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Abstract The development of multiple chromosome-scale reference genome sequences in 
many taxonomic groups has yielded a high-resolution view of the patterns and processes of molec-
ular evolution. Nonetheless, leveraging information across multiple genomes remains a significant 
challenge in nearly all eukaryotic systems. These challenges range from studying the evolution of 
chromosome structure, to finding candidate genes for quantitative trait loci, to testing hypotheses 
about speciation and adaptation. Here, we present GENESPACE, which addresses these challenges 
by integrating conserved gene order and orthology to define the expected physical position of all 
genes across multiple genomes. We demonstrate this utility by dissecting presence–absence, copy-
number, and structural variation at three levels of biological organization: spanning 300 million years 
of vertebrate sex chromosome evolution, across the diversity of the Poaceae (grass) plant family, and 
among 26 maize cultivars. The methods to build and visualize syntenic orthology in the GENESPACE 
R package offer a significant addition to existing gene family and synteny programs, especially in 
polyploid, outbred, and other complex genomes.

Editor's evaluation
GENESPACE is a new and straightforward computational tool to include synteny information in 
the calculation of genome-wide sets of orthologs. The development of this tool is very timely as 
more and more complete chromosome-scale assembled genomes are becoming available. While 
the assembly problem has been solved, this is not the case for multiple genome comparisons, and 
GENESPACE is an important step to help remedy this gap in our comparative genomics toolbox.

Introduction
De novo genome assemblies and gene model annotations represent increasingly common resources 
that describe the sequence and positions of protein coding and intergenic regions within a single 
genotype. Evolutionary relationships among these DNA sequences form the foundation of many 
molecular tools in modern medical, breeding, and evolutionary biology research.
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Perhaps the most crucial inference to make when comparing genomes revolves around homolo-
gous genes, which share an evolutionary common ancestor and ensuing sequence or protein struc-
ture similarity. Analyses of homologs, including comparative gene expression, epigenetics, and 
sequence evolution, require the distinction between orthologs, which arise from speciation events, 
and paralogs, which arise from sequence duplications (see Box 1 for definitions). In some systems, 
this is a simple task where most genes are single copy, and orthologs are synonymous with reciprocal 
best-scoring protein BLAST hits. Other sequence similarity approaches such as OrthoFinder (Emms 
and Kelly, 2019; Emms and Kelly, 2015) leverage graphs and gene trees to test for orthology, 
permitting more robust analyses in systems with gene copy number (CNV) or presence–absence vari-
ation (PAV). However, whole-genome duplications (WGDs), chromosomal deletions, and variable rates 
of sequence evolution, such as subgenome dominance in polyploids, can confound the evidence of 
orthology from sequence similarity alone.

The physical position of homologs offers a second line of evidence that can help overcome 
challenges posed by WGDs, tandem arrays, heterozygous-duplicated regions, and other genomic 
complexities (Drillon et al., 2020; Haug-Baltzell et al., 2017; Wang et al., 2012). Synteny, or the 
conserved order of DNA sequences among chromosomes that share a common ancestor, is a typical 
feature of eukaryotic genomes. In some taxa, synteny is preserved across hundreds of millions of 
years of evolution and is retained over multiple WGDs (Jiao et al., 2014; Simakov et al., 2020; Zhao 
and Schranz, 2019). Like chromosome-scale synteny, conserved gene order collinearity along local 
regions of chromosomes can provide evidence of homology, and in some cases enable determination 
of whether two regions diverged as a result of speciation or a large-scale duplication event (Drillon 
et al., 2020). Combined, evidence of gene collinearity and sequence similarity should improve the 
ability to classify paralogous and orthologous relationships beyond either approach in isolation.

Integrating synteny and collinearity into comparative genomics pipelines also physically anchors the 
positions of related gene sequences onto the assemblies of each genome. For example, by exploring 
only syntenic orthologs it is possible to examine all putatively functional variants within a genomic 
region of interest, even those in genes that are absent in the focal reference genome (Lovell et al., 
2018). Such a ‘pan-genome annotation’ framework (Lovell et al., 2021a) permits access to multi-
genome networks of high-confidence orthologs and paralogs, regardless of ploidy or other compli-
cating aspects of genome biology. Here, we present GENESPACE, an analytical pipeline that explicitly 
links synteny and sequence similarity to provide high-confidence inference about networks of genes 

eLife digest The genome is the complete DNA sequence of an individual. It is a crucial founda-
tion for many studies in medicine, agriculture, and conservation biology. Advances in genetics have 
made it possible to rapidly sequence, or read out, the genome of many organisms. For closely related 
species, scientists can then do detailed comparisons, revealing similar genes with a shared past or a 
common role, but comparing more distantly related organisms remains difficult.

One major challenge is that genes are often lost or duplicated over evolutionary time. One way to 
be more confident is to look at ‘synteny’, or how genes are organized or ordered within the genome. 
In some groups of species, synteny persists across millions of years of evolution. Combining sequence 
similarity with gene order could make comparisons between distantly related species more robust.

To do this, Lovell et al. developed GENESPACE, a software that links similarities between DNA 
sequences to the order of genes in a genome. This allows researchers to visualize and explore related 
DNA sequences and determine whether genes have been lost or duplicated. To demonstrate the 
value of GENESPACE, Lovell et al. explored evolution in vertebrates and flowering plants. The soft-
ware was able to highlight the shared sequences between unique sex chromosomes in birds and 
mammals, and it was able to track the positions of genes important in the evolution of grass crops 
including maize, wheat, and rice.

Exploring the genetic code in this way could lead to a better understanding of the evolution of 
important sections of the genome. It might also allow scientists to find target genes for applications 
like crop improvement. Lovell et al. have designed the GENESPACE software to be easy for other 
scientists to use, allowing them to make graphics and perform analyses with few programming skills.

https://doi.org/10.7554/eLife.78526
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that share a common ancestor and represents these networks as a ‘pan-genome annotation’. We then 
leverage this framework to explore gene family evolution in flowering plants, mammals, and reptiles.

Results and discussion
GENESPACE syntenic orthology methods to compare multiple complex 
genomes
Comparative genomics across the complex evolutionary histories of eukaryotes typically requires 
equally varied input and analytical pipelines depending on researchers’ goals and study systems. 
For example, synteny between closely related haploid assemblies is often inferred by exploring only 
1:1 reciprocal best-scoring hits with MCScanX (Wang et al., 2012). Alternatively, polyploid genomes 
are typically split into subgenomes so that homeologs are viewed by clustering algorithms like 
OrthoFinder (Emms and Kelly, 2019; Emms and Kelly, 2015) as orthologous and not paralogous. 
While expert knowledge that informs these analytical decisions can dramatically improve precision, 
this knowledge is not available in many systems. These issues boil down to a simple circular problem: 
a priori knowledge of gene copy number is needed to effectively infer orthology and synteny, yet 
measures of synteny and orthology are needed to infer copy number between a pair of sequences.

GENESPACE resolves this circular problem by operating on a foundational assumption: homo-
logs should be exactly single copy within any syntenic region between a pair of genomes. There are 
two major violations of this assumption that cause copy number variation within a syntenic block: (1) 
tandem arrays and (2) gene PAV. GENESPACE addresses these complexities directly in two ways. First, 
physically proximate multigene families (hereon, ‘tandem arrays’, Box 1) are condensed to the physi-
cally most central gene of the array. Gene rank order along the genome is recalculated on these ‘array 
representative’ genes, effectively masking copy number variation due to tandem arrays. Second, 
synteny is inferred in a pairwise manner only using ‘potential anchor’ protein BLAST hits (hereon 
‘hits’) where both the query and target genes are in the same orthogroup. The rank-order positions of 
these potential anchor genes are also recalculated prior to synteny inference, which effectively masks 
orthogroups missing a gene in one genome (i.e., PAV). Thus, GENESPACE operates on OrthoFinder-
derived orthogroups with one-to-one relationships for any accurately defined syntenic region, regard-
less of ploidy or level of sequence conservation.

Given GENESPACE’s reliance on syntenic regions between genomes, errors in syntenic block coor-
dinates can have major effects on downstream estimates. Therefore, we crafted a sensitive pipe-
line to infer syntenic regions (see pipeline overview in Figure 1). To demonstrate its functionality, 
we ran GENESPACE on seven pairs of genomes spanning closely related maize cultivars to ancient 
mammal–bird divergence (~300 M ya; Table 1, see Materials and methods). The three comparisons 
between vertebrate genomes have no recent history of WGDs, while WGDs predated evolutionary 
divergence of the four plant contrasts: maize is a 12  M ya paleo-tetraploid, cotton is a 1.6  M ya 
meso-tetraploid, and the ~70 M ya Rho WGD predated grass diversification. Paralogs derived from 
these WGDs notoriously obscure contrasts between orthologs in these systems. As such, we treated 
all genomes as haploid and did not include an outgroup; therefore, orthogroups should not include 

Box 1. Definitions

Orthogroup — a set of genes across multiple genomes derived from a single ancestral gene.
Ortholog — a pair of orthogroup members in two species derived from a single gene in their 
most recent common ancestor.
Paralog — orthogroup members derived from a duplication event since speciation.
Homeolog — paralogs derived from a whole-genome duplication.
Tandem array — paralogs in proximity on a chromosome within a genome.
Gene collinearity — retained order of genes across species due to common ancestry.
Synteny — like collinearity but at larger scales, like chromosome arms.
Pan-genome annotation — A set of orthogroups across multiple genomes, placed along the 
coordinate system of a specified reference genome.

https://doi.org/10.7554/eLife.78526
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homeologs since the genomes share a common ancestor that arose after the WGD (see ‘additional 
considerations’ methods section: Outgroups and the phylogenetic context of orthology inference). In 
each run, we contrasted GENESPACE-derived orthogroups and syntenic blocks to the defaults from 
OrthoFinder and MCScanX, respectively (Table 1). Since it is a common practice to refine hits prior 
to running MCScanX, we also included syntenic block coverage from MCScanX run on orthogroup-
constrained hits where both the target and query genes must be in the same orthogroup. To contrast 

Subset hits: 
(1) condense tandem arrays to most central gene

(2) keep top N hits for each gene, N = ploidy of target
(3) [optional] query and target in the same OG

Pull “initial” collinear anchors with MCScanX

Pull all hits within fixed 
radius of initial anchors

Cluster anchors into 
blocks with dbscan

Re-call anchors 
with MCScanX

Pull all “inbuffer” hits 
around final anchors

MCScanX on all hits MCScanX on OG hits Default GENESPACE

Inversion

Large tandem 
array

Array is weaker in 
orthogroup hits, but 
overlaps remain

Overlapping 
syntenic 
blocks

synteny
High-resolution definition 
of syntenic blast hits and 

block coordinates

pangenome
Place orthogroups at syntenic 

locations along a reference 
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Primary protein-coding 
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(”pgChr”) and gene rank 
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Figure 1. GENESPACE synteny and pan-genome annotation methods. (A, grey panel) GENESPACE runs and parses OrthoFinder results into a 
synteny-constrained pan-genome annotation. (B, purple panel) Chromosome, gene rank order, and orthogroup membership are added to BLAST hits, 
which allows direct integration between estimates of orthology and synteny. The three dotplots present the efficacy of GENESPACE syntenic blocks by 
exploring a particularly challenging region on human (x-axis) and chimpanzee (y-axis) chr. 6. Each point is a BLAST hit rank-order position, colored by 
syntenic block; colors are recycled if there are more than eight blocks. (C, green panel) Synteny-constrained orthogroups and optionally non-syntenic 
orthologs are decomposed into a pan-genome annotation where each orthogroup is placed at its inferred syntenic position.

Table 1. Comparison of synteny and orthogroup methods.
To test the precision of GENESPACE syntenic orthogroups estimates, we contrasted seven pairs of haploid genome assemblies. 
We present the percent of genes that were found in an orthogroup that hit a single chromosome per genome from the default 
OrthoFinder and GENESPACE runs. The precision of syntenic block breakpoint estimates was calculated similarly, where the 
percentage of genes that are placed in a single syntenic block per genome are presented for MCScanX run on all hits, those where 
both the query and target genes are in the same orthogroup (‘OG’) or via the GENESPACE pipeline.

(a) % genes in single-copy OGs (b) % genes in single-copy syntenic blocks

Age (~M ya) OrthoFinder GENESPACE MCScanX MCScanX OG GENESPACE

B73 vs. B97 maize* <0.01 51.5 73.6 50.8 79.0 93.4

Human Hg38 vs. T2T 0–0.1 87.7 95.9 81.1 95.0 97.7

Cotton*,+ 0.5 35.6 85.7 2.7 14.1 96.2

HAL2 vs. FIL2 panicgrass* 1.1 74.8 83.2 62.3 89.3 92.0

Human-chimpanzee 7 81.1 90.2 78.6 91.2 93.3

Sorghum-Brachypodium* 50 46.7 50.2 49.3 67.4 76.3

Human-chicken 310 66.7 68.5 66.4 71.2 73.0

*The plant genomes all have one or more WGDs that predate divergence of the genomes,.+Cotton species Gossypium barbadense and G. 
darwinii have the most recent WGD of ~1.6 M ya, which causes a large number of blocks to be included as two copies; to avoid confusion between 
subgenomes, blkSize, and nGaps parameters were increased from 5 (default) to 10 genes.

https://doi.org/10.7554/eLife.78526
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each approach, we calculated the percent of genes in (1) orthogroups and (2) syntenic blocks that 
were placed on exactly one chromosome per genome (Table 1).

For every pair of genomes, GENESPACE produced a greater percentage of single-copy syntenic 
blocks and genes in single chromosome orthogroups than either OrthoFinder or MCScanX in isola-
tion. GENESPACE also outperformed simple integration between the two methods through MCScanX 
on orthogroup-constrained hits. The improved performance of GENESPACE synteny-constrained 
orthogroups was most subtle between highly diverged haploid animal assemblies. For example, in 
the comparison between human and chicken, GENESPACE resolved 2% and 1.8% more single-copy 
orthogroups and syntenic blocks than default OrthoFinder and orthogroup-constrained MCScanX, 
respectively. In contrast, the benefits of GENESPACE were most pronounced in recently diverged 
genomes with a history of WGDs. Single-copy orthogroups between two meso-tetraploid cotton 
species that share a WGD that predated speciation by ~1  M ya, were uncommon in the default 
OrthoFinder run (35.6%) but far more prevalent in GENESPACE syntenic orthogroups (85.7%). Simi-
larly, homeologs derived from the cotton WGD impacted estimates of syntenic blocks: only 14% of the 
genomes were single-copy syntenic in orthogroup-constrained MCScanX but 96.2% were single copy 
in GENESPACE syntenic blocks. Combined, these results demonstrate significant flexibility and utility 
of GENESPACE across a range of evolutionary histories and divergence.

It is important to note that some evolutionary processes, including small-scale translocations, can 
cause true orthologs to exist outside of syntenic regions. Closely related genomes without a history of 
WGDs tend to have few non-syntenic orthologs. For example, there are 1096 non-syntenic orthologs 
(6.3% of all orthologs) between human and chimpanzee. In contrast, the 50 M ya diverged Sorghum 
and Brachypodium genomes have 9002 non-syntenic orthologs, many of which are the result of over-
retained Rho WGD-derived paralogs (see below). Since the non-syntenic orthologs can be important 
in some situations, GENESPACE embraces this complexity by including and flagging non-syntenic 
orthologs within the pan-genome annotation (Figure 1).

Synteny-anchored exploration of vertebrate sex chromosomes
GENESPACE facilitates the exploration and analysis of sequence evolution across multiple genomes 
within regions of interest (e.g., quantitative trait loci [QTL] intervals, see the next section). One partic-
ularly instructive example comes from the origin and evolution of the mammalian XY and avian ZW 
sex chromosome systems. To explore these chromosomes, we ran GENESPACE on 15 haploid avian 
and mammalian genome assemblies, spanning most major clades of birds, placental mammals, mono-
tremes, and marsupials with available chromosome-scale annotated reference genomes (See Mate-
rials and methods). We also included two reptile genomes as outgroups to the avian genomes. The 
heteromorphic chromosomes (Y and W) are often unassembled, or, where assemblies exist, lack suffi-
cient synteny to provide a useful metric for comparative genomics. As such, we chose to focus on the 
homomorphic X and Z chromosomes, which have remained surprisingly intact over the >100 M years 
of independent mammalian (Murphy et al., 1999) and avian evolution (Zhou et al., 2014; Figure 2, 
Figure 2—figure supplement 1).

While the same or similar genomic regions often recurrently evolve into sex chromosomes, perhaps 
due to ancestral gene functions involved in gonadogenesis, evidence about the nonrandomness of 
sex chromosome evolution is still contentious (Kratochvíl et al., 2021). Given our analysis, the avian 
Z chromosome clearly did not evolve from either of the two reptile Z chromosomes sampled here, 
but instead likely arose from autosomal regions or unsampled ancestral sex chromosomes. The situa-
tion in mammals is less clear, in part because both reptile genomes are more closely related to avian 
than mammalian genomes, which makes ancestral state reconstructions between the two groups less 
accurate. Nonetheless, the mammalian X and sand lizard Z chromosomes partially share syntenic 
orthology, an outcome that would be consistent with common descent from a shared ancestral sex 
chromosome or autosome containing sex-related genes. The shared 91.7 M bp region between the 
human X and sand lizard Z represents 59.0% of the human X chromosome genic sequence. The 
remaining 64.0 M bp of human X linked sequences are syntenic with autosomes in the sand lizard and 
garter snake genomes (Figure 2).

The eutherian mammalian X chromosome is largely composed of two regions, an X-conserved 
ancestral sex chromosome region that arose in the common ancestor of therian mammals, and an 
X-added region that arose in the common ancestor of eutherians (Ross et al., 2005). Consistent with 

https://doi.org/10.7554/eLife.78526


 Tools and resources﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Lovell et al. eLife 2022;11:e78526. DOI: https://​doi.​org/​10.​7554/​eLife.​78526 � 6 of 20

this evolutionary history, the X chromosome is syntenic across all five eutherian mammals studied here. 
Further, a 107.2 M bp (68.8%) segment of the human X, which corresponds with the X-conserved 
region, is syntenic with 77.8 M bp (93.9%) of the Tasmanian devil X chromosome and represents the 
entire syntenic region between the human and all three marsupial X chromosomes (Figure 2).

Similarly, the chicken Z chromosome is retained in its entirety across all five avian genomes. The 
only notable exception being the budgie Z chromosome, which features a partial fusion between the 
Z and an otherwise autosomal 19.5 M bp segment of chicken chromosome 11 (Figure 2), potentially 
representing a neo-sex chromosome fusion that has not yet been described.

In contrast to conserved eutherian and avian sex chromosomes, the complex monotreme XnYn 
sex chromosomes are only partially syntenic between the two sampled genomes. Only the first X 
chromosomes are ancestral to both echidna and platypus (Rens et al., 2007), and all are unrelated to 
the mammalian X chromosomes (Figure 2—figure supplement 1), consistent with their independent 
evolution (Rens et al., 2007). Interestingly, the entirety of the echidna X4 and 47.6 M bp (67.9%) of the 
genic region of the platypus X5 chromosomes are syntenic with the avian Z chromosome (Figure 2). 
The phylogenetic scale of the genomes presented here precludes evolutionary inference about the 
origin of these shared sex chromosome sequences; however, the possibility of parallel evolution of sex 
chromosomes between such diverged lineages may prove an interesting future line of inquiry.

Figure 2. Sex chromosome syntenic network across 17 representative vertebrate genomes. The plot was generated by the plot_riparian GENESPACE 
function. Genomes are ordered vertically to minimize the number of translocations between each pairwise combination. Chromosomes are ordered 
horizontally to maximize synteny with the human chromosomes [X, 1–22]. Regions containing syntenic orthogroup members to the mammalian X (gold) 
or avian Z (blue) chromosomes are highlighted. All sex chromosomes are represented by red segments while autosomes are white. Chromosome 
segment sizes are scaled by the total number of genes in syntenic networks and positions of the braids are the gene order along the chromosome 
sequence. See Figure 2—figure supplement 1 for the full synteny graph including autosomes and chromosome labels.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Complete map of synteny, color-coded by synteny with human chromosomes X, 1-22.

https://doi.org/10.7554/eLife.78526
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Exploiting synteny to track candidate genes in grasses
The Poaceae grass plant family is one of the best studied lineages of all multicellular eukaryotes 
and includes experimental model species (Brachypodium distachyon; Panicum hallii; Setaria viridis) 
and many of the most productive (Zea mays – maize/corn; Triticum aestivum – wheat, Oryza sativa 
– rice) and emerging (Sorghum bicolor – sorghum; Panicum virgatum – switchgrass) agricultural 
crops. Despite the tremendous genetic resources of these and other grasses, genomic comparisons 
among grasses are difficult, in part because of an ancient polyploid origin (see the next section), 
and because subsequent WGDs are a feature of most clades of grasses. For example, maize is an 
11.4 M ya paleo-polyploid (Gaut and Doebley, 1997), allo-tetraploid switchgrass formed 4–6 M ya 
(Lovell et al., 2021b), and allo-hexaploid bread wheat arose about 8 k ya (Haas et al., 2019). In some 
cases, homeologous gene duplications from polyploidy have generated genetic diversity that can be 
targeted for crop improvement; however, in other cases the genetic basis of trait variation may be 
restricted to sequences that arose in a single subgenome. Thus, it is crucial to contextualize compar-
ative–quantitative genomics and explicitly explore only the orthologous or homeologous regions of 
interest when searching for markers or candidate genes underlying heritable trait variation — a signif-
icant challenge in the complex and polyploid grass genomes.

To help overcome this challenge and provide tools for grass comparative genomics, we conducted 
a GENESPACE run and built an interactive viewer hosted on Phytozome (Goodstein et al., 2012). 
Owing to its use of within-block orthology and synteny constraints (Figure 1), GENESPACE is ideally 
suited to conduct comparisons across species with diverse polyploidy events. Default parameters 
produced a largely contiguous map of synteny even across notoriously difficult comparisons like the 
paleo-homeologs between the maize subgenomes (Figure 3A). Furthermore, the sensitive synteny 
construction pipeline implemented by GENESPACE effectively masks additional paralogous regions 
like those from the Rho duplication that gave rise to all extant grasses.

Breeders and molecular biologists can take two general approaches to understand the genetic 
basis of complex traits: studying variation caused by a priori-defined genes of interest or determining 
candidate genes from genomic regions of interest. As an example of the exploration of lists of a 
priori-defined candidate genes, we analyzed PAV of 86 genes shown to be involved in the transition 
between C3 and C4 photosynthesis (Ding et al., 2015), the latter permitting ecological dominance in 
arid climates and agricultural productivity under forecasted increased heat load of the next century. 
To conduct this analysis, we built pan-genome annotations across the seven grasses anchored to 
C4 maize, which was the genome in which these genes were discovered. This resulted in 159 pan-
genome entries: nearly always two placements for each gene in the paleo-tetraploid maize genome. 
Given that many of these genes were discovered in part because of sequence similarity to genes in 
Arabidopsis and other diverged plant species, it is not surprising that PAV among C3/C4 genes was 
lower than the background (9.7% vs. 38.2%, odds ratio = 5.7, p < 1 × 10−16; Figure 3B). However, 
these ratios were highly variable among genomes, particularly among the C3 species (wheat, rice, B. 
distachyon), which had far more absences than the C4 species (15.3% vs. 5.5%, odds ratio = 3.1, p = 
6.25 × 10−8, Figure 3B). This effect is undoubtedly due in part to the increased evolutionary distance 
between maize and the C3 species compared to the other C4 species. However, when controlling for 
the elevated level of absent genes globally in C3 species, the effect was still very strong: the odds of C3 
species having more of these C3/C4 genes at syntenic pan-genome positions than the background was 
always lower than the C4 species (Figure 3C). Despite these interesting patterns, given only a single 
C3/C4 phylogenetic split in this dataset, it is not possible to test evolutionary hypotheses regarding 
the causes of such PAV. Nonetheless, this result suggests a possible role of gene loss or gain as an 
evolutionary mechanism for drought- and heat-adapted photosynthesis.

Like the exploration of a priori-defined sets of genes, finding candidate genes within QTL intervals 
usually involves querying a single reference genome and extracting genes with promising annotations 
or putatively functional polymorphism. In the case of a biparental mapping population genotyped 
against a single reference, this is a trivial process where genes within physical bounds of a QTL are 
the candidates. However, many genetic mapping populations now have reference genome sequences 
for all parents; this offers an opportunity to explore variation among functional alleles and PAV, which 
would be impossible with a single reference genome. GENESPACE is ideally suited for this type of 
exploration, and indeed was originally designed to solve this problem between the two P. hallii refer-
ence genomes and their F2 progeny (Lovell et al., 2018) using synteny to project the positions of 

https://doi.org/10.7554/eLife.78526
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Figure 3. Comparative–quantitative genomics in the grasses. (A) The GENESPACE syntenic map (‘riparian plot’) of orthologous regions among eight 
grass genomes. Chromosomes are ordered horizontally to maximize synteny with rice and ribbons are color coded by synteny to rice chromosomes. 
Genomes are ordered vertically by general phylogenetic positions. (B) The upper bars display the proportion of maize gene models without syntenic 
orthologs (‘absent’) in each genome, split by the full background (dark colors) and 86 C3/C4 genes (light colors). (C) The proportion of absent genes 
is higher in the C3 genomes (green bars), even when controlling for more global gene absences (lower odds ratios). (D) Syntenic orthologs, excluding 
homeologs among the 26 maize nested association mapping (NAM) founder genomes, with two quantitative trait loci (QTL) intervals highlighted on 
chromosome 3 (‘Chr3’) and chromosome 6 (’Chr6’). (E) Focal QTL regions that affect productivity in drought where only the genome that drives the QTL 
effect (middle), the top (B73) and bottom (Tzi8) genomes are presented and the region plotted is restricted to the physical B73 QTL interval and a 25 M 
bp buffer on either side. Note that the Chr3 QTL disarticulates into two intervals. Due to a larger number of potential candidate genes, the larger Chr3 
region, flagged with **, is explored separately in Figure 3—figure supplement 1. (F) Presence–absence and copy number variation are presented for 
two of the three intervals as heatmaps where each row is a genome (order following panel D), each column is a pan-genome entry (see Figure 1), and 
the color of each tile indicates absence (gray), single copy (light blue), and multicopy (dark blue). PAV/CNV of the focal genome is outlined. For each 
interval, the estimated QTL allelic effect relative to B73 of each genome is plotted as bars to the right of the heatmap.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Map of PAV in the larger MO18W chromosome 3 QTL.

https://doi.org/10.7554/eLife.78526
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genes across multiple genomes onto the physical positions of a reference. To illustrate this approach, 
we reanalyzed QTL generated from the 26-parent USA maize nested association mapping (NAM) 
population (Li et  al., 2016). Originally, candidates for these QTL were defined by the proximate 
gene models only in the B73 reference genome (Li et al., 2016); however, with GENESPACE and the 
recently released NAM parent genomes (Hufford et al., 2021), it is now possible to evaluate candi-
date genes present in the genomes of other NAM founder lines but either absent or unannotated in 
the B73 reference genome.

To explore this possibility, we built a single-copy synteny map across all 26 NAM founders anchored 
to the B73 genome (Figure 3D). We opted to focus on QTL where the allelic effect of a single parental 
genome was an outlier relative to all other alleles. Such ‘private’ allelic contributions in multi-parent 
populations offer a powerful opportunity to define high-confidence candidates as genes with parent-
specific sequences that match parent-specific allelic contributions to phenotypic trait variation 
(Abdulkina et al., 2019). Among the 190 QTLs, three displayed outlier effects of one parent: cultivar 
‘Mo18W’ contributed an allele for delayed anthesis-silking interval at two adjacent chromosome 3 
(‘Chr3’) QTLs and cultivar ‘Ki11’ contributed an allele that reduced plant height under drought at a 
QTL on chromosome 6 (‘Chr6’) (Li et al., 2016). Given that these QTL were chosen only due to their 
parental allelic effects, we were surprised to find that the two Mo18W QTL regions exist within a 
11.7 M bp derived inversion that is only found in the Mo18W genome (Figure 3D, E). Since inversions 
reduce recombination, it is possible that multiple Mo18W causal variants have been fixed in linkage 
disequilibrium in this NAM population.

In addition to this chromosomal mutation and sequence variation between the parents and B73 (Li 
et al., 2016), we sought to define candidate genes from the patterns of presence–absence and copy 
number variation, explicitly looking for genes that were private to the focal genome. Two genes in the 
smaller Chr3 and one gene in the larger Chr3 interval were private to Mo18W, and four genes in three 
pan-genome entries (one two-member array) were private to Ki11 in the Chr6 interval (Figure 3F, 
Figure 3—figure supplement 1). While these genes do not have functional annotations relating to 
drought, this method provides additional candidates that would not have been discovered by B73-
only candidate gene exploration.

Studying the WGD that led to the diversification of the grasses
Like most plant families (Barker et al., 2016; Stebbins, 1950; One Thousand Plant Transcriptomes 
Initiative, 2019), but unlike nearly all animal lineages (Muller, 1925), the grasses radiated following a 

Figure 4. Analysis of the grass Rho WGD. (A) BLAST hits between P. hallii and S. viridis where the target and query genes were in the same orthogroup 
are plotted and color coded by sequence similarity. Two over-retained regions are highlighted in the red and yellow boxes. (B) The protein identity 
of S. viridis chromosome 8 primary orthologous (blue line) hits against P. hallii chromosome 8 and the secondary hits (orange line) against P. hallii 
chromosome 3 demonstrate sequence conservation heterogeneity. The region between the two red vertical lines corresponds to the red-boxed over-
retained primary block in panel A. (C) The two boxed regions in panel A were tracked from P. hallii chromosomes 3 (red) and 8 (yellow); 50% transparency 
of the braids means that overlapping regions appear orange.

https://doi.org/10.7554/eLife.78526
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whole-genome duplication: the ~70 M ya Rho WGD. The resulting gene family redundancy and gene-
function subfunctionalization is hypothesized to underlie the tremendous ecological and morpholog-
ical diversity of grasses (Preston et al., 2009; Preston and Kellogg, 2006; Wu et al., 2008).

To explore sequence variation among Rho-derived paralogs, we used GENESPACE to build a 
ploidy-aware syntenic pan-genome annotation among eight species, using the built-in functionality 
that allows the user to mask primary (likely orthologous) syntenic regions and search for secondary 
hits (likely paralogous, Figure 4A). This method acts similarly to using an outgroup that predated the 
WGD (see ‘additional considerations’ methods), but using the same OrthoFinder run as in Figure 3A. 
Overall, the peptide identity between Rho-derived paralogous regions was much lower than ortho-
logs between species (e.g., S. viridis vs. P. hallii: Wilcoxon W = 88,094,632, p < 1 × 10−16), consistent 
with the previous discovery that the Rho duplication predated the split among most extant grasses 
(Ma et al., 2021). However, as has been previously observed (Wang et al., 2011), there is significant 
variation in the relative similarity of Rho-duplicated sequences. As an example, the peptide sequences 
of single-copy gene hits in primary syntenic regions (median identity = 90.6%) between chromosome 8 
of P. hallii and S. viridis, were 26.9% more similar than the secondary Rho-derived regions (Figure 4B; 
median identity = 71.4%, Wilcoxon W = 87,842, p < 1 × 10−16). However, S. viridis chromosome 8 
contained a single over-retained paralogous region. Unlike all other Rho-derived blocks, the P. hallii 
paralogs to this 2.7 M bp chromosome 8 region were not significantly less conserved than the primary 
orthologous region (91.6% vs. 91.9%, W = 14,830, p = 0.13). Outside of this region, the peptide 
identity of paralogs returned to the genome-wide average (Figure 4B). In line with this observation, 
the GENESPACE run treating the eight genomes as haploid representations could not distinguish 
between the Rho-derived paralogs in the over-retained region across all grasses (Figures 3A and 
4C), except for of all chromosome pairs between B. distachyon, wheat, and blocks connecting Maize 
chromosome 10 to sorghum chromosome 5.

It is interesting to note that all syntenic over-retained regions were at the extreme termini of the 
chromosomes outside of maize, B. distachyon and wheat; further, the only genome with complete 
segregation of the two paralogs, wheat, also retains these regions in the center of all six chromosomes 
(Figure 4C). These results are consistent with the proposed evolutionary mechanism (Wang et al., 
2011) where concerted evolution and ‘illegitimate’ homeologous recombination may have homoge-
nized these paralogous regions. This process would be less effective in pericentromeric regions than 
the chromosome tails, where a single crossover event would be sufficient to homogenize two paral-
ogous regions.

Conclusions
Combined, the historical abundance of genetic mapping studies and ongoing proliferation of genome 
resources provides a strong foundation for the integration of comparative and quantitative genomics 
to accelerate discoveries in evolutionary biology, medicine, and agriculture. The incorporation of 
synteny and orthology into comparative genomics and quantitative genetics pipelines offers a mech-
anism to bridge these disparate disciplines. Here, we presented the GENESPACE R package as a 
framework to help bridge the current gaps between comparative and quantitative genomics, espe-
cially in complex evolutionary systems. We hope that the examples presented here will inspire further 
work to leverage the powerful genome-wide annotations that are coming online, both within and 
among species.

Materials and methods
GENESPACE pipeline and analysis overview
GENESPACE operates on gff3-formatted annotation files and accompanying peptide fasta files for 
primary gene models. There are convenience functions for reformatting the gff and peptide files to 
simplify the naming scheme and reduce redundant gene models to the primary longest transcript. With 
these data in hand, GENESPACE calculates BLAST-like hits from DIAMOND2 and runs OrthoFinder 
(Emms and Kelly, 2019) to infer orthogroups and orthologues. GENESPACE then extracts syntenic 
regions from the hits using a combination of graph- and cluster-based approaches, producing syntenic 
orthogroups for each unique (not reciprocal) pair of genomes. Syntenic orthogroups are then collapsed 
into a pan-genome annotation, which is a matrix of positions against a reference genome (rows) and 

https://doi.org/10.7554/eLife.78526
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unique gene models in each syntenic orthogroup for each genome (columns). Detailed step-by-step 
pipeline methods can be found below.

All analyses were performed in R 4.1.2 on macOS Big Sur 10.16. The following R packages were 
used for visualization or within GENESPACE v0.9.3 (February 11, 2022 release): ​data.​table v1.14.0 
(Dowle and Srinivasan, 2021), dbscan v1.1-8 (Hahsler et  al., 2019), igraph v1.2.6 (Csardi and 
Nepusz, 2006), Biostrings v2.58.0 (Pagès et  al., 2020), and rtracklayer v1.50.0 (Lawrence et  al., 
2009). GENESPACE also calls the following third party software: DIAMOND v2.0.8.146 (Buchfink 
et  al., 2021), OrthoFinder v2.5.4 (Emms and Kelly, 2019), and MCScanX no version installed on 
October 23, 2021 (Wang et al., 2012). All results were generated programmatically; the accompa-
nying scripts and key output are available on github: jtlovell/GENESPACE_data. Minor adjustments 
to figures to improve clarity were accomplished in Adobe Illustrator v26.01. A full description of each 
step in GENESPACE is provided in the documentation that accompanies the package source code on 
github (jtlovell/GENESPACE).

Description of the vignettes
Publicly available genome annotations were downloaded on or before October 8, 2021. See Table 2 
for data sources, citations, and metadata. All GENESPACE runs used default parameterization, with 
the following exceptions: (1) the Rho grass run allowed a single secondary hit (default is 0, this is how 
the paralogs are explicitly searched for) and maximum number of gaps in secondary regions of 10 
(default is 5, relaxed to reduce ancient paralogous block splitting), and (2) the maize run used the 
‘fast’ OrthoFinder method since all genomes are closely related and haploid. Some maize genomes 
contained small alternative haplotype scaffolds, which were dropped for all analyses.

The publicly available C3/C4 gene lists and QTL intervals were generated against the v2 maize 
assembly. To make this comparable to the across grass and NAM parent GENESPACE runs, we also 
accomplished a fast GENESPACE run between v2 and the two v5 versions used here. The orthologs 
and syntenic mapping between these versions are included as text files in the data repository.

All statistics presented here were calculated within R. To compare nonnormal distributions (e.g., 
sequence identity), we used the nonparametric signed Wilcoxon ranked sum test. To measure 
sequence divergence, we calculated ungapped percent peptide sequence identity from pairwise 
Needleman–Wunsch global alignments, implemented in Biostrings (Pagès et al., 2020). To deter-
mine single outliers from a unimodal distribution, we applied the Grubbs test implemented in the 
outliers R package (Komsta, 2011). Some figures were constructed outside of GENESPACE using 
base R plotting routines and ggplot2 v3.3.3 (Wickham, 2016). Some color palettes were chosen with 
RColorBrewer (Neuwirth, 2014) and viridis (Garnier et al., 2021).

GENESPACE pipeline: estimating syntenic orthogroups
GENESPACE relies on high-confidence homologs, which are typically defined as members of the same 
orthogroup via OrthoFinder. In addition to the original method, which clusters genes and builds a 
graph from closely related genes based on BLAST scores (Emms and Kelly, 2015), OrthoFinder can 
also use gene trees to split orthogroups into pairwise orthologs (Emms and Kelly, 2019), which repre-
sent a stricter definition of orthology. GENESPACE attempts to merge the benefits of each of these 
methods by first only considering orthogroups for synteny, which allows users to optionally include 
paralogs in the scan, then including non-syntenic gene tree-inferred orthologs into the pan-genome 
annotation during its final steps (Figure 1, see pan-genome pipeline description below). The initial 
orthogroups are inferred ‘globally’ using pairwise reciprocal hits, either using the default OrthoFinder 
specification or ‘fast’ by only looking at unique pairs of genomes. Depending on the ploidy and 
user specifications, orthogroups can be re-estimated within syntenic regions. These three steps are 
detailed below.

Method 1: default global orthogroups. The default behavior of GENESPACE is to run OrthoFinder 
using its default parameters. GENESPACE then builds a vector of OrthoFinder geneIDs and their 
corresponding orthogroup membership. When synteny is called, the GENESPACE-formatted gff text 
files are read in and merged with OrthoFinder sequenceIDs.

Method 2: fast orthogroup estimation. GENESPACE offers a ‘fast’ orthofinderMethod (Table 3), 
which performs only one-way DIAMOND2 searches, where the genome annotation with more gene 
models serves as the query and the smaller annotation is the target. The hits then are mirrored, and 

https://doi.org/10.7554/eLife.78526
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Table 2. Raw data sources.
A list of the genomes used in analyses here. Genome version IDs are taken from those posted on the respective data sources and 
may not reflect the name of the genome in the publication. Where multiple haplotypes are available, only the primary was used for 
these analyses. All polyploids presented here have only a primary haplotype assembled into chromosomes.

ID Species Genome version Data source Ploidy* Reference

garter snake Thamnophis elegans rThaEle1.pri NCBI 1 Rhie et al., 2021

sand lizard Lacerta_agilis rLacAgi1.pri NCBI 1 Rhie et al., 2021

chicken Gallus gallus mat.broiler.GRCg7b NCBI 1 https://www.ncbi.nlm.nih.gov/grc

hummingbird Calypte anna bCalAnn1_v1.p NCBI 1 Rhie et al., 2021

budgie Melopsittacus undulatus bMelUnd1.mat.Z NCBI 1 Unpublished VGP

swan Cygnus olor bCygOlo1.pri.v2 NCBI 1 Rhie et al., 2021

zebra finch Taeniopygia guttata bTaeGut1.4.pri NCBI 1 Rhie et al., 2021

echidna Tachyglossus aculeatus mTacAcu1.pri NCBI 1 Zhou et al., 2021

platypus Ornithorhynchus anatinus mOrnAna1.pri.v4 NCBI 1 Zhou et al., 2021

brushtail possum Trichosurus vulpecula mmTriVul1.pri NCBI 1 Rhie et al., 2021

opossum Monodelphis domestica MonDom5 NCBI 1 Mikkelsen et al., 2007

Tasmanian devil Sarcophilus harrisii mSarHar1.11 NCBI 1 Rhie et al., 2021

human (Hg38) Homo sapiens GRCh38.p13 NCBI 1 https://www.ncbi.nlm.nih.gov/grc

human (t2t) Homo sapiens CHM13-T2T v2.1 NCBI 1 Nurk et al., 2022

chimpanzee Pan troglodytes Clint_PTRv2 NCBI 1
Chimpanzee Sequencing and 
Analysis Consortium, 2005

mouse Mus musculus GRCm39 NCBI 1 https://www.ncbi.nlm.nih.gov/grc

dog Canis lupus familiaris Dog10K_Boxer_Tasha NCBI 1 Jagannathan et al., 2021

sloth Choloepus didactylus mChoDid1.pri NCBI 1 Rhie et al., 2021

horseshoe bat Rhinolophus ferrumequinum mRhiFer1_v1.p NCBI 1 Rhie et al., 2021

dolphin Tursiops truncatus mTurTru1.mat.Y NCBI 1 Unpublished VGP

P. hallii Panicum hallii var. hallii HAL2_v2.1 Phytozome 1 Lovell et al., 2018

P. hallii (FIL) Panicum hallii var. filipes FIL2_v3.1 Phytozome 1 Lovell et al., 2018

switchgrass Panicum virgatum AP13_v5.1 Phytozome 2 Lovell et al., 2021b

S viridis Setaria viridis v2.1 Phytozome 1 Mamidi et al., 2020

Sorghum Sorghum bicolor BTx623_v3.1 Phytozome 1 Paterson et al., 2009

maize Zea mays B73_refgen_v5 NCBI *2 Hufford et al., 2021

rice Oryza sativa cv ‘kitaake’ kitaake_v2.1 Phytozome 1 Jain et al., 2019

Brachypodium Brachypodium distachyon Bd21_v3.1 Phytozome 1
International Brachypodium 
Initiative, 2010

wheat Triticum aestivum V4 (Chinese Spring) NCBI 3 Zhu et al., 2021

G barbadense Gossypium barbadense v1.1 Phytozome 2 Chen et al., 2020

G. darwinii Gossypium darwinii v1.1 Phytozome 2 Chen et al., 2020

26 NAM parents Zea mays see data on NCBI NCBI *1 Hufford et al., 2021

*Ploidy indicates how the genome was treated in the analyses. All values match the ploidy of the primary assembly haplotype except maize, where the 
refgen_v5 was treated as diploid (to match both homeologs) in the multispecies run, but as haploid in the nested association mapping (NAM) founder 
population to track only meiotic homologs across the population. This parameterization is to match the phylogenetic position of the whole-genome 
duplication (WGD) in the terminal branch of the grass-wide analysis, but ancestral in the 26-NAM analysis.

https://doi.org/10.7554/eLife.78526
https://www.ncbi.nlm.nih.gov/grc
https://www.ncbi.nlm.nih.gov/grc
https://www.ncbi.nlm.nih.gov/grc
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each stored as OrthoFinder-formatted BLAST text files. OrthoFinder is then run to the orthogroup 
step on the precomputed BLAST files. This method results in significant speed improvements with 
little loss of fidelity among closely related haploid genomes. The user can also specify the sensitivity 
of DIAMOND2 via the diamondMode parameter during GENESPACE initialization.

Method 3: orthogroups within syntenic blocks. In addition to the above global OrthoFinder runs, 
GENESPACE can rerun OrthoFinder (only through the -og step) in syntenic regions between pairs of 
genomes. This is accomplished through four additional steps in the synteny pipeline: (1) syntenic hits 
are split by large syntenic regions; (2) hits from each syntenic region are passed to OrthoFinder; (3) 
the within-block orthogroups assignments are aggregated into a single vector across all genomes; 
and finally, (4) the synteny pipeline (see below) is rerun using the newly defined combined syntenic 
and inBlkOG vector. While using significant computational resources, this process can improve the 
sensitivity of orthogroup discovery in paralogous or homeologous regions; however, it is not clear that 
this offers much improvement over global orthogroups between purely haploid genomes. As such, 
the default behavior of GENESPACE is to only use orthofinderInBlk when any genome has a ploidy >1.

GENESPACE pipeline: extracting syntenic blast hits
The GENESPACE function ‘synteny’ accepts several user-defined parameters, which allow for flexi-
bility; however, the defaults are sufficient for most high-quality genomes and evolutionary scenarios. 
For example, we used the same default parameters for 300 M years of vertebrate evolution, 50 M 
years and multiple WGDs of grasses, and 10 k years of Maize divergence. For a full list of parameters, 
see documentation of the GENESPACE function ‘set_syntenyParams’, but here, we will discuss (1) 
the minimum number of unique hits within a syntenic block (‘blkSize’, default = 5), (2) the maximum 
number of gaps within a block alignment (‘nGaps’, default = 5), and (3) the radius around a syntenic 
anchor for a hit to be considered syntenic (‘synBuff’, default = 100). Synteny begins by processing all 
gene annotations (steps 1–3), then proceeds to process blast hits for each unique pair of genomes 
(steps 4–7).

Step 1: flag the gff3-formatted annotation. GENESPACE adds the following information to a data 
matrix that initially contains the name and physical coordinates of each gene for each genome: (1) 
OrthoFinder IDs (from the ​sequenceIDs.​txt file), (2) gene rank order, and (3) orthogroup IDs.

Step 2: quality control the annotation. Chromosomes with fewer than blkSize genes are dropped 
so that they will not be used for synteny inference.

Step 3: find and parse tandem arrays. Tandem arrays are defined through six steps: (1) define 
potential tandem arrays as orthogroups containing >1 gene for each genome-by-chromosome combi-
nation; (2) calculate the maximum gene rank-order gap between each adjacent gene in a potential 
tandem array; (3) split those with a gap between genes > synBuff into separate arrays using dbscan; 
(4) flag clusters of >1 genes within synBuff as tandem arrays; (5) choose representative genes for each 
tandem array as the gene closest to the median position of the array and secondarily as the longest 
peptide sequence; and (6) recalculate ‘arrayOrd’ as the gene rank order of tandem array representa-
tive genes.

Table 3. Comparison of GENESPACE setting performance.
The mirrored ‘fast’ method significantly speeds up OrthoFinder runs by calling DIAMOND2 on each 
nonredundant pairwise combination of genomes. However, this approach is less sensitive than the 
default performance and is suggested for only closely related haploid genomes, as the recall of 2:2:2 
OGs is less sensitive than the default specification.

Default OrthoFinder GENESPACE ‘fast’

n.1:1:1 OGs 22,050 22,444

n.2:2:2 OGs 13,793 13,511

n.tandem arrays 10,597 (4433) 10,599 (4426)

*Run time (min) 59.95 12.45

*Run time is for ortholog/orthogroup inference (not the GENESPACE pipeline as a whole) 
using the three cotton genomes, running on 6 2 Gb cores.

https://doi.org/10.7554/eLife.78526
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Step 4: read and process raw blast files. To reduce unnecessary computation, GENESPACE 
concatenates both reciprocal BLAST hit files so that all unique combinations of query and target 
genes are represented in a single matrix. For simplicity, the genome with more gene models is 
treated as the query and the genome with fewer, the target. For each line (‘hit’) in the BLAST file, 
the following data and statistics are added for both the query (genome1) and target (genome2) 
gene: (1) positional information, including gene rank order; (2) tandem array representatives; (3) 
hits where both the query and target are in the same orthogroup; and (4) the relative strength of 
a hit, where scrRank = 1 represents the single highest bit score blast hit for each query and target 
gene.

Step 5: define initial syntenic anchors. The following additional parameters are used to define 
initial syntenic anchors: nHits1 (the top n hits for each gene in the query genome, default ploidy of 
target genome), nHits2 (the top n hits for each gene in the target genome, default = ploidy of query 
genome), onlyOgAnchors (logical specifying whether anchors hits must be isOg, default = TRUE), 
and maskTheseHits (what hits should be masked in the search, default = none; see below on modifi-
cations for secondary hits and polyploid self hits). These parameters are applied to find regions that 
are large and collinear enough to be classified as syntenic through three steps: (1) potential anchor 
hits are defined as those where both the query and target are array representatives, the hit is not in 
maskTheseHits, the query scrRank ≤ nHits1, the target scrRank ≤ nHits2, and, optionally if onlyOgAn-
chors, both the query and target are in the same orthogroup; (2) gene rank order is recalculated for 
the potential anchor hits; (3) MCScanX_h (-s = blkSize, -m = nGaps) is called from R using condensed 
gene rank-order positions as the physical location, and those hits within collinear blocks are flagged 
as initial anchors.

Step 6: clean up initial syntenic anchors. In some cases, syntenic anchors from step 5 can be 
broken up or do not extend to the ends of syntenic regions. To resolve this, we run five additional 
block finalization steps: (1) potential anchor hits within synBuff of the initial anchors are extracted 
and collinear hits are recalled into ‘cleaned’ anchors; (2) the cleaned anchor hits are clustered into 
blocks via dbscan using synBuff as the radius and blkSize as minPts arguments, dropping blocks 
with fewer anchors than blkSize and merging nearby syntenic regions; (3) final syntenic anchors are 
flagged by rerunning MCScanX within each syntenic region; (4) initial block breakpoints are gener-
ated by dbscan first with a large radius of synBuff, then on reranked gene order within regions with 
a radius of blkSize; and (5) overlapping blocks that are not duplicated are split using run-length 
equivalent decoding. Since the final coding of blocks is conducted within broad syntenic regions, 
the parameters passed should be robust to variation in ploidy and sequence divergence between 
genomes.

Step 7: flag anchors, syntenic region hits, and block coordinates. With the final syntenic anchors 
from step 6 in hand we finalize and annotate the tab-delimited blast hits. We define two sets of 
syntenic qualifications: blocks, which are fine grained runs of completely collinear hits, and ‘regions’, 
which are clustered blocks that average across minor inversions. Blocks are defined from the step 6 
anchors. Anchor hits are reclustered via dbscan with a radius of synBuff and each cluster between each 
pair of genomes and chromosomes is assigned a ‘regID’. All hits within synBuff of an anchor hit are 
flagged as ‘inBuffer’. The coordinates of blocks and regions are calculated from the bounding anchors 
for each syntenic block.

Modifications: steps 5–7 are modified depending on whether the BLAST hit file is intra- or inter-
genomic, the ploidy of the query and target genome, and the user-defined number of ‘secondary 
hits’. These modifications are as follows. (1) step 5–7(1): [if necessary] syntenic regions are called 
for self blast hits within haploid genomes. This is the simplest case where the steps are ignored and 
syntenic anchors are defined as self hits between tandem array representatives. Block and region IDs 
are chromosome IDs. (2) Modification step 5–7(2): [if necessary] syntenic regions are called for self 
blast hits within genomes with ploidy >1. Here, the modified syntenic hits from 5-7(1) are specified in 
maskTheseHits with a synBuff radius of 500 genes. This excludes potentially problematic large tandem 
arrays in some genomes. The number of hits after masking is set to ploidy – 1. Then the standard step 
5–7 processes are run. (3) Modification step 5–7(3): [if necessary] syntenic regions are called for blast 
hits where nSecondaryHits >0. Here, the methods for syntenic hit calculation from 5-7(2) (if intrag-
enomic) or 5-7 (as a mask of the rerun if intergenomic) are conducted except that the parameters 
specified are given as those ending in ‘Second’.

https://doi.org/10.7554/eLife.78526


 Tools and resources﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Lovell et al. eLife 2022;11:e78526. DOI: https://​doi.​org/​10.​7554/​eLife.​78526 � 15 of 20

GENESPACE pipeline: constructing pan-genome annotations
The GENESPACE function ‘pangenome’ decodes pairwise syntenic orthologs into a multigenome pan-
annotation. The output is a long-formatted text file, where each gene is given a reference genome 
syntenic position and chromosome, and flags that are described below. In addition, pangenome also 
returns a wide-formatted ​data.​table (R object) where each row is a pan-genome entry with positional 
information and each column is a list of genes by genome (e.g., Figure 1).

Step 1: build a reference-anchored map of syntenic hits. The chromosome and positions of the 
tandem array representatives from the reference genome annotation form the foundation of mapping 
across all genomes. Upon building this positional backbone, syntenic hits are pulled for each genome 
and placed against the anchor genes that are in the same orthogroup.

Step 2: interpolate syntenic reference positions. In most pairwise comparisons between genomes, 
some syntenic orthogroups will be missing in the reference. Since we want to extract PAV by phys-
ical coordinates, all syntenic orthogroups, even those that do not include a reference genome gene 
model, need to have reference positional information. To fill this gap, GENESPACE interpolates the 
syntenic reference position of all array representative genes in all genomes through a three step pipe-
line: (1) subset the syntenic anchor hits to ungapped collinear hits following a 1:1 synteny mapping 
ratio (i.e., perfect diagonal of hits by gene rank order); (2) cluster the 1:1 syntenic anchors so that any 
jump of >1 gene is split into its own cluster; (3) fill in missing positions through linear interpolation.

Step 3: determine the reference mapping positions of each syntenic orthogroup. In the case where 
the reference genome is purely haploid with no segmental duplicates, this is a straightforward step: 
the orthogroups that contain reference genome genes are placed at that backbone position, and 
those without a reference gene are clustered into the most likely interpolated placement. However, 
we do not want to rely on single-copy references, so GENESPACE allows multiple placements not 
only for each nonreference gene, but also for genes in the reference genome itself. For example, 
in a polyploid, we would want to know if there is PAV between two homeologous chromosomes. 
To do this, we take a three-step approach: (1) the interpolated (or actual reference-anchored) posi-
tions of genes in each syntenic orthogroup are extracted and split by interpolated chromosome and 
maximum gap between any two inferred positions >synBuff; (2) unsplit orthogroups are set aside; 
(3) split orthogroups are checked and retained if they contain ≥ propAssignThresh (default = 0.5) 
proportion of genes in the syntenic orthogroup with an interpolated position in that cluster; (4) clus-
tered positions are dropped if there are more than maxPlacementsPerRefChr (default = 2) positional 
placements for that syntenic orthogroup, retaining the top clusters ranked by propAssignThresh; (5) 
the culled positional clusters are merged with those from step (2) to create the initial pan-genome 
annotation.

Step 4: add and flag other forms of orthogroups. The reference pan-genome built in step 3 only 
acts on direct syntenic blast hits (edges), which allows for strict construction of interpolated positions 
without the potential polluting positional effects of orthogroups in minor or miss-assembled syntenic 
blocks. GENESPACE fixes these and other complexities of syntenic orthogroups through a four step 
pipeline to finalize the pan-genome annotation: (1) ‘indirect syntenic’ orthogroup members are added 
back into the initial pan-genome annotation by parsing the gff-like text file that contains a vector of 
syntenic orthogroups; (2) syntenic orthogroups that are missing all interpolated positions are added 
and given NA positions; (3) tandem array members that are not representative genes are added into 
the pan-genome annotation; (4) if available, orthologues from the initial OrthoFinder run that are 
not present in the pan-genome annotation are added and flagged. Note that if OrthoFinder was run 
using the ‘fast’ orthofinderMethod, orthologs will not be produced nor added into the pan-genome 
annotation.

Additional considerations for comparative genomics parameterization
There are several factors to consider when constructing your GENESPACE run, generating syntenic 
block breakpoints, or looking at comparative genomics through protein similarity estimates like 
OrthoFinder. We detail two of these below:

(1) Outgroups and the phylogenetic context of orthology inference. OrthoFinder defines 
orthogroups as the set of genes that are descended from a single gene in the last common 
ancestor of all the species being considered. As such, the scale of the run matters, often signifi-
cantly. For example, an orthogroup would not be likely to contain homeologs across the two ancient 
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subgenomes for a run that included only two maize genomes. Since the coalescence of any two 
maize genotypes occurred more recently than the ~12M ya WGD, few homeologs would both be 
descended from the same common ancestor when considering only maize genotypes. Hence, the 
within-maize NAM parent run (Figure 3D) excludes homeologs. However, if an outgroup to maize 
was included in the run, both maize homeologs would be likely to show common ancestry to a single 
gene in the outgroup, thus connecting the maize homeologs into a single orthogroup. Hence, both 
maize homeologous regions are present in the across grasses synteny graph (Figure 3A) despite 
using identical synteny parameters to the maize NAM parent run. Given the potentially significant 
role of outgroups on the results of the global run, GENESPACE offers an ‘outgroup’ parameter, 
which specifies the genomes that should be included in the orthofinder run but excluded from all 
downstream analyses.

(2) Studying homoelogs in polyploids and other paralogs. Non-homeologous paralogs are typically 
excluded in the default GENESPACE parameterization. This is in part because GENESPACE was orig-
inally designed for work with plants, and most plant lineages have undergone one or more WGDs. 
However, there are two ways to study paralogs by altering GENESPACE parameters: (1) specify 
an ‘outgroup’ genome (see above), which is only used for the global OrthoFinder run and set the 
genomes’ ploidy as that expected by the number of duplications relative to the outgroup; (2) if an 
outgroup is not available (or too distantly related to be of use), specify the synteny parameter ‘nSec-
ondaryHits’ as the number of paralogous copies per genome. In the second case, secondaryHits are 
inferred after masking out the normal syntenic hits, then synteny is rerun without requiring anchors to 
be global orthogroups. In both cases, it will be far better to set orthofinderInBlk to TRUE, so that pairs 
of genomes are considered and genes without a solid hit in the outgroup are not excluded.
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