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Abstract Solving high dimensional optimal control problems and correspond-
ing Hamilton-Jacobi PDEs are important but challenging problems in control
engineering. In this paper, we propose two abstract neural network archi-
tectures which are respectively used to compute the value function and the
optimal control for certain class of high dimensional optimal control problems.
We provide the mathematical analysis for the two abstract architectures. We
also show several numerical results computed using the deep neural network
implementations of these abstract architectures. A preliminary implementa-
tion of our proposed neural network architecture on FPGAs shows promising
speed up compared to CPUs. This work paves the way to leverage efficient
dedicated hardware designed for neural networks to solve high dimensional
optimal control problems and Hamilton-Jacobi PDEs.
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1 Introduction

Optimal control problems are an important class of optimization problems
that find many applications in engineering, such as trajectory planning [31,38,
74, 106, 131, 141], robot manipulator control [27, 61, 84, 98, 110] and humanoid
robot control [39,54,55,60,64,99]. Under some assumptions, the optimal control
problems are related to backward Hamilton–Jacobi (HJ) PDEs of the form−

∂V

∂t
(t,x) +H(t,x,∇xV (t,x)) = 0 x ∈ Rn, t ∈ (0, T ),

V (T,x) = Ψ(x) x ∈ Rn,
(1)

where the function H : [0, T ]×Rn×Rn 3 (t,x,p) 7→ H(t,x,p) ∈ R is called the
Hamiltonian, which is convex with respect to p, and the continuous function
Ψ : Rn → R specifies the terminal cost. This relation between optimal control
problems and HJ PDEs has been widely studied in the literature (see [13] for
instance). The value function of an optimal control problem may be character-
ized as the unique viscosity solution of the corresponding HJ PDE, while the
optimal feedback control in the optimal control problems is related to the spa-
tial gradient which is the Fréchet derivative of the value function with respect
to the state variable x. Therefore, computing the viscosity solution of an HJ
PDE and its spatial gradient is an important problem in control engineering.

In many practical engineering problems, the dimensionality is often high.
For instance, in robot manipulator control problems, there are multiple joints
and end effectors in the manipulator. To control and measure the move-
ment of each joint or end effector, several variables such as velocities, an-
gles or positions are included in the state variable in the optimal control
problems. As a result, the dimension of the state space is usually greater
than five in practice. However, when the dimension is greater than five, stan-
dard grid-based numerical algorithms such as ENO [129], WENO [82], and
DG [78] are infeasible to apply. This infeasibility is due to the curse of di-
mensionality [18], i.e., as the dimension grows, the number of grid points
grows exponentially, and hence the memory requirement as well as the com-
putational time also grow exponentially. Therefore, solving optimal control
problems and HJ PDEs in high dimensions efficiently is an important but
challenging problem. In the literature, several methods are proposed to over-
come the curse of dimensionality when solving high dimensional HJ PDEs
and optimal control problems. These methods include, but are not limited
to, max-plus methods [2, 3, 48, 62, 66, 116, 117, 119, 120], optimization meth-
ods [32,34,36,154], tensor decomposition techniques [44,76,148], sparse grids
[21, 65, 92], polynomial approximation [88, 89], model order reduction [6, 101],
dynamic programming and reinforcement learning [5,20] and neural networks
[8, 12,33,35,42,70,79–81,85,86,104,111,126–128,138,140,144].

Recently, neural networks have been a successful tool in solving scientific
computing problems involving PDEs. The related works include but are not
limited to [4,8,12,15–17,19,26,30,41–43,51,53,59,63,68,70,71,77,79,80,83,91,
95, 96, 102–104, 107, 111–113, 115, 121–125, 128, 130, 132–138, 140, 142, 144, 146,
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147, 149, 151–153, 157, 158]. Due to the success of neural networks, many new
hardware designs have been proposed to efficiently (in terms of speed, latency,
throughput or energy) implement neural networks. For instance, Google de-
signed the “Tensor Processor Unit” [87] to accelerate inference using neural
networks, and Intel developed new specific low-level instructions in their pro-
cessors to accelerate machine learning applications [11]. Field programmable
gate arrays (FPGAs) have been successfully used to implement neural net-
works for real-time applications, see e.g., [56–58]. There are also efforts for
proposing completely new silicon designs [29,73] and efficient hardware designs
for standard activation functions [100]. In addition, new computing architec-
tures specialized for implementing neural network start to be available: for
instance Xilinx recently launched a new computing architecture called Versal
AI to efficiently implement neural networks. Note that these trends follow what
LeCun suggested in [105, Sec. 3]. This dedicated hardware can in-principle be
used for any algorithm that can be represented as a neural network architec-
ture.

Realising this new hardware and silicon designs requires new dedicated soft-
ware to implement neural networks on the new platforms. There are some avail-
able software development kits to convert neural network codes in standard
frameworks such as PyTorch, TensorFlow, ONNX and HALO to executable
codes on the aforementioned dedicated hardware. As long as an algorithm
can be expressed in the neural network languages, it is possible to accelerate
it with these new hardware. Therefore, an algorithm must be expressed as a
neural network to leverage these new computational platforms.

In the literature, most neural network based algorithms regard the space
of neural networks as a finite dimensional function space which approximates
abstract functional spaces in the problems, and this approximation is guar-
anteed by the universal approximation theorems (see [28, 75, 97, 108, 114, 139]
for instance). The output is given by a neural network whose parameters are
trained using a problem-related optimization model. However, in general, there
is no guarantee for the convergence of the neural networks, and hence the
outputs are not guaranteed to solve the targeted problems. There is another
research direction which focuses more on the neural network architectures, and
provides theoretical guarantees for certain architectures. Along this research
direction, [50,52] proposed the connections between Resnet architectures and
numerical solvers for ODEs, and [33, 35] presented several neural network ar-
chitectures which express representation formulas for solving certain HJ PDEs.

In this work, we enlarge the class of HJ PDEs and optimal control problems
which are solvable using neural network architectures by considering represen-
tation formulas for certain HJ PDEs with state and time dependent Hamil-
tonians. We design the neural network architectures such that they solve the
optimal control problems and HJ PDEs of interest, with the neural network
parameters assigned directly from the problem data, without the need for a
training process. Without the training process, our neural network architec-
tures are guaranteed to solve the optimal control problems and HJ PDEs.
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Contributions of this paper. We present neural network architectures
which solve certain high dimensional optimal control problems and the cor-
responding HJ PDEs. We consider the Hamiltonians H in (1) which are
quadratic with respect to (x,p) with coefficients depending on t, and the
initial data Ψ which is the minimum of finitely many quadratics. There are
numerical solvers and theoretical analysis in the literature for these problems
using linear-quadratic regulator and min-plus algebra. In this work, we present
the neural network architectures according to these theories. Our contribution
is three-fold.

– First, our work paves the way to leverage efficient dedicated hardware de-
signed for neural networks to solve high dimensional optimal control prob-
lems and HJ PDEs. We present the neural network architectures based
on the solid algorithms and theories in the literature for solving these
problems. With the neural network architectures, it is possible to ob-
tain efficient implementations in practice by converting the neural net-
work codes to executable codes on the dedicated hardware. This facili-
tates future real-time implementations for solving high dimensional prac-
tical optimal control problems. Our work is easily implemented in stan-
dard frameworks, and we provide our implementations using TensorFlow
in https://github.com/TingweiMeng/NN_HJ_minplus.

– Unlike most neural network algorithms in the literature, we provide the-
oretical guarantees to prove that our neural network architectures solve
certain optimal control problems and HJ PDEs. These theoretical guaran-
tees follow from the linear-quadratic control problems and min-plus algebra
techniques in the theories of optimal controls and HJ PDEs. In this way,
we show the correspondence between optimal control theories and certain
neural network architectures. This correspondence also provides possibil-
ities for new interpretations of certain neural network architectures from
the optimal control perspective.

– We present an FPGA implementation of our proposed neural network ar-
chitecture which shows that promising speed-ups can be expected com-
pared to implementation on CPUs.

Organization of this paper. The mathematical background of optimal
controls and min-plus algebra is given in Section 2. In Section 3, two abstract
neural network architectures are presented, which solve the HJ PDEs and are
used to compute the optimal controls in the optimal control problems, respec-
tively. The first abstract architecture is shown in Section 3.1 and depicted in
Fig. 3, which is a one-layer neural network architecture with abstract neurons.
It solves the HJ PDEs and the optimal values in the corresponding optimal
control problems. The second abstract architecture is shown in Section 3.2 and
depicted in Fig. 4, which is a two-layer neural network architecture with ab-
stract neurons. It can be used to compute the optimal controls in the optimal
control problems. In Section 3.3, we consider more general terminal condi-
tions and propose a numerical algorithm that combines our proposed neural
network architecture and ADMM to solve the corresponding HJ PDEs and

https://github.com/TingweiMeng/NN_HJ_minplus
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optimal control problems. The implementations of our proposed two abstract
architectures and their numerical results are presented in Section 4. There
are different ways to implement the abstract architectures. Among these im-
plementations we show the one using the fourth order Runge-Kutta method
for illustration, which gives the deep Resnet-type implementations depicted
in Figs. 6 and 7. The numerical solutions computed by the proposed neural
network architectures and implementations for three optimal control problems
are shown in Sections 4.1, 4.2 and 4.3, respectively. Section 4.4 shows one nu-
merical result with a general terminal condition. An implementation of our
proposed neural network on a FPGA is described in Section 4.5 and it shows
promising speed-ups compared to a CPU implementation. Some conclusions
are drawn in Section 5.

2 Mathematical background

Throughout, we use Rn×l to denote the set of matrices with n rows and l
columns with entries in R, and use Sn to denote the set of real-valued symmet-
ric matrices in Rn×n. Also, Sn>0 denotes the set of symmetric positive definite
matrices in Rn×n, and Sn≥0 denotes the set of symmetric positive semi-definite

matrices in Rn×n. We denote the identity matrix in Rn×n by In, and the zero
matrix in Rn×n by On. Moreover, we use the bold character to denote a vec-
tor, and we use the capital character to denote a matrix, if not mentioned
specifically. The `2-norm and `1-norm in Rn are denoted by ‖ · ‖ and ‖ · ‖1,
respectively.

2.1 Optimal control and min-plus algebra

First, we give a brief introduction to optimal control problems, HJ PDEs and
their relation. An optimal control problem is formulated as follows

V (t0,x0)
.
= inf

{∫ T

t0

L(s,x(s),u(s))ds+ Ψ(x(T ))

}
(2)

subject to {
ẋ(s) = f(s,x(s),u(s)) s ∈ (t0, T ),

x(t0) = x0,
(3)

where T ∈ (0,+∞) and t0 ∈ [0, T ] are scalars which denote the terminal time
and initial time, x0 is a vector in Rn which denotes the initial position, the
trajectory x : [t0, T ] → Rn is an absolutely continuous function solving the
Cauchy problem (3) almost everywhere, and the control u : [t0, T ] → Rl is a
function in a function space such as Lp(t0, T ;Rl) or the space of measurable
functions. In the optimal control problem (2), the running cost is given by the
function L : [0, T ] × Rn × Rl → R, which is also called Lagrangian, while the
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terminal cost is given by the function Ψ : Rn → R. The optimal cost is denoted
by V (t0,x0), which is a function of the initial time t0 and the initial position
x0 in the Cauchy problem (3).

Under suitable assumptions (see [13] for instance), the value function V
is a viscosity solution of the corresponding backward HJ PDE (1). Viscosity
solutions are known to be equivalent to minimax solutions (also known as min-
imal selections), which are defined via the associated characteristic inclusion,
see [25,145]. In the corresponding HJ PDE, the Hamiltonian H : [0, T ]×Rn×
Rn → R ∪ {+∞} is given by the function f and the Lagrangian L as follows

H(t,x,p) = sup
u∈Rl

{−〈f(t,x,u),p〉 − L(t,x,u)} ∀t ∈ [0, T ],x,p ∈ Rn,

and the terminal data Ψ : Rn → R is given by the terminal cost in the optimal
control problem. Given the solution V to the HJ PDE (1), the optimal control
u∗ : [0, T ] → Rl in the problem (2) is characterized by Pontryagin maximum
principle [13], which states that at almost every s ∈ [0, T ], the optimal control
u∗(s) satisfies

u∗(s) ∈ arg max
u∈Rl

{−〈f(s,x∗(s),u),p〉 − L(s,x∗(s),u)}, (4)

for each p ∈ D+
x V (s,x∗(s)) ∪ D−x V (s,x∗(s)), where x∗ : [t0, T ] → Rn is the

corresponding trajectory solved by (3) given the control u∗. Here, D+
x V and

D−x V denote the set of the spatial components of the superdifferential and
subdifferential of V , respectively. There are different sets of assumptions for
the above relation (4) to hold. For details of the assumptions, see [159], [13,
Section III.3.4] and the references in [13, Section III.6]. A verification theorem
can alternatively be used to check whether a control is optimal, if a solution
to the HJ PDE is known to exist.

We consider the HJ PDE (1) whose terminal data Ψ is the minimum of
several functions Ψi : Rn → R, i.e., we assume

Ψ(x) = min
i∈{1,...,m}

Ψi(x) ∀x ∈ Rn. (5)

Denote by Vi : Rn × [0,+∞) → R the viscosity solution to the corresponding
backward HJ PDE with terminal data Ψi, which reads−

∂Vi
∂t

(t,x) +H(t,x,∇xVi(t,x)) = 0 x ∈ Rn, t ∈ (0, T ),

Vi(T,x) = Ψi(x) x ∈ Rn.
(6)

If the HJ PDEs (1) and (6) are solved by the value function (2) with terminal
costs Ψ and Ψi, respectively, then the solution operator in the HJ PDE (1)
is linear with respect to the min plus algebra [116]. From straightforward
calculation using (2), the value function V can be written as the minimum of
Vi as follows

V (t,x) = min
i∈{1,...,m}

Vi(t,x), ∀x ∈ Rn, t ∈ [0, T ].
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Consequently, V in this form also solves the HJ PDE (1) with terminal data
Ψ .

2.2 Neural networks

We give a brief introduction of neural networks and refer the reader to [1] for
a full introduction. A neural network architecture defines a space of functions
which approximates the solution space in the target problem. A general neural
network is the composition of several functions whose inputs and outputs
are called layers. Each layer contains several variables or quantities which
are called neurons. The input and output of the neural network function are
called the input layer and the output layer, and all the other layers are called
hidden layers. Different types of neural networks have been proposed in the
literature [1].

A basic neural network architecture is called a feedforward neural network,
whose hidden layer is the composition of an affine function and a non-linear
function called activation function. An illustration of a feedforward neural net-
work architecture with two hidden layers is shown in Fig. 1, where each blue
box corresponds to a neuron, and the line connecting the neurons illustrates
the dependency between different neurons. To our knowledge, in the machine
learning community, there is no standardised form to represent a neural net-
work architecture as a diagram.

Fig. 1 An illustration of a feedforward neural network architecture with two hidden layers.

Another widely used neural network architecture is called residual neural
network (Resnet) [1, 72]. A hidden layer in a Resnet involves more algebraic
computations among compositions of affine functions and activation functions.
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An illustration of a hidden layer in a standard Resnet architecture with acti-
vation function σ is shown in Fig. 2.

Fig. 2 An illustration of a hidden layer in the Resnet architecture.

3 Neural network architectures for solving certain HJ PDEs and
optimal control problems

Fix a finite terminal time T ∈ (0,+∞), the following is assumed throughout:

(A1) Let A ∈ C([0, T ];Rn×n), B ∈ C([0, T ];Rn×l), S ∈ C([0, T ];Rn×l),
Q ∈ C([0, T ];Sn>0) and R ∈ C([0, T ];Sl>0) be continuous functions. Let
Gi ∈ Sn≥0 be a constant matrix, ai ∈ Rn be a constant vector and bi ∈ R
be a constant scalar for each i ∈ {1, . . . ,m}.

We consider the optimal control problem (2) whose Lagrangian L : [0, T ] ×
Rn × Rl → R and the function f : [0, T ]× Rn × Rl → Rn are defined by

L(t,x,u) =
1

2
xTQ(t)x +

1

2
uTR(t)u + xTS(t)u,

f(t,x,u) = A(t)x +B(t)u,
(7)

for all x ∈ Rn, u ∈ Rl and t ∈ [0, T ]. Define the terminal cost Ψ : Rn → R by

Ψ(x) = min
i∈{1,...,m}

{
1

2
xTGix + aTi x + bi

}
∀x ∈ Rn. (8)

The corresponding optimal control problem is defined via the value function

V (t0,x0) = inf
(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+x(s)TS(s)u(s)
)
ds+ Ψ(x(T ))

} (9)
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where the constraint set C(t0,x0) is defined to be the set of (x(·),u(·)) ∈
L2(t0, T ;Rn)× L2(t0, T ;Rl) which satisfies the following Cauchy problem

{
ẋ(s) = A(s)x(s) +B(s)u(s) s ∈ (t0, T ),

x(t0) = x0.
(10)

For the corresponding HJ PDE, we consider the following standard assump-
tion [150,155].

(A2) Assume Cpp : [0, T ] → Sn≥0, , Cxx : [0, T ] → Sn>0 and Cxp : [0, T ] →
Rn×n are three functions defined by


Cpp(t) = B(t)R(t)−1B(t)T ,

Cxx(t) = Q(t)− S(t)R(t)−1S(t)T ,

Cxp(t) = A(t)−B(t)R(t)−1S(t)T ,

(11)

for all t ∈ [0, T ], where A,B, S,Q,R are the functions satisfying assumption
(A1).

The Hamiltonian H : [0, T ]× Rn × Rn → R is defined by

H(t,x,p) =
1

2
pTCpp(t)p−

1

2
xTCxx(t)x− pTCxp(t)x ∀t ∈ [0, T ],x,p ∈ Rn.

The corresponding HJ PDE reads


−∂V (t,x)

∂t
+H(t,x,∇xV (t,x)) = 0 x ∈ Rn, t ∈ (0, T ),

V (T,x) = Ψ(x) = min
i∈{1,...,m}

{
1

2
xTGix + aTi x + bi

}
x ∈ Rn.

(12)

This is the HJ PDE for a linear regulator problem with a min-of-quadratics
terminal cost. Its solution can be represented via the solution to the Riccati
equation (see [45,47,48,116] for instance).

In the following two sections, we will present two abstract neural network
architectures. The first one is shown in Section 3.1 which represents the vis-
cosity solution to the HJ PDE (12). The same neural network architecture also
represents the value function in the optimal control problem (9). The second
abstract neural network architecture is shown in Section 3.2, and it can be
used to compute the optimal control in the optimal control problem (9).
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3.1 An abstract neural network architecture for solving the HJ PDE (12)

We present an abstract neural network architecture which represents the vis-
cosity solution to the HJ PDE (12). The viscosity solution can be represented
by a neural network VNN defined as follows

VNN (t,x)
.
= min
i∈{1,...,m}

Vi(t,x), Vi(t,x)
.
=

1

2
xTPi(t)x + qi(t)

Tx + ri(t),

(13)

where the function Pi ∈ C(0, T ;Sn) solves the following Riccati final value
problem (FVP){

Ṗi(t) = Pi(t)
TCpp(t)Pi(t)− Pi(t)TCxp(t)− Cxp(t)TPi(t)− Cxx(t) t ∈ (0, T )

Pi(T ) = Gi,
(14)

the functions qi ∈ C(0, T ;Rn) solves the following linear FVP{
q̇i(t) = Pi(t)

TCpp(t)qi(t)− Cxp(t)Tqi(t) t ∈ (0, T ),

qi(T ) = ai,
(15)

and the function ri ∈ C(0, T ;R) solves the following FVPṙi(t) =
1

2
qi(t)

TCpp(t)qi(t) t ∈ (0, T ),

ri(T ) = bi.
(16)

An illustration for the neural network architecture (13) is shown in Fig. 3. This
is a one-layer abstract architecture with a min-pooling activation function. The
i-th abstract neuron is given by the function Vi(t,x) in (13). The architecture
and neurons are called abstract since some ODE solvers for (14), (15) and (16)
are further required in order to evaluate each neuron and the neural network
architecture. Later, in Section 4, we will provide a deep Resnet implementation
(depicted in Fig. 6) for this abstract architecture.

The following proposition shows that this neural network architecture (13)
provides the viscosity solution to the HJ PDE (12) and the value function in
the optimal control problem (9).

Proposition 1 Assume (A1)-(A2) hold. Let VNN be the function defined
by (13). Then VNN is the unique viscosity solution to the HJ PDE (12). More-
over, VNN equals the value function V in the optimal control problem (9).

Proof. First, we apply [150, Prop. 2.2] to prove that the unique viscosity so-
lution to the HJ PDE (12) is given by the value function for the optimal con-
trol problem (9) under the assumptions (A1)-(A2). Most assumptions in [150,
Prop. 2.2] are straightforward to check under this linear quadratic setting.
Here, we only check the following three non-trivial assumptions:
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Fig. 3 Illustration of the abstract neural network architecture defined by (13) that rep-
resents the viscosity solution to the HJ PDE (12) and the value function in the optimal
control problem (9).

1. There exists a positive constant ρ > 0 such that R(t) − ρI is positive
semi-definite for all t ∈ [0, T ].

2. There exist some positive constants CL > 0 and ε0 ∈ (0, 1) such that
(1− ε0)xTQ(t)x−xTS(t)R(t)−1S(t)Tx ≥ −CL holds for all t ∈ [0, T ] and
x ∈ Rn.

3. There exists a constant C0 > 0 such that Ψ(x) ≤ C0(1 + |x|2) holds for all
x ∈ Rn.

Now, we check the first assumption. We are going to prove a slightly stronger
version. We prove that there exists ρ > 0 such that the matrix R(t) − ρI is
positive definite for all t ∈ [0, T ]. Assume it does not hold. Then, there exist
sequences {tk} ⊂ [0, T ] and {xk} ⊂ Rn such that xTkR(tk)xk ≤ 1

k‖xk‖
2 holds

for each k ∈ N. After scaling, we assume ‖xk‖ = 1 holds for each k ∈ N. By
taking subsequences and still denoting the subsequences by {tk} and {xk}, we
obtain the convergence of {tk} and {xk}, whose limits are denoted by t̄ ∈ [0, T ]
and x̄ ∈ Rn, respectively. Note that ‖xk‖ = 1 for each k ∈ N implies ‖x̄‖ = 1.
Since R is a continuous function, we obtain

x̄TR(t̄)x̄ = lim
k→∞

(
xTkR(tk)xk −

1

k
‖xk‖2

)
≤ 0,

which contradicts with the assumption that the matrix R(t̄) is positive definite.
Therefore, the first assumption holds. A similar argument proves that there
exists a positive constant ε such that Cxx(t) − εI is positive semi-definite for
all t ∈ [0, T ]. Also, the continuity of Q implies the existence of a uniform upper
bound C for ‖Q(t)‖ for all t ∈ [0, T ]. Let ε0 equal min{ εC , 1}. Then, by (11),
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we have

(1− ε0)xTQ(t)x− xTS(t)R(t)−1S(t)Tx = xTCxx(x)x− ε0xTQ(t)x

≥ xTCxx(x)x− ε0‖Q(t)‖‖x‖2

≥ ε‖x‖2 − ε0C‖x‖2 ≥ 0.

As a result, the second assumption holds. The third assumption follows from
a straightforward computation which reads

Ψ(x) = min
i∈{1,...,m}

{
1

2
xTGix + aTi x + bi

}
≤ 1

2
xTG1x + aT1 x + b1

≤ C0(1 + ‖x‖2),

for some positive constant C0. Therefore, all the assumptions in [150, Prop. 2.2]
are satisfied. Then, by [150, Prop. 2.2], the value function defined by (9) is the
unique viscosity solution to the HJ PDE (12). (Note that if all the functions
in (A1) and (A2) do not depend on time t, then this result follows from [14].)
Therefore, it suffices to prove that VNN defined by (13) is the value function
in the optimal control problem (9), i.e., it suffices to prove that VNN (t0,x0) =
V (t0,x0) holds for all x0 ∈ Rn and t0 ∈ [0, T ].

Define Ψi : Rn → R by

Ψi(x)
.
=

1

2
xTGix + aTi x + bi, ∀x ∈ Rn, (17)

for each i ∈ {1, . . . ,m}. Then, by (8), the functions Ψ1, . . . , Ψm and Ψ sat-
isfy (5). According to (9), (5) and the min-plus linearity of the dynamic pro-
gramming evolution operator, we have

V (t0,x0)

= inf
(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+ x(s)TS(s)u(s)
)
ds+ min

i∈{1,...,m}
Ψi(x(T ))

}

= min
i∈{1,...,m}

{
inf

(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+ x(s)TS(s)u(s)
)
ds+ Ψi(x(T ))

}}
.

(18)

We define the value function in the last line of (18) to be Ṽi(t0,x0), i.e., we
define the function Ṽi : [0, T ]× Rn → R by

Ṽi(t0,x0)
.
= inf

(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+x(s)TS(s)u(s)
)
ds+ Ψi(x(T ))

}
.

(19)
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It is well-known that Ṽi can be solved by Riccati equation under the as-
sumptions (A1)-(A2). One way to prove it is given as follows. First, [23] shows
the existence of the global solution to the Riccati FVP (14) under the assump-
tions (A1)-(A2). Then, with a similar argument as in the proof of [155, Chap 6,
Thm. 2.8], the value function Ṽi is proved to satisfy

Ṽi(t,x) =
1

2
xTPi(t)x + qi(t)

Tx + ri(t) = Vi(t,x), (20)

for all x ∈ Rn and t ∈ [0, T ], where Vi is the function defined in (13), and Pi,
qi and ri satisfy (14), (15), and (16), respectively.

Therefore, combining (18) and (20), we derive that VNN ≡ V in Rn× [0, T ]
and the conclusion follows.

3.2 An abstract neural network architecture for the optimal control
problem (9)

We present an abstract neural network architecture for computing the optimal
control in the optimal control problem (9). For any fixed index j ∈ {1, . . . ,m},
define a function uj : [t0, T ]× Rn → Rl by

uj(t,x)
.
= −R(t)−1

(
B(t)TPj(t)x +B(t)Tqj(t) + S(t)Tx

)
, (21)

for any t ∈ [t0, T ] and x ∈ Rn. It is well-known that the function uj is the
feedback control for the optimal control problem (19) with index i = j. To
solve the optimal control problem (9), we define the following function uNN
with specific selected index kNN :

uNN (t0,x0, t,x) = ukNN (t0,x0)(t,x), ∀x0,x ∈ Rn, 0 ≤ t0 ≤ t ≤ T, (22)

where the index function kNN : [0, T ]× Rn → {1, . . . ,m} is defined by

kNN (t0,x0) ∈ arg min
i∈{1,...,m}

{
1

2
xT0 Pi(t0)x0 + qi(t0)Tx0 + ri(t0)

}
= arg min
i∈{1,...,m}

Vi(t0,x0).
(23)

When there is no ambiguity, we abuse the notation kNN (t0,x0) with kNN . Re-
call that the functions Pi, qi, ri and Vi are the functions defined in (14), (15),
(16) and (13), respectively. If there are more than one minimizer in the op-
timization problem in (23), we just select any of these minimizers and it will
provide an optimal control. We will discuss more about this non-uniqueness
later in Remark 1. Note that the function uNN can be expressed using an
abstract neural network architecture shown in Fig. 4. As it is discussed in Sec-
tion 3.1, the evaluation of the neurons {Vi(t0,x0)}mi=1, PkNN

(t) and qkNN
(t)

(where kNN is the index defined in (23)) require further ODE solvers, and
hence we call it an abstract architecture. An implementation of this abstract
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Fig. 4 Illustration of the abstract neural network architecture defined by (22) that can be
used to compute the optimal control in the optimal control problem (9).

architecture using deep Resnet neural networks is provided in Section 4 and
depicted in Fig. 7.

For completeness, the following proposition proves that the function uNN
defined in (22) computes the optimal control in the problem (9) if (t,x) is on
the optimal trajectory with initial time t0 and initial position x0.

Proposition 2 Let x0 ∈ Rn and t0 ∈ [0, T ] be the initial position and initial
time. Assume (A1)-(A2) hold. Let u∗ : [t0, T ] → Rl be a feasible control, and
x∗ ∈ C([t0, T ];Rn) be the solution to the Cauchy problem (10) with the control
u∗. Then, the function u∗ is an optimal control in the problem (9) if and only
if there exists an index k in the set of minimizers of the optimization problem
in (23), such that there holds

u∗(t) = uk(t,x∗(t)) ∀t ∈ [t0, T ], (24)

where the function uk : [t0, T ]× Rn → Rl is defined by (21) with the index k.

Proof. In this proof, we adopt the same notations as in the proof of Prop. 1,
but we abuse the notation VNN with V because they are shown to be equal
in the proof of Prop. 1. Let Ψi be the function defined by (17). We consider
the corresponding optimal control problem (19). It is well known that the
optimal control of the linear quadratic optimal control problem (19) exists and
is unique under the assumptions (A1)-(A2). We denote the optimal control by
v∗i : [t0, T ]→ Rl, and denote the corresponding trajectory by y∗i : [t0, T ]→ Rn.
Moreover, the feedback form of the optimal control is given by

v∗i (t) = −R(t)−1(B(t)T∇xVi(t,y
∗
i (t)) + S(t)Ty∗i (t))

= −R(t)−1(B(t)TPi(t)y
∗
i (t) +B(t)Tqi(t) + S(t)Ty∗i (t))

= ui(t,y
∗
i (t)),

(25)
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for any t ∈ [t0, T ], where Vi is defined by (20). This is proved, for instance,
by [23] and a similar argument in the proof of [155, Chap 6, Thm. 2.8].

Now, we prove the first implication of the proposition statement. Let k be
an index satisfying (23), and the function uk : [t0, T ] × Rn → Rl be defined
by (21) with the index k. From (25), we conclude that the open loop control
t 7→ u∗(t) = uk(t,x∗(t)) is the optimal control for the problem (19) with the
index k. Moreover, by (18) and the definition of k, the optimal value V (t0,x0)
in the problem (9) equals the optimal value Vk(t0,x0) in the problem (19) with
the index k. Therefore, t 7→ u∗(t) is also an optimal control for the problem (9).

Then, we prove the other implication. Assume u∗ is an optimal control in
the problem (9), and x∗ is the corresponding optimal trajectory. Let k̃ be an
index satisfying

k̃ ∈ arg min
i∈{1,...,m}

Ψi(x
∗(T )).

Then, we have

V (t0,x0) =

∫ T

t0

(1

2
x∗(t)TQ(t)x∗(t) +

1

2
u∗(t)TR(t)u∗(t)

+ x∗(t)TS(t)u∗(t)
)
dt+ Ψ(x∗(T ))

=

∫ T

t0

(1

2
x∗(t)TQ(t)x∗(t) +

1

2
u∗(t)TR(t)u∗(t)

+ x∗(t)TS(t)u∗(t)
)
dt+ Ψk̃(x∗(T ))

≥ Vk̃(t0,x0) ≥ V (t0,x0),

(26)

where the first equality holds since u∗ is an optimal control of (9) with the
trajectory x∗, the second equality holds by definition of k̃, the first inequality
holds since Vk̃(t0,x0) is the optimal value of the problem (19) with the index

k̃, and the last inequality holds by (18). As a result, the two inequalities
in (26) both become equalities, which implies that u∗ is the optimal control
of the problem (19) with the index k̃, and k̃ is a minimizer of the optimization
problem in (23). Recall that the unique optimal control of the problem (19)
with the index k̃ satisfies the feedback form (25), and hence we get (24).

Remark 1 Note that the existence of the optimal control u∗ is given by Prop. 2,
the existence of kNN in (23), and the existence of the optimal control with
terminal cost ΨkNN

. However, such u∗ may not be unique, since there may
be more than one minimizer in (23). It can be seen in the above proposition
any minimizer k in (23) can define an optimal control in the problem (9).
As a result, if arg mini∈{1,...,m} Vi(t0,x0) is not a singleton, then there may
be more than one optimal control in the problem (9). This non-uniqueness
is possible since the optimal control problem is a non-convex optimization
problem, where the terminal condition Ψ is non-convex. For a fixed initial
position x0 and initial time t0, one candidate of open loop optimal control
is v∗kNN

in (25) with index i = kNN . If there are more than one minimizer
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in (23), we select kNN to be one minimizer, and then an optimal control u∗

is computed using uNN in (22).

Remark 2 We can compute the open-loop optimal control using our proposed
neural network architecture uNN . For a fixed initial time t0 and initial position
x0, we combine the function uNN with the Cauchy problem (10) and obtain
the following Cauchy problem{

ẋ(s) = A(s)x(s) +B(s)uNN (t0,x0, s,x(s)) s ∈ (t0, T ),

x(t0) = x0.
(27)

By straightforward calculation using (11) and (22), the differential equation
above becomes

ẋ(s) = A(s)x(s) +B(s)uNN (t0,x0, s,x(s))

= A(s)x(s)−B(s)R(s)−1
(
B(s)TPkNN

(s)x(s) +B(s)T qkNN
(s) + S(s)Tx(s)

)
=

(
Cxp(s)− Cpp(s)PkNN

(s)
)
x(s)− Cpp(s)qkNN

(s).

The solution to this Cauchy problem is the optimal trajectory x∗. From the
optimal trajectory, we obtain the open loop optimal control u∗ by u∗ =
uNN (t0,x0, s,x

∗(s)). Our numerical results in Section 4 are computed using
this procedure.

Remark 3 Note that the function uNN also computes the feedback optimal
control. Consider the function (t,x) 7→ uNN (t,x, t,x). Applying Prop. 2 to
x = x0 and t = t0, we conclude that the optimal control at t0 with initial
time t0 and position x0 is u∗(t0) = uNN (t0,x0, t0,x0). Since the initial time
t0 ∈ [0, T ] and initial position x0 ∈ Rn can be arbitrary, we conclude that
function (t,x) 7→ uNN (t,x, t,x) is a feedback optimal control for problem (9).

3.3 The extension to general terminal costs

Now, we consider more general terminal costs Ψ of the form

Ψ(x) = min
i∈{1,...,m}

Ψi(x) ∀x ∈ Rn, (28)

where Ψ1, . . . , Ψm are some convex functions whose proximal points are numer-
ically computable. Note that we no longer assume Ψ1, . . . , Ψm to be quadratics.
By min-plus linearity, the solution V is given by

V (x, t) = min
i∈{1,...,m}

Vi(x, t) ∀x ∈ Rn, t ≥ 0, (29)

where each Vi is the value function of the optimal control problem with ter-
minal cost Ψi. Therefore, to solve this problem, we need to solve the m sub-
problems. In the i-th subproblem, we solve the optimal control problem with
terminal cost Ψi. If Ψi is in the quadratic form, we apply the aforementioned
method and neural network architecture to solve it. Otherwise, we apply the
ADMM method [22, 67] to solve the i-th subproblem, whose j-th iteration
includes the following three steps:
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1. Solve the optimal control problem

min
(x,u)∈C(t0,x0)

{∫ T

t0

1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+x(s)TS(s)u(s)ds+
ρ

2
‖x(T )− yj,i + wj,i‖2

} (30)

where the constraint set C(t0,x0) contains the solutions to (10). Denote
the optimal trajectory by xj+1,i(·). Note that we add the superscript i the
emphasize that these minimizers are used to solve the i-th subproblem.
Since the terminal cost in (30) is a quadratic function, this optimal control
problem can be solved using Riccati equation, which can be represented
by the neural network architecture depicted in Fig. 3 with one neuron
(i.e., m = 1). The solution is given by 1

2x
TPi(t)x + qi(t)

Tx + ri(t), where
Pi(t), qi(t) and ri(t) solve the FVPs (14), (15) and (16) whose terminal
conditions are given by

Pi(T ) = ρIn, qi(T ) = ρ(wj,i − yj,i), ri(T ) =
ρ

2
‖wj,i − yj,i‖2.

2. Solve the following proximal point problem

min
y∈Rn

Ψi(y) +
ρ

2
‖xj+1,i(T )− y + wj,i‖2,

and denote the minimizer by yj+1,i.
3. Update w by wj+1,i = wj,i + xj+1,i(T )− yj+1,i.

The ADMM algorithm terminates when the number of iteration exceeds
the maximal number of iteration or the following inequality holds

max{‖xj+1,i(T )− xj,i(T )‖, ‖yj+1,i − yj,i‖, ‖wj+1,i −wj,i‖} ≤ ε

for some positive threshold ε. If the ADMM algorithm for the i-th subproblem
terminates at the Ni-th step, we get the output parameters w̄i and ȳi by

w̄i = wNi,i, ȳi = yNi,i.

Then, the solution V to the HJ PDE with the general terminal condition
in (28) is computed using the neural network architecture in Fig. 3, where
the coefficients in the i-th neuron, denoted by Pi(t), qi(t) and ri(t), are the
solutions to the FVPs (14), (15) and (16) with terminal condition

Pi(T ) = ρIn, qi(T ) = ρ(w̄i − ȳi), ri(T ) =
ρ

2
‖w̄i − ȳi‖2.
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4 Implementations of the abstract neural network architectures

In the neural network architectures depicted in Figs. 3 and 4, each neuron
involves the functions Pi(t), qi(t) and ri(t), which are the solutions to the
FVPs (14), (15) and (16). As a result, the neural network architectures require
a numerical solver for solving the matrix Riccati FVP (14) and the FVPs (15)
and (16).

In the literature, there are many numerical methods developed for solv-
ing the matrix Riccati differential equation. In order to solve this equation
with a general initial or terminal condition, different fundamental solutions
are proposed, including but not limited to Davison-Maki fundamental solu-
tion [37, 94], symplectic fundamental solution [109], and min-plus fundamen-
tal solution [40,46,49,118]. Recently, there are some non-traditional methods
developed for solving Riccati equations using ant colony programming [90],
genetic programming [10] and neural networks [9, 143].

Algorithm 1: The fourth order Runge-Kutta method for solving the
FVP (31).

Input : Time t ∈ [t0, T ) and the step number N .
Output: The solution z(t) at time t.

1 Initialization: set zN
.
= zT , tN

.
= T and ∆t

.
= T−t

N
;

2 for k = N,N − 1, . . . , 1 do
3 δ1

.
= −∆tg(tk, zk) and w1

.
= zk + 1

2
δ1;

4 δ2
.
= −∆tg(tk − ∆t

2
, w1) and w2

.
= zk + 1

2
δ2;

5 δ3
.
= −∆tg(tk − ∆t

2
, w2) and w3

.
= zk + δ3;

6 δ4
.
= −∆tg(tk −∆t,w3);

7 Update zk−1
.
= zk + δ1

6
+ δ2

3
+ δ3

3
+ δ4

6
and tk−1

.
= tk −∆t;

8 end
9 The output z(t) is given by z0.

We adopt the fourth order Runge-Kutta method to solve the general FVP{
ż(t) = g(t, z(t)) t ∈ [t0, T ],

z(T ) = zT ,
(31)

where the function z : [t0, T ] → Rα (for a positive integer α) is an absolutely
continuous function solving the FVP almost everywhere, and the source term
g : [t0, T ] × Rα → Rα is continuous with respect to t and uniformly Lipschitz
with respect to z. The fourth order Runge-Kutta algorithm for solving this
FVP is reviewed in Algorithm 1. Note that the Runge-Kutta solver can be
expressed using a neural network architecture (see, for instance, [7]). For il-
lustration, we show in Fig. 5 the architecture corresponding to one step of
the fourth order Runge-Kutta solver. This architecture belongs to the class of
Resnet architectures proposed in [72]. With this connection, the Runge-Kutta
solver can be implemented using standard neural network languages, which



Neural networks for certain high dimensional optimal control problems 19

Fig. 5 Illustration of the Resnet architecture that represents one step in the fourth order
Runge-Kutta solver shown in Algorithm 1 for solving a general FVP (31).

Fig. 6 An implementation of the abstract neural network architecture defined by (22)
where {Vi(t,x)}mi=1 are computed using the Resnet neural network depicted in Fig. 5.

can be converted to executable codes on the dedicated hardware designed for
neural networks. By employing the Runge-Kutta solver to evaluate each ab-
stract neuron in the proposed architectures, we obtain their implementations
using Resnet-type deep neural networks. The illustrations of the deep neural
network implementations for VNN and uNN are shown in Figs. 6 and 7, re-
spectively. From the neural network function uNN , we compute the optimal
trajectory x∗ by solving (27) using the fourth order Runge-Kutta method.
Then, we get the open loop control u∗ as described in Remark 2. The Ten-
sorFlow implementations of these architectures for our examples are given in
https://github.com/TingweiMeng/NN_HJ_minplus.

https://github.com/TingweiMeng/NN_HJ_minplus
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Fig. 7 An implementation of the abstract neural network architecture defined by (22)
where the neurons {Vi(t0,x0)}mi=1, qkNN

(t) and PkNN
(t) (where kNN is the index defined

by (23)) are computed using a fourth order Runge-Kutta method depicted in Fig. 5.

Remark 4 It appears that the residual grows with ‖x‖2 for a fixed time t ∈
[0, T ). It is expected because it follows from the Runge-Kutta error estimation
(see, for instance, [24]). For a fixed time step (i.e., a fixed number of layers
in our proposed neural network in Fig. 6), the error at (x, t) for a fixed time
variable t ∈ [0, T ) and any spatial variable x ∈ Ω is bounded in a compact set
Ω, but not in the whole domain. However, this error will converge to zero as
the number of layers goes to infinity.

Our implementations are based on the fourth order Runge-Kutta solver.
Note that other ODE solvers can also be applied to compute the neurons in
the abstract neural network architectures in Figs. 3 and 4. Each ODE solver
which can be represented using neural network architectures provides possible
neural network implementations for the two abstract architectures in Figs. 3
and 4, which therefore provide possibilities for leveraging different neural net-
work architectures to solve high dimensional HJ PDEs (12) and corresponding
optimal control problems (9).

We will show three numerical experiments. In these experiments, we assume
the coefficients Cpp, Cxx, Cxp, R,Q, S,A,B satisfy the assumptions (A1)-(A2).
The first example is shown in Sec. 4.1, which has constant coefficients. The
second example is shown in Sec. 4.2, whose coefficients depend on the time
variable. And the third example is shown in Sec. 4.3, which is a slightly modi-
fied version of the HJ PDE (12) and the optimal control problem (9) considered
in this paper.

In each example, we use the deep Resnet implementation depicted in Fig. 6
to solve the viscosity solution to the HJ PDEs and the value function in the
optimal control problems at different time t. For different terminal time T , we
solve the corresponding optimal controls and optimal trajectories with different
initial position x0 by the method described in Remark 2 using the deep Resnet
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neural network implementation depicted in Fig. 7. If not mentioned explicitly,
we use 40 Runge-Kutta layers to compute the viscosity solution VNN and 400
Runge-Kutta layers to compute the optimal controls and optimal trajectories.

To show the solution VNN in high dimensional cases, we plot two dimen-
sional slices of the function x 7→ VNN (t,x) for different time t. We consider
the points x = (x1, x2,0) ∈ Rn where (x1, x2) ∈ R2 is any grid point in a two
dimensional rectangular domain and 0 denotes the zero vector in Rn−2. In
each figure, the color is given by the function value VNN (t, x1, x2,0), and the
x and y axes represent the variables x1 and x2, respectively. To show the errors
of the viscosity solution, we compute the maximal absolute value of the resid-
ual (i.e., maxi∈{1,...,m} | − ∂Vi

∂t + H(t,x,∇xVi)|) in each example, where Vi is
defined in (13). We set the number of Runge-Kutta layers to be 20, 40, and 80
to show the dependence of error on the number of layers. The residual values
in different example, at different times t, and computed using different number
of Runge-Kutta layers are shown in Table 1. From the table, we observe that
the magnitude of the absolute values of the residuals is in general small (less
than 10−6), which provides a numerical validation that each Vi approximately
satisfies the differential equation in (12). Since the solution operator of the HJ
PDE (12) is linear with respect to the min-plus algebra, our proposed deep
neural network architecture in Figure 6 indeed approximates the viscosity so-
lution to the HJ PDE. The errors also decrease as the number of layers goes to
infinity. This observation validates the error analysis of Runge-Kutta solvers
(see, for instance, [24]).

# RK layers t = 0.25 t = 0.5 t = 0.75

Example 1

in Section 4.1

20 6.97E-06 1.45E-06 6.59E-08
40 4.21E-07 8.93E-08 4.12E-09
80 2.59E-08 5.54E-09 2.57E-10

Example 2

in Section 4.2

20 1.29E-07 3.28E-08 2.91E-09
40 7.94E-09 2.02E-09 1.80E-10
80 4.92E-10 1.25E-10 1.12E-11

Example 4

in Section 4.4

20 2.24E-07 4.49E-08 3.08E-09
40 1.39E-08 2.77E-09 1.90E-10
80 8.64E-10 1.72E-10 1.18E-11

# RK layers t = 0.75 t = 0.95 t = 0.995

Example 3

in Section 4.3

20 3.95E-04 1.21E-04 1.44E-08
40 2.14E-05 7.10E-06 9.01E-10
80 1.25E-06 4.30E-07 5.67E-11

Table 1 We show the maximal absolute residual maxi∈{1,...,m} | −
∂Vi
∂t

+ H(t,x,∇xVi)|
in each example, where Vi is defined in (13). The residual values are computed at different
time t, with different Runge-Kutta (RK) layers (which is related to the number of layers in
the proposed neural networks).

Also, to illustrate the optimal controls and optimal trajectories in each
example, we consider different initial positions x0 = (x,0) ∈ Rn (where x’s are
the grid points in a one-dimensional interval and 0 denotes the zero vector in
Rn−1) and a fixed initial time t0 = 0. To avoid ambiguity, we use the notations
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u∗(s|x0) and x∗(s|x0) to denote the optimal control and trajectory at time
s with initial position x0. For each initial time t0 = 0 and initial position
x0 ∈ Rn, we compute the corresponding optimal control, denoted by [0, T ] 3
s 7→ u∗(s|x0) ∈ Rl, and the corresponding optimal trajectory, denoted by
[0, T ] 3 s 7→ x∗(s|x0) ∈ Rn. For the one dimensional problem, we choose each
initial position x0 ∈ R to be a grid point in a one-dimensional interval, and plot
the graphs of u∗(·|x0) or x∗(·|x0) with different x0 in one figure. For the high
dimensional problem, we choose different initial positions x0 = (x,0) where x’s
are the grid points in a one-dimensional interval and 0 denotes the zero vector
in Rn−1, and solve the optimal controls u∗(·|x0) = (u∗1(·|x0), . . . , u∗l (·|x0))
and the optimal trajectories x∗(·|x0) = (x∗1(·|x0), · · · , x∗n(·|x0)). Then, the
graphs of the some components of the optimal controls u∗(·|x0) or optimal
trajectories x∗(·|x0) are plotted in each figure.

4.1 An optimal control problem with constant coefficients

We consider the optimal control problem (9) with the following constant co-
efficients 

l = n,

R = Q = Cpp = Cxx = Cxp = A = B = In,

S = On,

where In denotes the identity matrix in Rn×n and On denotes the zero matrix
in Rn×n. With these coefficients, we solve the optimal control problem (2)
whose Lagrangian L in (7) is defined by

L(t,x,u) =
1

2
‖x‖2 +

1

2
‖u‖2 ∀t ∈ [0, T ],x ∈ Rn,u ∈ Rl, (32)

and the source term f in (7) is defined by

f(t,x,u) = x + u ∀t ∈ [0, T ],x ∈ Rn,u ∈ Rl. (33)

The corresponding HJ PDE is in the form of (12) where the Hamiltonian H
is defined by

H(t,x,p) =
1

2
‖p‖2 − 1

2
‖x‖2 − 〈p,x〉 ∀t ∈ [0, T ],x,p ∈ Rn. (34)

With these coefficients, the differential equations for Pi, qi and ri read

Ṗi(t) = Pi(t)
TPi(t)− 2Pi(t)− In,

q̇i(t) = Pi(t)
Tqi(t)− qi(t),

ṙi(t) =
1

2
‖qi(t)‖2,
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(a) t = 1 (b) t = 0.75

(c) t = 0.5 (d) t = 0.25

Fig. 8 The viscosity solution VNN to the 16 dimensional HJ PDE (12) with Hamilto-
nian (34), terminal data (35) and terminal time T = 1 is computed using the proposed
abstract neural network architecture (13) (depicted in Fig. 3) with the implementation de-
picted in Fig. 6. The two dimensional slices of VNN at time t = 1 (i.e., the terminal cost),
t = 0.75, t = 0.5 and t = 0.25 are shown in the subfigures (a), (b), (c) and (d), respectively.
The color in each subfigure shows the solution value VNN (t,x), where the spatial variable x
is in the form of (x1, x2,0) ∈ R16 (with 0 denoting the zero vector in R14) for some points
x1 ∈ R and x2 ∈ R which are represented by the x and y axes.

for each t ∈ (0, T ). We consider this high dimensional problem with n = 16
and m = 2, where the terminal data Ψ is defined by

Ψ(x) = min

{
1

2

(
2∑
i=1

(xi + 1)2 +

16∑
i=3

x2i

)
,

1

2

(
2∑
i=1

(xi − 1)2 +

16∑
i=3

x2i

)}
,

(35)

for each x = (x1, . . . , x16) ∈ R16.
The viscosity solution to the HJ PDE (12) with Hamiltonian in (34) and

terminal data in (35) is computed using the proposed abstract neural net-
work (13) (depicted in Fig. 3) with the implementation depicted in Fig. 6.
The two dimensional slices of the solution VNN to the 16 dimensional prob-
lem with terminal time T = 1 is shown in Fig. 8. In this figure, the solution
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(a) t = 0.75 (b) t = 0.75

(c) t = 0.5 (d) t = 0.5

(e) t = 0.25 (f) t = 0.25

Fig. 9 The residual − ∂Vi
∂t

+H(t,x,∇xVi) in the HJ PDE (12) with Hamiltonian (34) (with
terminal time T = 1) is shown for each i ∈ {1, . . . ,m} at different time t, where Vi is defined
in (13). Figures (a), (c), (e) show the residuals for V1 at time t = 0.75, t = 0.5 and t = 0.25,
while figures (b), (d), (f) show the residuals for V2 at time t = 0.75, t = 0.5 and t = 0.25,
respectively. In each subfigure, we show the two dimensional slices of the residual function.
The color shows the residual value at (t,x), where the spatial variable x is in the form of
(x1, x2,0) ∈ R16 (with 0 denoting the zero vector in R14) for some points x1 ∈ R and x2 ∈ R
which are represented by the x and y axes.
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(a) controls, T = 1 (b) trajectories, T = 1

(c) controls, T = 5 (d) trajectories, T = 5

Fig. 10 The open loop optimal controls and the corresponding optimal trajectories in the
16 dimensional optimal control problem (2) with Lagrangian (32), source term (33), terminal
cost (35) and different terminal time T = 1, 5 are computed using the proposed abstract
neural network architecture (22) with the implementation depicted in Fig. 7. Several graphs
of the first component of the optimal controls with T = 1 are shown in (a), and the first
component of the corresponding optimal trajectories are shown in (b). Several graphs of the
first component of the optimal controls with T = 5 are shown in (c), and the first component
of the corresponding optimal trajectories are shown in (d).

VNN (t, x1, x2,0) (where 0 denotes the zero vector in Rn−2) at time t = 1,
t = 0.75, t = 0.5 and t = 0.25 is shown in the subfigures (a), (b), (c) and (d),
respectively. Recall that the x and y axes represent the first component x1
and second component x2 of the spatial variable, respectively. We also show in
Figure 9 the (two-dimensional slices of) the residual −∂Vi

∂t +H(t,x,∇xVi) for
each i ∈ {1, . . . ,m}, where Vi is defined in (13). Note that the magnitude of
the residuals is in general small (less than 10−6), which provides a numerical
validation that each Vi approximately satisfies the differential equation in (12).
Since the solution operator of the HJ PDE (12) is linear with respect to the
min-plus algebra, our proposed deep neural network architecture in Figure 6
indeed approximates the viscosity solution to the HJ PDE. It appears that the
residual grows with |x|2 for a fixed time t ∈ [0, T ). It is expected because it
follows from the Runge-Kutta error estimation. For a fixed time step (i.e., a
fixed number of layers in our proposed neural network in Fig. 6), the error is
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bounded in a compact set, but not in the whole domain. However, this error
will converge to zero as the number of layers goes to infinity.

We compute optimal controls and optimal trajectories with different initial
positions x0 = (x,0) ∈ Rn (where 0 denotes the zero vector in Rn−1) and a
fixed initial time t0 = 0. The first component of the optimal controls and
trajectories is illustrated in Fig. 10. The optimal controls with terminal time
T = 1 are shown in (a), the optimal trajectories with terminal time T = 1
are shown in (b), the optimal controls with terminal time T = 5 are shown in
(c), and the optimal trajectories with terminal time T = 5 are shown in (d).
There does appear to be a turnpike phenomenon for the longer time horizon
(see, for instance, [69,156] and the references in there).

4.2 An optimal control problem with time dependent coefficients

We consider the optimal control problem (9) whose coefficients depend on
time. The coefficients are chosen to be

l = n,

R(t) = 4e−tIn, Q(t) =
e−t

2
In, S(t) ≡ e−tIn, A(t) ≡ 1

2
In, B(t) ≡ In,

Cpp(t) =
et

4
In, Cxp(t) =

1

4
In, Cxx(t) =

e−t

4
In,

for each t ∈ [0, T ], where In denotes the identity matrix in Rn×n. With these
coefficients, we solve the optimal control problem (2) whose Lagrangian L
in (7) reads

L(t,x,u) =
e−t

4
‖x‖2 + 2e−t‖u‖2 + e−txTu ∀t ∈ [0, T ],x,u ∈ Rn, (36)

and the source term f in (7) reads

f(t,x,u) =
x

2
+ u ∀t ∈ [0, T ],x,u ∈ Rn. (37)

The corresponding HJ PDE is in the form of (12) where the Hamiltonian is
defined by

H(t,x,p) =
et

8
‖p‖2 − e−t

8
‖x‖2 − 1

4
pTx ∀t ∈ [0, T ],x,p ∈ Rn. (38)

With these coefficients, the differential equations for Pi, qi and ri read

Ṗi(t) =
et

4
Pi(t)

TPi(t)−
1

2
Pi(t)−

e−t

4
In,

q̇i(t) =
et

4
Pi(t)

Tqi(t)−
1

4
qi(t),

ṙi(t) =
et

8
‖qi(t)‖2,
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for each t ∈ (0, T ). The running cost (36) involves a discount factor of 1. If
the terminal cost was similarly discounted, we would expect to see this appear
in the HJ PDE as a −V term, see, e.g., [13, Section III.3.1].

(a) t = 1 (b) t = 0.75

(c) t = 0.5 (d) t = 0.25

Fig. 11 The viscosity solution VNN to the 16 dimensional HJ PDE (12) with Hamilto-
nian (38), terminal data (28) (where Ψi’s are defined in (39)) and terminal time T = 1
is computed using the proposed abstract neural network architecture (13) with the imple-
mentation depicted in Fig. 6. The two dimensional slices of VNN at time t = 1 (i.e., the
terminal cost), t = 0.75, t = 0.5 and t = 0.25 are shown in the subfigures (a), (b), (c) and
(d), respectively. The color in each subfigure shows the solution value VNN (t,x), where the
spatial variable x is in the form of (x1, x2,0) ∈ R16 (where 0 is the zero vector in R14) for
some points x1 ∈ R and x2 ∈ R which are represented by x and y axes.

In what follows, we show the viscosity solution VNN , the optimal controls
u∗, and the optimal trajectories x∗ computed using the neural network im-
plementations depicted in Figs. 6 and 7. We solve a 16 dimensional problem:
n = 16, m = 4, and Ψ is defined by (28), where Ψ1, Ψ2, Ψ3, Ψ4 : R16 → R are
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(a) controls, T = 1 (b) trajectories, T = 1

(c) controls, T = 5 (d) trajectories, T = 5

Fig. 12 The open loop optimal controls and the corresponding optimal trajectories in
the 16 dimensional optimal control problem (2) with Lagrangian (36), source term (37),
terminal cost (28) (where Ψi’s are defined in (39)) and different terminal time T = 1,
5 are computed using the proposed abstract neural network architecture (22) with the
implementation depicted in Fig. 7. Several graphs of the first component of the optimal
controls with T = 1 and initial positions x0 = (x,0) ∈ R16 (where 0 is the zero vector in
R15) are shown in (a), and the first component of the corresponding optimal trajectories are
shown in (b). Several graphs of the first component of the optimal controls with T = 5 and
initial positions x0 = (x,0) ∈ R16 (where 0 is the zero vector in R15) are shown in (c), and
the first component of the corresponding optimal trajectories are shown in (d).

defined by

Ψ1(x) = 0.5‖x‖2 + 0.9x1 + 0.405,

Ψ2(x) = 0.5‖x‖2 − 0.9x1 + 0.405,

Ψ3(x) = 0.25‖x‖2 + 0.9x2 + 0.405,

Ψ4(x) = 0.25‖x‖2 − 0.9x2 + 0.405,

(39)

for each x = (x1, . . . , x16) ∈ R16.

The HJ PDE (12) with Hamiltonian (38) and terminal data Ψ defined
in (28) (where Ψi’s are defined in (39)) is computed using the proposed abstract
neural network (13) with the implementation depicted in Fig. 6. The terminal
time is set to be T = 1. The two dimensional slices for the viscosity solution
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are shown in Fig. 11. The subfigures (a), (b), (c), (d) show the solution at time
t = 1, t = 0.75, t = 0.5, t = 0.25, respectively.

We also solve the optimal control problem with different terminal time
T = 1 and T = 5 using the neural network given by the abstract neural network
architecture (22) with the implementation depicted in Fig. 7. The open loop
optimal controls s 7→ u∗(s|x0) and the corresponding optimal trajectories
s 7→ x∗(s|x0) are then computed by solving (27) with the fourth order Runge-
Kutta method whose one-step neural network representation is shown in Fig. 5.
The graphs of the first component of the optimal controls u∗ and the first
component of the optimal trajectories x∗ to the 16 dimensional problem with
the initial position x0 = (x,0) ∈ R16 (where 0 is the zero vector in R15) and
the terminal cost (28) (where Ψi’s are defined in (39)) are shown in Fig. 12.
In the figure, (a) and (c) show the optimal controls u∗ with T = 1 and T = 5,
respectively, while (b) and (d) show the corresponding optimal trajectories x∗

with T = 1 and T = 5, respectively.

4.3 An optimal control problem in Newton mechanics

We consider the optimal control problem (2) whose Lagrangian L reads

L(t,x,u) =
1

2
‖x− xr(t)‖2 +

1

2000
‖u‖2 ∀t ∈ [0, T ],x ∈ Rn,u ∈ Rl, (40)

where we set n = 2l and define the function xr : [0, T ]→ Rn by

xr(t) = 5 sin t

(
Il
Ol

)
+ 5 cos t

(
Ol
Il

)
.

The source term f in (3) is defined by

f(t,x,u) =

(
Ol Il
Ol Ol

)
x +

(
Ol
Il

)
u ∀t ∈ [0, T ],x ∈ Rn,u ∈ Rl. (41)

If we denote x(s) = (x1(s),x2(s)), where x1(s),x2(s) ∈ Rl for each s ∈ [t0, T ],
then the Cauchy problem (3) becomes

ẋ1(s) = x2(s) s ∈ (t0, T ),

ẋ2(s) = u(s) s ∈ (t0, T ),

(x1(t0),x2(t0)) = x0.

This is the ODE in Newton mechanics, where x1 denotes the position of a
particle, x2 denotes its velocity, and u denotes its acceleration. The corre-
sponding HJ PDE is in the form of (12) where the Hamiltonian H is defined
by

H(t,x,p) =
1

2
〈p, Cppp〉 − 〈p, Cxpx〉 −

1

2
‖x− xr(t)‖2 ∀t ∈ [0, T ],x,p ∈ Rn,

(42)
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where the coefficients Cpp, Cxp ∈ Rn×n are constant matrices given by

Cpp = 1000

(
Ol Ol
Ol Il

)
and Cxp =

(
Ol Il
Ol Ol

)
.

We consider the terminal data Ψ : Rn → R defined by

Ψ(x) = min

{
1

320

(
(x1 + 2)2 +

n∑
i=2

x2i

)
,

1

320

(
(x1 − 2)2 +

n∑
i=2

x2i

)}
, (43)

for each x = (x1, x2, . . . , xn) ∈ Rn.
Note that this problem requires a slight modification of the HJ PDE (12)

and the optimal control problem (9) considered in this paper, because of
the term 1

2‖x − xr(t)‖2. However, the two abstract neural network architec-
tures (13) and (22) can still be used to compute the viscosity solution and
the optimal control, where in the i-th neuron, the function Pi ∈ C([0, T ];Sn)
solves the Riccati FVP (14) which reads

Ṗi(t) = 1000Pi(t)
T

(
Ol Ol
Ol Il

)
Pi(t)− Pi(t)T

(
Ol Il
Ol Ol

)
−
(
Ol Ol
Il Ol

)
Pi(t)− In t ∈ (0, T ),

Pi(T ) =
1

160
In,

the functions qi ∈ C(0, T ;Rn) solves the modified FVP which readsq̇i(t) = 1000Pi(t)
T

(
Ol Ol
Ol Il

)
qi(t)−

(
Ol Ol
Il Ol

)
qi(t) + xr(t) t ∈ (0, T ),

qi(T ) = ai,

and ri ∈ C(0, T ;R) solves the modified FVP which readsṙi(t) = 500qi(t)
T

(
Ol Ol
Ol Il

)
qi(t)−

25l

2
t ∈ (0, T ),

ri(T ) = bi.

For the specific terminal data Ψ in (43), ai ∈ Rn and bi ∈ R are given by

a1 =
1

80
(1,0)T , b1 =

1

80
, a2 = − 1

80
(1,0)T , b2 =

1

80
,

where 0 denotes the zero vector in Rn−1.
Here, we show the numerical results for l = 8 and n = 2l = 16. The viscosity

solution VNN with terminal time T = 1 is computed using the abstract neural
network architecture (13) (depicted in Fig. 3) with the implementation shown
in Fig. 6. The two dimensional slices of VNN at t = 1, 0.995, 0.95, 0.75 are
plotted in Fig. 13 (a), (b), (c), (d), respectively.
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The optimal controls with different terminal time T = 1, 5, 10 are com-
puted using the abstract neural network architecture (22) depicted in Fig. 4
with the implementation depicted in Fig. 7. The open loop optimal controls
and the corresponding optimal trajectories are computed by solving (27) with
the fourth order Runge-Kutta method whose one-step neural network repre-
sentation is shown in Fig. 5. The graphs of the first components of the optimal
trajectories with terminal time T = 1, T = 5, T = 10 and different initial po-
sitions x0 = (x,0) ∈ R16 (where 0 is the zero vector in R15) are shown in
Fig. 14 (a), (b), (c), respectively. The graphs of the first components of the
corresponding optimal trajectories with T = 1, 5, 10 are shown in Fig. 15 (a),
(c), (e), while the graphs of the ninth components of the optimal trajectories
with T = 1, 5, 10 are shown in Fig. 15 (b), (d), (f). From the optimal con-
trols and trajectories for longer time horizons, it appears there is a turnpike
phenomenon.

(a) t = 1 (b) t = 0.995

(c) t = 0.95 (d) t = 0.75

Fig. 13 The viscosity solution VNN to the 16 dimensional HJ PDE (12) with Hamilto-
nian (42), terminal data (43) and terminal time T = 1 is computed using the proposed
abstract neural network architecture (13) (depicted in Fig. 3) with the implementation de-
picted in Fig. 6. The two dimensional slices of VNN at time t = 1 (i.e., the terminal cost),
t = 0.995, t = 0.95 and t = 0.75 are shown in the subfigures (a), (b), (c) and (d), respec-
tively. The color in each subfigure shows the solution value VNN (t,x), where the spatial
variable x is in the form of (x1,0, x2,0) ∈ R16 (with 0 denoting the zero vector in R7) for
some points x1 ∈ R and x2 ∈ R which are represented by the x and y axes.
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(a) T = 1 (b) T = 5

(c) T = 10

Fig. 14 The open loop optimal controls in the 16 dimensional optimal control problem (2)
with Lagrangian (40), source term (41), terminal cost (43) and different terminal time T =
1, 5, 10 are computed using the proposed abstract neural network architecture (22) depicted
in Fig. 4 with the implementation shown in Fig. 7. Several graphs of the first component
of the optimal controls with T = 1, T = 5 and T = 10 are shown in (a), (b) and (c),
respectively. In each figure, different trajectories correspond to different initial positions
x0 = (x,0) ∈ R16 where 0 is the zero vector in R15.

4.4 An optimal control problem with general terminal cost

In this section, we consider a more general terminal cost Ψ in the form of (28)
with m = 2, where Ψ1 and Ψ2 are defined by

Ψ1(x) = ‖x− x1‖1, Ψ2(x) = ‖x− x2‖, (44)

for all x ∈ Rn. Recall that ‖ · ‖1 and ‖ · ‖ denote the `1-norm and `2-
norm in Rn, respectively. For illustration purposes, we set x1 = (1, 1,0) and
x2 = (−1,−1,0). We solve the same optimal control problem as in Section 4.2,
with the terminal cost (28) (where Ψi’s are defined in (44)). The value func-
tion VNN and the optimal control u are computed using the neural network
architecture in Figs. 6 and 7, respectively, where the parameters Gi,ai and bi
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(a) 1st component x∗1, T = 1 (b) 9th component x∗9, T = 1

(c) 1st component x∗1, T = 5 (d) 9th component x∗9, T = 5

(e) 1st component x∗1, T = 10 (f) 9th component x∗9, T = 10

Fig. 15 The corresponding optimal trajectories x∗ in the 16 dimensional optimal control
problem (2) with Lagrangian (40), source term (41), terminal cost (43) and different terminal
time T = 1, 5, 10 are computed using the proposed abstract neural network architecture (22)
depicted in Fig. 4 with the implementation shown in Fig. 7. Several graphs of the first
component x∗1 of the optimal trajectories x∗ with T = 1, T = 5 and T = 10 are shown
in (a), (c) and (e), respectively. The corresponding graphs of the ninth component x∗9 of
the optimal trajectories x∗ with T = 1, T = 5 and T = 10 are shown in (b), (d) and
(f), respectively. In each figure, different trajectories correspond to different initial positions
x0 = (x,0) ∈ R16 where 0 is the zero vector in R15.
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are trained using the ADMM algorithm described in Section 3.3. Note that in
each iteration in the ADMM algorithm, we need to solve the optimal control
problem (30) once using our proposed neural network architecture in Fig. 6.

We show the numerical results for the 16-dimensional problem. The two
dimensional slices of the viscosity solution VNN with terminal time T = 1 at
time t = 1, 0.75, 0.5, 0.25 are plotted in Fig. 16 (a), (b), (c), (d), respectively.
The residual −∂Vi

∂t + H(t,x,∇xVi) of the HJ PDE with terminal condition
Ψ1 and Ψ2 at different time t = 0.75, 0.5, 0.25 are shown in Fig. 17. We can
observe a small error from these error plots, which numerically validate that
our proposed neural network architecture indeed solves the viscosity solution
to the corresponding HJ PDE.

We also compute several optimal controls and trajectories with different
initial position x = (x,0) ∈ Rn and fixed initial time t0 = 0, and the graphs of
their first components are shown in Fig. 18. The optimal controls with terminal
time T = 1, 5 are shown in Fig. 18 (a), (c), while the optimal trajectories with
terminal time T = 1, 5 are shown in Fig. 18 (b), (d), respectively.

4.5 An FPGA implementation and numerical results

We now briefly describe am implementation of our proposed neural network
on FPGA to illustrate the performance that can be achieved using simple pre-
cision floating points. Specifically, we only present an FPGA implementation
with low latency, where the latency corresponds to the amount of time the
neural network takes to produce one result.

FPGAs are an array of programmable logic blocks and memory elements
that are connected together using a programmable interconnect. FPGAs con-
tain different types of logic resources. These resources include general purposes
logics such as lookup tables (LUTs) and Flip-Flops (FFs), more specialized
arithmetic units, such as digital signal processing units (DSPs), and memory
such as Block Random Access Memory (BRAMs). We refer the reader to [93]
for a concise description of FPGAs. We use the Xilinx Alveo U280 board with
a target design running at 300 MHz. The main computational burden of our
proposed neural network consists of matrix-matrix multiplications used in the
fourth order Runge-Kutta method for solving an FVP as described in Fig. 5.
Traditional non-parallel algorithms for performing matrix-matrix multiplica-
tions have an O(n3) time complexity. Using the parallel programming feature
of FPGAs we can obtain a complexity of O(n2) for computing matrix-matrix
multiplications (see [93] for instance). Therefore, we spend most of FPGA re-
sources on performing these matrix-matrix multiplications in order to reduce
the latency of the design. Note that the Alveo U280 board is composed of
three “chiplets” and crossing chiplets consumes scarce routing resources that
severely degrades performance and prevents scaling. Therefore, we only con-
sider FPGA designs that use less that 30% of the FPGA resources so that no
chiplet is crossed. Table 2 presents the FPGA resources and latencies to im-
plement our proposed neural network depicted in Fig. 6 for various dimensions
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(a) t = 1 (b) t = 0.75

(c) t = 0.5 (d) t = 0.25

Fig. 16 The viscosity solution VNN to the 16 dimensional HJ PDE with Hamiltonian (38),
terminal data (28) (where Ψi’s are defined in (44)) and terminal time T = 1 is computed
using the proposed abstract neural network architecture depicted in Fig. 6, whose parameters
are trained using the ADMM method. The two dimensional slices of VNN at time t = 1 (i.e.,
the terminal cost), t = 0.75, t = 0.5 and t = 0.25 are shown in the subfigures (a), (b), (c)
and (d), respectively. The color in each subfigure shows the solution value VNN (t,x), where
the spatial variable x is in the form of (x1, x2,0) ∈ R16 (with 0 denoting the zero vector in
R14) for some points x1 ∈ R and x2 ∈ R which are represented by the x and y axes.

n and numbers of layers L. We observe from the table that the latencies for
(n,L) = (16, 8), (32, 4), and (64, 2) are 2.1110e-05s, 7.5150e-05s, and 2.8600e-
04s, respectively. We also implemented our proposed neural network architec-
ture on CPUs using C++ to highlight the boost of performance we can obtain
using FPGAs. We perform 1,000,000 runs on a single Intel core I7-1165G7 and
report the average time to produce a result for (n,L) = (16, 8), (32, 4), (64, 2)
in Table 3 as well as the speed-up compared to our FPGA implementation.
We observe a speed-up from 12 to about 20 depending on the dimension n
and the number of layers L. Our FPGA design also allows for larger number
of layers than those reported here. We simply iterate the FPGA kernel that
we designed here for the neural network with fewer layers. In these cases, the
amount of FPGA resources remain the same but the latency is multiplied by
the number of iterations of the FPGA kernel.
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(a) (b)

(c) (d)

(e) (f)

Fig. 17 The residual − ∂Vi
∂t

+ H(t,x,∇xVi) in the HJ PDE with terminal time T = 1,
Hamiltonian (38) and terminal condition (28) (where Ψi’s are defined in (44)) is shown for
each i ∈ {1, 2} at different time t, where Vi is the solution to the i-th subproblem. Figures
(a), (c), (e) show the residuals for V1 at time t = 0.75T , t = 0.5T and t = 0.25T , while
figures (b), (d), (f) show the residuals for V2 at time t = 0.75T , t = 0.5T and t = 0.25T ,
respectively. In each subfigure, we show the two dimensional slices of the residual function.
The color shows the residual value at (t,x), where the spatial variable x is in the form of
(x1, x2,0) ∈ R16 (with 0 denoting the zero vector in R14) for some points x1 ∈ R and x2 ∈ R
which are represented by the x and y axes.
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(a) (b)

(c) (d)

Fig. 18 The open loop optimal controls and the optimal trajectories in the 16 dimensional
optimal control problem with Lagrangian (36), source term (37), terminal cost (28) (where
Ψi’s are defined in (44)) and different terminal time T = 1, 5 are computed using the proposed
abstract neural network architecture (22) with the implementation depicted in Fig. 7. Several
graphs of the optimal controls with T = 1 are shown in (a), whose corresponding optimal
trajectories are shown in (b). Several graphs of the optimal controls with T = 5 are shown
in (c), whose corresponding optimal trajectories are shown in (d).

n/L Latency (ns) BRAMs DSPs FFs LUTs

16/8 6,345 (2.111E4) 601(14%) 2402(26%) 354,013(13%) 258,710(19%)
32/4 22,547(7.515E4) 602(14%) 2482(27%) 353,225(13%) 248,369(19%)
64/2 85,547 (2.860E5) 608(15%) 2522(27%) 352,715(13%) 242,886(19%)

Table 2 FPGA resources and latencies in cycles and nanoseconds (ns) to implement L
layers of the neural network for various dimensions n using simple precision floating point
on a Xilinx Alveo U280 board with a frequency of 300 MHz.

n/L CPU time FPGA time speed up

16/8 2.6310e-04s 2.1110e-05s 12.463
32/4 1.2021e-03s 7.5150e-05s 15.996
64/2 5.9730e-03s 2.8600e-04s 20.885

Table 3 Comparison of the average time for 1,000,000 runs for various dimensions and
number of layers on a single Intel Core I7-1165G7 and our FPGA implementation on a
Xilinx Alveo U280 board running at 300 MHz. The speed-up using FPGA compared to the
CPU is presented in the last column.
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5 Conclusion

We propose two abstract neural network architectures depicted in Figs. 3
and 4, which respectively solve certain high dimensional HJ PDEs and are
used to compute the optimal controls in the corresponding optimal control
problems. To implement these abstract architectures, we present two Resnet-
type deep neural network implementations and show several numerical results
in Section 4. These architectures pave the way to leverage dedicated hard-
ware designed for neural networks to obtain efficient implementations of the
numerical algorithms for certain optimal control problems and HJ PDEs. It
has potential in real-time computations for these high dimensional problems.
Moreover, these architectures are designed based on the theories of linear-
quadratic controls and min-plus algebra, and hence there are theoretical guar-
antees for these neural network architectures. A preliminary implementation
of our proposed neural network architecture on FPGAs shows promising speed
up compared to CPUs. Beyond the numerical experiments in Section 4, we also
tried some examples where the assumption (A2) is not satisfied. In these exam-
ples, we observed that our proposed neural network architectures also provide
reasonable numerical outputs. These observations suggest that the assumption
(A2) is sufficient but not necessary for our proposed architectures.
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