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ORIGINAL ARTICLE
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Abstract

Rationale:Mathematical modeling is used to understand disease
dynamics, forecast trends, and inform public health prioritization.
We conducted a comparative analysis of tuberculosis (TB)
epidemiology and potential intervention effects in California, using
three previously developed epidemiologic models of TB.

Objectives: To compare the influence of various modeling
methods and assumptions on epidemiologic projections of
domestic latent TB infection (LTBI) control interventions in
California.

Methods:We comparedmodel results between 2005 and 2050 under
a base-case scenario representing current TB services and alternative
scenarios including: 1) sustained interruption ofMycobacterium
tuberculosis (Mtb) transmission, 2) sustained resolution of LTBI and
TB prior to entry of new residents, and 3) one-time targeted testing and
treatment of LTBI among 25% of non–U.S.-born individuals residing
in California.

Measurements and Main Results:Model estimates of TB
cases and deaths in California were in close agreement over the
historical period but diverged for LTBI prevalence and newMtb
infections—outcomes for which definitive data are unavailable.
Between 2018 and 2050, models projected average annual
declines of 0.58–1.42% inTB cases,without additional interventions.A
one-time LTBI testing and treatment intervention among non–U.S.-
born residents was projected to produce sustained reductions in TB
incidence. Models found prevalentMtb infection and migration to be
more significant driversof futureTB incidence than local transmission.

Conclusions: All models projected a stagnation in the decline of TB
incidence, highlighting the need for additional interventions including
greater access to LTBI diagnosis and treatment for non–U.S.-born
individuals. Differences in model results reflect gaps in historical data
anduncertainty in the trends of key parameters, demonstrating the need
for high-quality, up-to-date data on TB determinants and outcomes.
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The United States has made considerable
progress in reducing tuberculosis (TB)
incidence in the past two decades. In 2018,
both the number of reported TB cases
(9,029) and the annual incidence rate (2.8
per 100,000 population) were the lowest
ever recorded (1). However, the rate of
decline has stagnated in recent years (2).
During 2014–2017, reported TB incidence
has shown an average annual decline of
1.6%, compared with an average annual
decline of 4.7% during 2010–2014 (1). The
continued threat of tuberculosis in the
United States results in approximately 500
deaths annually (3) and U.S. $6–14 billion
in costs (4). It is becoming increasingly
clear that achieving the U.S. CDC’s strategic
target of TB elimination (defined as annual
incidence below 1 case per million) will
require expanded and innovative
approaches for TB prevention and control.

Mathematical and computational
models of infectious diseases capture
epidemiology and transmission dynamics
and can play an important role in public
health planning and resource allocation.
These models can be used to synthesize
historical data, shed light on underlying
mechanisms that drive observed
epidemiological patterns, and provide
predictions of future disease trends. For
example, several modeling studies have
estimated future TB trends in the United

States at national (5, 6) and subnational
levels (7–9). These models have been used
to project the potential impact and cost
effectiveness of interventions, providing
estimates that can be used for policy
prioritization and implementation (6, 10).

However, model results can vary
depending on the modeling approach,
model structure, data used for parameterize
and calibration, and the incorporation of
uncertainty (11–13). Variation can also
result from existing uncertainty about TB
natural history and epidemiology (14–16).
In the United States, where the availability
of data on trends and distribution of TB
burden is better (3), obtaining consistent
results from independently developed
models can strengthen confidence in their
use for decision-making. When results
diverge, comparative modeling can provide
insight into the mechanisms underlying
specific areas of uncertainty and epidemic
drivers.

We compared three independently
developed models of TB transmission and
epidemiology (6, 10, 17). For this study,
the three models were parameterized to
represent California, the state that
accounted for 23% of U.S. TB cases in
2018 (18). Analyses were undertaken
through a CDC-funded modeling
collaboration (https://www.cdc.gov/
nchhstp/neema/index.html). The objective
of our comparison was to generate
consensus evidence to support potential
programmatic interventions and policy
priorities that may enhance domestic
TB prevention and care efforts by 1)
establishing consensus about trends in
California TB epidemiology; 2) identifying
major influences on those epidemiologic
trends; and 3) highlighting important
sources of uncertainty around model
projections.

Methods

Data Sources
Models used several common data sources.
The American Community Survey,
a nationally representative survey of 1% of
the U.S. population (19), was used to
estimate U.S.-born and non–U.S.-born
population sizes. Evidence on latent TB
infection (LTBI) prevalence for different
population groups was estimated using
published data from the 2011–2012
National Health and Nutrition

Examination Survey (20, 21). Reported
TB cases and deaths in California (22, 23)
from 2005 to 2017 were used to calibrate
models.

Standardized Scenarios for Model
Comparison
All models estimated historical TB
epidemiology in California between 2005
and 2015. Models were parameterized to
reproduce current coverage and effect of
treatment services for TB and LTBI in
California, including contact investigation.
In addition, we developed four hypothetical
scenarios for projections:

1. Scenario 1. Continuation of current TB
trends without additional interventions
(base case). Models assumed
continuation of current TB health
service coverage and TB prevention and
care activities. We also assumed that all
major epidemiological drivers follow
existing trends conceptualized separately
within each model.

2. Scenario 2. Halting future TB
transmission. In addition to
continuation of existing TB prevention
and care activities, this scenario
assumed an immediate halt to all
Mycobacterium tuberculosis (Mtb)
transmission within California from
2018 onwards.

3. Scenario 3. Halting future importation of
Mtb. In addition to continuation of
existing TB prevention and care
activities, this scenario assumed that all
persons entering California from 2018
onward were free of Mtb infection
(i.e., all new residents were either cured
of TB and LTBI prior to entry, or had no
prior Mtb infection), with total numbers
of projected entrants unchanged from
the base case.

4. Scenario 4. Targeted testing and
treatment for LTBI among non–U.S.-
born. In addition to continuation of
existing TB prevention and care efforts,
this scenario assumed one-time testing
of 25% of the non–U.S.-born
population, conducted in 2018.
We assumed realistic values for the
LTBI care cascade, with diagnostic
performance based on interferon-
gamma release assay sensitivity and
specificity, and 72% of those diagnosed
positive initiated on LTBI treatment
(24). The majority (75%) of treated
individuals were assumed to receive

At a Glance Commentary

Scientific Knowledge on the
Subject: Mathematical models of
infectious disease epidemiology are
increasingly being used to drive public
health decision-making, including in
tuberculosis. However, the effect of
variation and differences between
model assumptions as well as
uncertainty about critical elements of
disease epidemiology is unknown.

What This Study Adds to the Field:
We conducted a comparative analysis
of tuberculosis (TB) epidemiology and
impact of hypothetical scenarios using
three epidemiologic models of TB in
California. Our results provide
consensus evidence on the drivers of
TB incidence and prevalence, as well as
suggest intervention levers to enhance
TB prevention and care efforts.
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a 12-week isoniazid plus rifapentine
regimen (3HP) (25), whereas the
remainder received 9 months of
isoniazid (9H). Treatment completion
was assumed to be 82% and 66% for
3HP and 9H regimens, respectively (26),
and treatment efficacy was assumed to
be 93% for those completing the
regimen (27, 28).

Scenario 1 examined the continuation
of current policy and practice. Scenarios 2
and 3 tested theoretical changes in key
epidemiological drivers to examine their
relative contribution to projected TB
incidence. Scenario 4 tested the impact of
expanding LTBI testing and treatment
policy within California (29, 30). All
four scenarios were projected from 2018
to 2030. In addition, we undertook
an extended projection of scenario 1,
with outcomes projected to 2050, to
examine the long-term trajectory of TB
epidemiology and possible progress
toward TB elimination goals.

Mathematical Models
The three models of TB epidemiology and
transmission have been published by
Harvard University, Johns Hopkins
University School of Public Health

(JHSPH), and the University of California
San Francisco (UCSF), in partnership
with CDC as part of a National
Epidemiologic and Economic Modeling
Agreement (6, 10, 31). Key structural
features of each TB model used in this
comparison are summarized in Table 1.
Additional model details are described
in the online supplement. The three
models differed in approach and
structure, as well as interpretation of
evidence on epidemiological outcomes
such as number of Mtb infections, for
which empirical data are not directly
available. Each model was calibrated
to TB incidence and mortality in
California from 2005 to 2017. Key
differences included the approach
used to estimate LTBI prevalence in
non–U.S.-born persons, immigration
and emigration projections, the current
state of practice for LTBI testing and
treatment, risks of progression to TB
disease for persons with LTBI, and
prevalence of medical risk factors for TB
disease. In these instances, there are no
definitive sources of data for estimation,
and each team made their own estimates
based on a combination of data sources,
literature review, and expert opinion (see
online supplement).

Outcomes Used to Summarize
Epidemiological Projections
The following outcomes were reported by
each model:

1. TB incidence. Diagnosed cases of active
TB disease (total number per year and
per 100,000 per year).

2. TB deaths. Deaths due to any cause
among individuals with active TB
disease (total number per year and per
100,000 per year).

3. LTBI prevalence. Individuals with latent
Mtb infection (total number per year
and percent of population).

4. Transmissions. The number of new Mtb
infections per year acquired from
persons with infectious TB disease
within California (total number).

5. Prevalent Mtb infection among new
residents entering California. Number of
persons entering California per year
with prevalent Mtb infection (total
number).

We estimated absolute numbers for
each outcome from 2018 to the end of the
time horizon. For scenarios 2–4 we also
calculated percentage differences compared
with the base-case scenario. Outcomes were
stratified by age group and nativity (U.S.-
born vs. non–U.S.-born).

Table 1. Major Structural Features of Participating Models

Harvard Model JHSPH Model UCSF Model

Modeling approach Deterministic state-transition
model

Stochastic individual-based
model

Stochastic individual-based model

Age structure All ages, stratified into 11 age
bands

All ages, by single year of age Adults (151), by single year of age

Stratification of
non–U.S.-born residents

Recent vs. long-term residents
based on years in the United
States

Eight countries/regions of
origin

11 countries/regions of origin, years
in the United States

Risk strata for TB exposure
or progression

HIV/ART, homelessness, age HIV, diabetes, incarceration,
homelessness

Homeless shelter, correctional
facility, or long-term care facility
residence, race, HIV, diabetes,
smoking, ESRD, organ transplant,
TNF-a inhibitor use, age

Other population
stratification

TB drug resistance, prior
LTBI/TB treatment

Prior LTBI/TB treatment Prior LTBI/TB treatment

Uncertainty analysis* Second-order Monte Carlo
simulation

First-order Monte Carlo
simulation

First-order Monte Carlo simulation

Definition of abbreviations: ART=antiretroviral therapy; ESRD=end-stage renal disease; JHSPH=Johns Hopkins University School of Public Health;
LTBI = latent TB infection; TB= tuberculosis; TNF= tumor necrosis factor; UCSF=University of California San Francisco.
*First-order Monte Carlo simulation allows for stochastic uncertainty in the realization of individual-level events (e.g., tuberculosis infection, death).
Second-order Monte Carlo simulation allows for uncertainty in the parameters describing population-level characteristics and mechanisms (37).
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Statistical Analysis
For any given scenario, each model
produced a large number of simulated
projections representing estimation
uncertainty (Table 1). The mean or median
of these projections was used to create point
estimates. The distribution of these
projections was used to characterize the
uncertainty in modeled estimates, with each
model estimating a 95% uncertainty
interval based on the 2.5th and 97.5th
percentiles of the distribution of
a particular outcome and year. Further
details are provided in the online
supplement. We calculated the percentage
reductions in outcomes within each
simulation and reported point estimates
and intervals based on the distribution of
that metric across simulations.

Results

TB Cases and TB Deaths, 2005–2015
Between 2005 and 2015, TB cases reported
in California declined from 2,900 in 2005 to
2,131 in 2015, at an average annual rate of
3.0%. All three models projected similar
declines during this period: Harvard model
projected a decline from 3,064 in 2005 to
2,095 in 2015 at an average annual rate of
3.7%; JHSPH model projected a decline
from 2,794 to 2,234 at 2.2%; and UCSF
projected a decline from 2,600 to 2,121 at
2.1% (Figure 1A). Deaths with TB (not
shown in the figure) followed a similar
declining trend, with the ratio of TB deaths
to TB cases relatively constant over the
2005–2015 period (10.2%, 10.1%, and 9.9%
for Harvard, JHSPH, and UCSF models,
respectively). Figure 1B shows modeled and
observed TB incidence rates in 2015 as
a function of age and nativity (U.S.-born,
non–U.S.-born)—all models estimated
higher incidence rates in older age groups
and among non–U.S.-born individuals, as
observed in the data.

LTBI Prevalence and New Mtb
Infections, 2005–2015
From 2005 to 2015, all models estimated
a declining trend in LTBI prevalence
(Figure 2A)—3.3%, 1.9%, and 2.5% average
annual decline for Harvard, JHSPH, and
UCSF models, respectively—with more
rapid declines estimated for the U.S.-born
population (3.0–4.7% across models)
compared with the non–U.S.-born
population (1.4–2.9% across models). By

2015, overall LTBI prevalence was
estimated at 5.1%, 7.1%, and 6.3% by
Harvard, JHSPH, and UCSF models,
respectively. Because no comprehensive
LTBI prevalence survey has been conducted
in California recently, there are no data to
directly compare with these model
estimates. However, model estimates were
generally consistent with the California
Department of Public Health’s estimate of
6% prevalence, based on race and nativity
distribution of California applied to
2011–2012 National Health and Nutrition
Examination Survey data (32). All three
models estimated higher LTBI prevalence
among older age categories and non–
U.S.-born individuals (Figure 2B). As

a consequence, the population with LTBI is
estimated to be largely non–U.S.-born—of
the 2.0–2.8 million California residents
estimated by the models to have LTBI in
2015, 81–86% were estimated to be
non–U.S.-born, despite these individuals
representing 27% of the California
population.

Model estimates for the annual number
of new Mtb infections in the California
population due to 1) transmission
(Figure 2C) and 2) in-migration of
individuals with prevalent Mtb infection
(Figure 2D) quantitatively differed between
the models, particularly for the second of
these outcomes. However, all models
suggested a declining trend for
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Figure 1. Model estimates of tuberculosis (TB) cases compared with reported data, 2005–2015. (A)
Model estimates of TB cases from all three models and reported number of TB cases (indicated by
“x”) for California between 2005 and 2015. For model estimates, solid lines represent point estimates,
and shaded areas represent 95% uncertainty intervals for each model. (B) Model estimates for TB
incidence in 2015 (per 100,000 per year) stratified by age and nativity, with reported data shown in
horizontal black lines. University of California San Francisco model represents population 151 years
old. JHSPH= Johns Hopkins University School of Public Health. NUSB=non–U.S.-born;
UCSF=University of California San Francisco; USB=U.S.-born.
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transmission (1.9–7.4% average annual
decline across models), but stagnant
trends for entry of individuals with
prevalent Mtb infection, with models
estimating a 0.9–2.2% average annual
increase in the count of prevalent infections
between 2010 and 2015. In addition, all
models suggested that local transmission
is a relatively minor contributor to total
new Mtb infections, with 5.8–11.3% of all
Mtb infections estimated to result from
transmission within the state boundaries
of California.

Projections of Future TB Outcomes
under the Base-Case Scenario
Figure 3 shows model projections of TB
cases (Figure 3A), deaths with TB
(Figure 3B), and LTBI prevalence
(Figure 3C) in California between 2015 and
2050 under the base-case scenario. All three
models projected slower declines in total
TB cases than have been observed
historically. Between 2018 and 2050,
models projected average annual declines of
0.6–1.4% for TB cases, for an 18–39%
cumulative decline over the period. Higher

annual rates of decline were estimated
for U.S.-born populations (0.8–7.1%)
compared with non–U.S.-born populations
(0.5–0.8%). Because all models projected
population growth, projected declines in
incidence rates were greater than in total
TB cases. Across models, average annual
declines in TB incidence rates were
1.5–2.1%, 1.7–7.7%, and 1.3–2.2% for total,
U.S.-born, and non–U.S.-born populations,
respectively. By 2050, U.S.-born
populations were projected in all models
to have an incidence rate below the
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preelimination threshold of 1 per 100,000,
with incidence estimated to be 0.10–0.89
per 100,000. Incidence rates for the total
population (2.7–3.8 per 100,000) and
non–U.S.-born populations (7.5–9.9 per
100,000) were not projected to cross the
preelimination threshold before 2050.
Trends in projected TB deaths and LTBI
were similar across the models, with models
projecting 109–184 deaths with TB in 2050
and 43–58% declines in LTBI prevalence
over the projection period.

Projections of Future Outcomes
under Scenarios Representing
Different Epidemiological
Mechanisms
Under scenario 2, in which all future TB
transmission in California was halted from
2018 onwards (Figure 4A), the UCSF model
projected larger reductions in TB cases than
the other two models: 1,418 projected cases
in 2030 (6,824 TB cases averted, or 25.5%
reduction in cumulative TB cases between
2018 and 2030 compared with the base
case) compared with 1,530 (2,305 cases
averted, or 9.5% reduction) for the Harvard
model and 1,612 (1,949 cases averted, or
8.1% reduction) for the JHSPH model.
Under scenario 3, in which all new

residents were assumed to enter California
without Mtb infection starting in 2018
(Figure 4B), the projected number of TB
cases in 2030 was 837 (9,259 cases averted,
or 38.1% reduction in cumulative TB cases
between 2018 and 2030 compared with the
base case) for the Harvard model,
compared with 1,129 (7,471 cases averted,
or 31.1% reduction) for the UCSF model
and 1,016 (5,846 cases averted, or 21.9%
reduction) for the JHPSH model.

Future Projections for Targeted
Testing and Treatment of LTBI
Figure 5 shows projections of future TB
cases for scenario 4 (targeted testing and
treatment for LTBI among 25% of
previously untested non–U.S.-born
individuals in 2018), over the period 2018
to 2030. In this scenario, the JHSPH model
projected 1,476 TB cases in 2030 (3,229
cases averted, or 13.4% reduction in
cumulative TB cases between 2018 and
2030 compared with the base case)
compared with 1,668 (1,115 cases averted,
or 4.6% reduction) for the Harvard model
and 1,922 (1,745 cases averted, or 6.5%
reduction) for the UCSF model. Although
the intervention examined in this scenario
was only implemented for a single calendar

year, intervention effects were sustained
over the full analysis period, with annual
percent reductions in TB cases (compared
with the base case) in 2030 similar to those
estimated for the years immediately after
implementation (2019–2020).

Discussion

The combined analyses undertaken in this
study suggest that without major scale-up of
TB interventions or changes in major TB
determinants, TB incidence and deaths
in California will continue to decline
slowly but will remain well above the
preelimination threshold of 1 case per
100,000 through 2050. Projections of
average annual declines in TB cases ranged
between 0.6% and 1.4% for the 2018 and
2050 period, which is consistent with recent
national TB data (1, 2), but much slower
than historical trends.

The results of these analyses shed light
on the current successes of TB policy and
service provision and suggest potential
directions to further strengthen TB control
efforts. Model results consistently found
a minor role for TB transmission as a source
of incident Mtb infections, confirming the
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Figure 3. Model-based projections of tuberculosis (TB) cases, TB deaths, and latent TB infection prevalence, 2015–2050. (A–C) Model-based projections
of TB cases (A), TB deaths (B), and latent TB infection prevalence (C) in California between 2015 and 2050, under scenario 1 (base case, assuming current
trends in the absence of new interventions or implementation strategies). Color-coded lines represent point estimates, and shaded areas with matching
colors represent uncertainty ranges for each of the three models. JHSPH=Johns Hopkins University School of Public Health; LTBI = latent TB infection;
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findings of earlier empirical studies (33, 34).
The low proportion of cases estimated to
result from transmission within California
(5.8–11.3% during 2005–2015) reflects the
current successes of local clinicians,
laboratories, and public health departments
in ensuring early and accurate TB diagnosis

and initiation and support for curative
treatment. There are two important policy
implications of this finding. First, additional
interventions to interrupt transmission may
have minimal impact on the overall
trajectory of TB epidemiology in California,
despite being critical to preventing disease

outbreaks. Second, as the primary driver of
future TB in California is prevalent Mtb
infection, additional policies addressing the
community burden of LTBI will be required
to achieve public health priorities.

Across the scenarios we investigated,
the largest declines in TB cases were
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Figure 4. Model projections of tuberculosis (TB) cases under scenarios representing different epidemiological mechanisms. (A) Model-based projections
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estimated for the scenario with complete
resolution of active TB disease and LTBI
among migrants entering California,
highlighting the policy and programmatic
priority to provide LTBI and active TB
services to this group. This finding validates
existing policies targeted to this group, such
as immigrant prearrival testing and
treatment for active TB (35). It also raises
the question of whether additional
services—such as immigrant prearrival
LTBI testing and treatment, or enhanced
strategies that overcome health disparities
that affect this group’s access to care—may
be beneficial.

For the scenario examining LTBI
testing and treatment for 25% of all
non–U.S.-born individuals in 2018, models
predicted population-level incidence
reductions of 5–13%, demonstrating the
potential impact of greater access to LTBI
testing and treatment for this population.
The reductions in TB cases produced by
this intervention (as compared with the
base-case scenario) were relatively stable
across the evaluation period, demonstrating
that even short-term interventions targeting
the reservoir of latent TB infection will
generate ongoing benefits in terms of
reductions in TB cases and deaths.

This analysis provides the first direct
comparison of multiple TB models targeting

the same setting and scenarios in the United
States. Each of the three models included in
this comparison represents the major
drivers of TB epidemiology and uses the
same primary data sources. However, these
models were initially developed for different
purposes—one to project long-term
national-level outcomes (6), one to
investigate differences between four major
states (31), and another to project costs and
impact of policy options in California (10).
Each model operationalizes epidemiologic
mechanisms differently, interprets the
available evidence differently, and describes
the population (e.g., age strata and risk
groups) differently. Despite this, we found
consistency across models when estimating
current TB epidemiology and projecting
future trends. Model agreement was
strongest when there were rigorous
empirical data available to parameterize
and calibrate models, such as TB case
notifications and deaths. When the model
results differed, they tended to do so where
definitive local data were not available, such
as for Mtb infection incidence and
prevalence. The UCSF model predicted the
largest numbers of both transmissions and
prevalent LTBI, and the Harvard model the
fewest, with the JHSPH model intermediate
between these two. These differences were
observed despite the models producing very

similar estimates of TB incidence, reflecting
the fact that each model has developed
a different conceptualization of TB
epidemiology that still matched observed
data.

Although the models provided
relatively consistent TB projections under
current policy and services, these results also
came with wide uncertainty intervals. For all
scenarios, future projections required strong
assumptions about trends in immigration,
LTBI prevalence among migrants, health
services availability, and other time-varying
drivers. In the past, major and sometimes
rapid changes have been observed for these
drivers, and such variability will continue in
the future, limiting the possibility of
producing precise TB projections. Lack of
definitive evidence around some aspects of
LTBI natural history contributed additional
uncertainty to model projections. For
example, although national LTBI prevalence
estimates are available for multiple time
points (20), these estimates are not designed
to be representative at the state level, and
sampling uncertainty limits their utility for
estimating results for individual population
groups and time trends. Additional
uncertainty in LTBI epidemiology is
introduced by the imperfect sensitivity and
specificity of LTBI diagnostics and our
limited data on reactivation rates over time
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for those who harbor infection (15, 36).
Finally, uncertainty around uptake and
completion of TB prevention and care
activities, particularly for individuals
without medical risk factors, may cause the
actual impacts of targeted testing and
treatment interventions to differ from those
estimated in this analysis. These
uncertainties highlight the need for
stronger empirical evidence to support our
understanding of TB epidemiology,
through improved and more specific LTBI
diagnostic tests, enhanced estimates of
LTBI reactivation risks, and more real-
world estimates of intervention
implementation. These findings were made
possible by a comparison of multiple
independently developed models. This
revealed the different approaches that can
be used to model complicated
epidemiological processes and how the
assumptions of these approaches can

influence results. This model comparison
provides a more robust examination of
uncertainty than could be gained from
conventional sensitivity analyses using
a single model (37).

California is actively pursuing an
intensified strategy for TB prevention in the
state through partnerships between public
health agencies, private providers,
community organizations, and the public to
increase LTBI testing and treatment (38). As
providers increase testing and treatment to
prevent TB, cases of TB disease will
decrease, allowing patients and their
families and communities to avoid the
devastating consequences of TB. Even
testing and treating one-quarter of
non–U.S.-born persons residing in
California could achieve TB disease
reductions of meaningful magnitude. The
sensitivity of model projections to TB
burden among individuals entering

California highlights the importance of
TB prevention and care policies more
broadly and the fact that efforts to
identify and treat LTBI in other states
and countries will have benefits
beyond those individual jurisdictions.
The need for LTBI testing and
treatment of persons at highest risk
is great. n
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