Visual representation of negation: Real world data analysis on comic image design

Yuri Sato¹, Koji Mineshima², and Kazuhiro Ueda¹

¹Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Japan
satoyuri0@gmail.com, ueda@gregorio.c.u-tokyo.ac.jp
²Department of Philosophy, Faculty of Letters, Keio University, Japan
minesima@abelard.flet.keio.ac.jp

Abstract

There has been a widely held view that visual representations (e.g., photographs and illustrations) do not depict negation, for example, one that can be expressed by a sentence “the train is not coming”. This view is empirically challenged by analyzing the real-world visual representations of comic (manga) illustrations. In the experiment using image captioning tasks, we gave people comic illustrations and asked them to explain what they could read from them. The collected data showed that some comic illustrations could depict negation without any aid of sequences (multiple panels) or conventional devices (special symbols). This type of comic illustrations was subjected to further experiments, classifying images into those containing negation and those not containing negation. While this image classification was easy for humans, it was difficult for data-driven machines, i.e., deep learning models (CNN), to achieve the same high performance. Given the findings, we argue that some comic illustrations evoke background knowledge and thus can depict negation with purely visual elements.

Keywords: negation; comic; illustration; real world data; image captioning; image classification; machine learning

Introduction

Negation plays an important role in our thinking and communication. In natural language, we can express the negation of a proposition “the train is coming” by making a negated sentence “the train is not coming.” Similarly, in symbolic logic, negation is viewed as an operator (e.g. ¬A) to flip the truth value of a proposition. The meaning and use of negation in linguistic representations has been widely studied in AI and logic (Wansing, 1996), semantics and pragmatics (Horn, 1989), psycholinguistics (Kaup & Zwaan, 2003; Dale & Duran, 2011; Nordmeyer & Frank, 2014), and psychology of reasoning (Khemlani, Orenes, & Johnson-Laird, 2014).

Compared to linguistic representations, it is not straightforward to express negation in visual representations such as photographs and illustrations. For example, suppose that you send a picture of a railway station platform with no trains to let your friend know that there is no train coming. Perhaps this visual way of communicating negation is not as reliable as a text message. This raises the question: are there visual representations that can be recognized as expressing negation? This is the question to be addressed in the present paper.

One influential reaction to this question was given in the study of diagrammatic reasoning. Among others, Barwise and Etchemendy (1992) have built a logic learning support system called Hyperproof that uses heterogeneous modules combining linguistic (symbolic) and visual representations. Regarding the possibility of representing negation in such a hybrid system, they say, “… diagrams and pictures are extremely good at presenting a wealth of specific, conjunctive information. It is much harder to use them to present indefinite information, negative information, or disjunctive information “… (p.79). Behind this view may be found the following philosophical claim: Wittgenstein (1914/1984) remarked in the draft leading to the Tractatus that a picture (what is depicted) cannot be denied (Notebook, 26 Nov 1914). A similar view is widely found in the literature on philosophy of mind and language (Heck, 2007; Crane, 2009).

Against this widely held view, we will argue that negation can be depicted in various interesting ways. To our knowledge, empirical investigation on visual representations of negation is remarkably understudied. While there are studies that empirically evaluate visual representation systems that support devices to express negation, such as Hyperproof (Stenning, Cox, & Oberlander, 1995) and logic diagrams (Jones, McCluskey, & Staveley, 1999; Sato & Mineshima, 2015), these previous studies focus on the type of representations that are designed and created in a top-down manner, mainly to conduct controlled evaluation experiments. Instead, we focus on the type of visual representations that naturally occur outside the scientific domain and are used to express and communicate human thoughts in everyday situations. In this sense, we take a data-driven approach, according to which we collect and analyze real-world visual representations that are actually used by people and survive as a design in our culture.

Among various types of real-world visual representation, we focus on comic (manga) illustrations in the present study. We first provide an analysis of syntactic components that make up comics. Then we introduce a dataset that collects comic illustrations related to negation. We introduce the image captioning task that asks participants to explain what they can read from a given illustration. This will show evidence that some visual representations can express negation. To further analyze what enables illustrations to depict negation, we introduce a task of classifying illustrations related to negation, comparing machine learning (deep learning) performance and human performance. Overall results suggest humans can exploit presupposed knowledge evoked by comic illustrations to recognize negation.
Syntactic components of comics

To understand the role of negation in visual representation, we give a preliminary analysis of syntactic components of comics, which are best characterized in comparison with other forms of non-linguistic representations, in particular, photographs and videos (cf. Sato & Mineshima, 2020).

First, videos and comics are distinguished from photographs in that they consist of temporal sequences, which typically represent sequences of multiple events or scenes. For example, in the case of the comic “Tetsu-san” in Fig.1, the contents are presented as multiple panels in a temporal sequence. The fact that the notion of sequence is an important element in videos and comics has been emphasized in various recent studies on images. Thus, in the study of video captioning, sequential images, rather than single images, enable humans and machines to describe certain actions (e.g., jump) (e.g., Yeung et al., 2018). Regarding comics, Iyyer et al. (2017) presented a deep learning model to predict subsequent panels according to the sequences of coherent stories.

Second, comics are distinguished from photographs and videos in that they have a variety of conventional devices for expressing thoughts, emotions, and other non-visual properties. These devices range from special symbols having some iconic character such as motion-lines, fight clouds, and what Cohn (2013) calls “affixes” like thundercloud and stars circling over a head to express anger, to more linguistic ones like speech balloons to show a character’s utterance or thought (Maier, 2019). In the comic example in Fig.1, linguistic utterances are indicated inside balloons and special symbols such as effect lines are used. By contrast, photographs and videos typically do not involve conventional devices, though they can be enriched with symbols or linguistic materials; see Giora et al. (2009), which discusses various possible interpretations of conventional devices for negation such as crosses and lines and evaluate empirical data collected from humans.

The upshot of this analysis is that in comics, not only purely visual elements of illustrations but also various syntactic components play a role in delivering semantic information including negation. Thus, to answer the question of whether negation can be depicted in visual representations, it is necessary to identify each potential factor contributing to the information delivered by comics. Accordingly, we ablate various elements from comics by, for example, extracting a single panel (i.e., ignoring temporal sequences), hiding linguistic utterances in balloons, and removing conventional devices, and see how the resulting representations work to depict negation.

Datasets

To study comics as complex visual representations, we introduce comic datasets collected from the real world.

Manga109 and masterpiece list

We use Manga109 (Matsui et al., 2017; Aizawa et al., 2020), a standard dataset of Japanese comics. We also use some masterpiece works not included in Manga109. This additional set was selected from Japanese manga works by authors who have won two major manga artist awards; (1) Japan Cartoonists Association Award (JCAA), Minister of Education Award and (2) Tezuka Osamu Cultural Prize (TOCP), Special Award. We collected award-winning works in either JCAA, TOCP, Shogakukan Manga Award, Kodansha Manga Award or Bungeishunju Manga Award. Our list of masterpiece works include Osamu Tezuka’s Black Jack, Buddha, Hinotiri (Phoenix); Shotaro Ishinomori’s Cyborg009, Jun, MangaNihonKeizaNyuumon (Introduction to Manga Japan Economy), SabuTeichiTerrormonohiaka; Tetsuya Chiba’s 1-2-3To4-5Roka, NotariMatsutaro, OreWaTeppie; Chikako Mitsuhashi’s ChiisanaKoiNoMonogatari; Shigeru Mizuki’s TeleviKun (TV Kids).

NEGCOMIC dataset

From the Manga109 and the masterpiece list, we created the NEGCOMIC dataset in the following way. (1) Images related to negation that consists of multiple pages were collected by one of the authors; 122 images. (2) Three evaluators (including the author in (1)) assessed whether the collected images were relevant to expressing negation. (3) The pages (and most relevant panels) that were judged as expressing negation by at least two evaluators were finally selected; 111 images. In (2) and (3), the following instruction was given to the evaluators: By negation, we mean information typically paraphrased as “there is no __,” “__ does not exist,” “__ is not __,” “__ disappeared,” “__ is empty,” “__ cannot do __,” “__ does not move,” etc.

As a baseline for data analysis, we also created a negation-free image set. From the same pages as the negation images

Footnote: The comic images included in Manga109 have been given permission to use for research purposes. All of the comic images in this paper are from the Manga109 dataset.
selected above, we asked three evaluators (including one of the authors of the paper) to choose panels that are not related to negation. We included those panels that were selected by at least two evaluators in the negation-free image set.

We categorize negation depicted in images into two types. (1) Existence negation expresses absence of entities—one typically expressed by sentences such as the cup is empty, there was not a cat here, and I lost my wallet; in formal notation, it corresponds to the negation of existential proposition, ¬∃xPx (there is nothing that satisfies the condition P). (2) Property negation expresses that an entity referred to does not have a property or does not perform an action. It is typically expressed by sentences like the signal is not green and my body does not move; formally, it corresponds to formula ¬Pc where c refers to a particular entity and P to a property (or action). Drawing on Bloom (1970), Nordmeyer and Frank (2014) use a similar distinction between non-existence and truth-functional negation to examine children’s ability to comprehend negated sentences.

We annotated a gold-standard type (existence negation or property negation) to each image. Eighty seven images were classified to existence negation and the other 24 images to property negation. The annotations of 81 images (out of all 111 images) were automatically done by searching typical phrases for each type in the comic images (we use the phrase patterns described in Table 2 below) and those of 26 images were manually given by two of the authors in this paper.

Image captioning task

To answer the question of whether there are visual representations that can be recognized as expressing negation, we gave people comic illustrations and asked them to explain what they could read from the illustrations.

Method

Participants Four hundred and fifty-nine participants were recruited by using an online crowdsourcing platform in Japan, CrowdWorks. The mean age of participants was 38.15 (SD = 9.53) with a range of 20-74 years. All participants declared that they could read and write Japanese without difficulty (the sentences and instructions were provided in Japanese). All participants gave informed consent and were paid for their participation. Experimental procedures were approved by the ethics committee of the University of Tokyo.

Tasks Regarding each image in the NEGComic set, six versions were prepared:

1. sequential images (the original 111 images)
2. sequential images in the negation-free type
3. sequential images without conventional devices
4. one-panel images (111 images)
5. one-panel images in the negation-free type
6. one-panel images without conventional devices

We divide images into those with temporal sequences (sequential images) and those without (one-panel images). Here negation-free conditions (2 and 5) served as a baseline for analysis and were compared with sequential or one-panel images (1 vs. 2 and 4 vs. 5) and images without conventional devices (3 vs. 2 and 6 vs. 5). Since our focus is on the question of how pictures (illustrations) can depict negation, we ablated all linguistic materials in comic images from the NEGComic set. In conditions 3 and 6 (26 images), conventional devices which are relevant to negation were removed from the original images (conditions 1 and 4). They included broken lines tracing contours (see Fig.3b), radial lines (see Fig.2), question marks, crossing marks, blanks inside speech balloons, overlaid contour lines (for shaking), black filled panels, and fading lines. If condition 1 is better than condition 2 and condition 4 is better than condition 5 (and if condition 3 is better than condition 2 and condition 6 is better than condition 5 in case there is a conventional device), the illustration would be counted as a visual representation expressing negation.

The following instructions were given to the participants:

1. You are given comic images (the linguistic parts are mosaicked), so please write down what you can read in Japanese.
2. Don’t write your feelings or opinions. (3) If you are familiar with the work and clearly remember the content of the relevant part, skip this question (image).

Examples of tasks are shown in Fig.2. These images were presented with the instruction “Explain the specified panel in as much detail as possible.” Note that Fig.2c is the one-panel image that does not contain the conventional device of radial
Table 1: Data examples obtained in the condition 1 task of “Arisa” (Fig.2a); Checkmark means that the data is judged as expressing existence negation. The bracketed text in the bottom row is written in Japanese.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The boy has not been there. (otokonoko ga i naku n te i ta.)</td>
</tr>
<tr>
<td>2.</td>
<td>The guy just disappeared. (otoko no hito ga kie ta.)</td>
</tr>
<tr>
<td>3.</td>
<td>A girl is surprised to find a boy she likes. (shoujo ga suki na ko wo mitsuke te bikkuri si te i ru.)</td>
</tr>
</tbody>
</table>

Procedure Participants were randomly divided into one of the six conditions. Each participant was presented with 26 items; that is, in conditions 1, 2, 4, 5, 26 items out of all task items were randomly presented. The task presentation and data collection were managed using an interface implemented in Qualtrics.

Results Average 23.95 text data per image (in each condition) was obtained from the participants; meta-phrases such as “I can’t explain this image” as one’s own opinion were not included in our analysis. For example, regarding condition 1 in “Arisa” (Fig.2a), text data as shown in Table 1 was obtained (only data for three participants is shown here; MeCab2 was used here for the morphological analysis of Japanese text).

To count the occurrences of negation clauses in the obtained text data, we listed the clauses belonging to each type of negation: existence negation and property negation (Table 2). In addition to the correct answer annotations, synonyms of the correct words of the verb class were set to be included in the negation clauses, before the data-collecting. We used word2vec3 (learned from the full texts of Japanese Wikipedia articles) to extract an initial set of synonyms, and selected the words that overlap with synonyms found in Japanese WordNet4 or WLSP5. Furthermore, after the experiment, we manually checked the data and judged which type of negation an expression with the negative morpheme (nai) belongs to. The results are shown in the italicized phrases in Table 2.

Occurrences of all phrases belonging to each type were counted for each image and compared to the baseline (conditions 2 and 5) using Fisher’s Exact Test (with the Bonferroni correction). For example, consider the above case of the condition 1 task of “Arisa” (Table 1; Fig.2a). This case is annotated as the existence negation in advance, and so we check whether appearances of all the phrases in table 2(a) are included in the text data. In the examples in Table 1, text 1 and text 2 include phrases not been there and disappeared, respectively; thus they are judged as expressing negation. By contrast, text 3 does not include any negation phrases, so this case is judged as not expressing negation.

In 56.3% of images with the annotation of existence negation (49 out of 87 images) and 33.3% of images with the annotation of property negation (8 images out of 24 items), people significantly described negation, compared to baseline images (conditions 2 and 5).

Detailed data of each image is presented in Appendix6. Seventeen images were able to depict negation without the need for sequences or conventional devices, i.e., by means of pure visual elements (16 images for existence negation; 1 image for property negation). Fig.3a is an instance of this type (existence negation); p < .01 for condition 1 vs 2 and p < .01 for condition 4 vs 5. Thirty-four images were able to depict negation under the constraint of using sequences (29 images for existence negation; 5 images for property negation). Fig.3c is an instance of this type (existence negation); p < .01 for condition 1 vs 2 and p > .1 for condition 4 vs 5. Two images were able to depict (existence) negation under the constraint of using conventional devices. Fig.3b is an instance of

2https://github.com/taku910/mecab
3We used Python library gensim.
4http://compling.hss.ntu.edu.sg/wnja/
5https://github.com/masayu-a/WLSP
this type; $p < .01$ for condition 1 vs 2, $p > .1$ for condition 3 vs 2, $p < .01$ for condition 4 vs 5, $p > .1$ for condition 6 vs 5. Three images were able to depict (existence) negation under the constraint of using either sequences or conventional devices (2 images for existence negation; 1 image for property negation). Fig.2 is an instance of this type (existence negation); $p < .01$ for condition 1 vs 2, $p < .1$ for condition 3 vs 2, $p < .01$ for condition 4 vs 5, $p = .030$ for condition 6 vs 5. One image was able to depict negation under the constraint of using both sequences and conventional devices. “ChiisanaKoiNoMonogatari vol25” (p.131) by Chikako Mit-suhashi is an example of this type (the image is included here because the permission to use has not been obtained yet); $p < .01$ for condition 1 vs 2, $p > .1$ for condition 3 vs 2, $p < .01$ for condition 4 vs 5, $p > .1$ for condition 6 vs 5.

Given these empirical findings, we were able to offer a positive answer to the question of whether there are visual representations that can be recognized as expressing negation. Some of the comic illustrations, especially 17 images (as in Fig.3a), could depict negation without the aid of sequence or conventional devices.

Image classification task

The analyses so far have resulted in the construction of the NEGCOMIC dataset with fine-grained annotations, which also revealed the salient syntactic components expressing negation in illustrations. The next step is to challenge the question: what distinguishes illustrations that represent negation from those that do not? To address the question, we analyzed machine learning (deep learning) performance and human performance in the task to classify illustrations into those containing negation or those not containing negation.

Here our analysis focused on the 18 images that were judged as depicting negation without the need for sequence or conventional devices (we added one image whose statistical significance was found at a reduced threshold of 10% to the 17 images obtained in the experiment 1) and the corresponding negation-free images.

Machine (deep) learning

Setup The procedure of analyses was as follows.

1. **Data augmentation.** 36 images were augmented into 648 by using the standard techniques such as contrast adjustments, smoothing, noise addition, and reverse turning in OpenCV.

2. **Data split.** The images were divided into training, validation, and test sets. The three sets were completely independent. The test set consisted of two images, negation (e.g., Fig.4a) and negation-free (e.g., Fig.4b); here the corresponding augmented images were removed from the analyses. Five hundred and four images (18 original images) belonged to 2 classes (negation, negation-free) for learning and 108 images (6 original images) belonged to 2 classes (negation, negation-free) for validation. The assignment was randomly conducted and repeated 18 times; that is, 18 conditions were made.

3. **Learning.** We build a training model on a convolutional neural network (CNN) with a fine tuning technique using the pre-trained model of VGG16 (Simonyan & Zisserman, 2015), in the environment of Python deep learning library Keras. Key parameters are as follows: we use sequential model, activation function for intermediate layer is Relu, dropout rate is 0.5, activation function for output layer is Softmax, VGG16 model weights for up to 14 layers, loss function is Cross-entropy, optimizer is SGD, batch size is 18, and epoch is 3.

Test results Our CNN model showed that average 61.1% of the 18 negation images were correctly classified as negation.
as in Table 3. The rate of the negation-free images also was the same as that of the negation images (see the Appendix for each image result data in machine and human experiments).

Human experiment

In addition to the machine learning experiment, we examined the corresponding performance of ordinary people.

Method Two hundred and five participants were recruited online; the basic setup was the same as in the experiment 1. The mean age of participants was 39.69 (SD = 9.66) with a range of 20-72 years. The participants were asked to classify comic illustrations as those containing negation or those not containing negation. They were given the instruction on typical cases of negation: “there is no _”, “_ does not exist”, “_ is not _”, “_ disappeared”, “_ is empty”, “_ cannot do _”, “_ does not move”. First, they were asked to classify 18 images (half for negation, the other half for negation-free), which were randomly selected from 18 negation images and 18 negation-free images. After answering the questions, they were given information to confirm if their answers were correct. Then, this process was repeated using the same images. The main test of image classification follows the second phase of training. Four images (half for negation, the other half for negation-free) were randomly selected from the images other than the above 18 ones used for training.

Test results In human participants, average 84.3% in the 18 negation images were correctly classified as negation, as in Table 3. The rate of the negation-free images was 84.1%.

Discussion

The percentage of correct responses in the human negation classification task was high (84%); the participants were able to distinguish negation images from negation-free images to some extent. Fig. 3(a) shows a case with a high percentage of correct responses. The percentage of correctly classified as negation was 100% (21 out of 21 persons). While the caption of this image is *There is no toilet paper*, the target of this description (toilet paper) is not directly depicted in the image. This suggests that some background knowledge (“toilets usually have toilet paper”) is needed to recover the relevant information. The use of background knowledge can be made for other images that had a high percentage of correct answers.

The overall correct response rate (61%) for the deep learning model is not much different from the 50% chance level, suggesting that the model struggled with the classification of negation images and negation-free images. Although the size of the training data is limited, this in turn suggests that the difficulties of learning background knowledge can be a bottleneck in this task (cf. Bernardi et al., 2016; Garcia-Garcia et al., 2018). The overall results of human and machine experiments using image classification tasks suggest that background knowledge can play an important role in recognizing negation.

Conclusion and future works

The data collected in image captioning tasks showed that some comic illustration images can depict negation even without the aid of sequence or conventional devices. This type of comic image was subjected to further human and machine experiments on image classification. The performance results shed light on the view that some comic images evoke the knowledge presupposed when recognizing negation and thus can depict negation with purely visual elements. This is substantially different from linguistic representations that express negation while referring to the situation or the object to be negated, such as “the train is not coming” as mentioned in Introduction. To recognize the negation from the image, it is crucial to infer what is being negated from a piece of background knowledge that is not directly depicted in a given image.

In the next stage, more research will be directed to providing a mechanism to focus on specific background knowledge and to clarifying the semantic conditions for context-dependent knowledge. Although the experiments suggested some negative results on the machine learning model, we do not intend to argue the limitations of machine learning approaches in general. Rather, we aim to shed light on the interaction between cognitive science and machine learning, which could contribute to achieving the overall goal in AI, i.e., to build a machine that thinks and understands images like humans (cf. Lake et al., 2017). Currently, image recognition based on deep learning is often said to rival or surpass human accuracy (e.g., Rawat & Wang, 2017). However, our experiments suggest that the accuracy of a deep learning model is achieved in a different way from the actual human cognitive process that crucially involves knowledge and common sense.

In addition to negation, we plan to expand our research to include disjunction (or), conditionals (if... then), and quantifiers (all, most, some). The ability to manipulate such logical information seems to be an inherent ability of humans, who manipulate languages. It would be interesting to examine from empirically collected data whether it is possible to handle such logical information as a visual representation.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP20K12782 to the first author.

References

