
UCLA
UCLA Previously Published Works

Title
Neural network architectures using min-plus algebra for solving certain high-dimensional
optimal control problems and Hamilton–Jacobi PDEs

Permalink
https://escholarship.org/uc/item/1rq0t7p7

Journal
Mathematics of Control, Signals, and Systems, 35(1)

ISSN
0932-4194

Authors
Darbon, Jérôme
Dower, Peter M
Meng, Tingwei

Publication Date
2023-03-01

DOI
10.1007/s00498-022-00333-2

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at
https://creativecommons.org/licenses/by-nc-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rq0t7p7
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

Noname manuscript No.
(will be inserted by the editor)

Neural network architectures using min-plus algebra
for solving certain high dimensional optimal control
problems and Hamilton-Jacobi PDEs

Jérôme Darbon · Peter M. Dower ·
Tingwei Meng

Received: date / Accepted: date

Abstract Solving high dimensional optimal control problems and correspond-
ing Hamilton-Jacobi PDEs are important but challenging problems in control
engineering. In this paper, we propose two abstract neural network archi-
tectures which are respectively used to compute the value function and the
optimal control for certain class of high dimensional optimal control problems.
We provide the mathematical analysis for the two abstract architectures. We
also show several numerical results computed using the deep neural network
implementations of these abstract architectures. A preliminary implementa-
tion of our proposed neural network architecture on FPGAs shows promising
speed up compared to CPUs. This work paves the way to leverage efficient
dedicated hardware designed for neural networks to solve high dimensional
optimal control problems and Hamilton-Jacobi PDEs.

Keywords Optimal control · Hamilton–Jacobi partial differential equations ·
Neural networks · Grid-free numerical methods

Research supported by AFOSR MURI FA9550-20-1-0358. Authors’ names are given in
last/family name alphabetical order.

Jérôme Darbon
Division of Applied Mathematics, Brown University
E-mail: jerome darbon@brown.edu

Peter M. Dower
Department of Electrical and Electronic Engineering, The University of Melbourne
E-mail: pdower@unimelb.edu.au

Tingwei Meng
Department of Mathematics, UCLA
E-mail: tingwei@math.ucla.edu

2 Jérôme Darbon et al.

1 Introduction

Optimal control problems are an important class of optimization problems
that find many applications in engineering, such as trajectory planning [31,38,
74, 106, 131, 141], robot manipulator control [27, 61, 84, 98, 110] and humanoid
robot control [39,54,55,60,64,99]. Under some assumptions, the optimal control
problems are related to backward Hamilton–Jacobi (HJ) PDEs of the form−

∂V

∂t
(t,x) +H(t,x,∇xV (t,x)) = 0 x ∈ Rn, t ∈ (0, T),

V (T,x) = Ψ(x) x ∈ Rn,
(1)

where the function H : [0, T]×Rn×Rn 3 (t,x,p) 7→ H(t,x,p) ∈ R is called the
Hamiltonian, which is convex with respect to p, and the continuous function
Ψ : Rn → R specifies the terminal cost. This relation between optimal control
problems and HJ PDEs has been widely studied in the literature (see [13] for
instance). The value function of an optimal control problem may be character-
ized as the unique viscosity solution of the corresponding HJ PDE, while the
optimal feedback control in the optimal control problems is related to the spa-
tial gradient which is the Fréchet derivative of the value function with respect
to the state variable x. Therefore, computing the viscosity solution of an HJ
PDE and its spatial gradient is an important problem in control engineering.

In many practical engineering problems, the dimensionality is often high.
For instance, in robot manipulator control problems, there are multiple joints
and end effectors in the manipulator. To control and measure the move-
ment of each joint or end effector, several variables such as velocities, an-
gles or positions are included in the state variable in the optimal control
problems. As a result, the dimension of the state space is usually greater
than five in practice. However, when the dimension is greater than five, stan-
dard grid-based numerical algorithms such as ENO [129], WENO [82], and
DG [78] are infeasible to apply. This infeasibility is due to the curse of di-
mensionality [18], i.e., as the dimension grows, the number of grid points
grows exponentially, and hence the memory requirement as well as the com-
putational time also grow exponentially. Therefore, solving optimal control
problems and HJ PDEs in high dimensions efficiently is an important but
challenging problem. In the literature, several methods are proposed to over-
come the curse of dimensionality when solving high dimensional HJ PDEs
and optimal control problems. These methods include, but are not limited
to, max-plus methods [2, 3, 48, 62, 66, 116, 117, 119, 120], optimization meth-
ods [32,34,36,154], tensor decomposition techniques [44,76,148], sparse grids
[21, 65, 92], polynomial approximation [88, 89], model order reduction [6, 101],
dynamic programming and reinforcement learning [5,20] and neural networks
[8, 12,33,35,42,70,79–81,85,86,104,111,126–128,138,140,144].

Recently, neural networks have been a successful tool in solving scientific
computing problems involving PDEs. The related works include but are not
limited to [4,8,12,15–17,19,26,30,41–43,51,53,59,63,68,70,71,77,79,80,83,91,
95, 96, 102–104, 107, 111–113, 115, 121–125, 128, 130, 132–138, 140, 142, 144, 146,

Neural networks for certain high dimensional optimal control problems 3

147, 149, 151–153, 157, 158]. Due to the success of neural networks, many new
hardware designs have been proposed to efficiently (in terms of speed, latency,
throughput or energy) implement neural networks. For instance, Google de-
signed the “Tensor Processor Unit” [87] to accelerate inference using neural
networks, and Intel developed new specific low-level instructions in their pro-
cessors to accelerate machine learning applications [11]. Field programmable
gate arrays (FPGAs) have been successfully used to implement neural net-
works for real-time applications, see e.g., [56–58]. There are also efforts for
proposing completely new silicon designs [29,73] and efficient hardware designs
for standard activation functions [100]. In addition, new computing architec-
tures specialized for implementing neural network start to be available: for
instance Xilinx recently launched a new computing architecture called Versal
AI to efficiently implement neural networks. Note that these trends follow what
LeCun suggested in [105, Sec. 3]. This dedicated hardware can in-principle be
used for any algorithm that can be represented as a neural network architec-
ture.

Realising this new hardware and silicon designs requires new dedicated soft-
ware to implement neural networks on the new platforms. There are some avail-
able software development kits to convert neural network codes in standard
frameworks such as PyTorch, TensorFlow, ONNX and HALO to executable
codes on the aforementioned dedicated hardware. As long as an algorithm
can be expressed in the neural network languages, it is possible to accelerate
it with these new hardware. Therefore, an algorithm must be expressed as a
neural network to leverage these new computational platforms.

In the literature, most neural network based algorithms regard the space
of neural networks as a finite dimensional function space which approximates
abstract functional spaces in the problems, and this approximation is guar-
anteed by the universal approximation theorems (see [28, 75, 97, 108, 114, 139]
for instance). The output is given by a neural network whose parameters are
trained using a problem-related optimization model. However, in general, there
is no guarantee for the convergence of the neural networks, and hence the
outputs are not guaranteed to solve the targeted problems. There is another
research direction which focuses more on the neural network architectures, and
provides theoretical guarantees for certain architectures. Along this research
direction, [50,52] proposed the connections between Resnet architectures and
numerical solvers for ODEs, and [33, 35] presented several neural network ar-
chitectures which express representation formulas for solving certain HJ PDEs.

In this work, we enlarge the class of HJ PDEs and optimal control problems
which are solvable using neural network architectures by considering represen-
tation formulas for certain HJ PDEs with state and time dependent Hamil-
tonians. We design the neural network architectures such that they solve the
optimal control problems and HJ PDEs of interest, with the neural network
parameters assigned directly from the problem data, without the need for a
training process. Without the training process, our neural network architec-
tures are guaranteed to solve the optimal control problems and HJ PDEs.

4 Jérôme Darbon et al.

Contributions of this paper. We present neural network architectures
which solve certain high dimensional optimal control problems and the cor-
responding HJ PDEs. We consider the Hamiltonians H in (1) which are
quadratic with respect to (x,p) with coefficients depending on t, and the
initial data Ψ which is the minimum of finitely many quadratics. There are
numerical solvers and theoretical analysis in the literature for these problems
using linear-quadratic regulator and min-plus algebra. In this work, we present
the neural network architectures according to these theories. Our contribution
is three-fold.

– First, our work paves the way to leverage efficient dedicated hardware de-
signed for neural networks to solve high dimensional optimal control prob-
lems and HJ PDEs. We present the neural network architectures based
on the solid algorithms and theories in the literature for solving these
problems. With the neural network architectures, it is possible to ob-
tain efficient implementations in practice by converting the neural net-
work codes to executable codes on the dedicated hardware. This facili-
tates future real-time implementations for solving high dimensional prac-
tical optimal control problems. Our work is easily implemented in stan-
dard frameworks, and we provide our implementations using TensorFlow
in https://github.com/TingweiMeng/NN_HJ_minplus.

– Unlike most neural network algorithms in the literature, we provide the-
oretical guarantees to prove that our neural network architectures solve
certain optimal control problems and HJ PDEs. These theoretical guaran-
tees follow from the linear-quadratic control problems and min-plus algebra
techniques in the theories of optimal controls and HJ PDEs. In this way,
we show the correspondence between optimal control theories and certain
neural network architectures. This correspondence also provides possibil-
ities for new interpretations of certain neural network architectures from
the optimal control perspective.

– We present an FPGA implementation of our proposed neural network ar-
chitecture which shows that promising speed-ups can be expected com-
pared to implementation on CPUs.

Organization of this paper. The mathematical background of optimal
controls and min-plus algebra is given in Section 2. In Section 3, two abstract
neural network architectures are presented, which solve the HJ PDEs and are
used to compute the optimal controls in the optimal control problems, respec-
tively. The first abstract architecture is shown in Section 3.1 and depicted in
Fig. 3, which is a one-layer neural network architecture with abstract neurons.
It solves the HJ PDEs and the optimal values in the corresponding optimal
control problems. The second abstract architecture is shown in Section 3.2 and
depicted in Fig. 4, which is a two-layer neural network architecture with ab-
stract neurons. It can be used to compute the optimal controls in the optimal
control problems. In Section 3.3, we consider more general terminal condi-
tions and propose a numerical algorithm that combines our proposed neural
network architecture and ADMM to solve the corresponding HJ PDEs and

https://github.com/TingweiMeng/NN_HJ_minplus

Neural networks for certain high dimensional optimal control problems 5

optimal control problems. The implementations of our proposed two abstract
architectures and their numerical results are presented in Section 4. There
are different ways to implement the abstract architectures. Among these im-
plementations we show the one using the fourth order Runge-Kutta method
for illustration, which gives the deep Resnet-type implementations depicted
in Figs. 6 and 7. The numerical solutions computed by the proposed neural
network architectures and implementations for three optimal control problems
are shown in Sections 4.1, 4.2 and 4.3, respectively. Section 4.4 shows one nu-
merical result with a general terminal condition. An implementation of our
proposed neural network on a FPGA is described in Section 4.5 and it shows
promising speed-ups compared to a CPU implementation. Some conclusions
are drawn in Section 5.

2 Mathematical background

Throughout, we use Rn×l to denote the set of matrices with n rows and l
columns with entries in R, and use Sn to denote the set of real-valued symmet-
ric matrices in Rn×n. Also, Sn>0 denotes the set of symmetric positive definite
matrices in Rn×n, and Sn≥0 denotes the set of symmetric positive semi-definite

matrices in Rn×n. We denote the identity matrix in Rn×n by In, and the zero
matrix in Rn×n by On. Moreover, we use the bold character to denote a vec-
tor, and we use the capital character to denote a matrix, if not mentioned
specifically. The `2-norm and `1-norm in Rn are denoted by ‖ · ‖ and ‖ · ‖1,
respectively.

2.1 Optimal control and min-plus algebra

First, we give a brief introduction to optimal control problems, HJ PDEs and
their relation. An optimal control problem is formulated as follows

V (t0,x0)
.
= inf

{∫ T

t0

L(s,x(s),u(s))ds+ Ψ(x(T))

}
(2)

subject to {
ẋ(s) = f(s,x(s),u(s)) s ∈ (t0, T),

x(t0) = x0,
(3)

where T ∈ (0,+∞) and t0 ∈ [0, T] are scalars which denote the terminal time
and initial time, x0 is a vector in Rn which denotes the initial position, the
trajectory x : [t0, T] → Rn is an absolutely continuous function solving the
Cauchy problem (3) almost everywhere, and the control u : [t0, T] → Rl is a
function in a function space such as Lp(t0, T ;Rl) or the space of measurable
functions. In the optimal control problem (2), the running cost is given by the
function L : [0, T] × Rn × Rl → R, which is also called Lagrangian, while the

6 Jérôme Darbon et al.

terminal cost is given by the function Ψ : Rn → R. The optimal cost is denoted
by V (t0,x0), which is a function of the initial time t0 and the initial position
x0 in the Cauchy problem (3).

Under suitable assumptions (see [13] for instance), the value function V
is a viscosity solution of the corresponding backward HJ PDE (1). Viscosity
solutions are known to be equivalent to minimax solutions (also known as min-
imal selections), which are defined via the associated characteristic inclusion,
see [25,145]. In the corresponding HJ PDE, the Hamiltonian H : [0, T]×Rn×
Rn → R ∪ {+∞} is given by the function f and the Lagrangian L as follows

H(t,x,p) = sup
u∈Rl

{−〈f(t,x,u),p〉 − L(t,x,u)} ∀t ∈ [0, T],x,p ∈ Rn,

and the terminal data Ψ : Rn → R is given by the terminal cost in the optimal
control problem. Given the solution V to the HJ PDE (1), the optimal control
u∗ : [0, T] → Rl in the problem (2) is characterized by Pontryagin maximum
principle [13], which states that at almost every s ∈ [0, T], the optimal control
u∗(s) satisfies

u∗(s) ∈ arg max
u∈Rl

{−〈f(s,x∗(s),u),p〉 − L(s,x∗(s),u)}, (4)

for each p ∈ D+
x V (s,x∗(s)) ∪ D−x V (s,x∗(s)), where x∗ : [t0, T] → Rn is the

corresponding trajectory solved by (3) given the control u∗. Here, D+
x V and

D−x V denote the set of the spatial components of the superdifferential and
subdifferential of V , respectively. There are different sets of assumptions for
the above relation (4) to hold. For details of the assumptions, see [159], [13,
Section III.3.4] and the references in [13, Section III.6]. A verification theorem
can alternatively be used to check whether a control is optimal, if a solution
to the HJ PDE is known to exist.

We consider the HJ PDE (1) whose terminal data Ψ is the minimum of
several functions Ψi : Rn → R, i.e., we assume

Ψ(x) = min
i∈{1,...,m}

Ψi(x) ∀x ∈ Rn. (5)

Denote by Vi : Rn × [0,+∞) → R the viscosity solution to the corresponding
backward HJ PDE with terminal data Ψi, which reads−

∂Vi
∂t

(t,x) +H(t,x,∇xVi(t,x)) = 0 x ∈ Rn, t ∈ (0, T),

Vi(T,x) = Ψi(x) x ∈ Rn.
(6)

If the HJ PDEs (1) and (6) are solved by the value function (2) with terminal
costs Ψ and Ψi, respectively, then the solution operator in the HJ PDE (1)
is linear with respect to the min plus algebra [116]. From straightforward
calculation using (2), the value function V can be written as the minimum of
Vi as follows

V (t,x) = min
i∈{1,...,m}

Vi(t,x), ∀x ∈ Rn, t ∈ [0, T].

Neural networks for certain high dimensional optimal control problems 7

Consequently, V in this form also solves the HJ PDE (1) with terminal data
Ψ .

2.2 Neural networks

We give a brief introduction of neural networks and refer the reader to [1] for
a full introduction. A neural network architecture defines a space of functions
which approximates the solution space in the target problem. A general neural
network is the composition of several functions whose inputs and outputs
are called layers. Each layer contains several variables or quantities which
are called neurons. The input and output of the neural network function are
called the input layer and the output layer, and all the other layers are called
hidden layers. Different types of neural networks have been proposed in the
literature [1].

A basic neural network architecture is called a feedforward neural network,
whose hidden layer is the composition of an affine function and a non-linear
function called activation function. An illustration of a feedforward neural net-
work architecture with two hidden layers is shown in Fig. 1, where each blue
box corresponds to a neuron, and the line connecting the neurons illustrates
the dependency between different neurons. To our knowledge, in the machine
learning community, there is no standardised form to represent a neural net-
work architecture as a diagram.

Fig. 1 An illustration of a feedforward neural network architecture with two hidden layers.

Another widely used neural network architecture is called residual neural
network (Resnet) [1, 72]. A hidden layer in a Resnet involves more algebraic
computations among compositions of affine functions and activation functions.

8 Jérôme Darbon et al.

An illustration of a hidden layer in a standard Resnet architecture with acti-
vation function σ is shown in Fig. 2.

Fig. 2 An illustration of a hidden layer in the Resnet architecture.

3 Neural network architectures for solving certain HJ PDEs and
optimal control problems

Fix a finite terminal time T ∈ (0,+∞), the following is assumed throughout:

(A1) Let A ∈ C([0, T];Rn×n), B ∈ C([0, T];Rn×l), S ∈ C([0, T];Rn×l),
Q ∈ C([0, T];Sn>0) and R ∈ C([0, T];Sl>0) be continuous functions. Let
Gi ∈ Sn≥0 be a constant matrix, ai ∈ Rn be a constant vector and bi ∈ R
be a constant scalar for each i ∈ {1, . . . ,m}.

We consider the optimal control problem (2) whose Lagrangian L : [0, T] ×
Rn × Rl → R and the function f : [0, T]× Rn × Rl → Rn are defined by

L(t,x,u) =
1

2
xTQ(t)x +

1

2
uTR(t)u + xTS(t)u,

f(t,x,u) = A(t)x +B(t)u,
(7)

for all x ∈ Rn, u ∈ Rl and t ∈ [0, T]. Define the terminal cost Ψ : Rn → R by

Ψ(x) = min
i∈{1,...,m}

{
1

2
xTGix + aTi x + bi

}
∀x ∈ Rn. (8)

The corresponding optimal control problem is defined via the value function

V (t0,x0) = inf
(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+x(s)TS(s)u(s)
)
ds+ Ψ(x(T))

} (9)

Neural networks for certain high dimensional optimal control problems 9

where the constraint set C(t0,x0) is defined to be the set of (x(·),u(·)) ∈
L2(t0, T ;Rn)× L2(t0, T ;Rl) which satisfies the following Cauchy problem

{
ẋ(s) = A(s)x(s) +B(s)u(s) s ∈ (t0, T),

x(t0) = x0.
(10)

For the corresponding HJ PDE, we consider the following standard assump-
tion [150,155].

(A2) Assume Cpp : [0, T] → Sn≥0, , Cxx : [0, T] → Sn>0 and Cxp : [0, T] →
Rn×n are three functions defined by

Cpp(t) = B(t)R(t)−1B(t)T ,

Cxx(t) = Q(t)− S(t)R(t)−1S(t)T ,

Cxp(t) = A(t)−B(t)R(t)−1S(t)T ,

(11)

for all t ∈ [0, T], where A,B, S,Q,R are the functions satisfying assumption
(A1).

The Hamiltonian H : [0, T]× Rn × Rn → R is defined by

H(t,x,p) =
1

2
pTCpp(t)p−

1

2
xTCxx(t)x− pTCxp(t)x ∀t ∈ [0, T],x,p ∈ Rn.

The corresponding HJ PDE reads

−∂V (t,x)

∂t
+H(t,x,∇xV (t,x)) = 0 x ∈ Rn, t ∈ (0, T),

V (T,x) = Ψ(x) = min
i∈{1,...,m}

{
1

2
xTGix + aTi x + bi

}
x ∈ Rn.

(12)

This is the HJ PDE for a linear regulator problem with a min-of-quadratics
terminal cost. Its solution can be represented via the solution to the Riccati
equation (see [45,47,48,116] for instance).

In the following two sections, we will present two abstract neural network
architectures. The first one is shown in Section 3.1 which represents the vis-
cosity solution to the HJ PDE (12). The same neural network architecture also
represents the value function in the optimal control problem (9). The second
abstract neural network architecture is shown in Section 3.2, and it can be
used to compute the optimal control in the optimal control problem (9).

10 Jérôme Darbon et al.

3.1 An abstract neural network architecture for solving the HJ PDE (12)

We present an abstract neural network architecture which represents the vis-
cosity solution to the HJ PDE (12). The viscosity solution can be represented
by a neural network VNN defined as follows

VNN (t,x)
.
= min
i∈{1,...,m}

Vi(t,x), Vi(t,x)
.
=

1

2
xTPi(t)x + qi(t)

Tx + ri(t),

(13)

where the function Pi ∈ C(0, T ;Sn) solves the following Riccati final value
problem (FVP){

Ṗi(t) = Pi(t)
TCpp(t)Pi(t)− Pi(t)TCxp(t)− Cxp(t)TPi(t)− Cxx(t) t ∈ (0, T)

Pi(T) = Gi,
(14)

the functions qi ∈ C(0, T ;Rn) solves the following linear FVP{
q̇i(t) = Pi(t)

TCpp(t)qi(t)− Cxp(t)Tqi(t) t ∈ (0, T),

qi(T) = ai,
(15)

and the function ri ∈ C(0, T ;R) solves the following FVPṙi(t) =
1

2
qi(t)

TCpp(t)qi(t) t ∈ (0, T),

ri(T) = bi.
(16)

An illustration for the neural network architecture (13) is shown in Fig. 3. This
is a one-layer abstract architecture with a min-pooling activation function. The
i-th abstract neuron is given by the function Vi(t,x) in (13). The architecture
and neurons are called abstract since some ODE solvers for (14), (15) and (16)
are further required in order to evaluate each neuron and the neural network
architecture. Later, in Section 4, we will provide a deep Resnet implementation
(depicted in Fig. 6) for this abstract architecture.

The following proposition shows that this neural network architecture (13)
provides the viscosity solution to the HJ PDE (12) and the value function in
the optimal control problem (9).

Proposition 1 Assume (A1)-(A2) hold. Let VNN be the function defined
by (13). Then VNN is the unique viscosity solution to the HJ PDE (12). More-
over, VNN equals the value function V in the optimal control problem (9).

Proof. First, we apply [150, Prop. 2.2] to prove that the unique viscosity so-
lution to the HJ PDE (12) is given by the value function for the optimal con-
trol problem (9) under the assumptions (A1)-(A2). Most assumptions in [150,
Prop. 2.2] are straightforward to check under this linear quadratic setting.
Here, we only check the following three non-trivial assumptions:

Neural networks for certain high dimensional optimal control problems 11

Fig. 3 Illustration of the abstract neural network architecture defined by (13) that rep-
resents the viscosity solution to the HJ PDE (12) and the value function in the optimal
control problem (9).

1. There exists a positive constant ρ > 0 such that R(t) − ρI is positive
semi-definite for all t ∈ [0, T].

2. There exist some positive constants CL > 0 and ε0 ∈ (0, 1) such that
(1− ε0)xTQ(t)x−xTS(t)R(t)−1S(t)Tx ≥ −CL holds for all t ∈ [0, T] and
x ∈ Rn.

3. There exists a constant C0 > 0 such that Ψ(x) ≤ C0(1 + |x|2) holds for all
x ∈ Rn.

Now, we check the first assumption. We are going to prove a slightly stronger
version. We prove that there exists ρ > 0 such that the matrix R(t) − ρI is
positive definite for all t ∈ [0, T]. Assume it does not hold. Then, there exist
sequences {tk} ⊂ [0, T] and {xk} ⊂ Rn such that xTkR(tk)xk ≤ 1

k‖xk‖
2 holds

for each k ∈ N. After scaling, we assume ‖xk‖ = 1 holds for each k ∈ N. By
taking subsequences and still denoting the subsequences by {tk} and {xk}, we
obtain the convergence of {tk} and {xk}, whose limits are denoted by t̄ ∈ [0, T]
and x̄ ∈ Rn, respectively. Note that ‖xk‖ = 1 for each k ∈ N implies ‖x̄‖ = 1.
Since R is a continuous function, we obtain

x̄TR(t̄)x̄ = lim
k→∞

(
xTkR(tk)xk −

1

k
‖xk‖2

)
≤ 0,

which contradicts with the assumption that the matrix R(t̄) is positive definite.
Therefore, the first assumption holds. A similar argument proves that there
exists a positive constant ε such that Cxx(t) − εI is positive semi-definite for
all t ∈ [0, T]. Also, the continuity of Q implies the existence of a uniform upper
bound C for ‖Q(t)‖ for all t ∈ [0, T]. Let ε0 equal min{ εC , 1}. Then, by (11),

12 Jérôme Darbon et al.

we have

(1− ε0)xTQ(t)x− xTS(t)R(t)−1S(t)Tx = xTCxx(x)x− ε0xTQ(t)x

≥ xTCxx(x)x− ε0‖Q(t)‖‖x‖2

≥ ε‖x‖2 − ε0C‖x‖2 ≥ 0.

As a result, the second assumption holds. The third assumption follows from
a straightforward computation which reads

Ψ(x) = min
i∈{1,...,m}

{
1

2
xTGix + aTi x + bi

}
≤ 1

2
xTG1x + aT1 x + b1

≤ C0(1 + ‖x‖2),

for some positive constant C0. Therefore, all the assumptions in [150, Prop. 2.2]
are satisfied. Then, by [150, Prop. 2.2], the value function defined by (9) is the
unique viscosity solution to the HJ PDE (12). (Note that if all the functions
in (A1) and (A2) do not depend on time t, then this result follows from [14].)
Therefore, it suffices to prove that VNN defined by (13) is the value function
in the optimal control problem (9), i.e., it suffices to prove that VNN (t0,x0) =
V (t0,x0) holds for all x0 ∈ Rn and t0 ∈ [0, T].

Define Ψi : Rn → R by

Ψi(x)
.
=

1

2
xTGix + aTi x + bi, ∀x ∈ Rn, (17)

for each i ∈ {1, . . . ,m}. Then, by (8), the functions Ψ1, . . . , Ψm and Ψ sat-
isfy (5). According to (9), (5) and the min-plus linearity of the dynamic pro-
gramming evolution operator, we have

V (t0,x0)

= inf
(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+ x(s)TS(s)u(s)
)
ds+ min

i∈{1,...,m}
Ψi(x(T))

}

= min
i∈{1,...,m}

{
inf

(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+ x(s)TS(s)u(s)
)
ds+ Ψi(x(T))

}}
.

(18)

We define the value function in the last line of (18) to be Ṽi(t0,x0), i.e., we
define the function Ṽi : [0, T]× Rn → R by

Ṽi(t0,x0)
.
= inf

(x,u)∈C(t0,x0)

{∫ T

t0

(1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+x(s)TS(s)u(s)
)
ds+ Ψi(x(T))

}
.

(19)

Neural networks for certain high dimensional optimal control problems 13

It is well-known that Ṽi can be solved by Riccati equation under the as-
sumptions (A1)-(A2). One way to prove it is given as follows. First, [23] shows
the existence of the global solution to the Riccati FVP (14) under the assump-
tions (A1)-(A2). Then, with a similar argument as in the proof of [155, Chap 6,
Thm. 2.8], the value function Ṽi is proved to satisfy

Ṽi(t,x) =
1

2
xTPi(t)x + qi(t)

Tx + ri(t) = Vi(t,x), (20)

for all x ∈ Rn and t ∈ [0, T], where Vi is the function defined in (13), and Pi,
qi and ri satisfy (14), (15), and (16), respectively.

Therefore, combining (18) and (20), we derive that VNN ≡ V in Rn× [0, T]
and the conclusion follows.

3.2 An abstract neural network architecture for the optimal control
problem (9)

We present an abstract neural network architecture for computing the optimal
control in the optimal control problem (9). For any fixed index j ∈ {1, . . . ,m},
define a function uj : [t0, T]× Rn → Rl by

uj(t,x)
.
= −R(t)−1

(
B(t)TPj(t)x +B(t)Tqj(t) + S(t)Tx

)
, (21)

for any t ∈ [t0, T] and x ∈ Rn. It is well-known that the function uj is the
feedback control for the optimal control problem (19) with index i = j. To
solve the optimal control problem (9), we define the following function uNN
with specific selected index kNN :

uNN (t0,x0, t,x) = ukNN (t0,x0)(t,x), ∀x0,x ∈ Rn, 0 ≤ t0 ≤ t ≤ T, (22)

where the index function kNN : [0, T]× Rn → {1, . . . ,m} is defined by

kNN (t0,x0) ∈ arg min
i∈{1,...,m}

{
1

2
xT0 Pi(t0)x0 + qi(t0)Tx0 + ri(t0)

}
= arg min
i∈{1,...,m}

Vi(t0,x0).
(23)

When there is no ambiguity, we abuse the notation kNN (t0,x0) with kNN . Re-
call that the functions Pi, qi, ri and Vi are the functions defined in (14), (15),
(16) and (13), respectively. If there are more than one minimizer in the op-
timization problem in (23), we just select any of these minimizers and it will
provide an optimal control. We will discuss more about this non-uniqueness
later in Remark 1. Note that the function uNN can be expressed using an
abstract neural network architecture shown in Fig. 4. As it is discussed in Sec-
tion 3.1, the evaluation of the neurons {Vi(t0,x0)}mi=1, PkNN

(t) and qkNN
(t)

(where kNN is the index defined in (23)) require further ODE solvers, and
hence we call it an abstract architecture. An implementation of this abstract

14 Jérôme Darbon et al.

Fig. 4 Illustration of the abstract neural network architecture defined by (22) that can be
used to compute the optimal control in the optimal control problem (9).

architecture using deep Resnet neural networks is provided in Section 4 and
depicted in Fig. 7.

For completeness, the following proposition proves that the function uNN
defined in (22) computes the optimal control in the problem (9) if (t,x) is on
the optimal trajectory with initial time t0 and initial position x0.

Proposition 2 Let x0 ∈ Rn and t0 ∈ [0, T] be the initial position and initial
time. Assume (A1)-(A2) hold. Let u∗ : [t0, T] → Rl be a feasible control, and
x∗ ∈ C([t0, T];Rn) be the solution to the Cauchy problem (10) with the control
u∗. Then, the function u∗ is an optimal control in the problem (9) if and only
if there exists an index k in the set of minimizers of the optimization problem
in (23), such that there holds

u∗(t) = uk(t,x∗(t)) ∀t ∈ [t0, T], (24)

where the function uk : [t0, T]× Rn → Rl is defined by (21) with the index k.

Proof. In this proof, we adopt the same notations as in the proof of Prop. 1,
but we abuse the notation VNN with V because they are shown to be equal
in the proof of Prop. 1. Let Ψi be the function defined by (17). We consider
the corresponding optimal control problem (19). It is well known that the
optimal control of the linear quadratic optimal control problem (19) exists and
is unique under the assumptions (A1)-(A2). We denote the optimal control by
v∗i : [t0, T]→ Rl, and denote the corresponding trajectory by y∗i : [t0, T]→ Rn.
Moreover, the feedback form of the optimal control is given by

v∗i (t) = −R(t)−1(B(t)T∇xVi(t,y
∗
i (t)) + S(t)Ty∗i (t))

= −R(t)−1(B(t)TPi(t)y
∗
i (t) +B(t)Tqi(t) + S(t)Ty∗i (t))

= ui(t,y
∗
i (t)),

(25)

Neural networks for certain high dimensional optimal control problems 15

for any t ∈ [t0, T], where Vi is defined by (20). This is proved, for instance,
by [23] and a similar argument in the proof of [155, Chap 6, Thm. 2.8].

Now, we prove the first implication of the proposition statement. Let k be
an index satisfying (23), and the function uk : [t0, T] × Rn → Rl be defined
by (21) with the index k. From (25), we conclude that the open loop control
t 7→ u∗(t) = uk(t,x∗(t)) is the optimal control for the problem (19) with the
index k. Moreover, by (18) and the definition of k, the optimal value V (t0,x0)
in the problem (9) equals the optimal value Vk(t0,x0) in the problem (19) with
the index k. Therefore, t 7→ u∗(t) is also an optimal control for the problem (9).

Then, we prove the other implication. Assume u∗ is an optimal control in
the problem (9), and x∗ is the corresponding optimal trajectory. Let k̃ be an
index satisfying

k̃ ∈ arg min
i∈{1,...,m}

Ψi(x
∗(T)).

Then, we have

V (t0,x0) =

∫ T

t0

(1

2
x∗(t)TQ(t)x∗(t) +

1

2
u∗(t)TR(t)u∗(t)

+ x∗(t)TS(t)u∗(t)
)
dt+ Ψ(x∗(T))

=

∫ T

t0

(1

2
x∗(t)TQ(t)x∗(t) +

1

2
u∗(t)TR(t)u∗(t)

+ x∗(t)TS(t)u∗(t)
)
dt+ Ψk̃(x∗(T))

≥ Vk̃(t0,x0) ≥ V (t0,x0),

(26)

where the first equality holds since u∗ is an optimal control of (9) with the
trajectory x∗, the second equality holds by definition of k̃, the first inequality
holds since Vk̃(t0,x0) is the optimal value of the problem (19) with the index

k̃, and the last inequality holds by (18). As a result, the two inequalities
in (26) both become equalities, which implies that u∗ is the optimal control
of the problem (19) with the index k̃, and k̃ is a minimizer of the optimization
problem in (23). Recall that the unique optimal control of the problem (19)
with the index k̃ satisfies the feedback form (25), and hence we get (24).

Remark 1 Note that the existence of the optimal control u∗ is given by Prop. 2,
the existence of kNN in (23), and the existence of the optimal control with
terminal cost ΨkNN

. However, such u∗ may not be unique, since there may
be more than one minimizer in (23). It can be seen in the above proposition
any minimizer k in (23) can define an optimal control in the problem (9).
As a result, if arg mini∈{1,...,m} Vi(t0,x0) is not a singleton, then there may
be more than one optimal control in the problem (9). This non-uniqueness
is possible since the optimal control problem is a non-convex optimization
problem, where the terminal condition Ψ is non-convex. For a fixed initial
position x0 and initial time t0, one candidate of open loop optimal control
is v∗kNN

in (25) with index i = kNN . If there are more than one minimizer

16 Jérôme Darbon et al.

in (23), we select kNN to be one minimizer, and then an optimal control u∗

is computed using uNN in (22).

Remark 2 We can compute the open-loop optimal control using our proposed
neural network architecture uNN . For a fixed initial time t0 and initial position
x0, we combine the function uNN with the Cauchy problem (10) and obtain
the following Cauchy problem{

ẋ(s) = A(s)x(s) +B(s)uNN (t0,x0, s,x(s)) s ∈ (t0, T),

x(t0) = x0.
(27)

By straightforward calculation using (11) and (22), the differential equation
above becomes

ẋ(s) = A(s)x(s) +B(s)uNN (t0,x0, s,x(s))

= A(s)x(s)−B(s)R(s)−1
(
B(s)TPkNN

(s)x(s) +B(s)T qkNN
(s) + S(s)Tx(s)

)
=

(
Cxp(s)− Cpp(s)PkNN

(s)
)
x(s)− Cpp(s)qkNN

(s).

The solution to this Cauchy problem is the optimal trajectory x∗. From the
optimal trajectory, we obtain the open loop optimal control u∗ by u∗ =
uNN (t0,x0, s,x

∗(s)). Our numerical results in Section 4 are computed using
this procedure.

Remark 3 Note that the function uNN also computes the feedback optimal
control. Consider the function (t,x) 7→ uNN (t,x, t,x). Applying Prop. 2 to
x = x0 and t = t0, we conclude that the optimal control at t0 with initial
time t0 and position x0 is u∗(t0) = uNN (t0,x0, t0,x0). Since the initial time
t0 ∈ [0, T] and initial position x0 ∈ Rn can be arbitrary, we conclude that
function (t,x) 7→ uNN (t,x, t,x) is a feedback optimal control for problem (9).

3.3 The extension to general terminal costs

Now, we consider more general terminal costs Ψ of the form

Ψ(x) = min
i∈{1,...,m}

Ψi(x) ∀x ∈ Rn, (28)

where Ψ1, . . . , Ψm are some convex functions whose proximal points are numer-
ically computable. Note that we no longer assume Ψ1, . . . , Ψm to be quadratics.
By min-plus linearity, the solution V is given by

V (x, t) = min
i∈{1,...,m}

Vi(x, t) ∀x ∈ Rn, t ≥ 0, (29)

where each Vi is the value function of the optimal control problem with ter-
minal cost Ψi. Therefore, to solve this problem, we need to solve the m sub-
problems. In the i-th subproblem, we solve the optimal control problem with
terminal cost Ψi. If Ψi is in the quadratic form, we apply the aforementioned
method and neural network architecture to solve it. Otherwise, we apply the
ADMM method [22, 67] to solve the i-th subproblem, whose j-th iteration
includes the following three steps:

Neural networks for certain high dimensional optimal control problems 17

1. Solve the optimal control problem

min
(x,u)∈C(t0,x0)

{∫ T

t0

1

2
x(s)TQ(s)x(s) +

1

2
u(s)TR(s)u(s)

+x(s)TS(s)u(s)ds+
ρ

2
‖x(T)− yj,i + wj,i‖2

} (30)

where the constraint set C(t0,x0) contains the solutions to (10). Denote
the optimal trajectory by xj+1,i(·). Note that we add the superscript i the
emphasize that these minimizers are used to solve the i-th subproblem.
Since the terminal cost in (30) is a quadratic function, this optimal control
problem can be solved using Riccati equation, which can be represented
by the neural network architecture depicted in Fig. 3 with one neuron
(i.e., m = 1). The solution is given by 1

2x
TPi(t)x + qi(t)

Tx + ri(t), where
Pi(t), qi(t) and ri(t) solve the FVPs (14), (15) and (16) whose terminal
conditions are given by

Pi(T) = ρIn, qi(T) = ρ(wj,i − yj,i), ri(T) =
ρ

2
‖wj,i − yj,i‖2.

2. Solve the following proximal point problem

min
y∈Rn

Ψi(y) +
ρ

2
‖xj+1,i(T)− y + wj,i‖2,

and denote the minimizer by yj+1,i.
3. Update w by wj+1,i = wj,i + xj+1,i(T)− yj+1,i.

The ADMM algorithm terminates when the number of iteration exceeds
the maximal number of iteration or the following inequality holds

max{‖xj+1,i(T)− xj,i(T)‖, ‖yj+1,i − yj,i‖, ‖wj+1,i −wj,i‖} ≤ ε

for some positive threshold ε. If the ADMM algorithm for the i-th subproblem
terminates at the Ni-th step, we get the output parameters w̄i and ȳi by

w̄i = wNi,i, ȳi = yNi,i.

Then, the solution V to the HJ PDE with the general terminal condition
in (28) is computed using the neural network architecture in Fig. 3, where
the coefficients in the i-th neuron, denoted by Pi(t), qi(t) and ri(t), are the
solutions to the FVPs (14), (15) and (16) with terminal condition

Pi(T) = ρIn, qi(T) = ρ(w̄i − ȳi), ri(T) =
ρ

2
‖w̄i − ȳi‖2.

18 Jérôme Darbon et al.

4 Implementations of the abstract neural network architectures

In the neural network architectures depicted in Figs. 3 and 4, each neuron
involves the functions Pi(t), qi(t) and ri(t), which are the solutions to the
FVPs (14), (15) and (16). As a result, the neural network architectures require
a numerical solver for solving the matrix Riccati FVP (14) and the FVPs (15)
and (16).

In the literature, there are many numerical methods developed for solv-
ing the matrix Riccati differential equation. In order to solve this equation
with a general initial or terminal condition, different fundamental solutions
are proposed, including but not limited to Davison-Maki fundamental solu-
tion [37, 94], symplectic fundamental solution [109], and min-plus fundamen-
tal solution [40,46,49,118]. Recently, there are some non-traditional methods
developed for solving Riccati equations using ant colony programming [90],
genetic programming [10] and neural networks [9, 143].

Algorithm 1: The fourth order Runge-Kutta method for solving the
FVP (31).

Input : Time t ∈ [t0, T) and the step number N .
Output: The solution z(t) at time t.

1 Initialization: set zN
.
= zT , tN

.
= T and ∆t

.
= T−t

N
;

2 for k = N,N − 1, . . . , 1 do
3 δ1

.
= −∆tg(tk, zk) and w1

.
= zk + 1

2
δ1;

4 δ2
.
= −∆tg(tk − ∆t

2
, w1) and w2

.
= zk + 1

2
δ2;

5 δ3
.
= −∆tg(tk − ∆t

2
, w2) and w3

.
= zk + δ3;

6 δ4
.
= −∆tg(tk −∆t,w3);

7 Update zk−1
.
= zk + δ1

6
+ δ2

3
+ δ3

3
+ δ4

6
and tk−1

.
= tk −∆t;

8 end
9 The output z(t) is given by z0.

We adopt the fourth order Runge-Kutta method to solve the general FVP{
ż(t) = g(t, z(t)) t ∈ [t0, T],

z(T) = zT ,
(31)

where the function z : [t0, T] → Rα (for a positive integer α) is an absolutely
continuous function solving the FVP almost everywhere, and the source term
g : [t0, T] × Rα → Rα is continuous with respect to t and uniformly Lipschitz
with respect to z. The fourth order Runge-Kutta algorithm for solving this
FVP is reviewed in Algorithm 1. Note that the Runge-Kutta solver can be
expressed using a neural network architecture (see, for instance, [7]). For il-
lustration, we show in Fig. 5 the architecture corresponding to one step of
the fourth order Runge-Kutta solver. This architecture belongs to the class of
Resnet architectures proposed in [72]. With this connection, the Runge-Kutta
solver can be implemented using standard neural network languages, which

Neural networks for certain high dimensional optimal control problems 19

Fig. 5 Illustration of the Resnet architecture that represents one step in the fourth order
Runge-Kutta solver shown in Algorithm 1 for solving a general FVP (31).

Fig. 6 An implementation of the abstract neural network architecture defined by (22)
where {Vi(t,x)}mi=1 are computed using the Resnet neural network depicted in Fig. 5.

can be converted to executable codes on the dedicated hardware designed for
neural networks. By employing the Runge-Kutta solver to evaluate each ab-
stract neuron in the proposed architectures, we obtain their implementations
using Resnet-type deep neural networks. The illustrations of the deep neural
network implementations for VNN and uNN are shown in Figs. 6 and 7, re-
spectively. From the neural network function uNN , we compute the optimal
trajectory x∗ by solving (27) using the fourth order Runge-Kutta method.
Then, we get the open loop control u∗ as described in Remark 2. The Ten-
sorFlow implementations of these architectures for our examples are given in
https://github.com/TingweiMeng/NN_HJ_minplus.

https://github.com/TingweiMeng/NN_HJ_minplus

20 Jérôme Darbon et al.

Fig. 7 An implementation of the abstract neural network architecture defined by (22)
where the neurons {Vi(t0,x0)}mi=1, qkNN

(t) and PkNN
(t) (where kNN is the index defined

by (23)) are computed using a fourth order Runge-Kutta method depicted in Fig. 5.

Remark 4 It appears that the residual grows with ‖x‖2 for a fixed time t ∈
[0, T). It is expected because it follows from the Runge-Kutta error estimation
(see, for instance, [24]). For a fixed time step (i.e., a fixed number of layers
in our proposed neural network in Fig. 6), the error at (x, t) for a fixed time
variable t ∈ [0, T) and any spatial variable x ∈ Ω is bounded in a compact set
Ω, but not in the whole domain. However, this error will converge to zero as
the number of layers goes to infinity.

Our implementations are based on the fourth order Runge-Kutta solver.
Note that other ODE solvers can also be applied to compute the neurons in
the abstract neural network architectures in Figs. 3 and 4. Each ODE solver
which can be represented using neural network architectures provides possible
neural network implementations for the two abstract architectures in Figs. 3
and 4, which therefore provide possibilities for leveraging different neural net-
work architectures to solve high dimensional HJ PDEs (12) and corresponding
optimal control problems (9).

We will show three numerical experiments. In these experiments, we assume
the coefficients Cpp, Cxx, Cxp, R,Q, S,A,B satisfy the assumptions (A1)-(A2).
The first example is shown in Sec. 4.1, which has constant coefficients. The
second example is shown in Sec. 4.2, whose coefficients depend on the time
variable. And the third example is shown in Sec. 4.3, which is a slightly modi-
fied version of the HJ PDE (12) and the optimal control problem (9) considered
in this paper.

In each example, we use the deep Resnet implementation depicted in Fig. 6
to solve the viscosity solution to the HJ PDEs and the value function in the
optimal control problems at different time t. For different terminal time T , we
solve the corresponding optimal controls and optimal trajectories with different
initial position x0 by the method described in Remark 2 using the deep Resnet

Neural networks for certain high dimensional optimal control problems 21

neural network implementation depicted in Fig. 7. If not mentioned explicitly,
we use 40 Runge-Kutta layers to compute the viscosity solution VNN and 400
Runge-Kutta layers to compute the optimal controls and optimal trajectories.

To show the solution VNN in high dimensional cases, we plot two dimen-
sional slices of the function x 7→ VNN (t,x) for different time t. We consider
the points x = (x1, x2,0) ∈ Rn where (x1, x2) ∈ R2 is any grid point in a two
dimensional rectangular domain and 0 denotes the zero vector in Rn−2. In
each figure, the color is given by the function value VNN (t, x1, x2,0), and the
x and y axes represent the variables x1 and x2, respectively. To show the errors
of the viscosity solution, we compute the maximal absolute value of the resid-
ual (i.e., maxi∈{1,...,m} | − ∂Vi

∂t + H(t,x,∇xVi)|) in each example, where Vi is
defined in (13). We set the number of Runge-Kutta layers to be 20, 40, and 80
to show the dependence of error on the number of layers. The residual values
in different example, at different times t, and computed using different number
of Runge-Kutta layers are shown in Table 1. From the table, we observe that
the magnitude of the absolute values of the residuals is in general small (less
than 10−6), which provides a numerical validation that each Vi approximately
satisfies the differential equation in (12). Since the solution operator of the HJ
PDE (12) is linear with respect to the min-plus algebra, our proposed deep
neural network architecture in Figure 6 indeed approximates the viscosity so-
lution to the HJ PDE. The errors also decrease as the number of layers goes to
infinity. This observation validates the error analysis of Runge-Kutta solvers
(see, for instance, [24]).

RK layers t = 0.25 t = 0.5 t = 0.75

Example 1

in Section 4.1

20 6.97E-06 1.45E-06 6.59E-08
40 4.21E-07 8.93E-08 4.12E-09
80 2.59E-08 5.54E-09 2.57E-10

Example 2

in Section 4.2

20 1.29E-07 3.28E-08 2.91E-09
40 7.94E-09 2.02E-09 1.80E-10
80 4.92E-10 1.25E-10 1.12E-11

Example 4

in Section 4.4

20 2.24E-07 4.49E-08 3.08E-09
40 1.39E-08 2.77E-09 1.90E-10
80 8.64E-10 1.72E-10 1.18E-11

RK layers t = 0.75 t = 0.95 t = 0.995

Example 3

in Section 4.3

20 3.95E-04 1.21E-04 1.44E-08
40 2.14E-05 7.10E-06 9.01E-10
80 1.25E-06 4.30E-07 5.67E-11

Table 1 We show the maximal absolute residual maxi∈{1,...,m} | −
∂Vi
∂t

+ H(t,x,∇xVi)|
in each example, where Vi is defined in (13). The residual values are computed at different
time t, with different Runge-Kutta (RK) layers (which is related to the number of layers in
the proposed neural networks).

Also, to illustrate the optimal controls and optimal trajectories in each
example, we consider different initial positions x0 = (x,0) ∈ Rn (where x’s are
the grid points in a one-dimensional interval and 0 denotes the zero vector in
Rn−1) and a fixed initial time t0 = 0. To avoid ambiguity, we use the notations

22 Jérôme Darbon et al.

u∗(s|x0) and x∗(s|x0) to denote the optimal control and trajectory at time
s with initial position x0. For each initial time t0 = 0 and initial position
x0 ∈ Rn, we compute the corresponding optimal control, denoted by [0, T] 3
s 7→ u∗(s|x0) ∈ Rl, and the corresponding optimal trajectory, denoted by
[0, T] 3 s 7→ x∗(s|x0) ∈ Rn. For the one dimensional problem, we choose each
initial position x0 ∈ R to be a grid point in a one-dimensional interval, and plot
the graphs of u∗(·|x0) or x∗(·|x0) with different x0 in one figure. For the high
dimensional problem, we choose different initial positions x0 = (x,0) where x’s
are the grid points in a one-dimensional interval and 0 denotes the zero vector
in Rn−1, and solve the optimal controls u∗(·|x0) = (u∗1(·|x0), . . . , u∗l (·|x0))
and the optimal trajectories x∗(·|x0) = (x∗1(·|x0), · · · , x∗n(·|x0)). Then, the
graphs of the some components of the optimal controls u∗(·|x0) or optimal
trajectories x∗(·|x0) are plotted in each figure.

4.1 An optimal control problem with constant coefficients

We consider the optimal control problem (9) with the following constant co-
efficients

l = n,

R = Q = Cpp = Cxx = Cxp = A = B = In,

S = On,

where In denotes the identity matrix in Rn×n and On denotes the zero matrix
in Rn×n. With these coefficients, we solve the optimal control problem (2)
whose Lagrangian L in (7) is defined by

L(t,x,u) =
1

2
‖x‖2 +

1

2
‖u‖2 ∀t ∈ [0, T],x ∈ Rn,u ∈ Rl, (32)

and the source term f in (7) is defined by

f(t,x,u) = x + u ∀t ∈ [0, T],x ∈ Rn,u ∈ Rl. (33)

The corresponding HJ PDE is in the form of (12) where the Hamiltonian H
is defined by

H(t,x,p) =
1

2
‖p‖2 − 1

2
‖x‖2 − 〈p,x〉 ∀t ∈ [0, T],x,p ∈ Rn. (34)

With these coefficients, the differential equations for Pi, qi and ri read

Ṗi(t) = Pi(t)
TPi(t)− 2Pi(t)− In,

q̇i(t) = Pi(t)
Tqi(t)− qi(t),

ṙi(t) =
1

2
‖qi(t)‖2,

Neural networks for certain high dimensional optimal control problems 23

(a) t = 1 (b) t = 0.75

(c) t = 0.5 (d) t = 0.25

Fig. 8 The viscosity solution VNN to the 16 dimensional HJ PDE (12) with Hamilto-
nian (34), terminal data (35) and terminal time T = 1 is computed using the proposed
abstract neural network architecture (13) (depicted in Fig. 3) with the implementation de-
picted in Fig. 6. The two dimensional slices of VNN at time t = 1 (i.e., the terminal cost),
t = 0.75, t = 0.5 and t = 0.25 are shown in the subfigures (a), (b), (c) and (d), respectively.
The color in each subfigure shows the solution value VNN (t,x), where the spatial variable x
is in the form of (x1, x2,0) ∈ R16 (with 0 denoting the zero vector in R14) for some points
x1 ∈ R and x2 ∈ R which are represented by the x and y axes.

for each t ∈ (0, T). We consider this high dimensional problem with n = 16
and m = 2, where the terminal data Ψ is defined by

Ψ(x) = min

{
1

2

(
2∑
i=1

(xi + 1)2 +

16∑
i=3

x2i

)
,

1

2

(
2∑
i=1

(xi − 1)2 +

16∑
i=3

x2i

)}
,

(35)

for each x = (x1, . . . , x16) ∈ R16.
The viscosity solution to the HJ PDE (12) with Hamiltonian in (34) and

terminal data in (35) is computed using the proposed abstract neural net-
work (13) (depicted in Fig. 3) with the implementation depicted in Fig. 6.
The two dimensional slices of the solution VNN to the 16 dimensional prob-
lem with terminal time T = 1 is shown in Fig. 8. In this figure, the solution

24 Jérôme Darbon et al.

(a) t = 0.75 (b) t = 0.75

(c) t = 0.5 (d) t = 0.5

(e) t = 0.25 (f) t = 0.25

Fig. 9 The residual − ∂Vi
∂t

+H(t,x,∇xVi) in the HJ PDE (12) with Hamiltonian (34) (with
terminal time T = 1) is shown for each i ∈ {1, . . . ,m} at different time t, where Vi is defined
in (13). Figures (a), (c), (e) show the residuals for V1 at time t = 0.75, t = 0.5 and t = 0.25,
while figures (b), (d), (f) show the residuals for V2 at time t = 0.75, t = 0.5 and t = 0.25,
respectively. In each subfigure, we show the two dimensional slices of the residual function.
The color shows the residual value at (t,x), where the spatial variable x is in the form of
(x1, x2,0) ∈ R16 (with 0 denoting the zero vector in R14) for some points x1 ∈ R and x2 ∈ R
which are represented by the x and y axes.

Neural networks for certain high dimensional optimal control problems 25

(a) controls, T = 1 (b) trajectories, T = 1

(c) controls, T = 5 (d) trajectories, T = 5

Fig. 10 The open loop optimal controls and the corresponding optimal trajectories in the
16 dimensional optimal control problem (2) with Lagrangian (32), source term (33), terminal
cost (35) and different terminal time T = 1, 5 are computed using the proposed abstract
neural network architecture (22) with the implementation depicted in Fig. 7. Several graphs
of the first component of the optimal controls with T = 1 are shown in (a), and the first
component of the corresponding optimal trajectories are shown in (b). Several graphs of the
first component of the optimal controls with T = 5 are shown in (c), and the first component
of the corresponding optimal trajectories are shown in (d).

VNN (t, x1, x2,0) (where 0 denotes the zero vector in Rn−2) at time t = 1,
t = 0.75, t = 0.5 and t = 0.25 is shown in the subfigures (a), (b), (c) and (d),
respectively. Recall that the x and y axes represent the first component x1
and second component x2 of the spatial variable, respectively. We also show in
Figure 9 the (two-dimensional slices of) the residual −∂Vi

∂t +H(t,x,∇xVi) for
each i ∈ {1, . . . ,m}, where Vi is defined in (13). Note that the magnitude of
the residuals is in general small (less than 10−6), which provides a numerical
validation that each Vi approximately satisfies the differential equation in (12).
Since the solution operator of the HJ PDE (12) is linear with respect to the
min-plus algebra, our proposed deep neural network architecture in Figure 6
indeed approximates the viscosity solution to the HJ PDE. It appears that the
residual grows with |x|2 for a fixed time t ∈ [0, T). It is expected because it
follows from the Runge-Kutta error estimation. For a fixed time step (i.e., a
fixed number of layers in our proposed neural network in Fig. 6), the error is

26 Jérôme Darbon et al.

bounded in a compact set, but not in the whole domain. However, this error
will converge to zero as the number of layers goes to infinity.

We compute optimal controls and optimal trajectories with different initial
positions x0 = (x,0) ∈ Rn (where 0 denotes the zero vector in Rn−1) and a
fixed initial time t0 = 0. The first component of the optimal controls and
trajectories is illustrated in Fig. 10. The optimal controls with terminal time
T = 1 are shown in (a), the optimal trajectories with terminal time T = 1
are shown in (b), the optimal controls with terminal time T = 5 are shown in
(c), and the optimal trajectories with terminal time T = 5 are shown in (d).
There does appear to be a turnpike phenomenon for the longer time horizon
(see, for instance, [69,156] and the references in there).

4.2 An optimal control problem with time dependent coefficients

We consider the optimal control problem (9) whose coefficients depend on
time. The coefficients are chosen to be

l = n,

R(t) = 4e−tIn, Q(t) =
e−t

2
In, S(t) ≡ e−tIn, A(t) ≡ 1

2
In, B(t) ≡ In,

Cpp(t) =
et

4
In, Cxp(t) =

1

4
In, Cxx(t) =

e−t

4
In,

for each t ∈ [0, T], where In denotes the identity matrix in Rn×n. With these
coefficients, we solve the optimal control problem (2) whose Lagrangian L
in (7) reads

L(t,x,u) =
e−t

4
‖x‖2 + 2e−t‖u‖2 + e−txTu ∀t ∈ [0, T],x,u ∈ Rn, (36)

and the source term f in (7) reads

f(t,x,u) =
x

2
+ u ∀t ∈ [0, T],x,u ∈ Rn. (37)

The corresponding HJ PDE is in the form of (12) where the Hamiltonian is
defined by

H(t,x,p) =
et

8
‖p‖2 − e−t

8
‖x‖2 − 1

4
pTx ∀t ∈ [0, T],x,p ∈ Rn. (38)

With these coefficients, the differential equations for Pi, qi and ri read

Ṗi(t) =
et

4
Pi(t)

TPi(t)−
1

2
Pi(t)−

e−t

4
In,

q̇i(t) =
et

4
Pi(t)

Tqi(t)−
1

4
qi(t),

ṙi(t) =
et

8
‖qi(t)‖2,

Neural networks for certain high dimensional optimal control problems 27

for each t ∈ (0, T). The running cost (36) involves a discount factor of 1. If
the terminal cost was similarly discounted, we would expect to see this appear
in the HJ PDE as a −V term, see, e.g., [13, Section III.3.1].

(a) t = 1 (b) t = 0.75

(c) t = 0.5 (d) t = 0.25

Fig. 11 The viscosity solution VNN to the 16 dimensional HJ PDE (12) with Hamilto-
nian (38), terminal data (28) (where Ψi’s are defined in (39)) and terminal time T = 1
is computed using the proposed abstract neural network architecture (13) with the imple-
mentation depicted in Fig. 6. The two dimensional slices of VNN at time t = 1 (i.e., the
terminal cost), t = 0.75, t = 0.5 and t = 0.25 are shown in the subfigures (a), (b), (c) and
(d), respectively. The color in each subfigure shows the solution value VNN (t,x), where the
spatial variable x is in the form of (x1, x2,0) ∈ R16 (where 0 is the zero vector in R14) for
some points x1 ∈ R and x2 ∈ R which are represented by x and y axes.

In what follows, we show the viscosity solution VNN , the optimal controls
u∗, and the optimal trajectories x∗ computed using the neural network im-
plementations depicted in Figs. 6 and 7. We solve a 16 dimensional problem:
n = 16, m = 4, and Ψ is defined by (28), where Ψ1, Ψ2, Ψ3, Ψ4 : R16 → R are

28 Jérôme Darbon et al.

(a) controls, T = 1 (b) trajectories, T = 1

(c) controls, T = 5 (d) trajectories, T = 5

Fig. 12 The open loop optimal controls and the corresponding optimal trajectories in
the 16 dimensional optimal control problem (2) with Lagrangian (36), source term (37),
terminal cost (28) (where Ψi’s are defined in (39)) and different terminal time T = 1,
5 are computed using the proposed abstract neural network architecture (22) with the
implementation depicted in Fig. 7. Several graphs of the first component of the optimal
controls with T = 1 and initial positions x0 = (x,0) ∈ R16 (where 0 is the zero vector in
R15) are shown in (a), and the first component of the corresponding optimal trajectories are
shown in (b). Several graphs of the first component of the optimal controls with T = 5 and
initial positions x0 = (x,0) ∈ R16 (where 0 is the zero vector in R15) are shown in (c), and
the first component of the corresponding optimal trajectories are shown in (d).

defined by

Ψ1(x) = 0.5‖x‖2 + 0.9x1 + 0.405,

Ψ2(x) = 0.5‖x‖2 − 0.9x1 + 0.405,

Ψ3(x) = 0.25‖x‖2 + 0.9x2 + 0.405,

Ψ4(x) = 0.25‖x‖2 − 0.9x2 + 0.405,

(39)

for each x = (x1, . . . , x16) ∈ R16.

The HJ PDE (12) with Hamiltonian (38) and terminal data Ψ defined
in (28) (where Ψi’s are defined in (39)) is computed using the proposed abstract
neural network (13) with the implementation depicted in Fig. 6. The terminal
time is set to be T = 1. The two dimensional slices for the viscosity solution

Neural networks for certain high dimensional optimal control problems 29

are shown in Fig. 11. The subfigures (a), (b), (c), (d) show the solution at time
t = 1, t = 0.75, t = 0.5, t = 0.25, respectively.

We also solve the optimal control problem with different terminal time
T = 1 and T = 5 using the neural network given by the abstract neural network
architecture (22) with the implementation depicted in Fig. 7. The open loop
optimal controls s 7→ u∗(s|x0) and the corresponding optimal trajectories
s 7→ x∗(s|x0) are then computed by solving (27) with the fourth order Runge-
Kutta method whose one-step neural network representation is shown in Fig. 5.
The graphs of the first component of the optimal controls u∗ and the first
component of the optimal trajectories x∗ to the 16 dimensional problem with
the initial position x0 = (x,0) ∈ R16 (where 0 is the zero vector in R15) and
the terminal cost (28) (where Ψi’s are defined in (39)) are shown in Fig. 12.
In the figure, (a) and (c) show the optimal controls u∗ with T = 1 and T = 5,
respectively, while (b) and (d) show the corresponding optimal trajectories x∗

with T = 1 and T = 5, respectively.

4.3 An optimal control problem in Newton mechanics

We consider the optimal control problem (2) whose Lagrangian L reads

L(t,x,u) =
1

2
‖x− xr(t)‖2 +

1

2000
‖u‖2 ∀t ∈ [0, T],x ∈ Rn,u ∈ Rl, (40)

where we set n = 2l and define the function xr : [0, T]→ Rn by

xr(t) = 5 sin t

(
Il
Ol

)
+ 5 cos t

(
Ol
Il

)
.

The source term f in (3) is defined by

f(t,x,u) =

(
Ol Il
Ol Ol

)
x +

(
Ol
Il

)
u ∀t ∈ [0, T],x ∈ Rn,u ∈ Rl. (41)

If we denote x(s) = (x1(s),x2(s)), where x1(s),x2(s) ∈ Rl for each s ∈ [t0, T],
then the Cauchy problem (3) becomes

ẋ1(s) = x2(s) s ∈ (t0, T),

ẋ2(s) = u(s) s ∈ (t0, T),

(x1(t0),x2(t0)) = x0.

This is the ODE in Newton mechanics, where x1 denotes the position of a
particle, x2 denotes its velocity, and u denotes its acceleration. The corre-
sponding HJ PDE is in the form of (12) where the Hamiltonian H is defined
by

H(t,x,p) =
1

2
〈p, Cppp〉 − 〈p, Cxpx〉 −

1

2
‖x− xr(t)‖2 ∀t ∈ [0, T],x,p ∈ Rn,

(42)

30 Jérôme Darbon et al.

where the coefficients Cpp, Cxp ∈ Rn×n are constant matrices given by

Cpp = 1000

(
Ol Ol
Ol Il

)
and Cxp =

(
Ol Il
Ol Ol

)
.

We consider the terminal data Ψ : Rn → R defined by

Ψ(x) = min

{
1

320

(
(x1 + 2)2 +

n∑
i=2

x2i

)
,

1

320

(
(x1 − 2)2 +

n∑
i=2

x2i

)}
, (43)

for each x = (x1, x2, . . . , xn) ∈ Rn.
Note that this problem requires a slight modification of the HJ PDE (12)

and the optimal control problem (9) considered in this paper, because of
the term 1

2‖x − xr(t)‖2. However, the two abstract neural network architec-
tures (13) and (22) can still be used to compute the viscosity solution and
the optimal control, where in the i-th neuron, the function Pi ∈ C([0, T];Sn)
solves the Riccati FVP (14) which reads

Ṗi(t) = 1000Pi(t)
T

(
Ol Ol
Ol Il

)
Pi(t)− Pi(t)T

(
Ol Il
Ol Ol

)
−
(
Ol Ol
Il Ol

)
Pi(t)− In t ∈ (0, T),

Pi(T) =
1

160
In,

the functions qi ∈ C(0, T ;Rn) solves the modified FVP which readsq̇i(t) = 1000Pi(t)
T

(
Ol Ol
Ol Il

)
qi(t)−

(
Ol Ol
Il Ol

)
qi(t) + xr(t) t ∈ (0, T),

qi(T) = ai,

and ri ∈ C(0, T ;R) solves the modified FVP which readsṙi(t) = 500qi(t)
T

(
Ol Ol
Ol Il

)
qi(t)−

25l

2
t ∈ (0, T),

ri(T) = bi.

For the specific terminal data Ψ in (43), ai ∈ Rn and bi ∈ R are given by

a1 =
1

80
(1,0)T , b1 =

1

80
, a2 = − 1

80
(1,0)T , b2 =

1

80
,

where 0 denotes the zero vector in Rn−1.
Here, we show the numerical results for l = 8 and n = 2l = 16. The viscosity

solution VNN with terminal time T = 1 is computed using the abstract neural
network architecture (13) (depicted in Fig. 3) with the implementation shown
in Fig. 6. The two dimensional slices of VNN at t = 1, 0.995, 0.95, 0.75 are
plotted in Fig. 13 (a), (b), (c), (d), respectively.

Neural networks for certain high dimensional optimal control problems 31

The optimal controls with different terminal time T = 1, 5, 10 are com-
puted using the abstract neural network architecture (22) depicted in Fig. 4
with the implementation depicted in Fig. 7. The open loop optimal controls
and the corresponding optimal trajectories are computed by solving (27) with
the fourth order Runge-Kutta method whose one-step neural network repre-
sentation is shown in Fig. 5. The graphs of the first components of the optimal
trajectories with terminal time T = 1, T = 5, T = 10 and different initial po-
sitions x0 = (x,0) ∈ R16 (where 0 is the zero vector in R15) are shown in
Fig. 14 (a), (b), (c), respectively. The graphs of the first components of the
corresponding optimal trajectories with T = 1, 5, 10 are shown in Fig. 15 (a),
(c), (e), while the graphs of the ninth components of the optimal trajectories
with T = 1, 5, 10 are shown in Fig. 15 (b), (d), (f). From the optimal con-
trols and trajectories for longer time horizons, it appears there is a turnpike
phenomenon.

(a) t = 1 (b) t = 0.995

(c) t = 0.95 (d) t = 0.75

Fig. 13 The viscosity solution VNN to the 16 dimensional HJ PDE (12) with Hamilto-
nian (42), terminal data (43) and terminal time T = 1 is computed using the proposed
abstract neural network architecture (13) (depicted in Fig. 3) with the implementation de-
picted in Fig. 6. The two dimensional slices of VNN at time t = 1 (i.e., the terminal cost),
t = 0.995, t = 0.95 and t = 0.75 are shown in the subfigures (a), (b), (c) and (d), respec-
tively. The color in each subfigure shows the solution value VNN (t,x), where the spatial
variable x is in the form of (x1,0, x2,0) ∈ R16 (with 0 denoting the zero vector in R7) for
some points x1 ∈ R and x2 ∈ R which are represented by the x and y axes.

32 Jérôme Darbon et al.

(a) T = 1 (b) T = 5

(c) T = 10

Fig. 14 The open loop optimal controls in the 16 dimensional optimal control problem (2)
with Lagrangian (40), source term (41), terminal cost (43) and different terminal time T =
1, 5, 10 are computed using the proposed abstract neural network architecture (22) depicted
in Fig. 4 with the implementation shown in Fig. 7. Several graphs of the first component
of the optimal controls with T = 1, T = 5 and T = 10 are shown in (a), (b) and (c),
respectively. In each figure, different trajectories correspond to different initial positions
x0 = (x,0) ∈ R16 where 0 is the zero vector in R15.

4.4 An optimal control problem with general terminal cost

In this section, we consider a more general terminal cost Ψ in the form of (28)
with m = 2, where Ψ1 and Ψ2 are defined by

Ψ1(x) = ‖x− x1‖1, Ψ2(x) = ‖x− x2‖, (44)

for all x ∈ Rn. Recall that ‖ · ‖1 and ‖ · ‖ denote the `1-norm and `2-
norm in Rn, respectively. For illustration purposes, we set x1 = (1, 1,0) and
x2 = (−1,−1,0). We solve the same optimal control problem as in Section 4.2,
with the terminal cost (28) (where Ψi’s are defined in (44)). The value func-
tion VNN and the optimal control u are computed using the neural network
architecture in Figs. 6 and 7, respectively, where the parameters Gi,ai and bi

Neural networks for certain high dimensional optimal control problems 33

(a) 1st component x∗1, T = 1 (b) 9th component x∗9, T = 1

(c) 1st component x∗1, T = 5 (d) 9th component x∗9, T = 5

(e) 1st component x∗1, T = 10 (f) 9th component x∗9, T = 10

Fig. 15 The corresponding optimal trajectories x∗ in the 16 dimensional optimal control
problem (2) with Lagrangian (40), source term (41), terminal cost (43) and different terminal
time T = 1, 5, 10 are computed using the proposed abstract neural network architecture (22)
depicted in Fig. 4 with the implementation shown in Fig. 7. Several graphs of the first
component x∗1 of the optimal trajectories x∗ with T = 1, T = 5 and T = 10 are shown
in (a), (c) and (e), respectively. The corresponding graphs of the ninth component x∗9 of
the optimal trajectories x∗ with T = 1, T = 5 and T = 10 are shown in (b), (d) and
(f), respectively. In each figure, different trajectories correspond to different initial positions
x0 = (x,0) ∈ R16 where 0 is the zero vector in R15.

34 Jérôme Darbon et al.

are trained using the ADMM algorithm described in Section 3.3. Note that in
each iteration in the ADMM algorithm, we need to solve the optimal control
problem (30) once using our proposed neural network architecture in Fig. 6.

We show the numerical results for the 16-dimensional problem. The two
dimensional slices of the viscosity solution VNN with terminal time T = 1 at
time t = 1, 0.75, 0.5, 0.25 are plotted in Fig. 16 (a), (b), (c), (d), respectively.
The residual −∂Vi

∂t + H(t,x,∇xVi) of the HJ PDE with terminal condition
Ψ1 and Ψ2 at different time t = 0.75, 0.5, 0.25 are shown in Fig. 17. We can
observe a small error from these error plots, which numerically validate that
our proposed neural network architecture indeed solves the viscosity solution
to the corresponding HJ PDE.

We also compute several optimal controls and trajectories with different
initial position x = (x,0) ∈ Rn and fixed initial time t0 = 0, and the graphs of
their first components are shown in Fig. 18. The optimal controls with terminal
time T = 1, 5 are shown in Fig. 18 (a), (c), while the optimal trajectories with
terminal time T = 1, 5 are shown in Fig. 18 (b), (d), respectively.

4.5 An FPGA implementation and numerical results

We now briefly describe am implementation of our proposed neural network
on FPGA to illustrate the performance that can be achieved using simple pre-
cision floating points. Specifically, we only present an FPGA implementation
with low latency, where the latency corresponds to the amount of time the
neural network takes to produce one result.

FPGAs are an array of programmable logic blocks and memory elements
that are connected together using a programmable interconnect. FPGAs con-
tain different types of logic resources. These resources include general purposes
logics such as lookup tables (LUTs) and Flip-Flops (FFs), more specialized
arithmetic units, such as digital signal processing units (DSPs), and memory
such as Block Random Access Memory (BRAMs). We refer the reader to [93]
for a concise description of FPGAs. We use the Xilinx Alveo U280 board with
a target design running at 300 MHz. The main computational burden of our
proposed neural network consists of matrix-matrix multiplications used in the
fourth order Runge-Kutta method for solving an FVP as described in Fig. 5.
Traditional non-parallel algorithms for performing matrix-matrix multiplica-
tions have an O(n3) time complexity. Using the parallel programming feature
of FPGAs we can obtain a complexity of O(n2) for computing matrix-matrix
multiplications (see [93] for instance). Therefore, we spend most of FPGA re-
sources on performing these matrix-matrix multiplications in order to reduce
the latency of the design. Note that the Alveo U280 board is composed of
three “chiplets” and crossing chiplets consumes scarce routing resources that
severely degrades performance and prevents scaling. Therefore, we only con-
sider FPGA designs that use less that 30% of the FPGA resources so that no
chiplet is crossed. Table 2 presents the FPGA resources and latencies to im-
plement our proposed neural network depicted in Fig. 6 for various dimensions

Neural networks for certain high dimensional optimal control problems 35

(a) t = 1 (b) t = 0.75

(c) t = 0.5 (d) t = 0.25

Fig. 16 The viscosity solution VNN to the 16 dimensional HJ PDE with Hamiltonian (38),
terminal data (28) (where Ψi’s are defined in (44)) and terminal time T = 1 is computed
using the proposed abstract neural network architecture depicted in Fig. 6, whose parameters
are trained using the ADMM method. The two dimensional slices of VNN at time t = 1 (i.e.,
the terminal cost), t = 0.75, t = 0.5 and t = 0.25 are shown in the subfigures (a), (b), (c)
and (d), respectively. The color in each subfigure shows the solution value VNN (t,x), where
the spatial variable x is in the form of (x1, x2,0) ∈ R16 (with 0 denoting the zero vector in
R14) for some points x1 ∈ R and x2 ∈ R which are represented by the x and y axes.

n and numbers of layers L. We observe from the table that the latencies for
(n,L) = (16, 8), (32, 4), and (64, 2) are 2.1110e-05s, 7.5150e-05s, and 2.8600e-
04s, respectively. We also implemented our proposed neural network architec-
ture on CPUs using C++ to highlight the boost of performance we can obtain
using FPGAs. We perform 1,000,000 runs on a single Intel core I7-1165G7 and
report the average time to produce a result for (n,L) = (16, 8), (32, 4), (64, 2)
in Table 3 as well as the speed-up compared to our FPGA implementation.
We observe a speed-up from 12 to about 20 depending on the dimension n
and the number of layers L. Our FPGA design also allows for larger number
of layers than those reported here. We simply iterate the FPGA kernel that
we designed here for the neural network with fewer layers. In these cases, the
amount of FPGA resources remain the same but the latency is multiplied by
the number of iterations of the FPGA kernel.

36 Jérôme Darbon et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 17 The residual − ∂Vi
∂t

+ H(t,x,∇xVi) in the HJ PDE with terminal time T = 1,
Hamiltonian (38) and terminal condition (28) (where Ψi’s are defined in (44)) is shown for
each i ∈ {1, 2} at different time t, where Vi is the solution to the i-th subproblem. Figures
(a), (c), (e) show the residuals for V1 at time t = 0.75T , t = 0.5T and t = 0.25T , while
figures (b), (d), (f) show the residuals for V2 at time t = 0.75T , t = 0.5T and t = 0.25T ,
respectively. In each subfigure, we show the two dimensional slices of the residual function.
The color shows the residual value at (t,x), where the spatial variable x is in the form of
(x1, x2,0) ∈ R16 (with 0 denoting the zero vector in R14) for some points x1 ∈ R and x2 ∈ R
which are represented by the x and y axes.

Neural networks for certain high dimensional optimal control problems 37

(a) (b)

(c) (d)

Fig. 18 The open loop optimal controls and the optimal trajectories in the 16 dimensional
optimal control problem with Lagrangian (36), source term (37), terminal cost (28) (where
Ψi’s are defined in (44)) and different terminal time T = 1, 5 are computed using the proposed
abstract neural network architecture (22) with the implementation depicted in Fig. 7. Several
graphs of the optimal controls with T = 1 are shown in (a), whose corresponding optimal
trajectories are shown in (b). Several graphs of the optimal controls with T = 5 are shown
in (c), whose corresponding optimal trajectories are shown in (d).

n/L Latency (ns) BRAMs DSPs FFs LUTs

16/8 6,345 (2.111E4) 601(14%) 2402(26%) 354,013(13%) 258,710(19%)
32/4 22,547(7.515E4) 602(14%) 2482(27%) 353,225(13%) 248,369(19%)
64/2 85,547 (2.860E5) 608(15%) 2522(27%) 352,715(13%) 242,886(19%)

Table 2 FPGA resources and latencies in cycles and nanoseconds (ns) to implement L
layers of the neural network for various dimensions n using simple precision floating point
on a Xilinx Alveo U280 board with a frequency of 300 MHz.

n/L CPU time FPGA time speed up

16/8 2.6310e-04s 2.1110e-05s 12.463
32/4 1.2021e-03s 7.5150e-05s 15.996
64/2 5.9730e-03s 2.8600e-04s 20.885

Table 3 Comparison of the average time for 1,000,000 runs for various dimensions and
number of layers on a single Intel Core I7-1165G7 and our FPGA implementation on a
Xilinx Alveo U280 board running at 300 MHz. The speed-up using FPGA compared to the
CPU is presented in the last column.

38 Jérôme Darbon et al.

5 Conclusion

We propose two abstract neural network architectures depicted in Figs. 3
and 4, which respectively solve certain high dimensional HJ PDEs and are
used to compute the optimal controls in the corresponding optimal control
problems. To implement these abstract architectures, we present two Resnet-
type deep neural network implementations and show several numerical results
in Section 4. These architectures pave the way to leverage dedicated hard-
ware designed for neural networks to obtain efficient implementations of the
numerical algorithms for certain optimal control problems and HJ PDEs. It
has potential in real-time computations for these high dimensional problems.
Moreover, these architectures are designed based on the theories of linear-
quadratic controls and min-plus algebra, and hence there are theoretical guar-
antees for these neural network architectures. A preliminary implementation
of our proposed neural network architecture on FPGAs shows promising speed
up compared to CPUs. Beyond the numerical experiments in Section 4, we also
tried some examples where the assumption (A2) is not satisfied. In these exam-
ples, we observed that our proposed neural network architectures also provide
reasonable numerical outputs. These observations suggest that the assumption
(A2) is sufficient but not necessary for our proposed architectures.

Acknowledgements This research is supported by AFOSR MURI FA9550-20-1-0358. The
authors also thank the Xilinx Center of Excellence at the University of Illinois, Urbana-
Champaign UIUC to provide access to Xilinx Alveo boards and computing resources.

References

1. Aggarwal, C.C., et al.: Neural networks and deep learning. Springer 10, 978–3 (2018)
(Cited on page 7.)

2. Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. Handbook of linear algebra 39
(2006) (Cited on page 2.)

3. Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solv-
ing deterministic optimal control problems: basic properties and convergence analysis.
SIAM Journal on Control and Optimization 47(2), 817–848 (2008) (Cited on page 2.)

4. Albi, G., Bicego, S., Kalise, D.: Gradient-augmented supervised learning of optimal
feedback laws using state-dependent riccati equations. arXiv preprint arXiv:2103.04091
(2021) (Cited on page 2.)

5. Alla, A., Falcone, M., Saluzzi, L.: An efficient DP algorithm on a tree-structure for
finite horizon optimal control problems. SIAM Journal on Scientific Computing 41(4),
A2384–A2406 (2019) (Cited on page 2.)

6. Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of infinite
horizon problems via the dynamic programming approach. SIAM Journal on Control
and Optimization 55(5), 3091–3115 (2017) (Cited on page 2.)

7. Anastassi, A.A.: Constructing Runge–Kutta methods with the use of artificial neu-
ral networks. Neural Computing and Applications 25(1), 229–236 (2014) (Cited on
page 18.)

8. Bachouch, A., Huré, C., Langrené, N., Pham, H.: Deep neural networks algorithms for
stochastic control problems on finite horizon: numerical applications. arXiv preprint
arXiv:1812.05916 (2018) (Cited on page 2.)

Neural networks for certain high dimensional optimal control problems 39

9. Balasubramaniam, P., Abdul Samath, J., Kumaresan, N., Vincent Antony Kumar,
A.: Solution of matrix Riccati differential equation for the linear quadratic singular
system using neural networks. Applied Mathematics and Computation 182(2), 1832
– 1839 (2006). DOI https://doi.org/10.1016/j.amc.2006.06.020. URL http://www.

sciencedirect.com/science/article/pii/S0096300306005327 (Cited on page 18.)

10. Balasubramaniam, P., Vincent Antony Kumar, A.: Solution of matrix Riccati dif-
ferential equation for nonlinear singular system using genetic programming. Ge-
netic Programming and Evolvable Machines 10(1), 71–89 (2009). DOI 10.1007/
s10710-008-9072-z (Cited on page 18.)

11. Banerjee, K., Georganas, E., Kalamkar, D., Ziv, B., Segal, E., Anderson, C., Heinecke,
A.: Optimizing deep learning RNN topologies on Intel architecture. Supercomputing
Frontiers and Innovations 6(3) (2019) (Cited on page 3.)

12. Bansal, S., Tomlin, C.: Deepreach: A deep learning approach to high-dimensional reach-
ability. arXiv preprint arXiv:2011.02082 (2020) (Cited on page 2.)

13. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations. Systems & Control: Foundations & Applications.
Birkhäuser Boston, Inc., Boston, MA (1997). DOI 10.1007/978-0-8176-4755-1. URL
https://doi.org/10.1007/978-0-8176-4755-1. With appendices by Maurizio Falcone
and Pierpaolo Soravia (Cited on pages 2, 6, and 27.)

14. Bardi, M., Da Lio, F.: On the Bellman equation for some unbounded control problems.
NoDEA Nonlinear Differential Equations Appl. 4(4), 491–510 (1997). DOI 10.1007/
s000300050027. URL https://doi.org/10.1007/s000300050027 (Cited on page 12.)

15. Beck, C., Becker, S., Cheridito, P., Jentzen, A., Neufeld, A.: Deep splitting method for
parabolic PDEs. arXiv preprint arXiv:1907.03452 (2019) (Cited on page 2.)

16. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differen-
tial equations and Kolmogorov equations by means of deep learning. arXiv preprint
arXiv:1806.00421 (2018) (Cited on page 2.)

17. Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-
dimensional fully nonlinear partial differential equations and second-order backward
stochastic differential equations. Journal of Nonlinear Science 29(4), 1563–1619 (2019)
(Cited on page 2.)

18. Bellman, R.E.: Adaptive control processes: a guided tour. Princeton university press
(1961) (Cited on page 2.)

19. Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing 317, 28 – 41 (2018).
DOI 10.1016/j.neucom.2018.06.056 (Cited on page 2.)

20. Bertsekas, D.P.: Reinforcement learning and optimal control. Athena Scientific, Bel-
mont, Massachusetts (2019) (Cited on page 2.)

21. Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid
semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. Journal
of Scientific Computing 55(3), 575–605 (2013) (Cited on page 2.)

22. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn. 3(1), 1–122 (2011). DOI 10.1561/2200000016. URL https://doi.org/

10.1561/2200000016 (Cited on page 16.)

23. Bucy, R.: Global theory of the Riccati equation. Journal of Computer
and System Sciences 1(4), 349 – 361 (1967). DOI https://doi.org/10.1016/
S0022-0000(67)80025-4. URL http://www.sciencedirect.com/science/article/

pii/S0022000067800254 (Cited on pages 13 and 15.)

24. Butcher, J.C.: Numerical methods for ordinary differential equations. John Wiley &
Sons (2016) (Cited on pages 20 and 21.)

25. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and
optimal control, Progress in Nonlinear Differential Equations and their Applications,
vol. 58. Birkhäuser Boston, Inc., Boston, MA (2004) (Cited on page 6.)

26. Chan-Wai-Nam, Q., Mikael, J., Warin, X.: Machine learning for semi linear PDEs.
Journal of Scientific Computing 79(3), 1667–1712 (2019) (Cited on page 2.)

http://www.sciencedirect.com/science/article/pii/S0096300306005327
http://www.sciencedirect.com/science/article/pii/S0096300306005327
https://doi.org/10.1007/978-0-8176-4755-1
https://doi.org/10.1007/s000300050027
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
http://www.sciencedirect.com/science/article/pii/S0022000067800254
http://www.sciencedirect.com/science/article/pii/S0022000067800254

40 Jérôme Darbon et al.

27. Chen, M., Hu, Q., Fisac, J.F., Akametalu, K., Mackin, C., Tomlin, C.J.: Reachability-
based safety and goal satisfaction of unmanned aerial platoons on air highways. Jour-
nal of Guidance, Control, and Dynamics 40(6), 1360–1373 (2017). DOI 10.2514/1.
G000774. URL https://doi.org/10.2514/1.G000774 (Cited on page 2.)

28. Chen, T., Chen, H.: Approximations of continuous functionals by neural networks with
application to dynamic systems. IEEE Transactions on Neural Networks 4(6), 910–918
(1993). DOI 10.1109/72.286886 (Cited on page 3.)

29. Chen, T., van Gelder, J., van de Ven, B., Amitonov, S.V., de Wilde, B., Euler, H.C.R.,
Broersma, H., Bobbert, P.A., Zwanenburg, F.A., van der Wiel, W.G.: Classification
with a disordered dopant-atom network in silicon. Nature 577(7790), 341–345 (2020)
(Cited on page 3.)

30. Cheng, T., Lewis, F.L.: Fixed-final time constrained optimal control of nonlinear sys-
tems using neural network HJB approach. In: Proceedings of the 45th IEEE Conference
on Decision and Control, pp. 3016–3021 (2006). DOI 10.1109/CDC.2006.377523 (Cited
on page 2.)

31. Coupechoux, M., Darbon, J., Kélif, J., Sigelle, M.: Optimal trajectories of a UAV base
station using Lagrangian mechanics. In: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pp. 626–631 (2019).
DOI 10.1109/INFCOMW.2019.8845287 (Cited on page 2.)

32. Darbon, J.: On convex finite-dimensional variational methods in imaging sciences
and Hamilton–Jacobi equations. SIAM Journal on Imaging Sciences 8(4), 2268–2293
(2015). DOI 10.1137/130944163 (Cited on page 2.)

33. Darbon, J., Langlois, G.P., Meng, T.: Overcoming the curse of dimensionality for some
Hamilton-Jacobi partial differential equations via neural network architectures. Res.
Math. Sci. 7(3), 20 (2020). DOI 10.1007/s40687-020-00215-6. URL https://doi.org/

10.1007/s40687-020-00215-6 (Cited on pages 2 and 3.)
34. Darbon, J., Meng, T.: On decomposition models in imaging sciences and multi-time

Hamilton-Jacobi partial differential equations. arXiv preprint arXiv:1906.09502 (2019)
(Cited on page 2.)

35. Darbon, J., Meng, T.: On some neural network architectures that can represent
viscosity solutions of certain high dimensional Hamilton–Jacobi partial differential
equations. Journal of Computational Physics 425, 109907 (2021). DOI https:
//doi.org/10.1016/j.jcp.2020.109907. URL http://www.sciencedirect.com/science/

article/pii/S0021999120306811 (Cited on pages 2 and 3.)
36. Darbon, J., Osher, S.: Algorithms for overcoming the curse of dimensionality for certain

Hamilton–Jacobi equations arising in control theory and elsewhere. Research in the
Mathematical Sciences 3(1), 19 (2016). DOI 10.1186/s40687-016-0068-7 (Cited on
page 2.)

37. Davison, E., Maki, M.: The numerical solution of the matrix Riccati differential equa-
tion. IEEE Transactions on Automatic Control 18(1), 71–73 (1973) (Cited on page 18.)

38. Delahaye, D., Puechmorel, S., Tsiotras, P., Feron, E.: Mathematical models for aircraft
trajectory design: A survey. In: Air Traffic Management and Systems, pp. 205–247.
Springer Japan, Tokyo (2014) (Cited on page 2.)

39. Denk, J., Schmidt, G.: Synthesis of a walking primitive database for a humanoid robot
using optimal control techniques. In: Proceedings of IEEE-RAS International Confer-
ence on Humanoid Robots, pp. 319–326 (2001) (Cited on page 2.)

40. Deshpande, A.S.: Max-plus representation for the fundamental solution of the time-
varying differential Riccati equation. Automatica 47(8), 1667 – 1676 (2011). DOI
https://doi.org/10.1016/j.automatica.2011.05.009. URL http://www.sciencedirect.

com/science/article/pii/S0005109811002822 (Cited on page 18.)
41. Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network-based approximations for

solving partial differential equations. Communications in Numerical Methods in Engi-
neering 10(3), 195–201 (1994). DOI 10.1002/cnm.1640100303 (Cited on page 2.)

42. Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: An application to
reachability computations. In: Proceedings of the 45th IEEE Conference on Decision
and Control, pp. 3034–3039 (2006). DOI 10.1109/CDC.2006.377184 (Cited on page 2.)

43. Dockhorn, T.: A discussion on solving partial differential equations using neural net-
works. arXiv preprint arXiv:1904.07200 (2019) (Cited on page 2.)

https://doi.org/10.2514/1.G000774
https://doi.org/10.1007/s40687-020-00215-6
https://doi.org/10.1007/s40687-020-00215-6
http://www.sciencedirect.com/science/article/pii/S0021999120306811
http://www.sciencedirect.com/science/article/pii/S0021999120306811
http://www.sciencedirect.com/science/article/pii/S0005109811002822
http://www.sciencedirect.com/science/article/pii/S0005109811002822

Neural networks for certain high dimensional optimal control problems 41

44. Dolgov, S., Kalise, D., Kunisch, K.: A tensor decomposition approach for high-
dimensional Hamilton-Jacobi-Bellman equations. arXiv preprint arXiv:1908.01533
(2019) (Cited on page 2.)

45. Dower, P., McEneaney, W., Cantoni, M.: A dynamic game approximation for a linear
regulator problem with a log-barrier state constraint. In: Proc. 22nd International
Symposium on Mathematical Theory of Networks and Systems, pp. 297–304 (2016)
(Cited on page 9.)

46. Dower, P.M., McEneaney, W.M.: A max-plus dual space fundamental solution for a
class of operator differential Riccati equations. SIAM Journal on Control and Opti-
mization 53(2), 969–1002 (2015). DOI 10.1137/120879312. URL https://doi.org/

10.1137/120879312 (Cited on page 18.)
47. Dower, P.M., McEneaney, W.M., Cantoni, M.: A game representation for state con-

strained linear regulator problems. In: 2016 IEEE 55th Conference on Decision and
Control (CDC), pp. 1074–1079 (2016). DOI 10.1109/CDC.2016.7798410 (Cited on
page 9.)

48. Dower, P.M., McEneaney, W.M., Zhang, H.: Max-plus fundamental solution semi-
groups for optimal control problems. In: 2015 Proceedings of the Conference on Control
and its Applications, pp. 368–375. SIAM (2015) (Cited on pages 2 and 9.)

49. Dower, P.M., Zhang, H.: A new fundamental solution for differential Riccati equations
arising in L2-gain analysis. In: 2015 5th Australian Control Conference (AUCC), pp.
65–68 (2015) (Cited on page 18.)

50. E, W.: A proposal on machine learning via dynamical systems. Commun. Math. Stat.
5(1), 1–11 (2017). DOI 10.1007/s40304-017-0103-z. URL https://doi.org/10.1007/

s40304-017-0103-z (Cited on page 3.)
51. E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-

dimensional parabolic partial differential equations and backward stochastic differen-
tial equations. Communications in Mathematics and Statistics 5(4), 349–380 (2017).
DOI 10.1007/s40304-017-0117-6 (Cited on page 2.)

52. E, W., Han, J., Li, Q.: A mean-field optimal control formulation of deep learning.
Res. Math. Sci. 6(1), Paper No. 10, 41 (2019). DOI 10.1007/s40687-018-0172-y. URL
https://doi.org/10.1007/s40687-018-0172-y (Cited on page 3.)

53. E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for
solving variational problems. Communications in Mathematics and Statistics 6(1),
1–12 (2018) (Cited on page 2.)

54. El Khoury, A., Lamiraux, F., Täıx, M.: Optimal motion planning for humanoid robots.
In: 2013 IEEE International Conference on Robotics and Automation, pp. 3136–3141
(2013). DOI 10.1109/ICRA.2013.6631013 (Cited on page 2.)

55. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H.,
D’Arpino, C.P., Deits, R., DiCicco, M., Fourie, D., et al.: An architecture for on-
line affordance-based perception and whole-body planning. Journal of Field Robotics
32(2), 229–254 (2015) (Cited on page 2.)

56. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod,
P., Talay, S.: Large-scale FPGA-based convolutional networks. In: R. Bekkerman,
M. Bilenko, J. Langford (eds.) Scaling up Machine Learning: Parallel and Distributed
Approaches. Cambridge University Press (2011) (Cited on page 3.)

57. Farabet, C., poulet, C., Han, J., LeCun, Y.: CNP: An FPGA-based processor for
convolutional networks. In: International Conference on Field Programmable Logic
and Applications. IEEE, Prague (2009) (Cited on page 3.)

58. Farabet, C., Poulet, C., LeCun, Y.: An FPGA-based stream processor for embedded
real-time vision with convolutional networks. In: 2009 IEEE 12th International Con-
ference on Computer Vision Workshops, ICCV Workshops, pp. 878–885. IEEE Com-
puter Society, Los Alamitos, CA, USA (2009). DOI 10.1109/ICCVW.2009.5457611.
URL https://doi.ieeecomputersociety.org/10.1109/ICCVW.2009.5457611 (Cited
on page 3.)

59. Farimani, A.B., Gomes, J., Pande, V.S.: Deep Learning the Physics of Transport Phe-
nomena. arXiv e-prints (2017) (Cited on page 2.)

60. Feng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization based full body
control for the atlas robot. In: 2014 IEEE-RAS International Conference on Humanoid

https://doi.org/10.1137/120879312
https://doi.org/10.1137/120879312
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1007/s40687-018-0172-y
https://doi.ieeecomputersociety.org/10.1109/ICCVW.2009.5457611

42 Jérôme Darbon et al.

Robots, pp. 120–127 (2014). DOI 10.1109/HUMANOIDS.2014.7041347 (Cited on
page 2.)

61. Feng Lin, Brandt, R.D.: An optimal control approach to robust control of robot ma-
nipulators. IEEE Transactions on Robotics and Automation 14(1), 69–77 (1998).
DOI 10.1109/70.660845 (Cited on page 2.)

62. Fleming, W., McEneaney, W.: A max-plus-based algorithm for a Hamilton–Jacobi–
Bellman equation of nonlinear filtering. SIAM Journal on Control and Optimization
38(3), 683–710 (2000). DOI 10.1137/S0363012998332433 (Cited on page 2.)

63. Fujii, M., Takahashi, A., Takahashi, M.: Asymptotic expansion as prior knowledge in
deep learning method for high dimensional BSDEs. Asia-Pacific Financial Markets
26(3), 391–408 (2019). DOI 10.1007/s10690-019-09271-7 (Cited on page 2.)

64. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Nakaoka,
S., Hirukawa, H.: An optimal planning of falling motions of a humanoid robot. In: 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 456–462
(2007). DOI 10.1109/IROS.2007.4399327 (Cited on page 2.)

65. Garcke, J., Kröner, A.: Suboptimal feedback control of PDEs by solving HJB equations
on adaptive sparse grids. Journal of Scientific Computing 70(1), 1–28 (2017) (Cited
on page 2.)

66. Gaubert, S., McEneaney, W., Qu, Z.: Curse of dimensionality reduction in max-
plus based approximation methods: Theoretical estimates and improved pruning algo-
rithms. In: 2011 50th IEEE Conference on Decision and Control and European Control
Conference, pp. 1054–1061. IEEE (2011) (Cited on page 2.)

67. Glowinski, R.: On Alternating Direction Methods of Multipliers: A Historical Per-
spective, pp. 59–82. Springer Netherlands, Dordrecht (2014). DOI 10.1007/
978-94-017-9054-3 4. URL https://doi.org/10.1007/978-94-017-9054-3_4 (Cited
on page 16.)

68. Grohs, P., Jentzen, A., Salimova, D.: Deep neural network approximations for Monte
Carlo algorithms. arXiv preprint arXiv:1908.10828 (2019) (Cited on page 2.)

69. Grüne, L., Schaller, M., Schiela, A.: Exponential sensitivity and turnpike anal-
ysis for linear quadratic optimal control of general evolution equations. Jour-
nal of Differential Equations 268(12), 7311–7341 (2020). DOI https://doi.org/
10.1016/j.jde.2019.11.064. URL https://www.sciencedirect.com/science/article/

pii/S0022039619305984 (Cited on page 26.)

70. Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences 115(34), 8505–
8510 (2018). DOI 10.1073/pnas.1718942115 (Cited on page 2.)

71. Han, J., Zhang, L., E, W.: Solving many-electron Schrödinger equation using deep
neural networks. Journal of Computational Physics p. 108929 (2019) (Cited on page 2.)

72. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016) (Cited on pages 7 and 18.)

73. Hirjibehedin, C.: Evolution of circuits for machine learning. Nature 577, 320–321
(2020). DOI 10.1038/d41586-020-00002-x (Cited on page 3.)

74. Hofer, M., Muehlebach, M., D’Andrea, R.: Application of an approximate model
predictive control scheme on an unmanned aerial vehicle. In: 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2952–2957 (2016). DOI
10.1109/ICRA.2016.7487459 (Cited on page 2.)

75. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
Networks 4(2), 251–257 (1991). DOI https://doi.org/10.1016/0893-6080(91)90009-T.
URL https://www.sciencedirect.com/science/article/pii/089360809190009T

(Cited on page 3.)

76. Horowitz, M.B., Damle, A., Burdick, J.W.: Linear Hamilton Jacobi Bellman equations
in high dimensions. In: 53rd IEEE Conference on Decision and Control, pp. 5880–5887.
IEEE (2014) (Cited on page 2.)

77. Hsieh, J.T., Zhao, S., Eismann, S., Mirabella, L., Ermon, S.: Learning neural PDE
solvers with convergence guarantees. In: International Conference on Learning Repre-
sentations (2019) (Cited on page 2.)

https://doi.org/10.1007/978-94-017-9054-3_4
https://www.sciencedirect.com/science/article/pii/S0022039619305984
https://www.sciencedirect.com/science/article/pii/S0022039619305984
https://www.sciencedirect.com/science/article/pii/089360809190009T

Neural networks for certain high dimensional optimal control problems 43

78. Hu, C., Shu, C.: A discontinuous Galerkin finite element method for Hamilton–Jacobi
equations. SIAM Journal on Scientific Computing 21(2), 666–690 (1999). DOI 10.
1137/S1064827598337282 (Cited on page 2.)

79. Huré, C., Pham, H., Bachouch, A., Langrené, N.: Deep neural networks algorithms
for stochastic control problems on finite horizon, part I: convergence analysis. arXiv
preprint arXiv:1812.04300 (2018) (Cited on page 2.)

80. Huré, C., Pham, H., Warin, X.: Some machine learning schemes for high-dimensional
nonlinear PDEs. arXiv preprint arXiv:1902.01599 (2019) (Cited on page 2.)

81. Jiang, F., Chou, G., Chen, M., Tomlin, C.J.: Using neural networks to compute ap-
proximate and guaranteed feasible Hamilton-Jacobi-Bellman PDE solutions. arXiv
preprint arXiv:1611.03158 (2016) (Cited on page 2.)

82. Jiang, G., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations.
SIAM Journal on Scientific Computing 21(6), 2126–2143 (2000). DOI 10.1137/
S106482759732455X (Cited on page 2.)

83. Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial
differential equation using radial basis function neural networks. Neural Networks
16(5-6), 729–734 (2003) (Cited on page 2.)

84. Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks:
A survey. Neurocomputing 285, 23 – 34 (2018). DOI https://doi.org/10.1016/
j.neucom.2018.01.002. URL http://www.sciencedirect.com/science/article/pii/

S0925231218300158 (Cited on page 2.)
85. Jin, P., Zhang, Z., Kevrekidis, I.G., Karniadakis, G.E.: Learning Poisson systems

and trajectories of autonomous systems via Poisson neural networks. arXiv preprint
arXiv:2012.03133 (2020) (Cited on page 2.)

86. Jin, P., Zhang, Z., Zhu, A., Tang, Y., Karniadakis, G.E.: SympNets: Intrinsic structure-
preserving symplectic networks for identifying Hamiltonian systems. Neural Net-
works 132, 166–179 (2020). DOI https://doi.org/10.1016/j.neunet.2020.08.017. URL
https://www.sciencedirect.com/science/article/pii/S0893608020303063 (Cited
on page 2.)

87. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S.,
Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a
tensor processing unit. In: Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, p. 1–12. Association for Computing Machinery,
New York, NY, USA (2017). DOI 10.1145/3079856.3080246. URL https://doi.org/

10.1145/3079856.3080246 (Cited on page 3.)
88. Kalise, D., Kundu, S., Kunisch, K.: Robust feedback control of nonlinear PDEs by

numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equations. arXiv
preprint arXiv:1905.06276 (2019) (Cited on page 2.)

89. Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensional Hamilton–
Jacobi–Bellman equations and applications to feedback control of semilinear parabolic
PDEs. SIAM Journal on Scientific Computing 40(2), A629–A652 (2018) (Cited on
page 2.)

90. Kamali, M.: A Study on Solution of Matrix Riccati Differential Equations Using Ant
Colony Programming and Simulink. Institut Sains Matematik, Fakulti Sains, Universiti
Malaya (2015). URL https://books.google.com/books?id=0D8_nQAACAAJ (Cited on
page 18.)

91. Kang, W., Gong, Q.: Neural network approximations of compositional functions with
applications to dynamical systems. arXiv preprint arXiv:2012.01698 (2020) (Cited on
page 2.)

92. Kang, W., Wilcox, L.C.: Mitigating the curse of dimensionality: sparse grid charac-
teristics method for optimal feedback control and HJB equations. Computational
Optimization and Applications 68(2), 289–315 (2017) (Cited on page 2.)

93. Kastner, R., Matai, J., Neuendorffer, S.: Parallel Programming for FPGAs. ArXiv
e-prints (2018) (Cited on page 34.)

94. Kenney, C., Leipnik, R.: Numerical integration of the differential matrix Riccati equa-
tion. IEEE Transactions on Automatic Control 30(10), 962–970 (1985) (Cited on
page 18.)

95. Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural
networks. arXiv preprint arXiv:1707.03351 (2017) (Cited on page 2.)

http://www.sciencedirect.com/science/article/pii/S0925231218300158
http://www.sciencedirect.com/science/article/pii/S0925231218300158
https://www.sciencedirect.com/science/article/pii/S0893608020303063
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://books.google.com/books?id=0D8_nQAACAAJ

44 Jérôme Darbon et al.

96. Khoo, Y., Lu, J., Ying, L.: Solving for high-dimensional committor functions using
artificial neural networks. Research in the Mathematical Sciences 6(1), 1 (2019) (Cited
on page 2.)

97. Kidger, P., Lyons, T.: Universal Approximation with Deep Narrow Networks. In:
J. Abernethy, S. Agarwal (eds.) Proceedings of Thirty Third Conference on Learn-
ing Theory, Proceedings of Machine Learning Research, vol. 125, pp. 2306–2327.
PMLR (2020). URL http://proceedings.mlr.press/v125/kidger20a.html (Cited
on page 3.)

98. Kim, Y.H., Lewis, F.L., Dawson, D.M.: Intelligent optimal control of robotic ma-
nipulators using neural networks. Automatica 36(9), 1355 – 1364 (2000). DOI
https://doi.org/10.1016/S0005-1098(00)00045-5. URL http://www.sciencedirect.

com/science/article/pii/S0005109800000455 (Cited on page 2.)
99. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen,

T., Marion, P., Tedrake, R.: Optimization-based locomotion planning, estimation, and
control design for the atlas humanoid robot. Autonomous robots 40(3), 429–455 (2016)
(Cited on page 2.)

100. Kundu, A., Srinivasan, S., Qin, E.C., Kalamkar, D., Mellempudi, N.K., Das, D., Baner-
jee, K., Kaul, B., Dubey, P.: K-tanh: Hardware efficient activations for deep learning.
arXiv 1909.07729 (2019) (Cited on page 3.)

101. Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal
control of evolution problems. SIAM Journal on Applied Dynamical Systems 3(4),
701–722 (2004) (Cited on page 2.)

102. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary
and partial differential equations. IEEE Transactions on Neural Networks 9(5), 987–
1000 (1998). DOI 10.1109/72.712178 (Cited on page 2.)

103. Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary
value problems with irregular boundaries. IEEE Transactions on Neural Networks
11(5), 1041–1049 (2000). DOI 10.1109/72.870037 (Cited on page 2.)

104. Lambrianides, P., Gong, Q., Venturi, D.: A new scalable algorithm for computational
optimal control under uncertainty. arXiv preprint arXiv:1909.07960 (2019) (Cited on
page 2.)

105. LeCun, Y.: 1.1 deep learning hardware: Past, present, and future. In: 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), pp. 12–19 (2019). DOI
10.1109/ISSCC.2019.8662396 (Cited on page 3.)

106. Lee, D., Tomlin, C.J.: A Hopf-Lax formula in Hamilton–Jacobi analysis of reach-
avoid problems. IEEE Control Systems Letters 5(3), 1055–1060 (2021). DOI
10.1109/LCSYS.2020.3009933 (Cited on page 2.)

107. Lee, H., Kang, I.S.: Neural algorithm for solving differential equations. Journal of
Computational Physics 91(1), 110–131 (1990) (Cited on page 2.)

108. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural Networks
6(6), 861–867 (1993). DOI https://doi.org/10.1016/S0893-6080(05)80131-5. URL
https://www.sciencedirect.com/science/article/pii/S0893608005801315 (Cited
on page 3.)

109. Levin, J.J.: On the matrix Riccati equation. Proc. Amer. Math. Soc. 10, 519–524
(1959). DOI 10.2307/2033645. URL https://doi.org/10.2307/2033645 (Cited on
page 18.)

110. Lewis, F., Dawson, D., Abdallah, C.: Robot Manipulator Control: Theory and Practice.
Control engineering. Marcel Dekker (2004). URL https://books.google.com/books?

id=BDS_PQAACAAJ (Cited on page 2.)
111. Li, A., Bansal, S., Giovanis, G., Tolani, V., Tomlin, C., Chen, M.: Generating robust

supervision for learning-based visual navigation using Hamilton-Jacobi reachability. In:
A.M. Bayen, A. Jadbabaie, G. Pappas, P.A. Parrilo, B. Recht, C. Tomlin, M. Zeilinger
(eds.) Proceedings of the 2nd Conference on Learning for Dynamics and Control, Pro-
ceedings of Machine Learning Research, vol. 120, pp. 500–510. PMLR, The Cloud
(2020). URL http://proceedings.mlr.press/v120/li20a.html (Cited on page 2.)

112. Long, Z., Lu, Y., Dong, B.: PDE-net 2.0: Learning PDEs from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics 399, 108925 (2019).
DOI 10.1016/j.jcp.2019.108925 (Cited on page 2.)

http://proceedings.mlr.press/v125/kidger20a.html
http://www.sciencedirect.com/science/article/pii/S0005109800000455
http://www.sciencedirect.com/science/article/pii/S0005109800000455
https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://doi.org/10.2307/2033645
https://books.google.com/books?id=BDS_PQAACAAJ
https://books.google.com/books?id=BDS_PQAACAAJ
http://proceedings.mlr.press/v120/li20a.html

Neural networks for certain high dimensional optimal control problems 45

113. Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-net: Learning PDEs from data. arXiv preprint
arXiv:1710.09668 (2017) (Cited on page 2.)

114. Lu, L., Jin, P., Karniadakis, G.E.: Deeponet: Learning nonlinear operators for identify-
ing differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193 (2019) (Cited on page 3.)

115. Lye, K.O., Mishra, S., Ray, D.: Deep learning observables in computational fluid dy-
namics. arXiv preprint arXiv:1903.03040 (2019) (Cited on page 2.)

116. McEneaney, W.: Max-plus methods for nonlinear control and estimation. Springer
Science & Business Media (2006) (Cited on pages 2, 6, and 9.)

117. McEneaney, W.: A curse-of-dimensionality-free numerical method for solution of cer-
tain HJB PDEs. SIAM Journal on Control and Optimization 46(4), 1239–1276 (2007).
DOI 10.1137/040610830 (Cited on page 2.)

118. McEneaney, W.M.: A new fundamental solution for differential Riccati equations aris-
ing in control. Automatica 44(4), 920 – 936 (2008). DOI https://doi.org/10.1016/
j.automatica.2007.08.019. URL http://www.sciencedirect.com/science/article/

pii/S0005109807003895 (Cited on page 18.)
119. McEneaney, W.M., Deshpande, A., Gaubert, S.: Curse-of-complexity attenuation in

the curse-of-dimensionality-free method for HJB PDEs. In: 2008 American Control
Conference, pp. 4684–4690. IEEE (2008) (Cited on page 2.)

120. McEneaney, W.M., Kluberg, L.J.: Convergence rate for a curse-of-dimensionality-free
method for a class of HJB PDEs. SIAM Journal on Control and Optimization 48(5),
3052–3079 (2009) (Cited on page 2.)

121. McFall, K.S., Mahan, J.R.: Artificial neural network method for solution of boundary
value problems with exact satisfaction of arbitrary boundary conditions. IEEE Trans-
actions on Neural Networks 20(8), 1221–1233 (2009). DOI 10.1109/TNN.2009.2020735
(Cited on page 2.)

122. Meade, A., Fernandez, A.: The numerical solution of linear ordinary differential equa-
tions by feedforward neural networks. Mathematical and Computer Modelling 19(12),
1 – 25 (1994). DOI 10.1016/0895-7177(94)90095-7 (Cited on page 2.)

123. Meng, X., Karniadakis, G.E.: A composite neural network that learns from multi-
fidelity data: Application to function approximation and inverse PDE problems. arXiv
preprint arXiv:1903.00104 (2019) (Cited on page 2.)

124. Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: PPINN: Parareal physics-informed
neural network for time-dependent PDEs. arXiv preprint arXiv:1909.10145 (2019)
(Cited on page 2.)

125. van Milligen, B.P., Tribaldos, V., Jiménez, J.A.: Neural network differential equation
and plasma equilibrium solver. Phys. Rev. Lett. 75, 3594–3597 (1995). DOI 10.1103/
PhysRevLett.75.3594 (Cited on page 2.)

126. Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-
dimensional Hamilton-Jacobi-Bellman equations. arXiv preprint arXiv:1907.05317
(2019) (Cited on page 2.)

127. Nakamura-Zimmerer, T., Gong, Q., Kang, W.: QRnet: Optimal regulator design with
LQR-augmented neural networks. IEEE Control Systems Letters 5(4), 1303–1308
(2021). DOI 10.1109/LCSYS.2020.3034415 (Cited on page 2.)

128. Niarchos, K.N., Lygeros, J.: A neural approximation to continuous time reachability
computations. In: Proceedings of the 45th IEEE Conference on Decision and Control,
pp. 6313–6318 (2006). DOI 10.1109/CDC.2006.377358 (Cited on page 2.)

129. Osher, S., Shu, C.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi
equations. SIAM Journal on Numerical Analysis 28(4), 907–922 (1991). DOI 10.1137/
0728049 (Cited on page 2.)

130. Pang, G., Lu, L., Karniadakis, G.E.: fPINNs: Fractional physics-informed neural net-
works. SIAM Journal on Scientific Computing 41(4), A2603–A2626 (2019) (Cited on
page 2.)

131. Parzani, C., Puechmorel, S.: On a Hamilton-Jacobi-Bellman approach for coordinated
optimal aircraft trajectories planning. In: CCC 2017 36th Chinese Control Conference,
Control Conference (CCC), 2017 36th Chinese, pp. ISBN: 978–1–5386–2918–5. IEEE,
Dalian, China (2017). DOI 10.23919/ChiCC.2017.8027369. URL https://hal-enac.

archives-ouvertes.fr/hal-01340565 (Cited on page 2.)

http://www.sciencedirect.com/science/article/pii/S0005109807003895
http://www.sciencedirect.com/science/article/pii/S0005109807003895
https://hal-enac.archives-ouvertes.fr/hal-01340565
https://hal-enac.archives-ouvertes.fr/hal-01340565

46 Jérôme Darbon et al.

132. Pham, H., Pham, H., Warin, X.: Neural networks-based backward scheme for fully
nonlinear PDEs. arXiv preprint arXiv:1908.00412 (2019) (Cited on page 2.)

133. Raissi, M.: Deep hidden physics models: Deep learning of nonlinear partial differential
equations. The Journal of Machine Learning Research 19(1), 932–955 (2018) (Cited
on page 2.)

134. Raissi, M.: Forward-backward stochastic neural networks: Deep learning of high-
dimensional partial differential equations. arXiv preprint arXiv:1804.07010 (2018)
(Cited on page 2.)

135. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics 378, 686 – 707 (2019). DOI
10.1016/j.jcp.2018.10.045 (Cited on page 2.)

136. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part
i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561 (2017) (Cited on page 2.)

137. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part
ii): Data-driven discovery of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10566 (2017) (Cited on page 2.)

138. Reisinger, C., Zhang, Y.: Rectified deep neural networks overcome the curse of dimen-
sionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems.
arXiv preprint arXiv:1903.06652 (2019) (Cited on page 2.)

139. Rossi, F., Conan-Guez, B.: Functional multi-layer perceptron: a non-linear tool for
functional data analysis. Neural Networks 18(1), 45–60 (2005). DOI https://doi.
org/10.1016/j.neunet.2004.07.001. URL https://www.sciencedirect.com/science/

article/pii/S0893608004001418 (Cited on page 3.)
140. Royo, V.R., Tomlin, C.: Recursive regression with neural networks: Approximating the

HJI PDE solution. arXiv preprint arXiv:1611.02739 (2016) (Cited on page 2.)
141. Rucco, A., Sujit, P.B., Aguiar, A.P., de Sousa, J.B., Pereira, F.L.: Optimal rendezvous

trajectory for unmanned aerial-ground vehicles. IEEE Transactions on Aerospace and
Electronic Systems 54(2), 834–847 (2018). DOI 10.1109/TAES.2017.2767958 (Cited
on page 2.)

142. Rudd, K., Muro, G.D., Ferrari, S.: A constrained backpropagation approach for the
adaptive solution of partial differential equations. IEEE Transactions on Neural
Networks and Learning Systems 25(3), 571–584 (2014). DOI 10.1109/TNNLS.2013.
2277601 (Cited on page 2.)

143. Samath, J.A., Selvaraju, N.: Solution of matrix Riccati differential equation for non-
linear singular system using neural networks. International Journal of Computer Ap-
plications 1(29), 49–55 (2010). DOI 10.5120/575-181 (Cited on page 18.)

144. Sirignano, J., Spiliopoulos, K.: DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics 375, 1339 – 1364 (2018).
DOI 10.1016/j.jcp.2018.08.029 (Cited on page 2.)

145. Subbotin, A.I.: Minimax solutions of first-order partial differential equa-
tions. Russian Mathematical Surveys 51(2), 283–313 (1996). DOI 10.1070/
RM1996v051n02ABEH002773 (Cited on page 6.)

146. Tang, W., Shan, T., Dang, X., Li, M., Yang, F., Xu, S., Wu, J.: Study on a Poisson’s
equation solver based on deep learning technique. In: 2017 IEEE Electrical Design
of Advanced Packaging and Systems Symposium (EDAPS), pp. 1–3 (2017). DOI
10.1109/EDAPS.2017.8277017 (Cited on page 2.)

147. Tassa, Y., Erez, T.: Least squares solutions of the HJB equation with neural network
value-function approximators. IEEE Transactions on Neural Networks 18(4), 1031–
1041 (2007). DOI 10.1109/TNN.2007.899249 (Cited on page 2.)

148. Todorov, E.: Efficient computation of optimal actions. Proceedings of the national
academy of sciences 106(28), 11478–11483 (2009) (Cited on page 2.)

149. Uchiyama, T., Sonehara, N.: Solving inverse problems in nonlinear PDEs by recurrent
neural networks. In: IEEE International Conference on Neural Networks, pp. 99–102.
IEEE (1993) (Cited on page 2.)

150. Wang, Yuanchang, Yong, Jiongmin: A deterministic affine-quadratic optimal control
problem. ESAIM: COCV 20(3), 633–661 (2014). DOI 10.1051/cocv/2013078. URL
https://doi.org/10.1051/cocv/2013078 (Cited on pages 9, 10, and 12.)

https://www.sciencedirect.com/science/article/pii/S0893608004001418
https://www.sciencedirect.com/science/article/pii/S0893608004001418
https://doi.org/10.1051/cocv/2013078

Neural networks for certain high dimensional optimal control problems 47

151. Yadav, N., Yadav, A., Kumar, M.: An introduction to neural network methods for
differential equations. SpringerBriefs in Applied Sciences and Technology. Springer,
Dordrecht (2015). DOI 10.1007/978-94-017-9816-7 (Cited on page 2.)

152. Yang, L., Zhang, D., Karniadakis, G.E.: Physics-informed generative adversarial net-
works for stochastic differential equations. arXiv preprint arXiv:1811.02033 (2018)
(Cited on page 2.)

153. Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed
neural networks. Journal of Computational Physics 394, 136–152 (2019) (Cited on
page 2.)

154. Yegorov, I., Dower, P.M.: Perspectives on characteristics based curse-of-dimensionality-
free numerical approaches for solving Hamilton–Jacobi equations. Applied Mathemat-
ics & Optimization pp. 1–49 (2017) (Cited on page 2.)

155. Yong, J., Zhou, X.Y.: Stochastic controls, Applications of Mathematics (New York),
vol. 43. Springer-Verlag, New York (1999). DOI 10.1007/978-1-4612-1466-3. URL
https://doi.org/10.1007/978-1-4612-1466-3. Hamiltonian systems and HJB equa-
tions (Cited on pages 9, 13, and 15.)

156. Zaslavski, A.J.: Turnpike Theory of Continuous-Time Linear Optimal Control Prob-
lems. Springer International Publishing (2015). DOI 10.1007/978-3-319-19141-6. URL
https://doi.org/10.1007/978-3-319-19141-6 (Cited on page 26.)

157. Zhang, D., Guo, L., Karniadakis, G.E.: Learning in modal space: Solving time-
dependent stochastic PDEs using physics-informed neural networks. arXiv preprint
arXiv:1905.01205 (2019) (Cited on page 2.)

158. Zhang, D., Lu, L., Guo, L., Karniadakis, G.E.: Quantifying total uncertainty in physics-
informed neural networks for solving forward and inverse stochastic problems. Journal
of Computational Physics 397, 108850 (2019) (Cited on page 2.)

159. Zhou, X.Y.: Maximum principle, dynamic programming, and their connection in
deterministic control. J. Optim. Theory Appl. 65(2), 363–373 (1990). DOI
10.1007/BF01102352. URL https://doi.org/10.1007/BF01102352 (Cited on page 6.)

https://doi.org/10.1007/978-1-4612-1466-3
https://doi.org/10.1007/978-3-319-19141-6
https://doi.org/10.1007/BF01102352

	Introduction
	Mathematical background
	Neural network architectures for solving certain HJ PDEs and optimal control problems
	Implementations of the abstract neural network architectures
	Conclusion

