODEs, making HBNODEs

able to learn long-term dependency effectively from sequential data. In the optimization

52

community, Nesterov acceleration [Nes83] is also a famous algorithm for accelerating gradient

descent, that achieves an optimal convergence rate for general convex optimization problems.

The ODE counterpart of the Nesterov’s acceleration corresponds to (3.42) with γ being

replaced by a time-dependent damping parameter, e.g., t/3 [SBC14] or with restart [Wan+20].

The adjoint equation of the Nesterov’s ODE [SBC14] is no longer a Nesterov’s ODE. We

notice that directly using Nesterov’s ODE cannot improve the performance of the vanilla

neural ODE. How to integrate Nesterov’s ODE with neural ODE is an interesting future

direction. Another interesting direction is connecting HBNODE with symplectic ODE-net

[ZDC20] through an appropriate change of variables.

53

CHAPTER 4

GRAND++: Graph Neural Diffusion with A Source Term

4.1 Introduction

Graph neural networks (GNNs) are the backbone for deep learning on graphs. Recent

GNN architectures include graph convolutional networks (GCNs) [KW17], ChebyNet [DBV16],

GraphSAGE [HYL17], neural graph fingerprints [Duv+15], message passing neural networks

[Gil+17], and graph attention networks (GATs) [Vel+]. These graph deep networks have

achieved success in many applications, including computational physics and computational

chemistry [Duv+15; Gil+17; Bat+16], recommender systems [MBB17; Yin+18b], and social

networks [ZC18; Qiu+18]. Hyperbolic GNNs have also been proposed to enable certain kinds

of data embedding with much smaller distortion [Cha+19; LNK19]. See [Bro+21] for some

recent advances of GNN algorithm development and applications.

A well-known problem of GNNs is that increasing the depth of GNNs often results in a

significant drop in performance on various graph learning tasks. This performance degradation

has been widely interpreted as the over-smoothing issue of GNNs [LHW18; OS20; Che+20].

Intuitively, GNN layers update the node representation by taking a weighted average of its

neighbors’ features, making representations for neighboring nodes to be similar. As the GNN

architecture gets deeper, all nodes’ representation will become indistinguishable resulting in

over-smoothing. In Sec. 4.2, we briefly show that certain GNNs have a diffusive nature which

makes over-smoothing inevitable. Another interesting interpretation of the GNN performance

degradation is via a bottleneck [AY21], since a GNN tends to represent exponentially growing

information from neighbors with fixed-size vectors. Several algorithms have been proposed

54

to mitigate the over-smoothing of GNNs, including skip connection and dilated convolution

[Li+19a], Jumping Knowledge [Xu+18], DropEdge [Ron+20], PairNorm [ZA20], graph neural

diffusion (GRAND) [Cha+21a], and wave equation motivated GNNs [EHT21]. Nevertheless,

developing deep GNN architectures is still in its infancy compared to the development of

other deep networks.

Besides suffering from over-smoothing, we notice that the accuracy of existing GNNs drops

severely when they are trained with a limited labeled data. As illustrated in Fig. 4.1, the test

accuracy of several celebrated GNN architectures, including GCN, GAT, and GraphSage,

drops rapidly when they are trained with fewer labeled data. Moreover, the variance of

classification accuracy grows significantly as number of labeled nodes drops. Indeed, semi-

supervised graph learning with very low-labeling rates has been studied in the Laplace

learning and graph deep learning settings, see, e.g., [Lia+19; Cal+20; FS21]; one question is

can we develop new GNN architectures to improve the performance of graph deep learning in

low-labeling rate regimes?

05101520
#Labeled Nodes Per Class

30

40

50

60

70

80

Cl
as

sif
ica

tio
n

Ac
c

(%
)

GCN
GAT
GraphSage

05101520
#Labeled Nodes Per Class

30

40

50

60

70

80

Cl
as

sif
ica

tio
n

Ac
c

(%
)

GCN
GAT
GraphSage

05101520
#Labeled Nodes Per Class

40
45
50
55
60
65
70
75
80

Cl
as

sif
ica

tio
n

Ac
c

(%
)

GCN
GAT
GraphSage

CORA CiteSeer PubMed

Figure 4.1: Test accuracy of GCN, GAT, and GraphSage vs. the number of labeled nodes

per class. All networks have 2 layers, and each experiment is run with 100 splits and 20

random seeds following [Cha+21a]. The accuracy drops rapidly with fewer labeled data

for training. CORA, CiteSeer, and PubMed have 2485, 2120, and 19717 nodes in total

respectively. Results on more benchmark GNN architectures are in 4.6.2.1.

55

4.1.1 Our contribution

With the above GNN problems in mind, we focus on developing new continuous-depth

GNNs to overcome over-smoothing and boost the accuracy of GNNs with a limited number

of labeled data. We first present a random walk interpretation of the GRAND model

[Cha+21a], revealing a potentially inevitable over-smoothing phenomenon when GRAND

is implicitly very deep. Based on the random walk viewpoint of GRAND, we then propose

graph neural diffusion with a source term (GRAND++) that corrects the bias arising from

the diffusion process, see Sec. 4.5 for details. GRAND++ theoretically guarantees that: (i)

under GRAND++ dynamics, the graph node features do not converge to a constant vector

over all nodes even as the time goes to infinity, and (ii) GRAND++ can provide accurate

prediction even when it is trained with a limited number of labeled nodes. Moreover, these

theoretical results resonate with the practical advantages of GRAND++. We summarize the

major practical advantages of GRAND++ below.

• GRAND++ can effectively overcome the over-smoothing issue; it is remarkably more

accurate than existing GNNs when the architecture is very deep.

• GRAND++ is suitable for graph deep learning when only a few nodes are labeled as

training data. Moreover, in the low-labeling rates, GRAND++ can be more accurate when

the network is deeper.

• GRAND++ inherits the continuous-depth merit from GRAND, which defines the network

depth implicitly and enables memory-efficient training by using the adjoint method.

4.1.2 Related work

Diffusion on graphs and continuous-depth graph neural networks. Diffusion has

been defined on graphs, see, e.g., [FW93; FS00], and used in various applications, including

data clustering and dimension reduction [Coi+05; BN03], image processing [GO08; ELB08;

DEL13; LEL14], and semi-supervised graph nodes classification [ZGL03; Zho+04]. From the

56

numerical viewpoint, fast algorithms have been proposed for using diffusion on graphs to solve

penalized graph cut problems [Gar+14]. The connection between GNNs and diffusion on

graphs has been studied substantially. For instance, GNN has been interpreted as a diffusion

process on graphs, which performs low-pass filtering on the input features [NM19]. Moreover,

insights from the diffusion process on graphs have been used to improve the performance of

GNNs, see, e.g., [AT16; Lia+19; KWG19; Wan+21b].

Leveraging neural ordinary differential equations (ODEs) [Che+18], continuous-depth

GNNs have been proposed, see, e.g., [Pol+19; XQT20; Zhu+20b]. One recent work is GRAND

[Cha+21a], which parameterizes the diffusion equation on graphs with a neural network. See

Sec. 4.3 for a brief review of GRAND.

Neural ODEs. Neural ODEs [Che+18] are a class of continuous-depth neural networks

whose depth is defined implicitly. Training neural ODEs using the adjoint method [Bit63] is

more memory efficient than training other neural networks using backpropagation. GRANDs

[Cha+21a] are a class of neural partial differential equations (PDEs) on graphs that can also

be considered as a coupled system of neural ODEs. Furthermore, GRANDs are also trained

by using the adjoint method.

Laplace learning and Poisson learning. Laplace learning has been used for semi-

supervised data classification [ZGL03; Zho+04; Wan+06], image processing [BCM06; GO08],

etc. Direct application of Laplace learning with Gaussian weights [BN04] or locally linear

embedding weights [RS00] for the above tasks may cause inference inconsistency when only a

limited number of graph nodes are labeled, resulting in poor performance. Several algorithms

address the inference inconsistency at low labeling rate. They include up-weighting the

weights of the labeled data [SOZ17] and the p-Laplacian [Cal18; RCL19; ZS05]. In [Cal+20],

the authors have proposed Poisson learning for improving Laplace learning at extremely

low-labeling rate regimes. Poisson learning augments Laplace learning with a Green’s function

57

at each labeled data, enabling accurate node classification when only a few labeled data are

available. Compared to Laplace learning, Poisson learning adds Green’s function to the label

of each labeled node and then performs label propagation to predict the label for unlabeled

graph nodes. GRAND and GRAND++ both learn graph node representations and perform

prediction by activating the node representations, which are fundamentally different from

Laplace and Poisson learning.

4.1.3 Notation

We denote scalars by lower- or upper-case letters and vectors and matrices by lower- and

upper-case boldface letters, respectively. For a matrix A, we denote its transpose as A⊤ and

its Hadamard product with another matrix B as A⊙B, i.e., the entrywise multiplication of

A and B. We write the set {1, 2, · · · , n} as [n]. We denote the probability and expectation

of a given random variable x as P(x) and E[x], respectively. The meaning of other notations

can be inferred from the context.

4.1.4 Organization

The chapter is organized as follows: In Sec. 4.2, we review diffusion equation on graphs

and its connection to GNNs. In Secs. 4.3 and 4.4, we briefly review GRAND and present a

random walk interpretation of GRAND, respectively. Leveraging the random walk viewpoint

of GRAND, we propose GRAND++ for deep graph learning with theoretical guarantees in

Sec. 4.5. We verify the efficacy of GRAND++ in Sec. 4.6.

4.2 Background

Background on Graph Differential Operators Let (X,W) represent a graph where

X = ([x(1)]⊤, . . . , [x(n)]⊤)⊤ ∈ Rn×d is the matrix where each row x(i) ∈ Rd is a feature vector

and W = (Wij)
n
i,j=1 is a n × n matrix with Wij representing the similarity (edge weight)

between the ith and jth feature vector. We assume that we are dealing with an undirected

graph, i.e., Wij = Wji. A Rk1-valued function on the nodes of the graph can be represented

58

as a matrix U ∈ Rn×k1 by U = ([u(1)]⊤, . . . , [u(n)]⊤)⊤ and we define the inner product

⟨U ,V ⟩ =
n∑

i=1

u(i) · v(i).

Similarly, a Rk2-valued function on the edges can be represented as a third-order tensor

U ∈ Rn×n×k2 which we write as

U =


U (1,1) · · · U (1,n)

...

U (n,1) · · · U (n,n)


and U (i,j) ∈ Rk2 . On edge functions we use the inner product

⟨U ,V⟩ = 1

2

n∑
i,j=1

WijU (i,j) · V(i,j).

Multiplication between a matrix and an edge function is usually defined pointwise and

we use the notation [A ⊙ U](i,j) = AijU (i,j) ∈ Rk2 , for a matrix A ∈ Rn×n and an edge

function U ∈ Rn×n×k2 , to make this clear. Similarly, pointwise multiplication between

two matrices A,B ∈ Rn×n is defined by [A ⊙ B]ij = AijBij ∈ R. When a matrix is

acting as a linear operator on a node function we use the usual matrix-vector notation

and write [AU](i) =
∑n

j=1Aiju
(j) ∈ Rk1 for a matrix A ∈ Rn×n and node function U =

([u(1)]⊤, . . . , [u(n)]⊤)⊤ ∈ Rn×k1 . In the sequel we will have k1 = k2 = d.

The gradient of a node-function U = ([u(1)]⊤, . . . , [u(n)]⊤)⊤ ∈ Rn×d is defined as the

edge-function ∇U ∈ Rn×n×d with [∇U](i,j) = u(j) − u(i) ∈ Rd. The divergence divV =

([[divV](1)]⊤, . . . , [[divV](n)]⊤)⊤ ∈ Rn×d of an edge-function V ∈ Rn×n×d is defined as

[divV](i) =
n∑

j=1

WijV(i,j)

for all i = 1, . . . , n. For anti-symmetric edge functions, i.e. V(i,j) = −V(j,i) for all i, j, we have

that the divergence is the negative adjoint to the gradient, i.e.

⟨divV ,U⟩ = −⟨V ,∇U⟩.

59

Diffusion equation on graphs. Let G = (X,W) represent an undirected graph with n

nodes, where X =
(
[x(1)]⊤, · · · , [x(n)]⊤

)⊤ ∈ Rn×d with each row x(i) ∈ Rd a feature vector

and W :=
(
Wij

)
a n× n matrix with Wij representing the similarity (edge weight) between

the ith and jth feature vectors, and we assume Wij = Wji. Consider the following diffusion

process that evolves the feature matrix X on the graph:

∂X(t)

∂t
= div

(
G(X(t), t)⊙∇X(t)

)
, (4.1)

where X(t) =
(
[x(1)(t)]⊤, · · · , [x(n)(t)]⊤

)⊤ ∈ Rn×d with x(i)(0) = x(i), ∇ and div are the

gradient and divergence operators, respectively. The matrix G(X(t), t) is chosen such that

W ⊙G is right-stochastic, i.e., each row of W ⊙G summing to 1. In the machine learning

setting, we can parameterize G with learnable parameters θ which we denote by G(X(t), t, θ).

The initial features are evolved under the diffusion dynamics (4.1) from t = 0 to T to learn

the final representation X(T) for further machine learning tasks.

In the simplest case when G(X(t), t) is only dependent on the initial node features X,

i.e., G is time-independent, right-stochasticity implies
∑

j WijGij = 1 for all i, and so we

focus on the particular case when Gij = 1/di with di =
∑n

j=1Wij . In this case the right-hand

side of (4.1) reduces to the negative of the random-walk Laplacian applied to X(t) and (4.1)

becomes
∂X(t)

∂t
= div

(
G(X(t), t)⊙∇X(t)

)
= −LX(t), (4.2)

where L = I − D−1W := I − A (A := A(X)) is the random walk Laplacian and D is

diagonal with Dii = di. See [CG97; FW93; FS00] for more about random walk Laplacian and

diffusion on graphs.

Graph neural networks. Applying forward Euler discretization, with step size δt < 1, of

(4.2) gives

X(kδt) = X((k − 1)δt)− δtLX((k − 1)δt) := L̃X((k − 1)δt), for k = 1, 2, · · · , K, (4.3)

60

T = Kδt, and X(0) = X. Note that the matrix L̃ is the discretization of the diffusion

operator, which is a special low-pass filter. Equation (4.3) is a prototype for motivating

GNNs: by introducing weights W (k) ∈ Rd×d and a nonlinearity σ, e.g., ReLU, into (4.3), we

have

X((k + 1)δt) = σ
(
L̃X(kδt)W

(k)
)
. (4.4)

The model in (4.4) is similar to the well-established GCN architecture proposed in [KW17].

The diffusive nature of the GNN architecture in (4.4) further explains the over-smoothing

issue of training deep GNNs; the deeper the network architecture is, the more the node

features diffuse. Eventually, all nodes share similar features and become indistinguishable.

See Sec. 4.5 for a detailed analysis.

4.3 A Brief Review of GRAND

GRAND is a new continuous-depth GNN proposed in [Cha+21a]. It integrates a learnable

encoder function ϕ and a learnable decoder function ψ with the neural network parameterized

graph diffusion process, resulting in the prediction Y = ψ(X(T)), where X(T) is computed

as

X(T) = X(0) +

∫ T

0

∂X(t)

∂t
dt, with X(0) = ϕ(X), (4.5)

where ∂X(t)/∂t is given by the graph diffusion equation (4.2). From the neural ODE

perspective, we can perform forward propagation of GRAND, i.e., we solve (4.5), using

numerical ODE solvers.

In the simplest case, when G is only dependent on the initial node features, we can rewrite

(4.1) as
∂X(t)

∂t
=
(
A(X)− I

)
X(t), (4.6)

GRAND models the diffusivity A(X) in (4.6) by the multi-head self-attention mechanism;

potential choices of the attention function include the ones proposed in [Vas+17; Vel+]. More

precisely, in GRAND A(X) = 1
h

∑h
l=1A

l(X) with h being the number of heads and the

61

attention matrix Al(X) = (al(xi,xj)), for l = 1, · · · , h, is computed as follows:

al(xi,xj) =
exp

(
LeakyReLU(al⊤[W lxi∥W lxj])

)∑
k∈Ni

exp
(
LeakyReLU(al⊤[W lxi∥W lxk])

) , (4.7)

where W l and al are learned, ∥ is the concatenation operator, and Ni is the index set of

the nodes that are connected to the ith node in the graph. GRAND with the attention

in (4.7) is called GRAND-l, that is, GRAND-l is a special case of GRAND when the

diffusivity is dependent only on the initial graph node features. Time-dependent attention

and graph rewiring can be integrated into GRAND, resulting in GRAND-nl and GRAND-nl-

rw, respectively [Cha+21a]. From the ODE viewpoint, GRAND and its variants are a class of

coupled neural ODEs defined on an unweighted graph. Their merits include continuous-depth

and memory-efficient training using the adjoint method [Bit63; Che+18].

4.4 Random walk viewpoint of GRAND

In this section, we present a random walk interpretation of GRAND. The connection

between graph random walks and the diffusion equation has been extensively studied, but we

recap the key idea here to motivate the new GRAND with a source term architecture. Let

{B(i)(k)}k∈N be the random walk on {x(j)(0)}nj=1 defined by, for δt ∈ [0, 1],

B(i)(0) = x(i)(0)

P
(
B(i)(k + 1) = x(L)(0)|B(i)(k) = x(j)(0)

)
=

 1− δt if L = j

δtWjL

dj
if L ̸= j

(4.8)

where dj =
∑n

L=1WjL (assume WLL = 0 for all L). Proposition 5 below is well-known, see

[ZGL03].

Proposition 5. Let X solve (4.3) and B(i) be the random walk determined by (4.8) where

δt ∈ [0, 1]. Then

x(i)(δtk) = E
[
B(i)(k)

]
.

Proof of Proposition 5. For notational convenience let us assume that x(i)(0) = x(i). Clearly

E
[
B(i)(0)

]
= x(i) = x(i)(0)

62

for all i = 1, . . . , n. Assume that

E
[
B(i)(k)

]
= x(i)(δtk)

for all i = 1, . . . , n. Then,

E
[
B(i)(k + 1)

]
=

n∑
j=1

x(j)P
(
B(i)(k + 1) = x(j)

)
=

n∑
j=1

n∑
L=1

x(j)P
(
B(L)(k) = x(j)|B(i)(1) = x(L)

)
P
(
B(i)(1) = x(L)

)
=

n∑
j=1

n∑
L=1

x(j)

(
(1− δt)1i=L +

δtWiL

di

)
P
(
B(i)(1) = x(L)

)
= (1− δt)

n∑
j=1

x(j)P
(
B(i)(1) = x(L)

)
+
δt
di

n∑
L=1

WiL

n∑
j=1

x(j)P
(
B(L)(k) = x(j)

)
= (1− δt)E

[
B(i)(k)

]
+
δt
di

n∑
L=1

WiLE
[
B(L)(k)

]
= (1− δt)x

(i)(δtk) +
δt
di

n∑
L=1

WiLx
(L)(δtk)

= x(i)(δtk) +
δt
di

n∑
L=1

WiLWiL

(
x(L)(δtk)− x(i)(δtk)

)
= x(i)(δtk)− δt [LX(δtk)]

(i)

= x(i)(δt(k + 1)),

as required.

Proposition 6 below gives the stationary distribution of the random walk {B(i)(k)}k∈N.

Proposition 6. Assume the graph G = (X,W) is connected. Then, the stationary distribu-

tion of {B(i)(k)}k∈N is

π =

(
d1∑n
j=1 dj

, . . . ,
dn∑n
j=1 dj

)
, (4.9)

which is independent of the starting position x(i).

63

Proof of Proposition 6. Let P =
(
Pij

)
∈ Rn×n be the probability transition kernel, so

Pij =

 1− δt if i = j,

δtWij

di
if i ̸= j.

We have

n∑
i=1

πiPij =
n∑

i=1

di∑n
k=1 dk

(
(1− δt1i=j +

δtWij

di

)
=
dj(1− δt)∑n

k=1 dk
+
δt
∑n

i=1Wij∑n
k=1 dk

=
dj∑n
k=1 dk

= πj,

as required.

Furthermore, we have the following theoretical result on the asymptotic behavior of graph

node features under the GRAND dynamics given by (4.3).

Proposition 7. Assume the graph G = (X,W) is connected. Then for all i = 1, · · · , n, we

have

x(i)(kδt) → x̃ :=
n∑

j=1

x(j)(0)πj, as k → ∞.

Hence, for the case of (4.3), i.e., GRAND-l, we expect the output to be approximately

independent of the input, due to over-smoothing. Of course, once we reintroduce the X(t)

dependence back into G in (4.1) and (4.2) or into the operator A in (4.6) then the above

arguments no longer hold. Nevertheless, the GRAND architectures are built on a principle

that is ill-suited to deep networks. In the next section we introduce a source term and perform

a similar random walk analysis that illustrates how the new architecture can be better suited

for deep GNN architectures.

64

4.5 GRAND++: Graph Neural Diffusion with A Source Term

4.5.1 Algorithm and formulation

At the core of GRAND++ is the introduction of a source term into GRAND, leveraging

the random walk viewpoint of the diffusion process. We take a small subset of feature vectors,

indexed by I ⊆ [n], believed to be “trustworthy” for use as a source term. In particular,

we use the features of labeled data. The GRAND++ dynamics are defined by a diffusion

equation with a source term (we use the variable z for GRAND++-related dynamics and x

for GRAND dynamics)

∂z(i)(t)

∂t
= div [G(Z(t), t)⊙∇Z(t)](i) +

∑
j∈I

δijCj (4.10)

where Cj is the source at feature vector of node j. Below we motivate a particular choice of

Cj.

The key idea is to first characterise the bias that arises from the diffusion and use that to

propose a correction via the choice of source terms Cj. Following the simplifications in (4.2),

our diffusion equation (without the source term) follows the approximate dynamics when

t≫ 1
∂x(i)(t)

∂t
= − [LX(t)](i) = −x(i)(t)︸ ︷︷ ︸

≈x̃

+
1

di

n∑
j=1

Wij x
(j)(t)︸ ︷︷ ︸
≈x̃

≈ 0.

For i ∈ I, it transpires that choosing Ci = x(i) − x̂ (where x̂ is defined below) gives rise to

a random walk interpretation that allows us to prove that the oversmoothing seen in the

GRAND model is avoided.

One can in fact choose x̃ with a certain degree of freedom. If we initialise X(0) = X then

we obtain x̃ =
∑n

j=1 x
(j)πj (as is usual in the GRAND model). However, as the similarities

are encoded in the graph weights, and the diffusion dynamics will drive it towards a non-trivial

state, we can choose a different initialization than X(0) = X. Through connections with

65

random walks we, in the next subsection, motivate an alternative initialisation
n∑

i=1

z(i)(0) =
∑
i∈I

x(i) − x̂

di
, where x̂ =

1

|I|
∑
j∈I

x(j) (4.11)

with the dynamics

∂z(i)(t)

∂t
= div [G(Z(t), t)⊙∇Z(t)](i) +

∑
j∈I

δij
(
x(i) − x̂

)
. (4.12)

For example, we could choose

z(i)(0) =

 1
di

(
x(i) − x̂

)
if i ∈ I

0 otherwise,
or z(i)(0) = x(i) − c,

where c = 1
n

(∑n
i=1 x

(i) −
∑

j∈I
x(j)−x̂

dj

)
is chosen such that (4.11) holds. We do not believe

that the constant c (that shifts by a constant) is particularly important but it is included to

provide a random walk interpretation which helps to understand the deep architecture (when

T is big) behaviour of the model GRAND++. The justification for this choice will be made

in Sec. 4.5.2. To summarize, the GRAND++ model in (4.12), with initial condition satisfying

(4.11), simply adds a source term to the original GRAND model and uses a different initial

condition. Therefore, the nonlinear diffusivity and graph rewiring tricks used by GRAND

can be easily integrated into GRAND++. In terms of implementation, since GRAND++

merely changes the right-hand side of GRAND, which again can be regarded as a system of

coupled first-order neural ODEs; we can leverage neural ODE training, testing, and inference

for GRAND++ similar to GRAND.

In the next subsection we explore the random walk connection of the above model,

suggesting that building a graph neural network based on the diffusion with source model

does not suffer from the same degeneracy as we observed in Sec. 4.4 and is therefore better

suited to build deep GNNs. In particular, we can write the diffusion with source model as

the short time expected behaviour of a random walk and therefore we do not have the issue

of reaching the stationary state (in other words passing the mixing time). Our experiments

in Sec. 4.6 suggest the formal motivation holds and we are able to design deep GNNs.

66

4.5.2 The random walk perspective of GRAND++

Let us continue to consider the simplified model in the previous subsection, i.e., assume

the dynamics are governed by

∂z(i)(t)

∂t
= − [LZ(t)](i) +

∑
j∈I

δij
(
x(i) − x̂

)
(4.13)

where the initial condition satisfies (4.11). Using the forward Euler discretisation of the above

dynamics we have

z(i)(δtk) = z(i)(δt(k − 1))− δt [LZ(δt(k − 1))](i) + δt
∑
j∈I

δij
(
x(i) − x̂

)
, (4.14)

for k = 1, 2, . . . , K where again T = Kδt.

We use the same random walk as that introduced in Sec. 4.4, i.e. the random walk defined

by (4.8), but we will now only consider random walks that are initialised on the nodes indexed

by I.

Proposition 8. Let Z solve (4.14) with the initial condition satisfying (4.11), and let B(i)

be the random walk determined by (4.8). Then,∣∣∣∣z(i)(kδt)− E
[k∑

s=0

1

di

∑
j∈I

(
x(j) − x̂

)
1B(j)(s)=x(i)

]∣∣∣∣→ 0 as k → ∞.

Proof of Proposition 8. Let

y(i)(k) = E

[
k∑

s=0

1

di

∑
j∈I

(
x(j) − x̂

)
1B(j)(s)=x(i)

]
.

67

Notice that

E

[
k∑

s=0

1B(j)(s)=x(i)

]

=
k∑

s=0

P
(
B(j)(s) = x(i)

)
= P

(
B(j)(0) = x(i)

)︸ ︷︷ ︸
δij

+
k∑

s=1

P
(
B(j)(s) = x(i)

)

= δij +
k∑

s=1

n∑
L=1

P
(
B(j)(s) = x(i)|B(j)(s− 1) = x(L)

)
P
(
B(j)(s− 1) = x(L)

)
= δij +

k∑
s=1

n∑
L=1

(
(1− δt)δLi +

δtWLi

dL

)
P
(
B(j)(s− 1) = x(L)

)
= δij + (1− δt)

k∑
s=1

P
(
B(j)(s− 1) = x(i)

)
+ δt

n∑
L=1

WLi

dL

k∑
s=1

P
(
B(j)(s− 1) = x(L)

)
= δij + (1− δt)

k−1∑
s=0

P
(
B(j)(s) = x(i)

)
+ δt

n∑
L=1

WLi

dL

k−1∑
s=0

P
(
B(j)(s) = x(L)

)
= δij + (1− δt)E

[
k−1∑
s=0

1B(j)(s)=x(i)

]
+ δt

n∑
L=1

WLi

dL
E

[
k−1∑
s=0

1B(j)(s)=x(L)

]
.

From the definition of Y and the above recursive relationship we have

y(i)(k) =
1

di

∑
j∈I

(
x(j) − x̂

)
E

[
k∑

s=0

1B(j)(s)=x(i)

]

=
1

di

∑
j∈I

(
x(j) − x̂

)
δij + (1− δt)

1

di

∑
j∈I

(
x(j) − x̂

)
E

[
k−1∑
s=0

1B(j)(s)=x(L)

]

+
δt
di

n∑
L=1

WLi

dL

∑
j∈I

(
x(j) − x̂

)
E

[
k−1∑
s=0

1B(j)(s)=x(L)

]

=
1

di

∑
j∈I

(
x(j) − x̂

)
δij + (1− δt)y

(i)(k − 1) +
δt
di

n∑
L=1

WLiy
(L)(k − 1)

= y(i)(k − 1) +
1

di

∑
j∈I

(
x(j) − x̂

)
δij − δt [LY (k − 1)](i) .

Now we let

w(i)(k) = di
(
z(i)(kδt)− y(i)(k)

)
68

so that W satisfies

w(i)(k) = w(i)(k − 1)− δt [LW (k − 1)](i) = [PW (k − 1)](i) .

Hence, W (k) = P kW (0). Since the stationary distribution of the random walk with transition

kernel is π, we have limk→∞P k = 1π⊤. Hence, as k → ∞, w(i)(k) →
∑n

j=1 πjw
(j)(0) = 0

since w(j)(0) = 0 by the choice in the initialisation of Z.

Remark 3. In the limit k → ∞ the term

E
[k∑

s=0

1

di

∑
j∈I

x(j)1B(j)(s)=x(i)

]
is formally a function of the random walk at all times. Whilst if k is very large (i.e. in

comparison to the mixing time) we still have that

E
[
1

di

∑
j∈I

x(j)1B(j)(k)=x(i)

]
=

1

di

∑
j∈I

x(j) P
(
B(j)(k) = x(j)

)︸ ︷︷ ︸
≈πi

≈ πi
di

∑
j∈I

x(j) (4.15)

and on the other hand

E
[
1

di

∑
j∈I

x̂1B(j)(k)=x(i)

]
=

x̂

di

∑
j∈I

P
(
B(j)(k) = x(j)

)︸ ︷︷ ︸
≈πi

≈ πi|I|x̂
di

. (4.16)

From the definition of x̂ we see that (4.15) and (4.16) are approximately equal. And therefore

we can understand E[1
di

∑
j∈I x̂1B(j)(k)=x(i)] as the long time behaviour of E[1

di

∑
j∈I x

(j)1B(j)(k)=x(i)]

Very formally we can see that subtracting the long-time behaviour from the all-time behaviour

leaves us with the short time behaviour. This provides one explanation as to why we do not

expect the deep layers to be determined by the stationary state of the random walk (at which

point there is little dependence on the initial layers, causing the deep layers to be approximately

constant).

Remark 4. The random walk interpretation

E
[k∑

s=0

1

di

∑
j∈I

(
x(j) − x̂

)
1B(j)=x(i)

]
(4.17)

69

can be considered to be dual to the random walk interpretation in Sec. 4.4: in Sec. 4.4 we

released the random walker from the node of interest, whilst now we release the random walkers

from nodes indexed by I and see how many of them hit the node of interest. We note also

that we do not require a lower bound on the size of the set I. Indeed, if |I| is fixed whilst one

takes the number of feature vectors n→ ∞ we still expect many properties of GRAND++, in

particular Proposition 9 below, to hold. This is due to the asymptotic well-posedness of the

dual random walk in low labeling rates [Cal+20].

Proposition 7 reveals that in the simple setting of (4.2), GRAND converges to a constant

when its depth goes to infinity. However, this is not true for GRAND++ since the graph

node features will not converge to a constant vector driven by the GRAND++, as shown in

Proposition 9 below.

Proposition 9. Assume the graph G = (X,W) is connected. Then z(i)(kδt) that was defined

in (4.14) does not converge to a constant vector as a function of i as k → ∞. That is, the

node features will not become the same across graph nodes under the GRAND++ dynamics.

Proof of Proposition 9. We prove the result by contradiction. Assume that there exists z

such that z(i)(kδt) → z for all i = 1, . . . , n as k → ∞. Then LZ(kδt) → 0. Since we can

write

z(i)(kδt)− z(j)(kδt) = z(i)((k − 1)δt)− z(j)((k − 1)δt)

− δt

(
[LZ((k − 1)δt)]

(i) − [LZ((k − 1)δt)]
(j)

)
+ δt

∑
L∈I

(
δiL(x

(i) − x̂)− δjL(x
(j) − x̂)

)
,

then taking the limit k → ∞ implies∑
L∈I

δiL(x
(i) − x̂) =

∑
L∈I

δjL(x
(j) − x̂)

for all i, j which is clearly not true.

70

Remark 5. Proposition 9 guarantees GRAND++ is less likely to suffer from over-smoothing

than GRAND, and in particular it shows that we have a non-constant deep layer limit, i.e.,

as t → ∞. Analysing the limit is beyond the scope of the chapter but we have seen one

characterisation in Proposition 8. By construction we have ∂z(i)(t)/∂t ≈ 0 for i ∈ I so

one should expect that the deep layer limit is (close to) a smooth interpolation of the feature

vectors labeled by I.

The continuous time model (4.10) is, in the special case of (4.13), the mean field limit

of the probabilistic formulation (4.17). Our proposed algorithm is formulated from the

mean-field limit.

4.6 Experiments

In this section, we compare the performance of GRAND++ with GRAND and several

other popular GNNs on various graph node classification tasks. We aim to show the practical

advantages of GRAND++ in learning with limited labeled data and using deep architectures.

Without mentioning clearly, we use the same hyperparameters that that used for GRAND in

[Cha+21a] for GRAND++. We provide detailed descriptions of experimental settings and

datasets that are omitted in the main text in 4.6.4. For all experiments, we run 100 splits for

each dataset with 20 random seeds for each split, which are conducted on a server with four

NVIDIA RTX 3090 graphics cards.

We compare the performance of GRAND++ and its nonlinear and graph rewiring variants

with several popular GNNs on various graph node classification benchmarks. Except for

the integration time, which measures the implicit depth of GRAND and GRAND++, we

adopt the experimental settings of GRAND in [Cha+21a] for GRAND++ include numerical

differential equation solvers. Following [Cha+21a], we study seven graph node classification

datasets, namely CORA, CiteSeer, PubMed, CoauthorCS, Computer, Photo, and ogbn-arxiv;

we describe these datasets in 4.6.4.

71

4.6.1 GRAND++ is more resilient to deep architectures

We first show that our introduced source term in (4.12) can improve the accuracy of

GRAND-l when the architecture is deep, i.e., the integration time T in (4.5) is big. We denote

GRAND-l with the source term as GRAND++-l. For each node classification task, we train

all models using the same number of labeled nodes as in [Cha+21a]. Figure 4.2 contrasts

the performance of GRAND-l and GRAND++-l with different depths, or T , on CORA,

CiteSeer, Computer, and Photo datasets. We provide the detailed results on PubMed and

CoauthorCS, together with more comparisons of GRAND++-l with GRAND-l and several

other celebrated GNNs include GCN, GAT, and GraphSage in Table 4.1. The results in

Fig. 4.2 and Table 4.1 confirm that GRAND-l suffers less from over-smoothing compared to

GCN, GAT, and GraphSage. Moreover, GRAND++-l performs on par with GRAND-l when

the depth (T) of the network is small, but GRAND++-l significantly outperforms GRAND-l

when T is large. As T increases, the margin becomes wider, indicating that GRAND++-l can

overcome over-smoothing much more effectively than GRAND-l. Note that we did not use

uniform depth for GRAND-l and GRAND++-l on all datasets because the adaptive step-size

ODE solver fails when T is large for some tasks.

Open graph benchmark with paper citation network (ogbn-arxiv). Ogbn-arxiv

consists of 169, 343 nodes and 1, 166, 243 directed edges. Each node is an arxiv paper repre-

sented by a 128-dimensional features and each directed edge indicates the citation direction.

This dataset is used for node property prediction and has been a popular benchmark to test

the advantage of deep graph neural networks over shallow graph neural networks [Li+20a;

Li+21]. We train two models using labeling rates of 3.0% and 5.0%, respectively; the corre-

sponding test accuracy for GRAND-l/GRAND++-l are 65.26%/66.64% and 67.42%/67.77%,

respectively. GRAND++-l outperforms GRAND-l in both labeling rates.We further compare

GRAND and GRAND++ with different depth on the ogbn-arxiv task. Compared to the

GRAND model used in [Cha+21a], we reduce the hidden dimension from 162 to 81 to fit the

72

16 64 128 256
Depth (T)

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

GRAND++-l
GRAND-l

4 16 64
Depth (T)

66

68

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

GRAND++-l
GRAND-l

CORA CiteSeer

1 4 16 32
Depth (T)

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

GRAND++
GRAND

1 4 16 32
Depth (T)

88

89

90

91

92

93

94

Ac
cu

ra
cy

 (%
)

GRAND++
GRAND

Computer Photo

Figure 4.2: Test accuracy vs. the “depth” (T in (4.5)) of GRAND-l and GRAND++-l on

the four graph node classification tasks. We see that GRAND++-l is much more resilient to

deep architectures than GRAND-l. These results show that GRAND++ is better suited for

learning with a very deep architecture than GRAND.

model into the GPU in our lab. We can clearly see that GRAND++ outperforms GRAND

on various choices of depth in table 4.2.

4.6.2 GRAND++ is more accurate with limited labeled training data

Besides helping to overcome over-smoothing, our theory shows that the source term can

boost the accuracy of GRAND-l with low-labeling rates. Table 4.3 compares the accuracy of

73

4 16 64 128
Depth (T)

25
30
35
40
45
50
55
60
65

Ac
cu

ra
cy

 (%
)

GRAND++-l
GRAND-l

1 4 16 64
Depth (T)

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

GRAND++-l
GRAND-l

CORA CiteSeer

Figure 4.3: Accuracy of GRAND++-l and GRAND-l for CORA and CiteSeer, where both

models, with different depth (T), are train with 1 labeled node per class. These results show

that GRAND++ is more effective in learning with low-labeling rates than GRAND.

GRAND++-l with GRAND-l, GCN, GAT, GraphSage, and MoNet, trained with different

numbers of labeled data. Here, we slightly tune T for GRAND++ based on the optimal

value for GRAND, see Table 4.12 for their values. We see that with few labeled data, in most

tasks GRAND++-l is significantly more accurate than the other GNNs include GRAND-l,

confirming our theoretical insight. For CoauthorCS task, both GRAND-l and GRAND++-l

are worse than GCN and GraphSage. Moreover, increasing the depth of GRAND++-l can

improve the classification accuracy with limited training data, but this is not the case for

GRAND-l, see Fig. 4.3. We perform the t-test in to confirm the statistical significance of the

accuracy gain of GRAND++ over GRAND in Table 4.3.

t-test of the accuracy improvement of GRAND++ over GRAND To confirm

the statistical significance of the accuracy improvement of GRAND++ over GRAND in

Table 4.3, in this subsection, we conduct t-test experiments at 0.95 confidence to compare

GRAND and GRAND++ on six different benchmark graph node classification tasks. We

74

Model depth CORA CiteSeer PubMed CoauthorCS Computer Photo

1 77.48 ± 1.43 71.23 ± 3.47 78.11 ± 1.47 90.42 ± 0.76 84.11 ± 0.51 92.93 ± 0.84
4 81.98 ± 1.42 72.58 ± 3.79 79.20 ± 0.74 90.89 ± 0.36 84.19 ± 0.93 93.54 ± 0.38
16 82.49 ± 1.37 73.84 ± 2.66 79.49 ± 0.84 90.24 ± 0.30 78.97 ± 2.33 92.69 ± 0.61

GRAND++-l 32 82.48 ± 0.71 73.29 ± 1.29 79.81 ± 1.61 NA 76.01 ± 1.33 92.94 ± 0.90
(ours) 64 80.99 ± 1.76 72.81 ± 2.18 NA NA NA NA

128 80.29 ± 1.98 NA NA NA NA NA
256 79.04 ± 2.94 NA NA NA NA NA

1 78.59 ± 1.17 71.96 ± 2.74 77.93 ± 1.26 90.79 ± 0.93 83.41 ± 0.69 92.66 ± 0.42
4 82.80 ± 1.62 73.87 ± 2.12 78.71 ± 1.19 90.94 ± 0.21 84.23 ± 1.05 92.47 ± 0.53
16 82.75 ± 1.17 72.61 ± 2.42 78.79 ± 0.93 87.66 ± 1.70 77.67 ± 1.94 92.37 ± 0.27

GRAND-l 32 82.19 ± 1.73 72.65 ± 3.15 78.70 ± 1.08 NA 69.56 ± 2.20 89.61 ± 1.33
[Cha+21a] 64 80.87 ± 2.28 69.84 ± 2.66 NA NA NA NA

128 77.22 ± 2.88 NA NA NA NA NA
256 67.79 ± 3.10 NA NA NA NA NA

1 76.92 ± 0.56 72.80 ± 1.69 72.78 ± 1.80 91.53 ± 0.45 81.44 ± 0.24 91.31 ± 0.19
GCN 4 81.35 ± 1.27 70.54 ± 6.61 77.15 ± 3.00 87.84 ± 0.96 75.73 ± 1.02 90.11 ± 0.66

[KW17] 16 19.70 ± 7.06 24.78 ± 1.45 41.36 ± 1.77 14.49 ± 0.91 12.86 ± 2.39 23.11 ± 1.76
32 21.86 ± 6.09 24.23 ± 1.65 40.66 ± 1.86 12.14 ± 1.64 21.15 ± 13.10 24.30 ± 0.73

1 72.49 ± 2.03 71.83 ± 1.53 77.24 ± 0.72 79.22 ± 0.60 73.97 ± 1.20 87.08 ± 0.37
GAT 4 80.95 ± 2.28 72.31 ± 2.82 77.37 ± 1.32 78.05 ± 1.10 76.67 ± 2.79 87.95 ± 1.76
[Vel+] 16 29.14 ± 1.02 24.84 ± 1.45 39.21 ± 0.43 24.20 ± 2.22 37.07 ± 2.99 29.97 ± 3.68

32 29.75 ± 1.57 24.83 ± 1.45 39.02 ± 0.12 22.73 ± 2.08 32.53 ± 3.09 25.57 ± 4.03

1 73.47 ± 1.98 71.94 ± 1.45 72.42 ± 0.61 91.74 ± 0.26 75.95 ± 0.70 88.10 ± 0.87
GraphSage 4 79.83 ± 2.43 50.00 ± 14.27 76.01 ± 2.35 87.94 ± 0.23 75.62 ± 2.85 90.68 ± 2.11
[HYL17] 16 25.52 ± 6.45 24.84 ± 1.45 37.55 ± 3.92 10.12 ± 2.21 22.79 ± 10.77 25.57 ± 3.31

32 29.14 ± 1.02 28.38 ± 2.54 39.21 ± 4.39 7.91 ± 3.15 37.07 ± 13.22 20.09 ± 5.67

Table 4.1: Classification accuracy of different GNN models with different depths on six

benchmark graph node classification tasks. NA: neural ODE solver failed. These results show

that GRAND++ is better suited for learning with a very deep architecture than GRAND.

(Unit: %)

first perform unpaired t-tests to show the improvement of GRAND++ over GRAND on low

75

Model depth GRAND-l GRAND++-l Improvement from
(T) [Cha+21a] (ours) GRAND++-l (ours)

1 68.50 ± 0.76 68.79 ± 0.35 0.29
4 69.53 ± 0.21 69.68 ± 0.38 0.15
6 69.46 ± 0.43 69.71 ± 0.24 0.25
8 69.44 ± 0.30 69.61 ± 0.28 0.17

OGBN-arXiv 32 67.44 ± 0.59 69.41 ± 0.53 1.97
64 63.47 ± 0.28 68.05 ± 0.73 4.58
96 55.95 ± 1.24 67.26 ± 0.61 11.31

Table 4.2: Classification accuracy of the linear GRAND and GRAND++ models trained

with different depth on the OGBN-arXiv graph node classification task. Compared to the

GRAND model used in [Cha+21a], we reduce the hidden dimension from 162 to 81 to fit the

model into the GPU in our lab. (Unit: %)

labeled datasets using the following t-score

t-score =
µGRAND++ − µGRAND√

σ2
GRAND++

n
+

σ2
GRAND++

n

, (4.18)

where µ and σ2 are the mean and variance of the performances of each model, and n is the

number of runs for each model. The t-test score are shown in Table 4.4.

For some entries in Table 4.4 that are not significant enough, we further conduct paired

t-test between GRAND++ and GRAND on these specific datasets as shown in Table 4.5.

Since a large portion of variance comes from splitting of the datasets, we pair up tests of

GRAND and GRAND++ with the same splitting in this experiment. In this case, a sample

of difference of size n is computed, and t-test score can be computed using the equation

t-score =
µdiff − 0

σdiff/
√
n
. (4.19)

4.6.2.1 Classification accuracy of GNNs with fewer number of training data

Besides the results shown in Fig. 4.1, we further test the classification accuracy of

more benchmark GNN architectures trained with fewer numbers of labeled data per class.

76

Model Label# CORA CiteSeer PubMed CoauthorCS Computer Photo

1 54.94 ± 16.09 58.95 ± 9.59 65.94 ± 4.87 60.30 ± 1.50 67.65 ± 0.37 83.12 ± 0.78

2 66.92 ± 10.04 64.98 ± 8.31 69.31 ± 4.87 76.53 ± 1.85 76.47 ± 1.48 83.71 ± 0.90

GRAND++ 5 77.80 ± 4.46 70.03 ± 3.63 71.99 ± 1.91 84.83 ± 0.84 82.64 ± 0.56 88.33 ± 1.21

-l (ours) 10 80.86 ± 2.99 72.34 ± 2.42 75.13 ± 3.88 86.94 ± 0.46 82.99 ± 0.81 90.65 ± 1.19

20 82.95 ± 1.37 73.53 ± 3.31 79.16 ± 1.37 90.80 ± 0.34 85.73 ± 0.50 93.55 ± 0.38

1 52.53 ± 16.40 50.06 ± 17.98 62.11 ± 10.58 59.15 ± 5.73 48.67 ± 1.66 81.25 ± 2.50

2 64.82 ± 11.16 59.55 ± 10.89 69.00 ± 7.55 73.83 ± 5.58 74.77 ± 1.85 82.13 ± 3.27

GRAND-l 5 76.07 ± 5.08 68.37 ± 5.00 73.98 ± 5.08 85.29 ± 2.19 80.72 ± 1.09 88.27 ± 1.94

[Cha+21a] 10 80.25 ± 3.40 71.90 ± 7.66 76.33 ± 3.41 87.81 ± 1.36 82.42 ± 1.10 90.98 ± 0.93

20 82.86 ± 2.39 73.02 ± 5.89 78.76 ± 1.69 91.03 ± 0.47 84.54 ± 0.90 93.53 ± 0.47

1 47.72 ± 15.33 48.94 ± 10.24 58.61 ± 12.83 65.22 ± 2.25 49.46 ± 1.65 82.94 ± 2.17

2 60.85 ± 14.01 58.06 ± 9.76 60.45 ± 16.20 83.61 ± 1.49 76.90 ± 1.49 83.61 ± 0.71

GCN 5 73.86 ± 7.97 67.24 ± 4.19 68.69 ± 7.93 86.66 ± 0.43 82.47 ± 0.97 88.86 ± 1.56

[KW17] 10 78.82 ± 5.38 72.18 ± 3.47 72.59 ± 3.19 88.60 ± 0.50 82.53 ± 0.74 90.41 ± 0.35

20 82.07 ± 2.03 74.21 ± 2.90 76.89 ± 3.27 91.09 ± 0.35 82.94 ± 1.54 91.95 ± 0.11

1 47.86 ± 15.38 50.31 ± 14.27 58.84 ± 12.81 51.13 ± 5.24 37.14 ± 7.81 73.58 ± 8.15

2 58.30 ± 13.55 55.55 ± 9.19 60.24 ± 14.44 63.12 ± 6.09 65.07 ± 8.86 76.89 ± 4.89

GAT 5 71.04 ± 5.74 67.37 ± 5.08 68.54 ± 5.75 71.65 ± 4.53 71.43 ± 7.34 83.01 ± 3.64

[Vel+] 10 76.31 ± 4.87 71.35 ± 4.92 72.44 ± 3.50 74.71 ± 3.35 76.04 ± 0.35 87.42 ± 2.38

20 79.92 ± 2.28 73.22 ± 2.90 75.55 ± 4.11 79.95 ± 2.88 80.05 ± 1.81 89.38 ± 2.48

1 43.04 ± 14.01 48.81 ± 11.45 55.53 ± 12.71 61.35 ± 1.35 27.65 ± 2.39 45.36 ± 7.13

2 53.96 ± 12.18 54.39 ± 11.37 58.97 ± 12.65 76.51 ± 1.31 42.63 ± 4.29 51.93 ± 4.21

GraphSage 5 68.14 ± 6.95 64.79 ± 5.16 66.07 ± 6.16 89.06 ± 0.69 64.83 ± 1.62 78.26 ± 1.93

[HYL17] 10 75.04 ± 5.03 68.90 ± 5.08 70.74 ± 3.11 89.68 ± 0.39 74.66 ± 1.29 84.38 ± 1.75

20 80.04 ± 2.54 72.02 ± 2.82 74.55 ± 3.09 91.33 ± 0.36 79.98 ± 0.96 91.29 ± 0.67

1 47.72 ± 15.53 39.13 ± 11.37 56.47 ± 4.67 58.99 ± 5.17 23.78 ± 7.57 34.72 ± 8.18

2 60.85 ± 14.01 48.52 ± 9.52 61.03 ± 6.93 76.57 ± 4.06 38.19 ± 3.72 43.03 ± 8.22

MoNet 5 73.86 ± 7.97 61.66 ± 6.61 67.92 ± 2.50 87.02 ± 1.67 59.38 ± 4.73 71.80 ± 5.02

[Mon+17] 10 78.82 ± 5.38 68.08 ± 6.29 71.24 ± 1.54 88.76 ± 0.49 68.66 ± 3.30 78.66 ± 3.17

20 82.07 ± 2.03 71.52 ± 4.11 76.49 ± 1.75 90.31 ± 0.41 73.66 ± 2.87 88.61 ± 1.18

Table 4.3: Classification accuracy of different GNNs trained with different number of labeled

data per class (label #) on six benchmark graph node classification tasks. The highest

accuracy is highlighted in bold for each number of labeled data per class. These results show

that GRAND++ is more effective in learning with low-labeling rates than GRAND. (Unit:

%)

77

#per class CORA CiteSeer PubMed CoauthorCS Computer Photo

1 1.05 4.36 3.28 1.95 111.60 45.33
2 1.39 3.96 0.34 4.59 7.18 4.65
5 2.55 2.68 -3.67 -1.96 15.67 0.26

Table 4.4: Unpaired t-test scores of GRAND++ v.s. GRAND on six different benchmark

graph node classification tasks. With n = 100, over 0.95 confidence is equivalent to exceed

roughly 1.66 t-test scores. Highlighted are the ones passing the test.

Dataset #per class Accuracy Difference # splits t-score p-score

CORA 1 1.06 ± 6.24 100 1.80 0.044
CORA 2 1.45 ± 5.23 100 2.78 0.003

Table 4.5: Paired t-test scores of GRAND++ v.s. GRAND on datasets where unpaired

t-test scores are not significant enough.

Tables 4.6-4.8 list the classification accuracy, on the test set, of different benchmark GNN

models when they are trained with different numbers of labeled nodes per class.

#labeled nodes per class 1 2 5 10 20

GCN [KW17] 47.72 ± 15.53 60.85 ± 14.01 73.86 ± 7.97 78.82 ± 5.38 82.07 ± 2.03
GAT [Vel+] 47.86 ± 15.38 58.30 ± 13.55 71.04 ± 5.74 76.31 ± 4.87 79.92 ± 2.28

GraphSage [HYL17] 43.04 ± 14.01 53.96 ± 12.18 68.14 ± 6.95 75.04 ± 5.03 80.04 ± 2.54
MoNet [Mon+17] 47.72 ± 15.53 60.85 ± 14.01 73.86 ± 7.97 78.82 ± 5.38 82.07 ± 2.03
Lanczos [Lia+19] 47.41 ± 11.82 60.94 ± 4.00 74.28 ± 3.07 76.12 ± 0.93 79.85 ± 1.82

AdaLanczos [Lia+19] 48.23 ± 11.82 61.46 ± 4.96 74.24 ± 3.25 77.61 ± 1.36 81.03 ± 1.56
GCNN [XQT20] 43.31 ± 11.95 60.28 ± 12.89 72.75 ± 4.21 78.92 ± 1.32 81.89 ± 1.12

GRAND-l [Cha+21a] 52.53 ± 16.40 64.82 ± 11.16 76.07 ± 5.08 80.25 ± 3.40 82.86 ± 2.39
GRAND-nl [Cha+21a] 40.97 ± 14.87 50.59 ± 13.25 65.13 ± 9.14 72.55 ± 6.65 77.76 ± 4.21

GRAND-nl-rw (gdc) [Cha+21a] 52.68 ± 12.48 65.54 ± 10.01 74.94 ± 7.04 80.64 ± 6.19 82.47 ± 1.93
GRAND-nl-rw (two-hop) [Cha+21a] 53.79 ± 17.72 64.50 ± 11.88 74.33 ± 6.28 79.61 ± 4.47 82.37 ± 1.98

Table 4.6: Classification accuracy of different GNNs trained with different numbers of labeled

nodes per class. Dataset: CORA.

78

#labeled nodes per class 1 2 5 10 20

GCN [KW17] 48.94 ± 10.24 58.06 ± 9.76 67.24 ± 4.19 72.18 ± 3.47 74.21 ± 2.90
GAT [Vel+] 50.31 ± 14.27 55.55 ± 9.19 67.37 ± 5.08 71.35 ± 4.92 73.22 ± 2.90

GraphSage [HYL17] 48.81 ± 11.45 54.39 ± 11.37 64.79 ± 5.16 68.90 ± 5.08 72.02 ± 2.82
MoNet [Mon+17] 39.13 ± 11.37 48.52 ± 9.52 61.66 ± 6.61 68.08 ± 6.29 71.52 ± 4.11
Lanczos [Lia+19] 49.16 ± 3.63 57.65 ± 7.60 66.72 ± 9.38 71.01 ± 4.90 72.14 ± 2.00

AdaLanczos [Lia+19] 50.32 ± 7.42 58.35 ± 7.97 67.39 ± 8.20 72.15 ± 4.85 74.33 ± 2.83
GCNN [XQT20] 40.58 ± 15.32 51.71 ± 13.87 63.16 ± 12.26 67.06 ± 5.65 69.84 ± 1.77

GRAND-l [Cha+21a] 50.06 ± 17.98 59.55 ± 10.89 68.37 ± 5.00 71.90 ± 7.66 73.02 ± 5.89
GRAND-nl [Cha+21a] 49.96 ± 18.62 59.57 ± 11.03 68.21 ± 7.08 71.88 ± 6.94 72.84 ± 6.61

GRAND-nl-rw (gdc) [Cha+21a] 50.35 ± 17.74 59.98 ± 10.32 68.39 ± 5.81 71.83 ± 7.26 72.81 ± 6.94
GRAND-nl-rw (two-hop) [Cha+21a] 50.20 ± 17.90 59.95 ± 10.48 68.05 ± 5.49 71.92 ± 7.34 72.72 ± 6.85

Table 4.7: Classification accuracy of different GNNs trained with different numbers of labeled

nodes per class. Dataset: CiteSeer.

#labeled nodes per class 1 2 5 10 20

GCN [KW17] 58.61 ± 12.83 60.45 ± 16.20 68.69 ± 7.93 72.59 ± 3.19 76.89 ± 3.27
GAT [Vel+] 58.84 ± 12.81 60.24 ± 14.44 68.54 ± 5.75 72.44 ± 3.50 75.55 ± 4.11

GraphSage [HYL17] 55.53 ± 12.71 58.97 ± 12.65 66.07 ± 6.16 70.74 ± 3.11 74.55 ± 3.09
MoNet [Mon+17] 56.47 ± 4.67 61.03 ± 6.93 67.92 ± 2.50 71.24 ± 1.54 76.49 ± 1.75
Lanczos [Lia+19] 60.12 ± 6.37 63.65 ± 6.97 70.61 ± 4.50 73.01 ± 3.27 78.35 ± 1.84

AdaLanczos [Lia+19] 61.07 ± 5.16 64.11 ± 6.88 69.05 ± 3.00 72.79 ± 2.74 78.10 ± 1.91
GCNN [XQT20] 60.78 ± 20.64 65.14 ± 19.45 72.72 ± 10.82 76.47 ± 6.03 79.24 ± 3.45

GRAND-l [Cha+21a] 62.11 ± 10.58 69.00 ± 7.55 73.98 ± 5.08 76.33 ± 3.41 78.76 ± 1.69
GRAND-nl [Cha+21a] 61.75 ± 11.12 69.16 ± 8.46 72.35 ± 5.35 76.03 ± 3.72 78.55 ± 1.59

GRAND-nl-rw (gdc) [Cha+21a] 61.70 ± 10.74 69.42 ± 8.21 72.39 ± 5.25 75.32 ± 3.45 78.30 ± 1.43
GRAND-nl-rw (two-hop) [Cha+21a] 61.65 ± 12.09 68.49 ± 8.99 72.68 ± 5.92 75.72 ± 3.50 78.77 ± 1.88

Table 4.8: Classification accuracy of different GNNs trained with different numbers of labeled

nodes per class. Dataset: PubMed.

4.6.3 Time-dependent attention and graph rewiring

The previous experimental results show that GRAND++-l enhances the accuracy of

GRAND-l in the cases when the labeled training data is limited and when the network

is deep. Here, we explore the same strategy for GRAND-nl and GRAND-nl-rw; we name

the corresponding models with the new source term GRAND++-nl and GRAND++-nl-rw,

79

respectively. Table 4.9 compares GRAND-nl and GRAND-nl-rw with the corresponding model

with a source term. We see that overall GRAND++-nl (GRAND++-nl-rw) outperforms

GRAND-nl (GRAND-nl-rw) when the network is deep, i.e., T is big.

Model Depth GRAND-nl GRAND-nl-rw GRAND++-nl GRAND++-nl-rw
(T) [Cha+21a] [Cha+21a] (ours) (ours)

1 79.70 ± 1.88 79.07 ± 3.05 79.24 ± 1.48 79.24 ± 1.48
CORA 4 82.31 ± 0.91 82.47 ± 1.32 82.64 ± 0.89 82.23 ± 1.14

16 82.11 ± 1.42 82.05 ± 1.31 83.24 ± 0.20 81.48 ± 1.07
32 79.42 ± 0.64 81.01 ± 0.81 81.21 ± 0.37 82.20 ± 1.15

1 71.84 ± 2.98 71.84 ± 2.66 70.45 ± 2.12 71.74 ± 1.37
CiteSeer 16 72.65 ± 2.42 73.06 ± 2.98 72.48 ± 1.10 73.29 ± 1.37

64 70.29 ± 2.58 69.65 ± 2.50 72.64 ± 0.93 73.38 ± 0.95
128 65.19 ± 6.77 65.45 ± 7.18 74.24 ± 0.70 74.23 ± 0.70

1 77.93 ± 1.27 77.93 ± 1.26 78.01 ± 0.68 78.01 ± 0.68
PubMed 4 77.95 ± 1.28 78.02 ± 1.14 78.41 ± 0.88 78.17 ± 0.93

16 76.51 ± 2.73 76.88 ± 2.57 78.43 ± 0.78 78.12 ± 0.87

Table 4.9: Classification accuracy of GRAND and GRAND++ variants of different depth

trained 20 labeled data per class. The highest accuracy is highlighted in bold for each of the

depths T = 1, 4, 16, 32, 64, and 128. We test T only up to 16 for PubMed and up to 32 for 32

since the neural ODE solver failed for larger T . (Unit: %)

We further explore the effects of the source term for GRAND-nl and GRAND-nl-rw in

the low-labeling rate regimes. Table 4.10 compares GRAND-nl and GRAND-nl-rw with

the corresponding model with a source term. We see that GRAND-nl and GRAND-nl-rw

are almost always worse than the vanilla GRAND-l, consistent with the results reported in

[Cha+21a]. GRAND++-nl and GRAND++-nl-rw cannot help learning at low labeling rates

anymore. However, when the labeling rates are not low, GRAND++-nl or GRAND++-nl-rw

can outperform GRAND-nl and GRAND-nl-rw, even outperform GRAND++.

4.6.4 Datasets and experimental settings

Graph node classification dataset. Following [Cha+21a], we consider the largest con-

nected component of seven graph node classification datasets, including CORA, CiteSeer,

80

Model label # GRAND-nl GRAND-nl-rw GRAND++-nl GRAND++-nl-rw
[Cha+21a] [Cha+21a] (ours) (ours)

1 50.55 ± 15.68 50.63 ± 17.71 48.89 ± 11.51 47.94 ± 11.06
2 65.06 ± 9.35 61.24 ± 16.19 59.96 ± 7.90 58.25 ± 11.97

CORA 5 76.93 ± 3.10 76.50 ± 3.91 74.01 ± 1.73 74.25 ± 1.99
10 79.60 ± 2.69 79.38 ± 3.25 80.14 ± 0.69 80.18 ± 0.40
20 82.22 ± 1.93 82.14 ± 2.49 83.24 ± 0.20 81.48 ± 1.07

1 50.25 ± 17.66 50.20 ± 17.90 49.65 ± 5.45 53.10 ± 5.51
2 59.87 ± 10.89 59.95 ± 10.48 59.16 ± 8.13 60.26 ± 5.10

CiteSeer 5 68.21 ± 5.08 68.05 ± 5.48 66.13 ± 2.09 67.81 ± 1.97
10 71.88 ± 6.94 71.92 ± 7.34 68.84 ± 2.84 71.45 ± 1.64
20 72.84 ± 6.61 72.72 ± 6.85 72.52 ± 1.24 73.87 ± 1.35

1 66.97 ± 10.07 67.69 ± 7.89 63.85 ± 4.86 67.45 ± 3.88
2 69.17 ± 2.46 69.42 ± 2.13 66.98 ± 5.30 69.11 ± 1.80

PubMed 5 72.56 ± 3.36 72.68 ± 2.52 71.49 ± 1.53 72.05 ± 3.67
10 76.03 ± 3.73 75.32 ± 3.45 74.94 ± 2.15 75.09 ± 2.88
20 78.55 ± 1.59 78.30 ± 1.43 78.41 ± 0.99 79.44 ± 0.56

Table 4.10: Classification accuracy of the variants of GRAND and GRAND++ models trained

with different numbers of labeled data per class (#per class) on graph node classification

tasks. (Unit: %)

PubMed, coauthor graph CoauthorCS, and Amazon co-purchasing graphs Computer and

Photo, and a large scale ogbn-arxiv dataset. For completeness, we list the number of classes,

the number of features, and the number of nodes and edges of each dataset in Table 4.11.

More detailed information can be found in [Cha+21a].

Dataset Classes Features #Nodes #Edges

CORA 7 1433 2485 5069
CiteSeer 6 3703 2120 3679
PubMed 3 500 19717 44324

CoauthorCS 15 6805 18333 81894
Computer 10 767 13381 245778

Photo 8 745 7487 119043
ogbn-arxiv 40 128 169343 1166243

Table 4.11: Summary of the graph node classification datasets.

81

Depth of GRAND and GRAND++ for the results in Table 4.3. Table 4.12 lists

the fine-tuned T for the results in Table 4.3. Due to the limited time, we only search around

the value of optimal T for GRAND with grid spacing 0.1.

Model CORA CiteSeer PubMed CoauthorCS Computer Photo

GRAND++-l 18.3 8.0 13.0 4.0 3.2 3.6

GRAND-l 18.2948 7.8741 12.9423 3.2490 3.5824 3.6760

Table 4.12: The value of the fine-tuned T , i.e. depth of the continuous-depth GNNs, for

GRAND and GRAND++ in learning with different labeling results, and the corresponding

accuracy are reported in Table 4.3. The values of T for GRAND++ are adopted from the

paper [Cha+21a].

4.7 Concluding Remarks

We propose GRAND++, which augments graph neural diffusion with a source term.

We present some theory that connects the model to a random walk formulation on graphs.

GRAND++ outperforms many existing GNNs for graph deep learning with very deep

architectures and when the number of labeled data is limited. GRAND++ can be regarded

as coupled ODE system in which each ODE has an external force term. As such, it is natural

to consider if advanced techniques in accelerating training, test, and inference of neural

ODEs can be leveraged to improve the efficiency and accuracy of GRAND++, in particular

high-order neural ODEs [DDT19; YHL19; Nor+20; Xia+21] and noise injection [Wan+19].

It is interesting to note that the second-order neural ODE can be connected to the wave

equation in the graph setting, which can automatically bypass over-smoothing. We leave

studying the second-order neural ODE on graphs as future work.

82

CHAPTER 5

Proximal Implicit ODE Solvers for Accelerating Learning

Neural ODEs

5.1 Introduction

Neural ODEs [Che+18] are a class of continuous-depth neural networks, which can be

considered as the continuous limit of the ODE-motivated neural networks [HR17; Lu+18].

Neural ODEs are particularly suitable for learning complex dynamics from irregularly-sampled

sequential data, see, e.g., [Che+18; RCD19; DDT19; Mas+20; Nor+20]. Neural ODEs are

used in many applications, including image classification and generation [Che+18], learning

dynamical systems [RCD19], modeling probabilistic distributions of complex data [Gra+19;

Yan+19; Jia+20], and scientific computing [Kim+21; DRF21; Bak+22a]. Recently, neural

ODEs have been employed for building continuous-depth graph neural networks (GNNs),

achieving remarkable results for deep graph learning [Pol+19; XQT20; Cha+21a; Tho+22]

and providing great potential for scientific simulation [San+20; Umm+20; Li+19b; Bap+20;

DEK20; Pfa+21]. Mathematically, a neural ODE is given by the following first-order ODE:

dh(t)

dt
= f(h(t), t, θ), h(0) = h0, (5.1)

where f(h(t), t, θ) ∈ Rd is specified by a neural network parameterized by θ, e.g., a two-

layer feed-forward neural network. Starting from the input h(0), neural ODEs learn the

representation of the input and perform prediction by solving (5.1) from the initial time t = 0

to the terminal time T using a numerical ODE solver with a given error tolerance, often with

adaptive step size solver or adaptive solver for short [DP80a]. Solving (5.1) from t = 0 to T in

83

a single pass with an adaptive solver requires evaluating f(h(t), t, θ) at various timestamps,

with the computational complexity counted by the number of forward function evaluations

(forward NFEs), which is nearly proportional to the computational time, see [Che+18] for

details.

The adjoint method [Bit63], is a memory-efficient algorithm for training neural ODEs.

For the sake of presentation, if we regard the output h(T) as the prediction and denote the

loss between h(T) and the ground truth as L := L(h(T)). Let a(t) := ∂L/∂h(t) be the

adjoint state, then we have (see e.g., [Che+18; Bit63] for details)

dL
dθ

=

∫ T

0

a(t)⊤
∂f(h(t), t, θ)

∂θ
dt, (5.2)

with a(t) satisfying the following adjoint ODE

da(t)

dt
= −a(t)⊤

∂

∂h
f(h(t), t, θ), (5.3)

which is solved numerically from t = T to 0 and also requires the evaluation of the right-

hand side of (5.3) at various timestamps, with the computational complexity, or number of

evaluation of the function −a(t)⊤ ∂
∂h
f(h(t), t, θ), measured by the backward NFEs.

5.1.1 Computational bottlenecks of neural ODEs

Since both neural ODE (5.1) and its adjoint ODE (5.3) are usually high dimensional;

direct application of implicit ODE solvers requires solving a system of high dimensional

nonlinear equations, which is computationally inefficient, see Section 5.4.1 for an illustration.

As such, explicit solvers — especially the explicit adaptive solvers, e.g., the Dormand-Prince

method [DP80a] — are the current default numerical solvers for neural ODE’s training and

testing.

Dormand-Prince Method: In this section, we briefly review the scheme, error control,

and step size rule of the Dormand-Prince method, which is an explicit adaptive numerical

ODE solver. The one step calculation, from tk to tk+1 with step size s, in the Dormand-Prince

84

method for solving (5.1) is summarized below: First, we update hk to hk+1 using Runge-Kutta

method of order 4.

k1 = sf(tk,hk)

k2 = sf
(
tk +

1

5
s,hk +

1

5
k1

)
k3 = sf

(
tk +

3

10
s,hk +

3

40
k1 +

9

40
k2

)
k4 = sf

(
tk +

4

5
s,hk +

44

45
k1 −

56

15
k2 +

32

9
k3

)
k5 = sf

(
tk +

8

9
s,hk +

19372

6561
k1 −

25360

2187
k2 +

64448

6561
k3 −

212

729
k4

)
k6 = sf

(
tk + s,hk +

9017

3168
k1 −

355

33
k2 −

46732

5247
k3 +

49

176
k4 −

5103

18656
k5

)
k7 = sf

(
tk + s,hk +

35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6

)
And the hk+1 is calculated as

hk+1 = hk +
35

384
k1 +

500

1113
k3 +

500

192
k4 −

2187

6784
k5 +

11

84
k6.

Second, we update hk to h′
k+1 by Runge-Kutta method of order 5 as

h′
k+1 = hk +

5179

57600
k1 +

7571

16695
k3 +

393

640
k4 −

92097

339200
k5 +

187

2100
k6 +

1

40
k7.

We consider ∥h′
k+1 − hk+1∥ as the error in hk+1, and given error tolerance ϵ we select the

adaptive step size at this step to be

sopt = s

(
ϵs

2∥hk+1 − h′
k+1∥

) 1
5

.

Many other adaptive ODE solvers exist, and some are also used to learn neural ODEs,

e.g., the adaptive Heun’s method, which is a second-order ODE solver. More adaptive step

solvers can be found at [AHS11].

The step size of explicit solvers is constrained by numerical accuracy and numerical

stability, and the latter is often the dominating factor when the ODE system is stiff. The

high-order method usually has a smaller stability region than the low-order method; the

typical behavior of explicit ODE solvers when applied to solve the stiff ODE system is that

85

the high-order solver requires a smaller step size than the low-order method. In contrast, the

high-order method can take a much larger step size than the low-order method for solving

non-stiff ODEs. To demonstrate this issue, we consider training a recently proposed neural

ODE-based GNN, named graph neural diffusion (GRAND) [Cha+21a], for the benchmark

CoauthorCS graph node classification; the detailed experimental settings can be found in

Section 5.4.3. GRAND parametrizes the right-hand side of (5.1) with the Laplacian operator,

resulting in a class of diffusion models. The diffusion model is stiff from the numerical ODE

viewpoint since the ratio between the magnitude of the largest and smallest eigenvalues is

infinite. Figure 5.1 plots the error tolerance of the adaptive solver vs. forward and backward

NFEs of different adaptive solvers — including adaptive Heun [SM03] and two Dormand-

Prince methods [DP80a] (DOPRI5 and DOPRI8) — for training GRAND for CoauthorCS

node classification. We see that 1) all three adaptive solvers require significant NFEs in

solving both neural ODE and its adjoint ODE; as the error tolerance reduces both forward

and backward NFEs increase rapidly. And 2) the high-order scheme, e.g., DOPRI8 requires

more NFEs than the low-order scheme, indicating that the stability is a dominating factor in

choosing the step size. Moreover, it is worth mentioning that both DOPRI5 and DOPRI8

often fail to solve the adjoint ODE when a large tolerance is used, based on our experiments.

Even worse, the explicit ODE solvers can be computationally prohibitive even using a very

large error tolerance, and this happens particularly when numerical stability constraints the

step size; see Section 5.4.1 for a numerical illustration. The stability constraint of learning stiff

neural ODEs using explicit solvers and the high computational cost of direct application of

implicit solvers motivate us to study the question: Can we modify the implicit solvers to adapt

them for learning high dimensional neural ODEs with significantly reduced computational

costs than the existing benchmark solvers?

5.1.2 Our contribution

We answer the above question affirmatively by considering learning neural ODE-style

models using the scalable proxy of a few celebrated implicit ODE solvers — including

86

10-6 10-5 10-4 10-3 10-2 10-1 100
Error

101

102

103
Fo

rw
ar

d
NF

E

Adaptive Heun
DOPRI5
DOPRI8

10-6 10-5 10-4 10-3 10-2 10-1
Error

102

103

Ba
ck

wa
rd

 N
FE

Figure 5.1: Error tolerance vs. forward and backward NFEs of different adaptive solvers for

training the GRAND model for CoauthorCS graph node classification.

backward Euler, backward differentiation formulas (BDFs), and Crank-Nicolson — leveraging

the proximal operator [PB14]. These proximal solvers reformulate implicit ODE solvers as

variational problems. Each solver contains inner-outer iterations, where the inner iterations

approximate a one-step update of the implicit solver, and the outer iterations solve the ODE

over time. Leveraging fast optimization algorithms for solving the inner optimization problem,

these proximal solvers are remarkably faster than explicit adaptive ODE solvers in learning

certain benchmark neural ODEs. We summarize the major benefits of proximal solvers below:

• The proximal implicit ODE solvers are scalable for solving very high dimensional ODEs

due to using scalable optimization algorithms for solving the corresponding optimization

problems.

• Due to the implicit nature of proximal algorithms, they are much less encumbered by

the numerical stability issue than explicit solvers. Therefore, the proximal algorithms

allow the use of very large step sizes for neural ODEs’ training and testing.

• To achieve the same numerical accuracy in solving stiff neural ODEs, proximal algorithms

can save significant NFEs and computational time in both forward and backward

propagation.

87

• Training neural ODE-style models using proximal algorithms maintains and often

improves the generalization accuracy of the model compared to using benchmark

adaptive solvers.

5.1.3 More related works

In this part, we discuss some representative related works in three directions: reducing

NFEs in learning neural ODEs, advances in proximal algorithms, and algorithms for learning

neural ODEs.

Reducing NFEs in learning neural ODEs by model design and regularization

Several algorithms have been developed to reduce the NFEs for learning neural ODEs. They

can be classified into three categories: 1. Improving the ODE model and neural network

architecture, and notable works in this direction include augmented neural ODEs [DDT19],

high-order neural ODEs [Nor+20], heavy-ball neural ODEs [Xia+21], and neural ODEs with

depth variance [Mas+20]. These models can reduce the forward NFEs significantly, and

heavy-ball neural ODEs can also reduce the backward NFEs remarkably. 2. Learning neural

ODEs with regularization, including weight decay [Gra+19], regularizing ODE solvers and

learning dynamics [Fin+20; Kel+20; Pol+20; Gho+20; Pal+21]. And 3. Input augmentation

[DDT19] and data control [Mas+20]. Our work focuses on accelerating learning neural ODEs

using the proximal form of implicit ODE solvers and can be used jointly with the above

acceleration methods.

Advances of proximal algorithms Proximal algorithms have been the workhorse for

solving nonsmooth, large-scale, or distributed optimization problems [PB14]. The core matter

is the evaluation of proximal operators [BC+11]. The proximal algorithms are widely used

in statistical computing and machine learning [PSW15], image processing [BT09], matrix

completion [MS12; ZYX17], computational optimal transport [SKL20; PC+19], game theory

and optimal control [Att+08], etc. Proximal operators can be viewed as backward Euler

88

method, see Section 5.2 for a brief mathematical introduction. From an implicit solver

viewpoint, a proximal formulation of the backward Euler method has been applied to the

stochastic gradient descent training of neural networks [Cha+18] and solving clustering

problems [Yin+18a]. We consider accelerating learning neural ODEs using proximal implicit

ODE solvers, especially when the efficiency of explicit adaptive solvers is limited by numerical

stability.

Developments of efficient neural ODE learning algorithms Solving a high dimen-

sional ODE is required in both forward and backward propagation of learning neural ODEs.

The default numerical solvers are explicit adaptive Runge-Kutta schemes [PT92; Che+18],

especially the Dormand-Prince method [DP80a]. To solve both forward and backward ODEs

accurately, the adaptive solvers will evaluate the right-hand side of ODEs at many intermedi-

ate timestamps, causing tremendous computational burden. Checkpoint schemes have been

proposed to reduce the computational cost [GKB19; Zhu+20a], often reducing computational

cost by compromising memory efficiency. Recently, the symplectic adjoint method has been

proposed [MMY21], which solves neural ODEs using a symplectic integrator and obtains

the exact gradient (up to rounding error) with memory efficiency. Approximating gradients

using interpolation instead of the adjoint method [Dau+20] has also been used to accelerate

learning neural ODEs. Our proposed proximal solvers can be integrated with these new

algorithms for efficient training of neural ODEs.

5.1.4 Notation

We denote scalars by lower or upper case letters; vectors and matrices by lower and upper

case boldface letters, respectively. We denote the magnitude of a complex number z as |z|.

For a vector x = (x1, . . . , xd)
⊤ ∈ Rd, we use ∥x∥ := (

∑d
i=1 |xi|2)1/2 and ∥x∥∞ := maxdi=1 |xi|

to denote its L2-norm and L∞-norm, respectively. We denote the vector whose entries are all

0s as 0. For two vectors a and b, we denote their inner product as ⟨a, b⟩. For a matrix A, we

use A⊤ and A−1, and ∥A∥ to denote its transpose, inverse, and spectral norm, respectively.

89

We denote the identity matrix as I. For a function f(x) : Rd → R, we denote ∇f(x) and

∇2f(x) as its gradient and Hessian, respectively. We denote a = O(b), if there is a constant

C such that a ≤ Cb.

5.2 Proximal Algorithms for Learning Neural ODEs

In this section, we formulate the proximal formulation of several celebrated implicit ODE

solvers, including backward Euler, Crank-Nicolson, and BDFs.

5.2.1 A proximal viewpoint of the backward Euler solver

We first consider solving neural ODE (5.1) using the proximal backward Euler solver.

Directly discretizing (5.1) using the backward Euler scheme with a constant step size s gives

the following system of linear equations

hk+1 = hk + sf(hk+1). (5.4)

When f is a nonlinear function, the solution hk+1 is often non-unique for a given hk, and

we only need to find one particular solution of (5.4). In particular, the system of nonlinear

equations (5.4) can be solved by the Newton–Raphson method (NR), with the numerical

updates for hk+1 being initialized by hk.

But when the dimension of f is very high, solving (5.4) using NR can be computationally

prohibitive. Nevertheless, suppose f(z) is the gradient of a function −F (z). In that case, we

can find a solution hk+1 of the nonlinear equation (5.4) by finding a local minimum of the

following optimization problem

hk+1 = argmin
z

{ 1

2s
∥z − hk∥22 + F (z)

}
. (5.5)

To see why a local minimum of the minimization problem (5.5) is a solution to (5.4), we

notice that if hk+1 is a local minimum of G(z) = 1
2s
∥z − hk∥22 + F (z), then we have

d

dz

(1

2s
∥z − hk∥22 + F (z)

)∣∣∣
z=hk+1

= 0,

90

replacing z with hk+1 in the above equation, we see that the local minimum of G(z) satisfies

the backward Euler scheme (5.4) (note that ∇F (z) = −f(z)). We call the scheme (5.5)

proximal backward Euler.

Based on the proximal formulation of the backward Euler method (5.4), we can solve neural

ODE (5.1) using an inner-outer iteration scheme. The outer iterations perform backward

Euler iterations over time, and the inner iterations solve the optimization problem formulated

in (5.5). We summarize the inner-outer iteration scheme for the proximal backward Euler

solver in the algorithm below.

Algorithm 1 Proximal backward Euler for solving (5.1)
Require: Step size s > 0, inner iteration number n

for k = 1, 2, . . .

step 1: Let z0 = hk

step 2: Start from z0 solve inner problem

argmin
z

{ 1

2s
∥z − hk∥22 + F (z)

}
.

step 3: Let hk+1 = zn (solution to the inner problem).

end for

5.2.1.1 Solving the inner minimization problem

Another piece of the recipe is how to effectively solve the inner minimization problem of

proximal backward Euler (5.5), i.e., the following optimization problem

argmin
z
G(z) :=

1

2s
∥z − hk∥22 + F (z). (5.6)

A simple yet efficient algorithm for solving (5.6) is gradient descent (GD), which updates as

follows:

zi+1 = zi − η∇G(zi) for i = 1, 2, . . . , n− 1,

where η > 0 is the step size and ∇G(zi) = (zi − hk)/s − f(zi). Here, we do not need to

know the exact form of F (z) since ∇G(zi) can be represented by f(zi) itself, and the GD

91

update becomes

zi+1 = zi − η
(zi − hk

s
− f(zi)

)
. (5.7)

There are various off-the-shelf acceleration schemes that exist to accelerate the convergence of

(5.7), e.g., Nesterov accelerated gradient (NAG) [Nes83], NAG with adaptive restart (Restart)

[Rd17], and GD with nonlinear conjugate gradient style momentum, e.g., Fletcher–Reeves

momentum (FR) [FR64; WY20]. In particular, FR, which will be used in our experiments,

updates zi as follows:

pi =
(zi − hk

s
− f(zi)

)
+ βip

i−1, zi+1 = zi − ηpi, (5.8)

where p0 = 0 and the scalar β0 = 0 and

βi =
∇G(zi)⊤∇G(zi)

∇G(zi−1)⊤∇G(zi−1)
if i ≥ 1. (5.9)

We can also employ L-BFGS [LN89] to solve the inner minimization problem (5.6). Based

on our testing, GD with FR momentum usually outperforms the other gradient-based methods

listed above, see Section 5.4.1 for a comparison of different optimization algorithms for solving

the 1D diffusion problem.

Remark 6. The above discussion of gradient-based optimization algorithms assumes the

existence of F (z) whose gradient is −f(z). When such a function F (z) does not exist, we

can still use the iteration (5.7) to solve the inner minimization problem, which we can regard

as a fixed point iteration (FP). Moreover, we can accelerate the convergence of (5.7) using

the Anderson acceleration [And65; WN11], and we leave it as future work. Based on our

numerical tests, gradient-based optimization algorithms work quite well in solving the inner

optimization problem (5.6) across all studied benchmark tasks.

Stopping criterion of inner solvers Given an error tolerance ϵ of the inner optimization

solver, we stop the inner iteration if ∥zi+1 − zi∥ ≤ ϵ.

92

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.00

0.02

0.04

0.06

0.08

0.10
Er

ro
r

Prox (1E-4)
Prox (1E-5)
Prox (1E-6)
Backward Euler

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Er
ro

r

Prox (1E-4)
Prox (1E-5)
Prox (1E-6)
Forward Euler

0.0 0.2 0.4 0.6 0.8 1.0
Time

10-5

10-4

10-3

10-2

10-1

100

Er
ro

r

Prox (1E-5)
Prox (1E-6)
Prox (1E-7)
Backward Euler

0.0 0.2 0.4 0.6 0.8 1.0
Time

10-5

10-4

10-3

10-2

10-1

100

Er
ro

r

Prox (1E-5)
Prox (1E-6)
Prox (1E-7)
Forward Euler

(a) (b) (c) (d)

Figure 5.2: (a)/(c) Time vs. numerical errors of the backward Euler method and the proximal

backward Euler (Prox) with different inner error tolerances for solving ODE (5.10)/(5.11). As

the error of the inner solver decreases, the proximal backward Euler approaches the backward

Euler. (b)/(d) Comparison of proximal backward Euler using different inner solver accuracy

against the forward Euler for solving the same problem in (a)/(c). We see that the proximal

backward Euler method remarkably outperforms the forward Euler scheme. In (d), the error

of proximal and backward Euler decays as time increases dues to the ODE’s stiff behavior

and the solution profile.

5.2.1.2 Implicit, explicit vs. proximal solvers

Before presenting more proximal implicit solvers, we compare forward Euler, backward

Euler, and the proximal backward Euler for solving the following benchmark 1D ODE, which

comes from [AHS11]
dh(t)

dt
= 3h(t)− 2 cos(t)− 4 sin(t) (5.10)

with initial condition h(0) = 1. We use the integration time step size 0.01 for all the above

ODE solvers. Figure 5.2 (a) plots the error between numerical and analytic solutions of

proximal backward Euler with different inner solver tolerances and the backward Euler solver.

It is evident that the proximal backward Euler approximates backward Euler quite well, and the

approximation becomes more accurate as the accuracy of the inner solver enhances. Figure 5.2

(b) contrasts the proximal backward Euler with the forward Euler solver. We see that with

an appropriate tolerance of the inner solver, proximal backward Euler accumulates error

93

slower than the forward Euler solver as the time increases. These advantages of the proximal

backward Euler solver shed light on improving learning neural ODEs and alleviating error

accumulation.

We further compare forward Euler, backward Euler, and proximal backward Euler solvers

for solving the following benchmark stiff ODE [EG96]

dh

dt
= −50(h(t)− cos(t)). (5.11)

with initial condition h(0) = 1. We use the integration time step size 0.01 for all the above

ODE solvers. Figure 5.2 (c) plots the error between the numerical and exact solutions of

proximal backward Euler with different inner solver tolerances and the backward Euler solver.

Again, proximal backward Euler approximates backward Euler quite well. Figure 5.2 (d)

contrasts the proximal backward Euler with the forward Euler solver, and we see that forward

Euler performs much worse than the proximal backward Euler solver.

5.2.2 Proximal form of Crank-Nicolson

A single-step, second-order extension for backward Euler is the Crank-Nicolson scheme,

given by

hk+1 = hk +
s

2
(f (hk+1) + f (hk)).

The proximal formulation of the Crank-Nicolson scheme is given as follows [DF20]

hk+1 = argmin
z

{
∥z − hk∥2

s
+ F (z) + ⟨z − hk,∇F (hk)⟩

}
(5.12)

5.2.3 The proximal backward differentiation formula (BDF) methods

The backward Euler scheme has first-order accuracy, i.e., discretizing the ODE (5.1) using

(5.4) with step size s has error O(s). BDFs are higher-order multi-step methods that can be

formulated as follows

ashk+1 = As(hk,hk−1, . . .)− sf(hk+1),

94

where as is a constant, and As is a linear function of hk,hk−1, The backward Euler

method corresponds to the case when s = 1, and as = 1 and A1(hk) = hk. The second-,

third-, and fourth-order BDFs are given as follows:

• BDF2:

hk+1 = argmin
z

{
∥z − hk∥2

s
− ∥z − hk−1∥2

4s
+ F (z)

}
.

• BDF3:

hk+1 = argmin
z

{
3∥z − hk∥2

2s
− 3∥z − hk−1∥2

4s
+
∥z − hk−2∥2

6s
+ F (z)

}
.

• BDF4:

hk+1 = argmin
z

{
2∥z − hk∥2

s
− 3∥z − hk−1∥2

2s

+
2∥z − hk−2∥2

3s
− ∥z − hk−2∥2

8s
+ F (z)

}

5.3 Stability and Convergence Analysis

In this section, we analyze the stability of proximal implicit ODE solvers. In particular,

we first compare the stability region between explicit and implicit solvers. Then we bound

the gap between solutions of implicit and proximal implicit ODE solvers, indicating that

proximal implicit solvers allow the use of a larger step size than explicit solvers, thus saving

computational cost over explicit solvers for solving stiff problems. Moreover, we will analyze

the convergence of proximal implicit solvers.

5.3.1 Linear stability: Implicit vs. explicit solvers

Explicit solvers require a small step size for numerical stability guarantee in solving stiff

ODEs. Consider the linear ODE

h′ = Ah, A ∈ Rd×d. (5.13)

95

Assume A has spectrum σ(A) = {λj}dj=1 and Re(λj) < 0 for j = 1, . . . d 1, one can define

the stiffness ratio as

Q =
maxλ∈σ(A) |Re(λ)|
minλ∈σ(A) |Re(λ)|

We say the ODE is stiff ifQ≫ 1. The linear stability domain D of the underlying numerical

method is the set of all numbers z := sλj for j = 1, . . . , d, such that limk→∞ hk = 0, where hk

is the numerical solution of (5.13) at the k-th step. Table 5.1 lists the linear stability domain

of some single-step numerical schemes described in Section 5.2. In general, the implicit

method has a much larger linear stability domain than the explicit method.

Numerical methods Linear stability domain

Forward Euler DFE = {z ∈ C | |1 + z| < 1}

Backward Euler DBE = {z ∈ C | |1− z| > 1}

Crank-Nicolson DCR = {z ∈ C | |1+z/2
1−z/2

| < 1}

DOPRI5 DDP = {z ∈ C | |F1/2(z)| < 1}

Table 5.1: Linear stability domains of several single step numerical ODE solvers.

|F1/2(z)| < 1 stands for |F1(z)| < 1 and |F2(z) < 1| where F1(z) =
∑5

r=0
zr

r!
+ z6

600
and

F2(z) =
∑4

r=0
zr

r!
+ 1097z5

120000
+ 161z6

120000
+ z7

24000
, see [Ise09; DP80a] for details.

5.3.2 Effects of the error of the inner solver

Compared to the explicit methods, implicit methods obtain their next step by solving an

implicit equation with certain error tolerance in each step. In this subsection, we consider

the effects of the error of the inner solver on the proximal backward Euler solver for an

illustration. In particular, we consider solving the equation dh
dt

= f(h) where f is Lipschitz

1The analysis can be generalized to the case when the system has eigenvalues of zero real part. In
particular, in the direction of eigenvectors that belong to zero eigenvalues simply stay the same. In other
words, these components simply do not affect the ODE’s stiffness.

96

continuous with constant Lf . We define

u := sup
y,h

⟨y − h,f(y)− f(h)⟩
∥y − h∥2

,

and u exists since it is bounded above, i.e.,

⟨y − h,f(y)− f(h)⟩
∥y − h∥2

=
1

∥y − h∥

〈
y − h

∥y − h∥
,f(y)− f(h)

〉

≤ ∥f(y)− f(h)∥
∥y − h∥

≤ Lf .

Unlike Lipschitz constant, u remains small on stiff problems as it is not affected by swift

decays which usually occurs in stiff problems. Backward Euler with error in each step can be

written as
hk+1 − hk

s
= f(hk+1) + ϵk,

where ∥ϵk∥ ≤ ϵ is the error for the inner loops of proximal backward Euler with ϵ > 0. Also,

let yk be the exact solution of backward Euler, i.e., yk satisfies

yk+1 − yk

s
= f(yk+1).

Subtract the above two equations gives

hk+1 − yk+1 − s
(
f(hk+1)− f(yk+1)

)
= hk − yk + sϵk. (5.14)

By triangle inequality and Lipschitz continuous assumption on f , we have

∥∥hk+1 − yk+1 − s
(
f(hk+1)− f(yk+1)

)∥∥ ≤ ∥hk − yk∥+ s∥ϵk∥. (5.15)

Let y = yk+1 and h = hk+1 in the definition of u, we have

u ≥
〈
yk+1 − hk+1,f(yk+1)− f(hk+1)

〉
∥yk+1 − hk+1∥2

,

i.e.,

u∥yk+1 − hk+1∥2 ≥
〈
yk+1 − hk+1,f(yk+1)− f(hk+1)

〉
.

97

Therefore, we have ∥∥hk+1 − yk+1 − s
(
f(hk+1)− f(yk+1)

)∥∥2
=∥hk+1 − yk+1∥2 + s2∥f(hk+1)− f(yk+1)∥2

− 2s
〈
hk+1 − yk+1,f(yk+1)− f(hk+1)

〉
≥∥hk+1 − yk+1∥2 − 2s

〈
hk+1 − yk+1,f(yk+1)− f(hk+1)

〉
≥(1− 2su)∥hk+1 − yk+1∥2.

(5.16)

Combining (5.15) and (5.16), we have

(1− 2su)∥hk+1 − yk+1∥2 ≤
(
∥hk − yk∥2 + s∥ϵk∥

)2
.

i.e.,

∥hk+1 − yk+1∥ ≤ 1√
1− 2su

(
∥hk − yk∥2 + sϵ

)
.

It follows that

∥hk − yk∥ ≤
k−1∑
j=0

(
k−1∏
i=j

1√
1− 2su

)
sϵ ≤ (1− 2su)−k/2

u
ϵ.

Notice that k = (tk − t0)/s, where t0 and tk are the initial time and the time at the k-th

integration step, thus we have

(1− 2su)−k/2

u
ϵ =

(
(1− 2su)−

1
2su

)(tk−t0)u ϵ

u
= O(ϵ).

Therefore, the error between hk and yk is bounded by O(ϵ). The above argument can be

generalized to the proximal BDFs and proximal Crank-Nicolson.

5.3.3 Energy stability and convergence

Besides the linear stability, there is another notion of stability, known as energy stability.

We say a numerical method is energy stable if F (hk+1) ≤ F (hk) for all k [SXY19]. As an ad-

vantage of the proximal formulation, one can show that the backward Euler is unconditionally

energy stable [Xu+19] for arbitrary s even for non-convex F (z) (here we assume that there

exists F (z) such that f(z) = −∇F (z)). The energy stability guarantees that the numerical

98

solver takes each step toward minimizing F (z), which further lead to the convergence of the

numerical scheme [Wan+21c]. More precisely, we have the following result

Proposition 10. If F (z) is continuous, coercive and bounded from below, for any choice of

s > 0, there exists hk+1 solves (5.4), such that F (hk+1) ≤ F (hk). Moreover, for non-convex

F (z), hk+1 is unique provided s ≤ −1/λ1, where λ1 < 0 is the smallest eigenvalue of ∇2F .

Proof. For any given hk, recall the definition of G(z) in (5.6).

If F (z) is a convex function, clearly, G(z) admits a unique minimizer. If F (z) is non-

convex, denote λ1 ≤ 0 be the smallest eigenvalue of ∇2F . Direct computation shows that

∇2G(z) =
1

s
I +∇2F (z), (5.17)

which indicates that G(z) is a convex function if s ≤ −1/λ1. Notice that

lim
|z|→∞

G(z) = ∞,

G(z) admits a unique minimizer in Rd.

If G(z) is non-convex, we define S = {G(z) ≤ G(hk)}. By the coerciveness and continuity

of F (z), S is a non-empty, bounded, and closed set. Hence, G(z) admits a minimizer (not

unique) z∗ in S. We can take hk+1 = z∗, then

1

2s
∥hk+1 − hk∥2 + F (hk+1) ≤ F (hk),

which gives us F (hk+1) ≤ F (hk). Hence, the scheme is unconditionally energy stable.

For the sequence {hk}, since

∥hk − hk−1∥2 ≤ 2s(F (hk−1)− F (hk)),

we have
N∑
k=1

∥hk − hk−1∥2 ≤ 2s(F (h0)− F (hN)) ≤ C,

99

for some constant C that is independent with N . Hence

lim
N→∞

∥hN − hN−1∥ = 0.

For the sequence {hk}, since

∥hk − hk−1∥2 ≤ 2s(F (hk−1)− F (hk)),

we have
N∑
k=1

∥hk − hk−1∥2 ≤ 2s(F (h0)− F (hN)) ≤ C,

for some constant C that is independent with N . Hence

lim
N→∞

∥hN − hN−1∥ = 0.

Moreover, since

hN = hN−1 − s∇F (hN),

we have

lim
N→∞

∇F (hN) = 0,

so every limit of a subsequence of {hk} is a stationary point of F (h).

Similar energy stability analysis holds for other proximal solvers, e.g., for BDF2, one can

show there exists hk+1 such that

F (hk+1) +
∥hk+1 − hk∥2

4s
≤ F (hk) +

∥hk − hk−1∥2

4s
.

For Crank-Nicolson, the proximal formulation (5.12) leads to

F (hk+1) + ⟨hk+1 − hk,∇F (hk)⟩ ≤ F (hk).

These energy stability result can further lead to a certain convergence of these schemes

[MP19].

100

10-6 10-5 10-4 10-3 10-2 10-1
Error

104

105
NF

E
DOPRI5
Adaptive Heun
BDF2
BDF3
BDF4
Crank Nicolson
Backward Euler

Figure 5.3: Final step error vs. NFEs of different solvers in solving the 1D diffusion equation

(5.18). Adaptive solvers require many more NFEs than proximal solvers, and NFEs required

by explicit solvers are almost independent of the error since the step sizes here are constrained

by numerical stability.

5.4 Experimental Results

In this section, we validate the efficacy of proximal solvers and contrast their performances

with benchmark adaptive neural ODE solvers in solving the 1D diffusion problem and learning

continuous normalizing flows (CNFs) [Gra+19] and GRAND [Cha+21a]. All experiments are

conducted on a server with 4 NVIDIA RTX 3090 GPUs.

5.4.1 Solving 1D diffusion equation

We consider solving the 1D diffusion equation ∂h
∂t

= ∂2h
∂x2 for t ∈ [0, 1] and x ∈ [0, 1] with a

periodic boundary condition. We initialize u(x, 0) with the standard Gaussian. We partition

[0, 1] into uniform grids {xi}128i=1 and discretize ∂2h/∂x2 using central finite difference, resulting

in the following coupled ODEs
dh

dt
= −Lh, (5.18)

101

where L ∈ R128×128 is the Laplacian matrix of a cyclic graph scaled by 1/∆x2 with ∆x = 1/127

being the spatial resolution, and h = [h(x1), . . . , h(x128)]. Then we apply different ODE

solvers to solve (5.18). It is worth noting that the diffusion equation has an infinite domain

of dependence, thus in method of lines discretization, the time step to be taken for explicit

methods has to be much finer compared to the spatial discretization to guarantee the numerical

stability.

We compare our proximal methods against the predominantly used Adaptive Heun and

DOPRI5 in solving (5.18). As the matrix L is circulant, we can compute the exact solution

of (5.18) using the discrete Fourier transform for comparison. Figure 5.3 compares the NFEs

of proximal methods and two benchmark adaptive solvers with different errors at the final

time. Here, the reported NFE of proximal solvers is the product of inner and outer iteration

numbers and the number of function evaluations of the scheme per update. That is, the

reported NFE is the absolute count of the function evaluations performed by the solver.

Similar for all the experiments in the following. For each final error, we use a fixed step size

for each proximal solver with FR for solving the inner minimization problem. A list of the

configuration of each ODE solver can be found in Table 5.2. Figure 5.3 shows that adaptive

solvers require many more NFEs than proximal solvers. NFEs required by explicit solvers are

almost independent of the discretization error of the solver, revealing that the step sizes are

constrained by the numerical stability. Each iteration of higher-order BDFs requires more

NFEs than lower-order BDF schemes, showing a tradeoff between controlling numerical error

and using high-order schemes.

We list the numerical integration step size and the corresponding final step error of each

ODE solver in Table 5.2. Here, we use FR optimizer to solve the inner optimization problem

with step size 0.1. We stop the inner solver when ∥zi+1 − zi∥ ≤ 5× 10−9.

Convergence of inner solvers An inner optimization algorithm is required for the proximal

solver. We compare the efficiency of a few gradient-based optimization algorithms, including

102

Proximal Algorithm Numerical integration Optimization Final step

step size s step size η error

Backward Euler 1/2000 0.1 4.68e−7

Crank Nicolson 1/2000 0.1 1.75e−6

BDF2 1/2000 0.1 1.36e−6

BDF3 1/2000 0.1 5.71e−7

BDF4 1/2000 0.1 1.15e−6

Table 5.2: The configuration of different solvers for solving the 1D Diffusion

equation in Section 5.4.1. We use GD with FR optimization to solve the

inner optimization problem with the step size 0.1. Figure 5.3 is generated

by considering a range of inner optimization tolerances from 10−3 to 10−7.

The final step error is the error between the numerical solution at t = 1 and

the exact solution. We report in the following figure the smallest final step

error for each proximal algorithm.

GD, NAG, Restart, and FR, for one pass of proximal backward Euler. The comparison of

different optimizers using the same step size 0.1 (Figure 5.4) shows that different solvers

perform similarly to each other at the beginning of iterations, while as the iteration goes, FR

performs best among the four considered solvers. The performance of different optimization

algorithms further show the rationale for solving the inner problem using gradient descent

with FR momentum. We will use FR as the default inner solver for all experiments below.

Proximal vs. nonlinear solvers We further verify the computational advantages of

proximal backward Euler over solving nonlinear equations (5.4) using other nonlinear root-

finding algorithms, including FP and NR. Figure 5.5 shows the time required by different

solvers when the spatial interval [0, 1] is discretized into different number of grids, controlling

103

0 100 200 300 400 500
Iteration (i)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

Er
ro

r (
||z

i
+

1
−
z
i ||

)

GD
NAG
Restart
FR

0 100 200 300 400 500
Iteration (i)

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

Er
ro

r (
||z

i
−
h
k

+
1
||)

GD
NAG
Restart
FR

(a) (b)

Figure 5.4: Convergence comparison of different inner solvers for the proximal backward

Euler. (a) Convergence of ∥zi+1 − zi∥, and (b) convergence of ∥zi − hk+1∥ for k = 0.

27 28 29 210 211
Grids

10-3

10-2

10-1

100

101

102

Ti
m

e
El

ap
se

d
(s

) BE (Proximal)
BE (FP)
BE (NR)

Figure 5.5: Computational time of solving 1D diffusion equation with different number of

grids by backward Euler (BE) using proximal, FP, and NR solvers.

104

the scale of the problem. Proximal solver outperforms FP and NR in computational efficiency,

and the margin gets wider as the size of the problem increases. NR is not scalable to

high dimensional scenarios since it requires evaluating Jacobian, which is computationally

prohibitive.

5.4.2 Learning CNFs

0 50 100 150 200
Iteration

101

Bi
t/d

im

BDF2
BDF3
BDF4
DOPRI (1E-7)
DOPRI (1E-5)

0 50 100 150 200
Iteration

1000
2000
3000
4000
5000
6000

Ti
m

e
El

ap
se

d
(s

)
(a) (b)

0 5 10 15 20 25 30
Bit/dim

0
50

100
150
200
250
300

Fo
rw

ar
d

NF
E

0 5 10 15 20 25
Bit/dim

0
50

100
150
200
250
300

Ba
ck

wa
rd

 N
FE BDF2

BDF3
BDF4
DOPRI (1E-7)
DOPRI (1E-5)

(c) (d)

Figure 5.6: Contrasting BDFs with DOPRI5 using different error tolerances for training

CNFs for MNIST image generation. BDFs converge as well as DOPRI5 using very small

error tolerances (a) but require much fewer NFEs (c) and (d) and take less computational

time (b) in solving both neural ODE and its adjoint ODE.

We train CNFs for MNIST [LC10] generation using proximal solvers and contrast them to

adaptive solvers. In particular, we use the FFJORD approach outlined in [Gra+19], including

converting the log-likelihood objective function into the pixel-wise measurement bits/dim.

We use an architecture of a multi-scale encoder and two CNF blocks, containing convolutional

layers of dimension 64 → 64 → 64 → 64 with a uniform stride length of 1 and a softplus

activation function. We run the model using the proximal BDFs with FR and DOPRI5 with

105

10 20 30 40 50
Iteration

50
100
150
200
250
300

NF
E

Adaptive Heun
DOPRI5
DOPRI8
BDF2
BDF3
BDF4
Crank Nicolson

10 20 30 40 50
Iteration

0
500

1000
1500
2000
2500
3000

Ti
m

e
El

ap
se

d
(s

)

(a) (b)

10 20 30 40 50
Iteration

1.8
2.0
2.2
2.4
2.6
2.8

Tr
ai

ni
ng

 lo
ss

10 20 30 40 50
Iteration

0
10
20
30
40
50
60
70
80
90

Te
st

 a
cc

ur
ac

y
(%

)

Adaptive Heun
DOPRI5
DOPRI8
BDF2
BDF3
BDF4
Crank Nicolson

(c) (d)

Figure 5.7: Comparison of proximal solvers with adaptive solvers in training GRAND for the

CoauthorCS node classification. Proximal solvers require much fewer NFEs in each iteration

(a) and takes less total computational time (b) than adaptive solvers but converges as well as

adaptive solvers in training loss (c) and validation accuracy (d).

relative tolerance of 10−5 and 10−7, respectively. All the other experimental settings are

adapted from [Gra+19]. The proximal BDFs are tuned to have an error profile which was

consistent with the DOPRI5 as shown in Figure 5.6 (a). We choose t0 = 0 and T = 1 and

the step sizes for numerical integration and the inner optimizer are 0.2 and 0.3, respectively.

We terminate the inner optimization solver once ∥zi+1 − zi∥ ≤ 2× 10−3. A comparison of

computational time and the forward and backward NFEs are depicted in Figure 5.6 (b), (c),

and (d), respectively. We see that proximal BDF2, BDF3, and BDF4 require approximately

half of the NFEs as DOPRI5 to reach similar training curves.

106

5.4.3 Training GRAND

GRAND is a continuous-depth graph neural network proposed in [Cha+21a]. It consists

of a dense embedding layer, a diffusion layer, and a dense output layer, with ReLU activation

function in between. The diffusion layer takes u(t0) as input and solves (5.19) below to time

T
du(t)

dt
= A(u, θ)u− u, (5.19)

where A is the graph attention function [Vel+] with learnable parameter set θ. This ODE to

be solved in GRAND is nonlinear and diffusive, which is particularly challenging to solve

numerically.

We compare the performance of proximal solvers with three major adaptive ODE solver

options (Adaptive Heun, DOPRI5, DOPRI8) on training the GRAND model for CoauthorCS

node classification. The CoauthorCS graph contains 18333 nodes and 81894 edges, and each

node is represented by a 6805 dimensional vector. The graph nodes contains 15 classes, and

we aim to classify the unlabelled nodes. We choose t0 = 0 and T = 10 as our starting and

ending times of the ODE (5.19). For each solver, we run the experiment for 50 epochs and

record the average NFEs per epoch and accuracy of trained models. For adaptive solvers

we choose tolerance 10−4, and for proximal solvers we choose the integration step size 1.25

(8 steps in total) so that for the first iteration with same input admits output with error

within 10−3. For optimization method we use Fletcher-Reeves with learning rate 0.3, and

stop when error is below 10−4 tolerance. All the other experimental settings are adapted

from [Cha+21a]. Figure 5.7 shows the advantage of proximal methods over adaptive solvers

in training efficiency and maintaining the convergence of the training.

5.5 Single-step, Multi-stage Implicit Schemes

Another natural extension of the backward Euler scheme is the single-step, multi-stage

schemes whose proximal form are proposed in [ZEG20], and we formulated those schemes

in Algorithm A.1. Clearly, the 1-stage scheme is the backward Euler scheme. The authors

107

of [ZEG20] give conditions on the coefficient γm,i. However, it is quite tedious to get those

coefficients. For example, a second-order unconditionally stable scheme can be constructed

by taking the matrix Λ — whose entries are {γm,i}3m,i=1 that appeared in Algorithm A.1 —

as follows 
γ1,0 0 0

γ2,0 γ2,1 0

γ3,0 γ3,1 γ3,2

 =


5 0 0

−2 6 0

−2 3
14

44
7

 .

Furthermore, the matrix Λ of a third-order scheme is

11.17 0 0 0 0 0

−7.5 19.43 0 0 0 0

−1.05 −4.75 13.98 0 0 0

1.8 0.05 −7.83 13.8 0 0

6.2 −7.17 −1.33 1.63 11.52 0

−2.83 4.69 2.46 −11.55 6.68 11.95


These multi-stage algorithms suffer from computational inefficiency in training neural

ODEs. Note that for an M -stage scheme, one need to solve M optimization problems in each

iteration.

Algorithm 2 Proximal single-step, multi-stage scheme for solving (5.1)
Require: Step size s > 0, stage M

for k = 1, 2, . . .

step 1: Let z0 = hk

for m = 1, . . . ,M solve the inner problem

zm = argmin
z

{m−1∑
i=0

γm,i

2s
∥z − zi∥2 + F (z)

}
,

step 3: Let hk+1 = zM .

end for

108

5.6 Concluding Remarks

We propose accelerating learning neural ODEs using scalable proximal implicit ODE

solvers, including proximal BDFs and proximal Crank-Nicolson. These proximal schemes

approach the corresponding implicit schemes as the accuracy of the inner solver enhances.

Compared to the existing adaptive explicit ODE solvers, the proximal solvers are better

suited for solving stiff ODEs for numerical stability guarantees. We validate the efficiency of

proximal solvers on learning benchmark graph neural diffusion and continuous normalizing

flows. A particular limit of the studied proximal solvers is that we need to control the step size

rather than the tolerance, making the user interface different from existing adaptive explicit

solvers. There are several interesting future directions. In particular, 1) accelerating the inner

solver from the fixed point iteration viewpoint, e.g., leveraging Anderson acceleration, and 2)

developing adaptive step size proximal solvers by integrating proximal solvers of different

orders.

109

CHAPTER 6

Conclusion

Performance and computation cost play important roles in deep neural networks, especially

Neural ODEs. This thesis focuses on developing methods to relieve computation costs and

enhance the performance of Neural ODEs-based models.

In chapter 3, we propose Heavy Ball Neural ODEs (HBNODEs), a new model that

incorporates heavy ball structure into Neural ODEs to improve performance and reduce

the number of function evaluations (NFEs) in solving both forward and backward ODEs.

We prove that the adjoint of HBNODEs is also Heavy Ball ODEs, providing insights into

the improved performance of backward ODEs. We also provide theoretical guarantees that

HBNODEs alleviate vanishing gradient problems in training NODEs, further improving

performance on time-series modeling tasks. We also propose Generalized Heavy Ball Neural

ODEs to alleviate the exploding initialization problem for long time series.

In chapter 4, we propose GRAND++, a new model that adds a source term to Graph

Neural Diffusion (GRAND). We provide theoretical guarantees on the limiting behaviors of

GRAND++ through a random walk formulation on graphs and perform experiments to show

that the source term design, as in Poisson Learning [Cal+20], provides improved performance

when networks become deeper. We further show that GRAND++ outperforms existing

GNNs, including GRAND, on datasets with limited labels.

In chapter 5, we research how proximal solvers can reduce NFEs requirements and speed

up training and inference of NODEs. We provide numerical experiments on 1) solving 1-D

diffusion equations, 2) solving continuous normalizing flows, and 3) training GRAND, in

110

order to show that, in particular NODEs applications, the learned ODEs can be stiff, and

proximal solvers can reduce NFEs.

There are various directions to extend our research. As Heavy Ball Neural ODEs can

be viewed as a design inspired by Heavy Ball acceleration methods in optimization, other

optimization methods are also worth investigating. Nguyen et al [Ngu+22] combined Neural

ODEs with Nesterov’s Accelerated Gradient Method [Nes83], and Cho et al [Cho+22]

developed AdamNODE by combining Neural ODEs with Adam stochastic optimization

method [KB15].

GRAND++ can be regarded as a coupled ODE system in which each ODE has an external

force term. As such, it is natural to consider whether advanced techniques in accelerating

training, testing, and inference of neural ODEs can be leveraged to improve the efficiency and

accuracy of GRAND++, particularly for high-order neural ODEs [DDT19; YHL19; Nor+20;

Xia+21] and noise injection [Wan+19]. In particular, we observe that with a change of

variable w = e
1
2
γth, there is

d2w(t)

dt2
= e

1
2
γtd

2h(t)

dt2
+ γe

1
2
γtdh(t)

dt
+
γ2

4
e

1
2
γth(t) = e

1
2
γtf(h(t), t, θ) +

γ2

4
e

1
2
γth(t), (6.1)

which is equivalently

d2w(t)

dt2
= e

1
2
γtf(e−

1
2
γtw(t), t, θ) +

γ2

4
w(t). (6.2)

This leads to reaction wave equation when f is the laplacian operator, which might be

interesting to investigate for its performance on graphs, as it naturally overcomes over-

smoothing problem. We may also potentially investigate how other higher order NODEs

[DDT19; YHL19; Nor+20] could be applied to GRAND and GRAND++. As GRAND++

applies to low labeling rate regime, it is also worth exploring how it applies to active learning

scenarios where labeling is costly.

To accelerate Neural ODEs training and inference in numerical solver level, we can extend

our study in implicit solvers beyond Proximal Implicit ODE Solvers. It is worth studying

111

how to switch between explicit and implicit solvers, adapt PDE solvers based on different

scenarios, and various methods to solve the optimization problems for each proximal steps. It

is also worth noting that the adjoint of optimization problem is also an optimization problem

[Agr+19], which could potentially allows us to compute the gradients of Neural ODEs through

solving optimization problems, without dealing with either the vanilla back-propagation

method that needs to store all of the layers information, or the adjoint method that requires

to solve backward state equations which could be unstable.

112

Bibliography

[Agr+19] Akshay Agrawal et al. “Differentiable convex optimization layers”. In: Advances

in neural information processing systems 32 (2019).

[Ahm+20] Imtiaz Ahmad et al. “Solution of multi-term time-fractional PDE models arising

in mathematical biology and physics by local meshless method”. In: Symmetry

12.7 (2020), p. 1195.

[AHS11] Kendall Atkinson, Weimin Han, and David E Stewart. Numerical solution of

ordinary differential equations. Vol. 108. John Wiley & Sons, 2011.

[And65] Donald G Anderson. “Iterative procedures for nonlinear integral equations”. In:

Journal of the ACM (JACM) 12.4 (1965), pp. 547–560.

[ASB16] Martin Arjovsky, Amar Shah, and Yoshua Bengio. “Unitary evolution recurrent

neural networks”. In: International Conference on Machine Learning. 2016,

pp. 1120–1128.

[ASS20] Khalid Anwar, Jamshed Siddiqui, and Shahab Saquib Sohail. “Machine learning-

based book recommender system: a survey and new perspectives”. In: Interna-

tional Journal of Intelligent Information and Database Systems 13.2-4 (2020),

pp. 231–248.

[AT16] James Atwood and Don Towsley. “Diffusion-convolutional neural networks”. In:

Advances in neural information processing systems. 2016, pp. 1993–2001.

[Att+08] Hédy Attouch et al. “Alternating proximal algorithms for weakly coupled

convex minimization problems. Applications to dynamical games and PDE’s”.

In: Journal of Convex Analysis 15.3 (2008), p. 485.

[AY21] Uri Alon and Eran Yahav. “On the Bottleneck of Graph Neural Networks and

its Practical Implications”. In: International Conference on Learning Represen-

tations. 2021. url: https://openreview.net/forum?id=i80OPhOCVH2.

113

https://openreview.net/forum?id=i80OPhOCVH2

[Bak+22a] Justin Baker et al. “Learning POD of Complex Dynamics Using Heavy-ball

Neural ODEs”. In: arXiv preprint arXiv:2202.12373 (2022).

[Bak+22b] Justin Baker et al. “Proximal Implicit ODE Solvers for Accelerating Learning

Neural ODEs”. In: CoRR abs/2204.08621 (2022). doi: 10.48550/arXiv.2204.

08621. arXiv: 2204.08621. url: https://doi.org/10.48550/arXiv.2204.

08621.

[Bap+20] Victor Bapst et al. “Unveiling the predictive power of static structure in glassy

systems”. In: Nature Physics 16.4 (2020), pp. 448–454.

[Bat+16] Peter Battaglia et al. “Interaction Networks for Learning about Objects, Re-

lations and Physics”. In: Advances in Neural Information Processing Systems.

2016, pp. 4502–4510.

[BC+11] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone

operator theory in Hilbert spaces. Vol. 408. Springer, 2011.

[BCM06] Antoni Buades, Bartomeu Coll, and Jean M. Morel. “Neighborhood filters and

PDE’s”. In: Numerische Mathematik 105.1 (2006), pp. 1–34.

[BCP95] Kathryn Eleda Brenan, Stephen L Campbell, and Linda Ruth Petzold. Numer-

ical solution of initial-value problems in differential-algebraic equations. SIAM,

1995.

[Bit63] L. Bittner. “L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F.

Mishechenko, The Mathematical Theory of Optimal Processes. VIII + 360 S.

New York/London 1962. John Wiley & Sons. Preis 90/–”. In: ZAMM - Journal

of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik

und Mechanik 43.10-11 (1963), pp. 514–515. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/zamm.19630431023.

[BKK19] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In:

Advances in Neural Information Processing Systems 32 (2019).

114

https://doi.org/10.48550/arXiv.2204.08621
https://doi.org/10.48550/arXiv.2204.08621
https://arxiv.org/abs/2204.08621
https://doi.org/10.48550/arXiv.2204.08621
https://doi.org/10.48550/arXiv.2204.08621
https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19630431023
https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19630431023

[BN03] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps for Dimensionality

Reduction and Data Representation”. In: Neural Computation 15.6 (2003),

pp. 1373–1396. doi: 10.1162/089976603321780317.

[BN04] Mikhail Belkin and Partha Niyogi. “Semi-supervised learning on Riemannian

manifolds”. In: Machine learning 56.1-3 (2004), pp. 209–239.

[Bro+16] Greg Brockman et al. OpenAI Gym. cite arxiv:1606.01540. 2016. url: http:

//arxiv.org/abs/1606.01540.

[Bro+21] Michael M Bronstein et al. “Geometric deep learning: Grids, groups, graphs,

geodesics, and gauges”. In: arXiv preprint arXiv:2104.13478 (2021).

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term de-

pendencies with gradient descent is difficult”. In: IEEE Transactions on Neural

Networks 5.2 (1994), pp. 157–166.

[BT09] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm

for linear inverse problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009),

pp. 183–202.

[Cal+20] Jeff Calder et al. “Poisson Learning: Graph Based Semi-Supervised Learning At

Very Low Label Rates”. In: Proceedings of the 37th International Conference on

Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings

of Machine Learning Research. PMLR, July 2020, pp. 1306–1316. url: https:

//proceedings.mlr.press/v119/calder20a.html.

[Cal18] Jeff Calder. “The game theoretic p-Laplacian and semi-supervised learning with

few labels”. In: Nonlinearity 32.1 (2018).

[CFG14] Tianqi Chen, Emily Fox, and Carlos Guestrin. “Stochastic gradient hamiltonian

monte carlo”. In: International conference on machine learning. 2014, pp. 1683–

1691.

115

https://doi.org/10.1162/089976603321780317
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://proceedings.mlr.press/v119/calder20a.html
https://proceedings.mlr.press/v119/calder20a.html

[CG97] Fan RK Chung and Fan Chung Graham. Spectral graph theory. 92. American

Mathematical Soc., 1997.

[Cha+18] Pratik Chaudhari et al. “Deep relaxation: partial differential equations for

optimizing deep neural networks”. In: Research in the Mathematical Sciences

5.3 (2018), pp. 1–30.

[Cha+19] Ines Chami et al. “Hyperbolic graph convolutional neural networks”. In: Advances

in neural information processing systems 32 (2019), pp. 4868–4879.

[Cha+21a] Ben Chamberlain et al. “GRAND: Graph Neural Diffusion”. In: Proceedings of

the 38th International Conference on Machine Learning. Ed. by Marina Meila

and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR,

July 2021, pp. 1407–1418.

[Cha+21b] Benjamin Paul Chamberlain et al. “Beltrami Flow and Neural Diffusion on

Graphs”. In: Proceedings of the Thirty-fifth Conference on Neural Information

Processing Systems (NeurIPS) 2021, Virtual Event (2021).

[Che+18] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Advances

in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31.

Curran Associates, Inc., 2018.

[Che+20] Deli Chen et al. “Measuring and relieving the over-smoothing problem for

graph neural networks from the topological view”. In: Proceedings of the AAAI

Conference on Artificial Intelligence. Vol. 34. 2020, pp. 3438–3445.

[Cho+14] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-

decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078

(2014).

[Cho+22] Suneghyeon Cho et al. “AdamNODEs: When Neural ODE Meets Adaptive

Moment Estimation”. In: ArXiv abs/2207.06066 (2022).

116

[Chu] F.R.K. Chung. Spectral Graph Theory. CBMS Regional Conference Series no.

92. Conference Board of the Mathematical Sciences. isbn: 9780821889367. url:

https://books.google.com/books?id=YUc38%5C_MCuhAC.

[Coi+05] Ronald R Coifman et al. “Geometric diffusions as a tool for harmonic analysis

and structure definition of data: Diffusion maps”. In: Proceedings of the National

Academy of Sciences 102.21 (2005), pp. 7426–7431. issn: 0027-8424. doi: 10.

1073/pnas.0500334102. eprint: https://www.pnas.org/content/102/21/

7426.full.pdf. url: https://www.pnas.org/content/102/21/7426.

[Dau+20] Talgat Daulbaev et al. “Interpolation Technique to Speed Up Gradients Propa-

gation in Neural ODEs”. In: Advances in Neural Information Processing Systems.

Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 16689–

16700.

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional

neural networks on graphs with fast localized spectral filtering”. In: Advances

in neural information processing systems 29 (2016), pp. 3844–3852.

[DD03] Paul D Dobson and Andrew J Doig. “Distinguishing enzyme structures from

non-enzymes without alignments”. In: Journal of molecular biology. Vol. 330. 4.

Elsevier, 2003, pp. 771–783.

[DDT19] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. “Augmented neural odes”.

In: Advances in Neural Information Processing Systems 32 (2019).

[DEK20] Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. “Combin-

ing Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow

Prediction”. In: Proceedings of the 37th International Conference on Machine

Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of

Machine Learning Research. PMLR, July 2020, pp. 2402–2411. url: https:

//proceedings.mlr.press/v119/de-avila-belbute-peres20a.html.

117

https://books.google.com/books?id=YUc38%5C_MCuhAC
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1073/pnas.0500334102
https://www.pnas.org/content/102/21/7426.full.pdf
https://www.pnas.org/content/102/21/7426.full.pdf
https://www.pnas.org/content/102/21/7426
https://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html
https://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html

[DEL13] Xavier Desquesnes, Abderrahim Elmoataz, and Lézoray, Olivier. “Eikonal equa-

tion adaptation on weighted graphs: fast geometric diffusion process for local

and non-local image and data processing”. In: Journal of Mathematical Imaging

and Vision 46.2 (2013), pp. 238–257.

[Dev+19] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding”. In: Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,

2019, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy Doran,

and Thamar Solorio. Association for Computational Linguistics, 2019, pp. 4171–

4186. doi: 10.18653/v1/n19-1423. url: https://doi.org/10.18653/v1/

n19-1423.

[DF20] Qiang Du and Xiaobing Feng. “The phase field method for geometric moving

interfaces and their numerical approximations”. In: Handbook of Numerical

Analysis 21 (2020), pp. 425–508.

[DFD20] Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. “Model-based Reinforce-

ment Learning for Semi-Markov Decision Processes with Neural ODEs”. In:

Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al.

Vol. 33. Curran Associates, Inc., 2020, pp. 19805–19816.

[DHS11] Mehdi Dehghan, Jalil Manafian Heris, and Abbas Saadatmandi. “Application

of the Exp-function method for solving a partial differential equation arising

in biology and population genetics”. In: International Journal of Numerical

Methods for Heat & Fluid Flow (2011).

[DP78] JR Dormand and PJ Prince. “New Runge-Kutta algorithms for numerical simu-

lation in dynamical astronomy”. In: Celestial mechanics 18.3 (1978), pp. 223–

232.

118

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423

[DP80a] J.R. Dormand and P.J. Prince. “A family of embedded Runge-Kutta formulae”.

In: Journal of Computational and Applied Mathematics 6.1 (1980), pp. 19–26.

issn: 0377-0427.

[DP80b] John R Dormand and Peter J Prince. “A family of embedded Runge-Kutta

formulae”. In: Journal of computational and applied mathematics 6.1 (1980),

pp. 19–26.

[DRF21] Sourav Dutta, Peter Rivera-Casillas, and Matthew W Farthing. “Neural Or-

dinary Differential Equations for Data-Driven Reduced Order Modeling of

Environmental Hydrodynamics”. In: arXiv preprint arXiv:2104.13962 (2021).

[Duv+15] David K Duvenaud et al. “Convolutional Networks on Graphs for Learning

Molecular Fingerprints”. In: Advances in Neural Information Processing Systems.

Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc., 2015.

[EG96] Hairer Ernst and W Gerhard. Solving ordinary differential equations II: Stiff

and differentialalgebraic problems. 1996.

[EHT21] Moshe Eliasof, Eldad Haber, and Eran Treister. “PDE-GCN: Novel Architectures

for Graph Neural Networks Motivated by Partial Differential Equations”. In:

arXiv preprint arXiv:2108.01938 (2021).

[ELB08] Abderrahim Elmoataz, Olivier Lezoray, and Sébastien Bougleux. “Nonlocal

Discrete Regularization on Weighted Graphs: A Framework for Image and

Manifold Processing”. In: IEEE Transactions on Image Processing 17.7 (2008),

pp. 1047–1060. doi: 10.1109/TIP.2008.924284.

[Eri+21] N. Benjamin Erichson et al. “Lipschitz Recurrent Neural Networks”. In: In-

ternational Conference on Learning Representations. 2021. url: https://

openreview.net/forum?id=-N7PBXqOUJZ.

119

https://doi.org/10.1109/TIP.2008.924284
https://openreview.net/forum?id=-N7PBXqOUJZ
https://openreview.net/forum?id=-N7PBXqOUJZ

[Fin+20] Chris Finlay et al. “How to Train Your Neural ODE: the World of Jacobian and

Kinetic Regularization”. In: Proceedings of the 37th International Conference on

Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings

of Machine Learning Research. PMLR, July 2020, pp. 3154–3164.

[For98] Robin Forman. “Combinatorial vector fields and dynamical systems”. In: Math-

ematische Zeitschrift 228.4 (1998), pp. 629–681.

[FR64] Reeves Fletcher and Colin M Reeves. “Function minimization by conjugate

gradients”. In: The computer journal 7.2 (1964), pp. 149–154.

[FS00] Mark Freidlin and Shuenn-Jyi Sheu. “Diffusion processes on graphs: stochastic

differential equations, large deviation principle”. In: Probability theory and

related fields 116.2 (2000), pp. 181–220.

[FS21] Francesco Farina and Emma Slade. “Data efficiency in graph networks through

equivariance”. In: arXiv preprint arXiv:2106.13786 (2021).

[FW93] Mark I. Freidlin and Alexander D. Wentzell. “Diffusion Processes on Graphs and

the Averaging Principle”. In: The Annals of Probability 21.4 (1993), pp. 2215–

2245. doi: 10.1214/aop/1176989018. url: https://doi.org/10.1214/aop/

1176989018.

[Gar+14] Cristina Garcia-Cardona et al. “Multiclass Data Segmentation Using Diffuse

Interface Methods on Graphs”. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence 36.8 (2014), pp. 1600–1613. doi: 10.1109/TPAMI.2014.

2300478.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training

deep feedforward neural networks”. In: AISTATS. 2010.

[Ghi+81] Michael Ghil et al. “Applications of estimation theory to numerical weather

prediction”. In: Dynamic meteorology: Data assimilation methods. Springer,

1981, pp. 139–224.

120

https://doi.org/10.1214/aop/1176989018
https://doi.org/10.1214/aop/1176989018
https://doi.org/10.1214/aop/1176989018
https://doi.org/10.1109/TPAMI.2014.2300478
https://doi.org/10.1109/TPAMI.2014.2300478

[Gho+20] Arnab Ghosh et al. “STEER : Simple Temporal Regularization For Neural ODE”.

In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle

et al. Vol. 33. Curran Associates, Inc., 2020, pp. 14831–14843.

[Gil+17] Justin Gilmer et al. “Neural Message Passing for Quantum Chemistry”. In:

Proceedings of the 34th International Conference on Machine Learning. Ed. by

Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning

Research. PMLR, Aug. 2017, pp. 1263–1272. url: https://proceedings.mlr.

press/v70/gilmer17a.html.

[GKB19] Amir Gholami, Kurt Keutzer, and George Biros. “Anode: Unconditionally accu-

rate memory-efficient gradients for neural odes”. In: arXiv preprint arXiv:1902.10298

(2019).

[GO08] Guy Gilboa and Stanley Osher. “Nonlocal operators with applications to image

processing”. In: Multiscale Modeling & Simulation 7.3 (2008), pp. 1005–1028.

[Gon71] Amilcar dos Santos Gonçalves. “A Version of Beale’s Method Avoiding the

Free-Variables”. In: Proceedings of the 1971 26th Annual Conference. ACM ’71.

New York, NY, USA: Association for Computing Machinery, 1971, pp. 433–441.

isbn: 9781450374842. doi: 10.1145/800184.810512. url: https://doi.org/

10.1145/800184.810512.

[Gra+18] Will Grathwohl et al. “Ffjord: Free-form continuous dynamics for scalable

reversible generative models”. In: arXiv preprint arXiv:1810.01367 (2018).

[Gra+19] Will Grathwohl et al. “Scalable Reversible Generative Models with Free-form

Continuous Dynamics”. In: International Conference on Learning Representa-

tions. 2019.

[GRK10] V Gontis, J Ruseckas, and A Kononovičius. “A long-range memory stochastic

model of the return in financial markets”. In: Physica A: Statistical Mechanics

and its Applications 389.1 (2010), pp. 100–106.

121

https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1145/800184.810512
https://doi.org/10.1145/800184.810512
https://doi.org/10.1145/800184.810512

[He+15] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification”. In: Proceedings of the IEEE international

conference on computer vision. 2015, pp. 1026–1034.

[He+16a] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,

pp. 770–778.

[He+16b] Kaiming He et al. “Identity mappings in deep residual networks”. In: European

Conference on Computer Vision. 2016, pp. 630–645.

[Hil13] David Hilditch. “An introduction to well-posedness and free-evolution”. In:

International Journal of Modern Physics A 28.22n23 (2013), p. 1340015.

[Hoc+01] Sepp Hochreiter et al. “Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies”. In: A field guide to dynamical recurrent neural networks.

IEEE Press, 2001.

[Hoc91] Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. In:

Diploma, Technische Universität München 91.1 (1991).

[HR17] Eldad Haber and Lars Ruthotto. “Stable architectures for deep neural networks”.

In: Inverse Problems 34.1 (Dec. 2017), p. 014004. doi: 10.1088/1361-6420/

aa9a90. url: https://doi.org/10.1088/1361-6420/aa9a90.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:

Neural Computation 9.8 (1997), pp. 1735–1780.

[HSW20] Zijie Huang, Yizhou Sun, and Wei Wang. “Learning Continuous System Dy-

namics from Irregularly-Sampled Partial Observations”. In: Advances in Neural

Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran

Associates, Inc., 2020, pp. 16177–16187. url: https://proceedings.neurips.

cc/paper/2020/file/ba4849411c8bbdd386150e5e32204198-Paper.pdf.

122

https://doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1088/1361-6420/aa9a90
https://proceedings.neurips.cc/paper/2020/file/ba4849411c8bbdd386150e5e32204198-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ba4849411c8bbdd386150e5e32204198-Paper.pdf

[HWY18] Kyle Helfrich, Devin Willmott, and Qiang Ye. “Orthogonal Recurrent Neural

Networks with Scaled Cayley Transform”. In: Proceedings of the 35th Interna-

tional Conference on Machine Learning. 2018, pp. 1969–1978.

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation

Learning on Large Graphs”. In: Advances in Neural Information Processing

Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.

[IS15] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift”. In: Proceedings of the 32nd International

Conference on Machine Learning. 2015, pp. 448–456.

[Ise09] Arieh Iserles. A first course in the numerical analysis of differential equations.

44. Cambridge university press, 2009.

[JB19] Junteng Jia and Austin R Benson. “Neural jump stochastic differential equa-

tions”. In: Advances in Neural Information Processing Systems 32 (2019).

[Jia+20] Chiyu Jiang et al. “ShapeFlow: Learnable Deformations Among 3D Shapes”. In:

Advances in Neural Information Processing Systems. 2020.

[Jin+17] Li Jing et al. “Tunable efficient unitary neural networks (EUNN) and their

application to RNNs”. In: Proceedings of the 34th International Conference on

Machine Learning. 2017, pp. 1733–1741.

[KB15] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-

mization”. In: Proceedings of the 3rd International Conference on Learning

Representations. 2015.

[Kel+20] Jacob Kelly et al. “Learning Differential Equations that are Easy to Solve”. In:

Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al.

Vol. 33. Curran Associates, Inc., 2020, pp. 4370–4380.

123

[Kid+20] Patrick Kidger et al. “Neural controlled differential equations for irregular

time series”. In: Advances in Neural Information Processing Systems 33 (2020),

pp. 6696–6707.

[Kim+21] Suyong Kim et al. “Stiff neural ordinary differential equations”. In: Chaos: An

Interdisciplinary Journal of Nonlinear Science 31.9 (2021), p. 093122.

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification

with deep convolutional neural networks”. In: Communications of the ACM

60.6 (2017), pp. 84–90.

[KW17] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph

Convolutional Networks”. In: Proceedings of the 5th International Conference

on Learning Representations (ICLR). ICLR ’17. Palais des Congrès Neptune,

Toulon, France, 2017. url: https://openreview.net/forum?id=SJU4ayYgl.

[KWG19] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. “Diffu-

sion improves graph learning”. In: Advances in Neural Information Processing

Systems 32 (2019), pp. 13354–13366.

[LC10] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In:

ATT Labs [Online] (2010). url: http://yann.lecun.com/exdb/mnist/.

[LEL14] François Lozes, Abderrahim Elmoataz, and Olivier Lézoray. “Partial Difference

Operators on Weighted Graphs for Image Processing on Surfaces and Point

Clouds”. In: IEEE Transactions on Image Processing 23.9 (2014), pp. 3896–3909.

doi: 10.1109/TIP.2014.2336548.

[LH20] Mathias Lechner and Ramin Hasani. “Learning Long-Term Dependencies in

Irregularly-Sampled Time Series”. In: arXiv preprint arXiv:2006.04418 (2020).

[LHE22] Stephanie Lin, Jacob Hilton, and Owain Evans. “Teaching Models to Express

Their Uncertainty in Words”. In: Transactions on Machine Learning Research

(2022). url: https://openreview.net/forum?id=8s8K2UZGTZ.

124

https://openreview.net/forum?id=SJU4ayYgl
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/TIP.2014.2336548
https://openreview.net/forum?id=8s8K2UZGTZ

[LHW18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. “Deeper insights into graph con-

volutional networks for semi-supervised learning”. In: Thirty-Second AAAI

conference on artificial intelligence. 2018.

[Li+18] Huan Li et al. “Optimization algorithm inspired deep neural network structure

design”. In: arXiv preprint arXiv:1810.01638 (2018).

[Li+19a] Guohao Li et al. “Deepgcns: Can gcns go as deep as cnns?” In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. 2019, pp. 9267–9276.

[Li+19b] Yunzhu Li et al. “Learning Particle Dynamics for Manipulating Rigid Bodies,

Deformable Objects, and Fluids”. In: International Conference on Learning Rep-

resentations. 2019. url: https://openreview.net/forum?id=rJgbSn09Ym.

[Li+20a] Guohao Li et al. “Deepergcn: All you need to train deeper gcns”. In: arXiv

preprint arXiv:2006.07739 (2020).

[Li+20b] Xuechen Li et al. “Scalable Gradients for Stochastic Differential Equations”.

In: Proceedings of the Twenty Third International Conference on Artificial

Intelligence and Statistics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108.

Proceedings of Machine Learning Research. PMLR, Aug. 2020, pp. 3870–3882.

url: http://proceedings.mlr.press/v108/li20i.html.

[Li+21] Guohao Li et al. “Training Graph Neural Networks with 1000 Layers”. In: arXiv

preprint arXiv:2106.07476 (2021).

[Lia+19] Renjie Liao et al. “LanczosNet: Multi-Scale Deep Graph Convolutional Net-

works”. In: International Conference on Learning Representations. 2019. url:

https://openreview.net/forum?id=BkedznAqKQ.

[Liu+19] Xuanqing Liu et al. “Neural sde: Stabilizing neural ode networks with stochastic

noise”. In: arXiv preprint arXiv:1906.02355 (2019).

[LN89] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for large

scale optimization”. In: Mathematical programming 45.1 (1989), pp. 503–528.

125

https://openreview.net/forum?id=rJgbSn09Ym
http://proceedings.mlr.press/v108/li20i.html
https://openreview.net/forum?id=BkedznAqKQ

[LNK19] Qi Liu, Maximilian Nickel, and Douwe Kiela. “Hyperbolic Graph Neural Net-

works”. In: Advances in Neural Information Processing Systems 32 (2019),

pp. 8230–8241.

[LP21] Kookjin Lee and Eric J Parish. “Parameterized neural ordinary differential

equations: Applications to computational physics problems”. In: Proceedings of

the Royal Society A 477.2253 (2021), p. 20210162.

[Lu+18] Yiping Lu et al. “Beyond finite layer neural networks: Bridging deep architectures

and numerical differential equations”. In: International Conference on Machine

Learning. 2018, pp. 3276–3285.

[Mas+20] Stefano Massaroli et al. “Dissecting Neural ODEs”. In: Advances in Neural

Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran

Associates, Inc., 2020, pp. 3952–3963.

[MB17] Thomas Moreau and Joan Bruna. “Understanding the learned iterative soft

thresholding algorithm with matrix factorization”. In: arXiv preprint arXiv:1706.01338

(2017).

[MBB17] Federico Monti, Michael M Bronstein, and Xavier Bresson. “Geometric matrix

completion with recurrent multi-graph neural networks”. In: Proceedings of the

31st International Conference on Neural Information Processing Systems. 2017,

pp. 3700–3710.

[Mha+17] Zakaria Mhammedi et al. “Efficient orthogonal parametrisation of recurrent

neural networks using householder reflections”. In: Proceedings of the 34th

International Conference on Machine Learning-Volume 70. 2017, pp. 2401–

2409.

[MKB13] Ekaterina Merkurjev, Tijana Kostic, and Andrea L Bertozzi. “An MBO scheme

on graphs for classification and image processing”. In: SIAM Journal on Imaging

Sciences 6.4 (2013), pp. 1903–1930.

126

[MMY21] Takashi Matsubara, Yuto Miyatake, and Takaharu Yaguchi. “Symplectic Adjoint

Method for Exact Gradient of Neural ODE with Minimal Memory”. In: Advances

in Neural Information Processing Systems. Ed. by A. Beygelzimer et al. 2021.

[Moh+91] Bojan Mohar et al. “The Laplacian spectrum of graphs”. In: Graph theory,

combinatorics, and applications 2.871-898 (1991), p. 12.

[Mon+17] Federico Monti et al. “Geometric Deep Learning on Graphs and Manifolds

Using Mixture Model CNNs”. In: 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer

Society, July 2017, pp. 5425–5434. doi: 10.1109/CVPR.2017.576. url: https:

//doi.ieeecomputersociety.org/10.1109/CVPR.2017.576.

[MP19] Daniel Matthes and Simon Plazotta. “A variational formulation of the BDF2

method for metric gradient flows”. In: ESAIM: Mathematical Modelling and

Numerical Analysis 53.1 (2019), pp. 145–172.

[MS12] Goran Marjanovic and Victor Solo. “On Lq optimization and matrix completion”.

In: IEEE Transactions on signal processing 60.11 (2012), pp. 5714–5724.

[Nam+12] Galileo Namata et al. “Query-driven active surveying for collective classification”.

In: 10th international workshop on mining and learning with graphs. Vol. 8.

2012, p. 1.

[Nes83] Yurii E Nesterov. “A method for solving the convex programming problem with

convergence rate O(1/k2)”. In: Proceedings of the Russian Academy of Sciences

269 (1983), pp. 543–547.

[Ngu+20] Tan Nguyen et al. “MomentumRNN: Integrating Momentum into Recurrent

Neural Networks”. In: Advances in Neural Information Processing Systems. Ed.

by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 1924–1936.

127

https://doi.org/10.1109/CVPR.2017.576
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.576
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.576

[Ngu+22] Nghia Nguyen et al. “Improving Neural Ordinary Differential Equations with

Nesterov’s Accelerated Gradient Method”. In: Advances in Neural Information

Processing Systems. Ed. by Alice H. Oh et al. 2022. url: https://openreview.

net/forum?id=-OfK_B9Q5hI.

[NM19] Hoang Nt and Takanori Maehara. “Revisiting graph neural networks: All we

have is low-pass filters”. In: arXiv preprint arXiv:1905.09550 (2019).

[Nor+20] Alexander Norcliffe et al. “On Second Order Behaviour in Augmented Neural

ODEs”. In: Advances in Neural Information Processing Systems. Ed. by H.

Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 5911–5921.

[Nor+21] Alexander Norcliffe et al. “Neural {ODE} Processes”. In: International Con-

ference on Learning Representations. 2021. url: https://openreview.net/

forum?id=27acGyyI1BY.

[NS17] Jean-Philippe Noël and M Schoukens. “F-16 aircraft benchmark based on ground

vibration test data”. In: 2017 Workshop on Nonlinear System Identification

Benchmarks. 2017, pp. 19–23.

[OS20] Kenta Oono and Taiji Suzuki. “Graph Neural Networks Exponentially Lose

Expressive Power for Node Classification”. In: International Conference on

Learning Representations. 2020. url: https://openreview.net/forum?id=

S1ldO2EFPr.

[PAC18] Ivens Portugal, Paulo Alencar, and Donald Cowan. “The use of machine learning

algorithms in recommender systems: A systematic review”. In: Expert Systems

with Applications 97 (2018), pp. 205–227.

[Pal+20] Aditya Pal et al. “Pinnersage: Multi-modal user embedding framework for

recommendations at pinterest”. In: Proceedings of the 26th ACM SIGKDD In-

ternational Conference on Knowledge Discovery & Data Mining. 2020, pp. 2311–

2320.

128

https://openreview.net/forum?id=-OfK_B9Q5hI
https://openreview.net/forum?id=-OfK_B9Q5hI
https://openreview.net/forum?id=27acGyyI1BY
https://openreview.net/forum?id=27acGyyI1BY
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr

[Pal+21] Avik Pal et al. “Opening the Blackbox: Accelerating Neural Differential Equa-

tions by Regularizing Internal Solver Heuristics”. In: Proceedings of the 38th

International Conference on Machine Learning. Ed. by Marina Meila and Tong

Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, July 2021,

pp. 8325–8335.

[Pas+17] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

[PAS17] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Predicting multivariate time

series of interdependent metrics at scale: a graph attention based approach”. In:

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM. 2017, pp. 555–564.

[PB14] Neal Parikh and Stephen Boyd. “Proximal algorithms”. In: Foundations and

Trends in optimization 1.3 (2014), pp. 127–239.

[PC+19] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport: With

applications to data science”. In: Foundations and Trends® in Machine Learning

11.5-6 (2019), pp. 355–607.

[Pfa+21] Tobias Pfaff et al. “Learning Mesh-Based Simulation with Graph Networks”.

In: International Conference on Learning Representations. 2021. url: https:

//openreview.net/forum?id=roNqYL0_XP.

[PM90] Pietro Perona and Jitendra Malik. “Scale-space and edge detection using

anisotropic diffusion”. In: IEEE Transactions on pattern analysis and machine

intelligence 12.7 (1990), pp. 629–639.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of

training recurrent neural networks”. In: International Conference on Machine

Learning. 2013, pp. 1310–1318.

[Pol+19] Michael Poli et al. “Graph neural ordinary differential equations”. In: arXiv

preprint arXiv:1911.07532 (2019).

129

https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=roNqYL0_XP

[Pol+20] Michael Poli et al. “Hypersolvers: Toward Fast Continuous-Depth Models”. In:

Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al.

Vol. 33. Curran Associates, Inc., 2020, pp. 21105–21117.

[Pol64] Boris T Polyak. “Some methods of speeding up the convergence of iteration

methods”. In: USSR Computational Mathematics and Mathematical Physics 4.5

(1964), pp. 1–17.

[PP10] K Parand and A Pirkhedri. “Sinc-collocation method for solving astrophysics

equations”. In: New Astronomy 15.6 (2010), pp. 533–537.

[PSW15] Nicholas G Polson, James G Scott, and Brandon T Willard. “Proximal algo-

rithms in statistics and machine learning”. In: Statistical Science 30.4 (2015),

pp. 559–581.

[PT92] William H Press and Saul A Teukolsky. “Adaptive Stepsize Runge-Kutta

Integration”. In: Computers in Physics 6.2 (1992), pp. 188–191.

[Qiu+18] Jiezhong Qiu et al. “Deepinf: Social influence prediction with deep learning”. In:

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 2018, pp. 2110–2119.

[Qua+20] Alessio Quaglino et al. “SNODE: Spectral Discretization of Neural ODEs for Sys-

tem Identification”. In: International Conference on Learning Representations.

2020. url: https://openreview.net/forum?id=Sye0XkBKvS.

[RCD19] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. “Latent Ordinary

Differential Equations for Irregularly-Sampled Time Series”. In: Advances in

Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran

Associates, Inc., 2019.

[RCL19] Mauricio Flores Rios, Jeff Calder, and Gilad Lerman. “Algorithms for lp-based

semi-supervised learning on graphs”. In: arXiv preprint arXiv:1901.05031 (2019).

130

https://openreview.net/forum?id=Sye0XkBKvS

[Rd17] Vincent Roulet and Alexandre d’Aspremont. “Sharpness, restart and accelera-

tion”. In: Advances in Neural Information Processing Systems. 2017, pp. 1119–

1129.

[RG15] Chang-han Rhee and Peter W Glynn. “Unbiased estimation with square root

convergence for SDE models”. In: Operations Research 63.5 (2015), pp. 1026–

1043.

[RK95] Carl Runge and Martin Kutta. “On the numerical solution of differential equa-

tions”. In: Mathematische Annalen 46.2 (1895), pp. 167–178.

[Ron+20] Yu Rong et al. “DropEdge: Towards Deep Graph Convolutional Networks on

Node Classification”. In: International Conference on Learning Representations.

2020. url: https://openreview.net/forum?id=Hkx1qkrKPr.

[Ros60] H. H. Rosenbrock. “An Automatic Method for Finding the Greatest or Least

Value of a Function”. In: The Computer Journal 3.3 (Jan. 1960), pp. 175–184.

issn: 0010-4620. doi: 10.1093/comjnl/3.3.175. url: https://doi.org/10.

1093/comjnl/3.3.175.

[RS00] Sam T Roweis and Lawrence K Saul. “Nonlinear dimensionality reduction by

locally linear embedding”. In: science 290.5500 (2000), pp. 2323–2326.

[Rus+15] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.

In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.

doi: 10.1007/s11263-015-0816-y.

[San+20] Alvaro Sanchez-Gonzalez et al. “Learning to Simulate Complex Physics with

Graph Networks”. In: Proceedings of the 37th International Conference on

Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings

of Machine Learning Research. PMLR, July 2020, pp. 8459–8468. url: https:

//proceedings.mlr.press/v119/sanchez-gonzalez20a.html.

131

https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1007/s11263-015-0816-y
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html

[San+21] Michael E. Sander et al. “Momentum Residual Neural Networks”. In: arXiv

preprint arXiv:2102.07870 (2021). arXiv: 2102.07870 [cs.LG].

[SBC14] Weijie Su, Stephen Boyd, and Emmanuel Candes. “A differential equation for

modeling Nesterov’s accelerated gradient method: Theory and insights”. In:

Advances in Neural Information Processing Systems. 2014, pp. 2510–2518.

[Sha+22] Rulin Shao et al. “On the Adversarial Robustness of Vision Transformers”. In:

Transactions on Machine Learning Research (2022). url: https://openreview.

net/forum?id=lE7K4n1Esk.

[Shc+18] Oleksandr Shchur et al. “Pitfalls of graph neural network evaluation”. In: arXiv

preprint arXiv:1811.05868 (2018).

[Shi+19] Bin Shi et al. “Acceleration via Symplectic Discretization of High-Resolution

Differential Equations”. In: Advances in Neural Information Processing Systems.

Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[SKL20] Adil Salim, Anna Korba, and Giulia Luise. “The Wasserstein Proximal Gradient

Algorithm”. In: arXiv preprint arXiv:2002.03035 (2020).

[SM03] Endre Süli and David F Mayers. An introduction to numerical analysis. Cam-

bridge university press, 2003.

[Son+20] Yang Song et al. “Score-based generative modeling through stochastic differential

equations”. In: arXiv preprint arXiv:2011.13456 (2020).

[SOZ17] Zuoqiang Shi, Stanley J. Osher, and Wei. Zhu. “Weighted nonlocal Laplacian

on interpolation from sparse data”. In: Journal of Scientific Computing 73.2-3

(2017), pp. 1164–1177.

[Sut+13] Ilya Sutskever et al. “On the importance of initialization and momentum in deep

learning”. In: International Conference on Machine Learning. 2013, pp. 1139–

1147.

132

https://arxiv.org/abs/2102.07870
https://openreview.net/forum?id=lE7K4n1Esk
https://openreview.net/forum?id=lE7K4n1Esk

[SXY19] Jie Shen, Jie Xu, and Jiang Yang. “A new class of efficient and robust energy

stable schemes for gradient flows”. In: SIAM Review 61.3 (2019), pp. 474–506.

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks

for Large-Scale Image Recognition.” In: ICLR. Ed. by Yoshua Bengio and Yann

LeCun. 2015. url: http://dblp.uni-trier.de/db/conf/iclr/iclr2015.

html#SimonyanZ14a.

[Sze+15] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[Sze+16] Christian Szegedy et al. “Rethinking the inception architecture for computer

vision”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2016, pp. 2818–2826.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine

for model-based control”. In: 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems. 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.

6386109.

[Tho+22] Matthew Thorpe et al. “GRAND++: Graph Neural Diffusion with A Source

Term”. In: International Conference on Learning Representations. 2022. url:

https://openreview.net/forum?id=EMxu-dzvJk.

[TR19] Belinda Tzen and Maxim Raginsky. “Neural stochastic differential equations:

Deep latent gaussian models in the diffusion limit”. In: arXiv preprint (2019).

[TT13] Nizar Touzi and Agnès Tourin. Optimal stochastic control, stochastic target

problems, and backward SDE. Vol. 29. Springer, 2013.

[Umm+20] Benjamin Ummenhofer et al. “Lagrangian Fluid Simulation with Continuous

Convolutions”. In: International Conference on Learning Representations. 2020.

url: https://openreview.net/forum?id=B1lDoJSYDH.

133

http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://openreview.net/forum?id=EMxu-dzvJk
https://openreview.net/forum?id=B1lDoJSYDH

[Vas+17] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural

Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran As-

sociates, Inc., 2017. url: https://proceedings.neurips.cc/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[Vel+] Petar Veličković et al. “Graph Attention Networks”. In: International Conference

on Learning Representations.

[Vor+17] Eugene Vorontsov et al. “On orthogonality and learning recurrent networks with

long term dependencies”. In: Proceedings of the 34th International Conference

on Machine Learning-Volume 70. 2017, pp. 3570–3578.

[Wan+06] Fei Wang et al. “Semi-supervised classification using linear neighborhood propa-

gation”. In: 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06). Vol. 1. IEEE. 2006, pp. 160–167.

[Wan+19] Bao Wang et al. “ResNets Ensemble via the Feynman-Kac Formalism to Improve

Natural and Robust Accuracies”. In: Advances in Neural Information Processing

Systems. 2019, pp. 1655–1665.

[Wan+20] Bao Wang et al. “Scheduled Restart Momentum for Accelerated Stochastic

Gradient Descent”. In: arXiv preprint arXiv:2002.10583 (2020).

[Wan+21a] Luyu Wang et al. “WikiGraphs: A Wikipedia text-knowledge graph paired

dataset”. In: arXiv preprint arXiv:2107.09556 (2021).

[Wan+21b] Yifei Wang et al. “Dissecting the Diffusion Process in Linear Graph Convolu-

tional Networks”. In: arXiv preprint arXiv:2102.10739 (2021).

[Wan+21c] Yiwei Wang et al. “Particle-based energetic variational inference”. In: Statistics

and Computing 31.3 (2021), pp. 1–17.

[Wan+22] Jianfeng Wang et al. “GIT: A Generative Image-to-text Transformer for Vision

and Language”. In: Transactions of Machine Learning Research (2022). url:

https://openreview.net/forum?id=b4tMhpN0JC.

134

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=b4tMhpN0JC

[Wis+16] Scott Wisdom et al. “Full-capacity unitary recurrent neural networks”. In:

Advances in Neural Information Processing Systems. 2016, pp. 4880–4888.

[WN11] Homer F Walker and Peng Ni. “Anderson acceleration for fixed-point iterations”.

In: SIAM Journal on Numerical Analysis 49.4 (2011), pp. 1715–1735.

[WRJ18] Ashia C. Wilson, Benjamin Recht, and Michael I. Jordan. “A Lyapunov Analysis

of Momentum Methods in Optimization”. In: arXiv preprint arXiv:1611.02635

(2018). arXiv: 1611.02635 [math.OC].

[WY20] Bao Wang and Qiang Ye. “Stochastic Gradient Descent with Nonlinear Conju-

gate Gradient-Style Adaptive Momentum”. In: arXiv preprint arXiv:2012.02188

(2020).

[XGC20] Mingtao Xia, Chris D. Greenman, and Tom Chou. “PDE Models of Adder Mech-

anisms in Cellular Proliferation”. In: SIAM Journal on Applied Mathematics

80.3 (2020), pp. 1307–1335. doi: 10.1137/19M1246754.

[Xia+21] Hedi Xia et al. “Heavy ball neural ordinary differential equations”. In: Advances

in Neural Information Processing Systems 34 (2021).

[XQT20] Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. “Continuous Graph Neural

Networks”. In: Proceedings of the 37th International Conference on Machine

Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of

Machine Learning Research. PMLR, July 2020, pp. 10432–10441.

[Xu+18] Keyulu Xu et al. “Representation learning on graphs with jumping knowledge

networks”. In: International Conference on Machine Learning. PMLR. 2018,

pp. 5453–5462.

[Xu+19] Jinchao Xu et al. “On the stability and accuracy of partially and fully implicit

schemes for phase field modeling”. In: Computer Methods in Applied Mechanics

and Engineering 345 (2019), pp. 826–853.

135

https://arxiv.org/abs/1611.02635
https://doi.org/10.1137/19M1246754

[Yan+19] Guandao Yang et al. “PointFlow: 3D Point Cloud Generation with Continuous

Normalizing Flows”. In: arXiv (2019).

[YHL19] Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. “ODE2VAE: Deep

generative second order ODEs with Bayesian neural networks”. In: Advances in

Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran

Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper/2019/

file/99a401435dcb65c4008d3ad22c8cdad0-Paper.pdf.

[Yin+18a] Penghang Yin et al. “Stochastic backward Euler: an implicit gradient descent

algorithm for k-means clustering”. In: Journal of Scientific Computing 77.2

(2018), pp. 1133–1146.

[Yin+18b] Rex Ying et al. “Graph convolutional neural networks for web-scale recommender

systems”. In: Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. 2018, pp. 974–983.

[YML19] Liang Yao, Chengsheng Mao, and Yuan Luo. “Graph convolutional networks

for text classification”. In: Proceedings of the AAAI conference on artificial

intelligence. Vol. 33. 01. 2019, pp. 7370–7377.

[ZA20] Lingxiao Zhao and Leman Akoglu. “PairNorm: Tackling Oversmoothing in

GNNs”. In: International Conference on Learning Representations. 2020. url:

https://openreview.net/forum?id=rkecl1rtwB.

[ZC18] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural networks”.

In: Proceedings of the 32nd International Conference on Neural Information

Processing Systems. 2018, pp. 5171–5181.

[ZDC20] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. “Symplectic

ODE-Net: Learning Hamiltonian Dynamics with Control”. In: International

Conference on Learning Representations. 2020. url: https://openreview.

net/forum?id=ryxmb1rKDS.

136

https://proceedings.neurips.cc/paper/2019/file/99a401435dcb65c4008d3ad22c8cdad0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/99a401435dcb65c4008d3ad22c8cdad0-Paper.pdf
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=ryxmb1rKDS
https://openreview.net/forum?id=ryxmb1rKDS

[ZEG20] Alexander Zaitzeff, Selim Esedoglu, and Krishna Garikipati. “Variational Ex-

trapolation of Implicit Schemes for General Gradient Flows”. In: SIAM Journal

on Numerical Analysis 58.5 (2020), pp. 2799–2817.

[ZF13] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolu-

tional Networks”. In: European Conference on Computer Vision. 2013.

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. “Semi-Supervised

Learning Using Gaussian Fields and Harmonic Functions”. In: International

Conference on Machine Learning. 2003.

[Zha+19a] Si Zhang et al. “Graph convolutional networks: a comprehensive review”. In:

Computational Social Networks 6.1 (2019), pp. 1–23.

[Zha+19b] Tianjun Zhang et al. “ANODEV2: A Coupled Neural ODE Framework”. In:

Advances in Neural Information Processing Systems. Ed. by H. Wallach et al.

Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.neurips.

cc/paper/2019/file/227f6afd3b7f89b96c4bb91f95d50f6d-Paper.pdf.

[Zho+04] Dengyong Zhou et al. “Learning with local and global consistency”. In: Advances

in neural information processing systems. 2004, pp. 321–328.

[Zhu+20a] Juntang Zhuang et al. “Adaptive Checkpoint Adjoint Method for Gradient Esti-

mation in Neural ODE”. In: Proceedings of the 37th International Conference on

Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings

of Machine Learning Research. PMLR, July 2020, pp. 11639–11649.

[Zhu+20b] Juntang Zhuang et al. “Ordinary differential equations on graph networks”. In:

https://openreview.net/forum?id=SJg9z6VFDr, 2020.

[Zhu+21] Juntang Zhuang et al. “MALI: A memory efficient and reverse accurate integrator

for Neural ODEs”. In: arXiv preprint arXiv:2102.04668 (2021).

[ZS05] Dengyong Zhou and Bernhard Schölkopf. “Regularization on Discrete Spaces”.

In: 27th DAGM Conference on Pattern Recognition. 2005, pp. 361–368.

137

https://proceedings.neurips.cc/paper/2019/file/227f6afd3b7f89b96c4bb91f95d50f6d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/227f6afd3b7f89b96c4bb91f95d50f6d-Paper.pdf

[ZYX17] S. Zhang, P. Yin, and J. Xin. “Transformed Schatten-1 Iterative Thresholding

Algorithms for Low Rank Matrix Completion”. In: Comm. Math Sci 15.3 (2017),

pp. 839–862.

138

	List of Figures
	List of Tables
	Introduction
	Neural Ordinary Differential Equations
	Challenges with NODEs

	Graph Neural Diffusion

	Background
	Residual Networks (ResNets)
	Neural Ordinary Differential Equations (NODEs)
	Proof of Existence and Uniqueness of Solutions of NODEs
	Bijection Property of NODEs
	Adjoint Solutions
	ODE-RNN

	Heavy Ball Neural Ordinary Differential Equations (HBNODEs)
	Introduction
	Contribution
	Organization

	Heavy Ball Neural Ordinary Differential Equations
	Heavy ball ordinary differential equation
	Adjoint Equation for the First- and Second-order ODEs
	Heavy ball neural ordinary differential equations

	Generalized Heavy Ball Neural Ordinary Differential Equations
	Learning long-term dependencies – Vanishing gradient
	Linear Analysis on NODEs and HBNODEs
	Generic Analysis on Vanishing Gradients of NODEs and (G)HBNODEs

	Experimental Results
	Point cloud separation
	Image classification
	Learning dynamical systems from irregularly-sampled time series

	Related Work
	Concluding Remarks

	GRAND++: Graph Neural Diffusion with A Source Term
	Introduction
	Our contribution
	Related work
	Notation
	Organization

	Background
	A Brief Review of GRAND
	Random walk viewpoint of GRAND
	GRAND++: Graph Neural Diffusion with A Source Term
	Algorithm and formulation
	The random walk perspective of GRAND++

	Experiments
	GRAND++ is more resilient to deep architectures
	GRAND++ is more accurate with limited labeled training data
	Time-dependent attention and graph rewiring
	Datasets and experimental settings

	Concluding Remarks

	Proximal Implicit ODE Solvers for Accelerating Learning Neural ODEs
	Introduction
	Computational bottlenecks of neural ODEs
	Our contribution
	More related works
	Notation

	Proximal Algorithms for Learning Neural ODEs
	A proximal viewpoint of the backward Euler solver
	Proximal form of Crank-Nicolson
	The proximal backward differentiation formula (BDF) methods

	Stability and Convergence Analysis
	Linear stability: Implicit vs. explicit solvers
	Effects of the error of the inner solver
	Energy stability and convergence

	Experimental Results
	Solving 1D diffusion equation
	Learning CNFs
	Training GRAND

	Single-step, Multi-stage Implicit Schemes
	Concluding Remarks

	Conclusion

