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Abstract

Agriculture has a key role in food production worldwide and it is a major component of the gross domestic product

of several countries. Livestock production is essential for the generation of high quality protein foods and the delivery

of foods in regions where animal products are the main food source. Environmental impacts of livestock production

have been examined for decades, but recently emission of methane from enteric fermentation has been targeted as a

substantial greenhouse gas source. The quantification of methane emissions from livestock on a global scale relies on

prediction models because measurements require specialized equipment and may be expensive. The predictive abil-

ity of current methane emission models remains poor. Moreover, the availability of information on livestock produc-

tion systems has increased substantially over the years enabling the development of more detailed methane

prediction models. In this study, we have developed and evaluated prediction models based on a large database of

enteric methane emissions from North American dairy and beef cattle. Most probable models of various complexity

levels were identified using a Bayesian model selection procedure and were fitted under a hierarchical setting.

Energy intake, dietary fiber and lipid proportions, animal body weight and milk fat proportion were identified as key

explanatory variables for predicting emissions. Models here developed substantially outperformed models currently

used in national greenhouse gas inventories. Additionally, estimates of repeatability of methane emissions were

lower than the ones from the literature and multicollinearity diagnostics suggested that prediction models are stable.

In this context, we propose various enteric methane prediction models which require different levels of information

availability and can be readily implemented in national greenhouse gas inventories of different complexity levels.

The utilization of such models may reduce errors associated with prediction of methane and allow a better examina-

tion and representation of policies regulating emissions from cattle.
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Introduction

The last decade’s financial and food price crises,

marked by high volatility in food prices, have brought

the world population to levels of hunger and under-

nourishment never reached before (FAO, 2011). The

number of undernourished and hungry people reached

1 billion in 2009 and projections for 2010 suggested that

at least 925 million people were in similar condition

(FAO, 2011). United Nations’ forecast indicates that the

world population will reach 8.9 billion habitants in

2050 (UN, 2004). In this context, an increase in food pro-

duction, driven by an increase in agriculture productiv-

ity, is required to feed the global population. However,

the increase in food production may be hampered by

society exerting pressure on the livestock production

systems due to greenhouse gas emissions, manure

excretion of phosphorus and nitrogen, and water use.

Several environmental policies were implemented

worldwide in the last two decades, mainly with the

objective of reducing mineral and nitrogen excreted by

livestock (Oenema, 2004). Most of the attention recently

has been directed to emissions of greenhouse gases,

especially from ruminants, because methane emissions

from enteric fermentation are responsible for 21% of

anthropogenic methane emitted in the United States

(EPA, 2011).

In order to feed the world population while minimiz-

ing environmental impacts of livestock production, a

balance must be achieved between an increase in food

production with reduced environmental impacts

through the identification and examination of more sus-

tainable animal production scenarios. These rely on the

prediction of methane emissions at the individual ani-

mal level because measurements of daily emissions

from livestock require specialized equipment and may

be expensive (Johnson & Johnson, 1995). Moreover,
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prediction models of methane emissions are needed for

the examination of emission mitigation strategies, envi-

ronmental policies, the development of decision sup-

port models (Moraes et al., 2012), and national

greenhouse gas inventories (IPCC, 2006). National

inventories of greenhouse gas emissions are the basis

for the quantification of greenhouse gas emissions from

individual countries and the elaboration of country

level mitigation strategies. For instance, the IPCC and

the Food and Agriculture Organization of the United

Nations (FAO) have developed two methodologies

(IPCC, 2006; FAO, 2010) to estimate methane emissions

from cattle enteric fermentation. Both methodologies

rely on the use of methane emissions factors (Ym) which

estimate emissions as the proportion of the animal’s

gross energy intake which is lost as methane. Neverthe-

less, the Ym introduced by the IPCC do not directly rep-

resent variations in methane emissions determined by

the ruminal fermentation of distinct carbohydrates.

More specifically, the ruminal fermentation of distinct

carbohydrate fractions in the ration leads to the produc-

tion of different volatile fatty acids (VFA), with a

proportional increase in acetate production, and conse-

quently methane, when structural carbohydrates are

fermented (Moe & Tyrrell, 1979). In this context, the

usefulness of Ym based models in examining dietary

related mitigation strategies is limited.

Moreover, the low predictive ability of the Ym

approach may introduce substantial error into the cal-

culation of methane emissions in national and global

greenhouse gas inventories (Ellis et al., 2010). In a recent

study, the prediction ability of several models to esti-

mate methane emissions from enteric fermentation was

evaluated and, in general, predictions were poor (Ellis

et al., 2010). The poor predictive ability of current mod-

els is mainly a result of the relatively small data sets

used for model parameterization and the modeling

techniques used. Furthermore, methane prediction

models, to be used in determining national inventories

and evaluating methane mitigation strategies, should

not require excessive information as model inputs. For

example, mechanistic models of rumen fermentation

(Baldwin et al., 1987; Dijkstra et al., 1992) require

numerous inputs, which are usually not available at the

production system level. Therefore, a balance between

model complexity and predictive ability must be

achieved for the identification of the model with the

best predictive ability from the set of models based on

variables available at the production system level. Such

prediction models should be preferably developed from

databases which are the basis of the current energy

evaluation systems (NRC, 2001) because the determina-

tion of animal energy requirements plays a major role

in the estimation of emissions in national inventories.

In this context, the study objectives were to (i) iden-

tify key explanatory variables in the prediction of

methane emissions; (ii) develop methane emission pre-

diction equations using a large database of dairy and

beef cattle; (iii) conduct a cross-validation of prediction

equations; (iv) examine the improvement in predictive

ability of methane equations with an increase in model

complexity; and (v) investigate the appropriateness of

current models used in determining methane emissions

from cattle enteric fermentation.

Material and methods

Database

A database containing 2574 indirect respiration calorimetry

records of dairy and beef cattle in 62 studies conducted from

1963 to 1995 in the former USDA Energy Metabolism Unit at

Beltsville, Maryland was assembled by Wilkerson et al. (1995,

1997). Indirect respiration calorimetry is the gold standard for

measuring energy flows between the animal and its environ-

ment. The database is a reliable representation of the current

state of knowledge on methane emissions from cattle enteric

fermentation and is the basis of the current energy evaluation

system for feeding dairy cattle (NRC, 2001). The database

comprises individual records of total energy balance trials

from Holstein and Jersey lactating (n = 1,111) and nonlactat-

ing (n = 591) dairy cows; Holstein, Jersey and Angus-Hereford

cross heifers (n = 414) and Holstein, Angus, Hereford and

Angus-Hereford cross steers (n = 458). A general description

of the database and summary statistics of nutrient composi-

tion of diets and animal information are available as support-

ing information (Tables S1 and S2). A comprehensive

description of methane measurement techniques is available

from Moe & Tyrrell (1979). The database was divided into four

sub-data sets: Lactating cows, nonlactating cows, heifers and

steers for which the data analysis is described below.

Model selection

Model development was conducted in a sequential approach,

with increasing model complexity at each level. The objective

of this sequential approach was similar to the IPCC (2006),

which is based on different levels of available information.

Three complexity levels were specified, namely gross energy,

dietary, and animal levels. In the gross energy level, emissions

are predicted using the animal’s gross energy intake. In the

dietary complexity level, diet characteristics (fiber fractions,

crude protein, ether extract, and metabolizable energy), as

well as gross energy intake, are potential predictors. In the

animal complexity level, milk composition (fat, protein, and

nonfat soluble), and animal information (body weight, and

breed), as well as variables from the dietary level are potential

predictors. Gross energy intake was selected as a measure of

animal’s feed consumption to be consistent and comparable

with current national greenhouse gas inventories and to

examine methane emissions from an energy loss perspective.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2140–2148
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However, this explanatory variable may not be available to

some model users. Therefore, three equations are provided as

supporting information for the estimation of dietary gross

energy based on diet nutrient composition (Eqns S1–S3).

Along with dry matter intake, such equations may be accu-

rately used in the calculation of the animal gross energy intake

(see Fig. S1). Explanatory variables, which play a key role in

predicting emissions, at the dietary and animal complexity

levels were selected through a Bayesian model selection pro-

cedure, namely a Reversible Jump Markov Chain Monte Carlo

(RJMCMC) sampler (Lunn et al., 2009). The RJMCMC is a nat-

ural extension of the Metropolis-Hastings algorithm, in which

the sampler is allowed to ‘jump’ between models with param-

eter space of different dimensions. Model selection is then

based on the competing models posterior probabilities (Lunn

et al., 2009). Variables were selected under a linear hierarchical

model, which is described in the following section. The

RJMCMC sampler was implemented in the Bayesian statistical

software WinBUGS (Lunn et al., 2000). The convergence of the

RJMCMC was assessed by the specification of two chains with

over-dispersed initial states, the monitoring of the trace plot of

model state variable and the assessment of similarities

between posterior model probabilities generated by each

chain, as described in Lunn et al. (2009).

Model specification and implementation

In the second part of model development, parameters were

estimated under the selected most probable models at each

level of complexity. A Bayesian framework was adopted, in

which parameters were estimated by Markov Chain Monte

Carlo methods (MCMC) in the statistical software WinBUGS

(Lunn et al., 2000). The Bayesian framework is particularly

interesting here because it naturally accommodates the hierar-

chical structure of the data. Moreover, it allows simple fitting

of models with residuals modeled through a Student’s t distri-

bution, providing robustness for the presence of outlying and

extreme observations (Gelman et al., 2004). Two chains with

over-dispersed initial values were specified for each parame-

ter and chain mixing, auto-correlation, posterior densities and

the Gelman-Rubin diagnostics (Gelman & Rubin, 1992) were

used to visually assess chain convergence and determine the

required burn in period. The tests of the convergence diagnos-

tic and output analysis (CODA) package (Best et al., 1995)

were used to formally assess chains’ convergence. After dis-

carding the burn-in samples, the sampler was run for addi-

tional 250 000 iterations with chain thinning of 10, generating

a posterior of 50 000 samples based on two chains. The linear

hierarchical model is described in terms of three distinct hier-

archy stages, in which tilde (~) is used to indicate ‘distributed

as’ and bold font is used to indicate vector or matrix.

First stage hierarchy. The first stage specifies a model for the

data, conditional on model parameters, through a Student’s t

distribution: yijkjb; ai; dj; r2e ; me � tðxTijkbþ ai þ dj; r2e ; meÞ, where

yijk denotes the kth record (k = 1, …, nij) on the ith animal

(i = 1, …, I) in the jth study (j = 1, …, J), b is the vector of

‘fixed’ (in the frequentist sense) regression coefficients, ai is

the ‘random’ effect of the ith animal, dj is the ‘random’ effect of

the jth study, r2e and me are the scale parameter and the degrees

of freedom parameter of the Student’s t distribution. Further,

superscript T denotes transpose and xijk is the known vector of

covariates selected by the RJMCMC sampler (Note that the

distinction between ‘fixed’ and ‘random’ effects does not arise

in the Bayesian setting since all unknowns are treated as ran-

dom variables. In this manuscript, ‘fixed’ effects have mini-

mally informative priors with known hyperparameters and

‘random’ effects have priors for which hyperparameters

remain to be estimated).

Second stage hierarchy. The second stage specifies distribu-

tions for the ‘random’ effects conditional on their variance

components: aijr2a �Nð0; r2aÞ; djjr2s �Nð0; r2s Þ; where N denotes

the normal distribution, r2a and r2s are the animal and study

variance components.

Third stage hierarchy. The third stage specifies prior distri-

butions for model parameters: b�Np(0, 10
6Ip); r�2

e �Gam

ð10�3; 10�3Þ; me�U(2, 100);ra�U(0, 100); rs�U(0, 100) where

Np denotes the p-dimensional multivariate normal distribu-

tion, Ip is the p-dimensional identity matrix, Gam denotes the

gamma distribution (for which Gam(a, b) has mean = a/b and

variance = a/b2) and U denotes the uniform distribution.

Gamma and uniform distributions are standard choices of

prior distributions to model variance components (Gelman

et al., 2004). Furthermore, this choice of prior distributions is

based on the construction of minimally informative priors

(Gelman et al., 2004) while satisfying the conditions that vari-

ance components are positive and the degrees of freedom

parameter of the Student’s t distribution is greater than two.

Cross-validation and model evaluation

The predictive ability of fitted methane prediction models was

evaluated through K-fold cross-validation (Efron & Tibshirani,

1993) in which folds were composed of individual studies. In

short, the cross-validation scheme generates prediction of

methane emissions of each fold through a model fitted with-

out observations from that fold. The ability of the fitted model

in predicting out of sample observations is then evaluated by

the mean square prediction error (MSPE) as described in Bib-

by & Toutenburg (1977). An estimate of the model MSPE is

derived by averaging the MSPE across folds with the number

of observations from each fold used as a weighting factor. The

root mean square prediction errors (RMSPE), that is, the

square root of the MSPE’s, are reported in two distinct forms.

In the first form, RMSPE’s are reported in the same units

which the methane observations were recorded. This form of

the RMSPE can be used as a measure of the uncertainty associ-

ated with the prediction equations in the sense that it is an

estimate of the mean prediction error. In the second form,

RMSPE’s are reported as a proportion of methane emission

means (observed methane emission means ranged 6.06 to

16.57 MJ/d across the four data sets – see supporting informa-

tion). This second form has the advantage of enabling the

comparison of the RMSPE from different studies and can be

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2140–2148
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used to compare the predictive ability of models fitted with

different data sets.

In addition, the stability of fitted models was examined

through multicollinearity diagnostics, namely variance

inflation factors, condition number and the determinant of the

predictor’s correlation matrix (Belsley et al., 1980). Further-

more, the animal intra-class correlation, or the repeatability of

methane emissions, was estimated as the ratio of the animal

variance component and the total variance, that is

r ¼ r2a
r2aþr2sþr2e ½me=ðme�2Þ�. Fitted prediction models, for each data set,

were compared among complexity levels using the Deviance

Information Criteria (DIC). The DIC is a model assessment

tool to examine the trade-off between model goodness of fit

and complexity, with differences of 5 and 10 DIC units show-

ing a tendency and a substantive improvement respectively

(Spiegelhalter et al., 2002). Predictions of methane emissions

using literature models were: IPCC [CH4 (MJ/d) = 0.065 9

GEI (MJ/d)] and FAO [CH4 (MJ/d) = {(9.75 – 0.05 9 Dry

Matter digestibility, %)/100} 9 GEI (MJ/d)].

Results

The most probable models for each complexity level

and data set as well as their posterior probabilities are

presented in Table 1. Models’ posterior probabilities

were calculated as the proportion of chain iterations the

RJMCMC sampler spent in each competing model and

were used to identify the most probable model condi-

tional on the observed data. Across all complexity

levels and data sets, a most probable model was

identified with relatively large posterior probability

(P > 0.64). Gross energy intake was the key variable in

predicting methane emissions and was present in the

selected models across all complexity levels and data

sets. The variable’s marginal posterior probability (as

defined in Lunn et al., 2009) of gross energy intake

being included in the selected models was equal to

unity in all four data sets. Neutral detergent fiber

(NDF) and ether extract (EE) dietary proportions repre-

sent the fiber and lipid contents of the diet and were

the only diet descriptors which were selected by the

RJMCMC sampler. More specifically, dietary NDF pro-

portion was included in the most probable model of the

lactating cows’ and heifers’ data set and dietary EE pro-

portion was included in the lactating and nonlactating

cows’ data sets.

When the RJMCMC algorithm was allowed to sam-

ple from models for which the parameter space con-

tained animal information and milk composition as

possible covariates, body weight was selected in three

data sets. More specifically, body weight marginal pos-

terior probabilities were large (P > 0.98) in the lactating

cows, heifers and steers datasets. The marginal

Table 1 Model posterior probabilities for the dietary and animal complexity levels and prediction equations for each complexity

level [Gross energy (GE), Animal and Dietary] and data set (Lactating cows, Nonlactating cows, Heifers, and Steers)

Model

Posterior

Probability* Prediction Equation†

LACTATING COWS

GE Level – CH4 = 3.247 (0.429) + 0.043 (0.001) 9 GEI

Dietary Level 0.74 CH4 = 0.225 (0.713) + 0.042 (0.001) 9 GEI + 0.125 (0.015) 9 NDF - 0.329 (0.094) 9 EE

Animal Level 0.86 CH4 = �9.311 (1.060) + 0.042 (0.001) 9 GEI + 0.094 (0.014) 9 NDF - 0.381 (0.092) 9 EE +
0.008 (0.001) 9 BW + 1.621 (0.119) 9 MF

NONLACTATING COWS

GE Level – CH4 = 2.381 (0.153) + 0.053 (0.001) 9 GEI

Dietary Level 0.85 CH4 = 2.880 (0.200) + 0.053 (0.001) 9 GEI - 0.190 (0.049) 9 EE

Animal Level 0.64 CH4 = 2.880 (0.200) + 0.053 (0.001) 9 GEI - 0.190 (0.049) 9 EE

HEIFERS

GE Level – CH4 = 1.289 (0.185) + 0.051 (0.001) 9 GEI

Dietary Level 0.84 CH4 = �0.163 (0.298) + 0.051 (0.001) 9 GEI + 0.038 (0.006) 9 NDF

Animal Level 0.86 CH4 = �1.487 (0.318) + 0.046 (0.001) 9 GEI + 0.032 (0.005) 9 NDF + 0.006 (0.0007) 9 BW

STEERS

GE Level – CH4 = 0.743 (0.119) + 0.054 (0.001) 9 GEI

Dietary Level 0.83 CH4 = 0.743 (0.119) + 0.054 (0.001) 9 GEI

Animal Level 0.87 CH4 = �0.221 (0.151) + 0.048 (0.001) 9 GEI + 0.005 (0.0005) 9 BW

*The posterior probability of a competing model m, conditional on the observed data is estimated by the proportion of chain itera-

tions the reversible jump sampler spent in model m.

†Equations are presented as parameter posterior means and standard deviation in parenthesis. CH4, Methane emissions (MJ/d);

GEI, Gross energy intake (MJ/d); NDF, Dietary neutral detergent fiber proportion (% of dry matter); EE, Dietary ether extract

proportion (% of dry matter); BW, Body Weight (kg); MF, Milk fat (%).

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2140–2148
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probability of body weight inclusion was 0.12 in the

steers’ dataset. Milk fat percentage was also present in

the most probable model at the animal complexity level

for the lactating cows’ data set. The high marginal pos-

terior probability of milk fat being included in the

selected models (P = 1) suggests that milk fat percent-

age has an important role in predicting methane emis-

sions from enteric fermentation. Cattle’s breed

marginal posterior probabilities were very low for all

data sets (P < 0.13). The effect of breed on methane

emissions was not evident on any animal category, sug-

gesting that there are no differences on methane emis-

sions between the examined breeds when dietary

nutrient composition, gross energy intake and body

weight are already accounted in the model.

Estimates of variance components, repeatability, the

degrees of freedom parameter of the Student’s t distri-

bution as well as their 95% Monte Carlo Credible Inter-

vals are in Table 2. Model evaluation statistics are in

Table 3. The increase in model complexity, that is,

allowing the RJMCMC to sample from models which

contain dietary and animal information as covariates,

resulted in models which are better supported by the

observed data. For all data sets, models fitted at the die-

tary and animal complexity levels presented smaller

DIC’s (Table 3) than models fitted with gross energy

intake as the only predictor. Moreover, models fitted at

the animal complexity level presented smaller DIC’s

than models fitted at the dietary complexity level, given

that different models were selected at these two com-

plexity levels. Therefore, including dietary and animal

information improved model goodness of fit and

resulted in models which are better supported by the

observed data. The RMSPE’s from fitted models and

from the IPCC (2006) and FAO (2010) models are

reported in Table 3. From a prediction perspective, the

inclusion of the selected dietary variables as predictors

did not reduce prediction errors substantially when

compared with models fitted with gross energy intake

as the only predictor. Conversely, the inclusion of ani-

mal information, more specifically body weight and

milk fat percentage in the steers and lactating cow’s

data sets, respectively, reduced substantially the

RMSPE when compared with models from the gross

energy intake and dietary complexity levels.

As a final step of model evaluation, we have calcu-

lated variance inflation factors, condition numbers and

the determinant of the predictor’s correlation matrix for

models fitted at the dietary and animal complexity lev-

els (Table 4). These calculations investigate the degree

of multicollinearity in the fitted models because it can

be expected, from a biological perspective, that some

covariates in the selected models might be moderately

correlated. For example, gross energy intake with body

weight and dietary NDF proportion with milk fat per-

centage. Variance inflation factors were below 1.5 for

Table 2 Variance components, repeatability and degrees of freedom parameter of the Student’s t distribution of the models from

the gross energy (GE), Animal and Dietary complexity levels in each data set (Lactating cows, Nonlactating Cows, Heifers, and

Steers)*, †.

Model re
2 ra

2 rs
2 r ve

LACT. COWS

GE Level 2.69 (2.17, 3.30) 2.38 (1.72, 3.17) 3.09 (1.75, 5.18) 0.23 (0.16, 0.31) 4.62 (3.26, 6.78)

Dietary Level 2.42 (1.96, 2.97) 2.46 (1.79, 3.26) 4.04 (2.31, 6.83) 0.22 (0.16, 0.30) 4.60 (3.21, 6.87)

Animal Level 2.49 (2.02, 3.02) 1.74 (1.20, 2.39) 2.50 (1.31, 4.47) 0.22 (0.15, 0.30) 7.14 (4.28, 13.03)

NONLACTATING

GE Level 0.29 (0.22, 0.37) 0.57 (0.38, 0.80) 0.81 (0.45, 1.31) 0.26 (0.17, 0.37) 3.38 (2.44, 4.71)

Dietary Level 0.28 (0.21, 0.35) 0.56 (0.38, 0.79) 0.87 (0.48, 1.49) 0.28 (0.21, 0.35) 3.28 (2.40, 4.52)

Animal Level 0.28 (0.21, 0.35) 0.56 (0.38, 0.79) 0.87 (0.48, 1.49) 0.28 (0.21, 0.35) 3.28 (2.40, 4.52)

HEIFERS

GE Level 0.50 (0.36, 0.68) 0.15 (0.07, 0.27) 0.59 (0.17, 1.63) 0.08 (0.03, 0.16) 4.11 (2.56, 7.01)

Dietary Level 0.48 (0.35, 0.66) 0.12 (0.04, 0.22) 1.33 (0.42, 3.66) 0.05 (0.02, 0.11) 4.67 (2.68, 9.11)

Animal Level 0.37 (0.26, 0.51) 0.10 (0.04, 0.19) 0.89 (0.27, 2.44) 0.06 (0.02, 0.12) 3.73 (2.36, 6.25)

STEERS

GE Level 0.21 (0.15, 0.28) 0.09 (0.04, 0.15) 0.63 (0.18, 1.93) 0.04 (0.005, 0.10) 2.45 (2.02, 3.25)

Dietary Level 0.21 (0.15, 0.28) 0.09 (0.04, 0.15) 0.63 (0.18, 1.93) 0.04 (0.005, 0.10) 2.45 (2.02, 3.25)

Animal Level 0.17 (0.13, 0.23) 0.09 (0.04, 0.15) 0.35 (0.09, 1.05) 0.07 (0.01, 0.14) 2.61 (2.04, 3.55)

*Parameters are reported as posterior means and 95% Monte Carlo Credible Intervals in parentheses.

†re
2 is the scale parameter of the Student’s t distribution, ra

2 is the animal variance component, rs
2 is the study variance component,

r is the repeatability or the intraclass correlation {i.e., ra
2/[ra

2 + rs
2 + re

2 ve/(ve - 2)]} and ve is the degrees of freedom parameter of

the Student’s t distribution.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 2140–2148
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all models. Multicollinearity issues often arise when

variance inflation factors are larger than 10 (Chatterjee

et al., 2000). The determinant of the predictor’s correla-

tion matrix ranges from zero to one, in which a model

with a perfect linear combination between predictors

has a determinant of zero and a model with no multi-

collinearity has a determinant of one. The determinants,

in our models, were substantially distant from zero,

ranging from 0.53 to 0.99. Finally, the condition number

indicates possible issues with multicollinearity when

the number is between 10 and 30 and the presence of

multicollinearity when the number is greater than 30

(Belsley et al., 1980). The condition numbers from our

study are below 1.95, confirming that multicollinearity

is not an issue with our prediction models and parame-

ters are stable.

Discussion

Key explanatory variables to predict methane emissions

were identified for various animal categories and used

to fit linear hierarchical models. Dietary NDF and EE

proportions were identified as key dietary variables in

predicting enteric methane emissions of distinct cattle

categories. The type of dietary carbohydrates (struc-

tural vs. nonstructural) fermented in the rumen plays a

major role in determining the profile of ruminal VFA’s

(Murphy et al., 1982) and consequently on methane

emissions (Moe & Tyrrell, 1979). The absence of NDF in

the selected models under the nonlactating cows’ and

steers’ data sets suggests that factors other than dietary

carbohydrate type have a major role in determining

methane emissions in these two data sets. In the study

by Moe & Tyrrell (1979), the effect of carbohydrate type

on methane emissions was relatively less important at

low intake levels, suggesting that methane emissions of

cattle at low intake levels can be predicted from dry

matter or digestible carbohydrate intake. Furthermore,

the slopes of the NDF variable were positive (and ‘sig-

nificantly’ different from zero, in the sense that their

95% Monte Carlo Credible Intervals did not overlap

zero) across all complexity levels and selected data sets.

Therefore, methane emissions are on average reduced

when comparing pairs of diets that have reduced NDF

proportion and are identical in the other covariates.

Table 3 Deviance information criteria and root mean square

prediction error (MJ/d and% of the CH4 mean) for the fitted

equations in each complexity level [Gross energy (GE), Ani-

mal and Dietary] for each data set (Lactating cows, nonlactat-

ing cows, heifers, and steers) and for the IPCC (2006) and

FAO (2010) models

Model DIC*

RMSPE

(MJ/d)†

RMSPE

(% of CH4 mean)†

LACTATING COWS

GE Level 1.811 3.01 18.14

Dietary Level 1.707 2.97 17.89

Animal Level 1.402 2.59 15.62

IPCC (2006) – 5.06 30.50

FAO (2010) – 4.93 29.74

NONLACTATING COWS

GE Level �225.6 1.25 13.95

Dietary Level �243.1 1.29 14.42

Animal Level �243.1 1.29 14.42

IPCC (2006) – 1.67 18.61

FAO (2010) – 1.92 21.40

HEIFERS

GE Level �19.97 1.21 18.25

Dietary Level �56.02 1.25 18.88

Animal Level �119.9 1.23 18.55

IPCC (2006) – 1.23 18.55

FAO (2010) – 1.27 19.15

STEERS

GE Level �253.3 1.00 16.47

Dietary Level �253.3 1.00 16.47

Animal Level �351.0 0.92 15.10

IPCC (2006) – 1.17 19.22

FAO (2010) – 1.29 21.28

*Deviance information criteria. Trade-off between model

goodness-of-fit and Complexity (Spiegelhalter et al., 2002).

Models with smaller DIC are better supported by the data.

†Square root of the mean square prediction error, expressed in

MJ/d and as a percentage of the methane emissions means.

Table 4 Variance inflation factors, determinant of the predic-

tor’s correlation matrix and condition numbers for the dietary

and animal complexity levels models in each data set (Lactat-

ing cows, nonlactating cows, heifers, and steers)

Model

Largest

VIF* |R|†

Condition

Number‡

Lactating Cows

Dietary Level 1.23 0.81 1.59

Animal Level 1.46 0.53 1.95

NonLactating Cows

Dietary Level 1.09 0.99 1.10

Animal Level 1.09 0.99 1.10

Heifers

Dietary Level 1.02 0.98 1.15

Animal Level 1.25 0.79 1.64

Steers

Dietary Level – – –

Animal Level 1.28 0.78 1.67

*Largest variance inflation factor for each model. VIF‘s =
diag {R�1}, where R is the predictors’ correlation matrix.

Multicollinearity issues when VIF > 10.

†Determinant of the predictor’s correlation matrix R, 0 indi-

cates 100% collinearity, 1 indicates no collinearity.

‡Condition Number =
ffiffiffiffiffiffiffi
kmax

kmin

q
where k denotes eigenvalue of R,

>30 indicates multicollinearity issues.
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The increase in methane emissions with increased die-

tary fiber proportion is consistent with results from the

literature because the role of dietary fiber proportion

and carbohydrate type on ruminal fermentation and

methane emissions is well established (Moe & Tyrrell,

1979; Murphy et al., 1982).

Dietary EE proportion, which represents the lipid

component of feedstuffs, was present in the models

selected for the lactating cows and nonlactating cows’

data sets. The inclusion of lipids in the diet has been

reported by recent studies (Martin et al., 2010; Grainger

& Beauchemin, 2011) as potential methane mitigation

strategies. However, the steers and heifers most proba-

ble models did not contain dietary ether extract. Die-

tary EE marginal posterior probabilities were 0.07 and

0.003 for the heifers’ and steers’ data sets, respectively.

Nevertheless, it is important to note that not only the

proportion of dietary lipid but also the lipid form and

type, has the potential of altering ruminal fermentation

and consequently methane emissions. The efficacy of

different forms of dietary lipid supplementation is not

addressed by our analysis and can be found elsewhere

(Martin et al., 2010; Grainger & Beauchemin, 2011). The

slope of the EE covariate was negative (and ‘signifi-

cantly’ different from zero, in the sense that their 95%

Monte Carlo Credible Intervals did not overlap zero)

for all complexity levels and selected data sets, indicat-

ing that methane emissions are decreased when dietary

EE content is increased. The magnitude of the emis-

sions response to dietary fat in our study ranged from

0.19 to 0.38 (MJ of methane/% of dietary EE), suggest-

ing that there is an average decrease of 0.19–0.38 MJ of

methane for every percentage increase in dietary EE

when other covariates are at identical level.

Similarly, animals’ body weight was selected by the

RJMCMC algorithm as a key explanatory variable in

predicting emissions. The importance of body weight

in explaining methane emissions from enteric fermenta-

tion can be attributed to the relationship between body

weight and gut capacity, because gut volume is propor-

tional to body weight (Demment & Van Soest, 1985).

More specifically, Smith & Baldwin (1974) found that

ruminal weight was proportional to body weight of

dairy cows. Furthermore, the kinetics of ruminal feed

particles plays a key role in diet digestibility which is

dependent on rumen volume and feed intake (Van So-

est, 1994). In this context, animals with different body

weights, when consuming similar amounts of a com-

mon diet, would present different ruminal passage

rates and amounts of fermented feed. This difference in

ruminal kinetics would alter volatile fatty acid produc-

tion and consequently methane emissions. Likewise,

milk fat percentage was also included in the most

probable model at the animal complexity level for the

lactating cows’ data set. Fat is the most variable compo-

nent in milk and is highly dependent on diet composi-

tion and ruminal fermentation characteristics (Bauman

& Griinari, 2003). The positive coefficient of the milk fat

percentage may be explained by the relationship

between acetate production and milk fat content. Ace-

tate is the major precursor for de novo milk fat synthe-

sis and acetate production in the rumen is associated

with a net generation of hydrogen which is available

for methanogenesis. Moreover, recent studies have

determined relationships between milk fatty acid com-

position and methane emissions and concluded that

milk fatty acid composition may be potential predictors

of rumen fermentation and methane emissions when

used along with dietary variables (Dijkstra et al., 2011;

Mohammed et al., 2011). Finally, the effect of breed on

methane emissions was not evident on any animal cate-

gory, suggesting that there are no differences on meth-

ane emissions between the examined breeds when

dietary nutrient composition, gross energy intake and

body weight are already accounted in the model. The

absence of breed based differences on methane emis-

sions when feed intake and production status are con-

trolled are consistent with results from the literature

(Munger & Kreuzer, 2006, 2008; Klevenhusen et al.,

2011) in which no differences between breeds of dairy

cattle on methane emissions were observed.

It is beyond the scope of our study to conduct a com-

plete analysis of methane emissions genetic parameters.

However, from an animal breeding perspective, the in-

traclass correlation represents the repeatability, which

is the proportion of the phenotypic variance due to

genetic and permanent environmental effects and sets

the upper bound of the heritability (Falconer & Mackay,

1996). Recently, there has been an increasing interest in

estimates of methane emissions repeatabilities and her-

itabilities in ruminants because breeding for low emit-

ting animals has been suggested as a long term

mitigation strategy (De Haas et al., 2011). Our repeata-

bilities estimates were substantially lower than the ones

from the literature. In the lactating and nonlactating

cows’ data sets, repeatabilities ranged from 0.22 to 0.28

and in the heifers and steers data sets, repeatabilities

ranged from 0.04 to 0.08. Repeatability estimates of 0.59

for daily methane emissions were reported by Vlaming

et al. (2008) in nonlactating dairy cows in New Zealand.

It is important to note that although dairy cows in New

Zealand may be from similar lineage to northern Amer-

ican Holstein cows, they have been selected for differ-

ent traits over the past five decades (milk production

on grazing systems vs. milk production on relatively

higher concentrate diets). Similarly, De Haas et al.

(2011) estimated heritabilities of predicted daily meth-

ane emissions of 0.35 for dairy cows in the Netherlands.
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It is important to note that our relatively low repeatabil-

ity estimates may be a result of the cross-sectional

structure of the data. Most of the studies were con-

ducted under Latin square and crossover experimental

designs in which animals received distinct dietary

treatments at each experimental period. It is possible

that higher repeatability estimates would be derived if

methane measurements were taken throughout the lac-

tation or feeding period instead of under distinct

dietary experimental treatments.

Generally, including dietary and animal information

improved model goodness-of-fit and resulted in models

which are better supported by the observed data. The

identification of models which are better supported by

the data plays an important role in the examination of

methane emissions mitigation strategies and environ-

mental policies. The misspecification of the model struc-

ture can introduce bias in parameter estimation and the

conclusions about the response of methane emissions to

changes in explanatory variables are likely to be incor-

rect. For example, examining the effects of dietary fat

proportion on methane emissions from a model with

dietary fat as the only predictor can cause the estimation

of biased parameters and incorrect conclusions if

other parameters that influence the response are not

accounted in the model. Further, the RMSPE’s of the

estimated prediction models were substantially lower

than the ones from the IPCC (2006) and FAO (2010) pre-

diction models, either at the gross energy, dietary or ani-

mal complexity level. For instance, in the lactating

cows’ data set, the model fitted with the gross energy

intake as its only covariate has a substantially lower pre-

diction error than the IPCC model (18.14 vs. 30.50%).

Across all data sets, the models developed only using

gross energy intake as predictors have a lower RMSPE

than the models from the IPCC (2006) and FAO (2010).

Therefore, using the models fitted in this study, meth-

ane emissions from Northern American cattle can be

predicted using the same amount of information

required by the IPCC (2006) Tier II methodology, but

with a substantial reduction in the prediction error.

Moreover, RMSPE’s from our methane prediction equa-

tions are smaller than the ones calculated by Ellis et al.

(2010) in which several methane prediction models

were evaluated by a literature derived database and a

database of individual cows. The magnitude of the

RMSPE of our prediction equations is also smaller than

the ones calculated by Ellis et al. (2007) and Mills et al.

(2003) in which linear and nonlinear models were devel-

oped and evaluated using a literature database and data

from the Metabolism Unit of the Centre for Dairy

Research at the University of Reading, respectively.

It is important to note that prediction models have

intrinsic limitations. For example, most diets used in

model development had relatively high-forage con-

tents compared to a typical northern American beef

cattle feedlot diets. Consequently, equations for steers

and heifers may not be applicable to finishing feedlot

diets. Furthermore, data were collected in respiration

chambers and may not be applicable to grazing condi-

tions. Dietary nutrient composition may be consider-

ably different in grazing systems and feeding behavior

may also affect emissions. Therefore, equations should

be used with caution if predictions are to be made in

grazing systems. With such limitations in mind, we

propose various models for predicting emissions from

dairy and beef cattle which require different levels of

information and can be used in the development

of greenhouse gas inventories having various levels of

detail. In particular, prediction models with gross

energy intake as the only explanatory variable outper-

formed the IPCC tier II methodology and can be read-

ily implemented in greenhouse gas inventories

because both methodologies use the same explanatory

variable. Further, the use of the models developed in

this study will advance the examination of diet related

methane emissions mitigation strategies and regulatory

policies.
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