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Abstract: Developmental disabilities are often associated with alterations in metabolism. However,
it remains unknown how early these metabolic issues may arise. This study included a subset of
children from the Markers of Autism Risks in Babies—Learning Early Signs (MARBLES) prospec-
tive cohort study. In this analysis, 109 urine samples collected at 3, 6, and/or 12 months of age
from 70 children with a family history of ASD who went on to develop autism spectrum disorder
(ASD n = 17), non-typical development (Non-TD n = 11), or typical development (TD n = 42) were
investigated by nuclear magnetic resonance (NMR) spectroscopy to measure urinary metabolites.
Multivariate principal component analysis and a generalized estimating equation were performed
with the objective of exploring the associations between urinary metabolite levels in the first year of
life and later adverse neurodevelopment. We found that children who were later diagnosed with
ASD tended to have decreased urinary dimethylamine, guanidoacetate, hippurate, and serine, while
children who were later diagnosed with Non-TD tended to have elevated urinary ethanolamine
and hypoxanthine but lower methionine and homovanillate. Children later diagnosed with ASD
or Non-TD both tended to have decreased urinary 3-aminoisobutyrate. Our results suggest subtle
alterations in one-carbon metabolism, gut-microbial co-metabolism, and neurotransmitter precursors
observed in the first year of life may be associated with later adverse neurodevelopment.

Keywords: autism spectrum disorder; children; biochemical markers; metabolome; NMR; serine;
hippurate; tryptophan

1. Introduction

Rapid periods of neurodevelopment initiate prenatally and continue through early
infancy [1]. Intricate interactions between genetics, nutrition, and environmental influences
occurring during these critical periods of development have been associated with develop-
mental disabilities [2,3]. Developmental disabilities are estimated to affect about one in six
(17%) children aged 3–17 in the United States [4]. These include autism spectrum disorder
(ASD), schizophrenia, learning disability, cerebral palsy, and language and speech disorders.
Moreover, although developmental disabilities affect learning, language, and behavior, an
increasing body of evidence supports the view that developmental disabilities are often
accompanied by disturbances in metabolism which affect various systems involved in
complex and highly interdependent ways [5].

Metabolomics analysis offers unique insight into perturbances of metabolism as
metabolites are products and intermediate molecules of metabolic pathways occurring
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throughout a biological system. Additionally, alterations at the metabolome level reflect
disturbances in the genomics, transcriptomics, and proteomics cascade, and bridge the gap
between the genome and phenotype. Ongoing studies are actively seeking to understand
how complex interactions between genes, environment, microbiome, and metabolome
affect autism [6], as numerous abnormal metabolic pathways have previously been found
in the urine and blood of children with ASD [7]. In our previous work, we conducted a
plasma metabolomics investigation in 3- to 5-year-old children with ASD (n = 167), Down
syndrome (DS, n = 31), and idiopathic developmental disabilities (i-DD, n = 51) compared
to typically developing (TD, n = 193) children [8]. Despite the varied origins of these
developmental disabilities, we found similar perturbations in one-carbon-related metabolic
pathways among ASD cases and DS children. Additionally, similarities were also found
among DS and i-DD cases in the tricarboxylic acid cycle (TCA), with similar trends ob-
served among ASD cases. These findings contribute to the growing evidence of metabolic
disturbances seen among children with ASD in particular metabolic pathways such as
one-carbon-related metabolism, which has repeatedly been implicated in autism [9–14].
Several other metabolic pathways have also repeatedly been associated with ASD, for
example, alterations in amino acids that function as neurotransmitter precursors including
tryptophan and glutamine [12,15–18]. Alterations in gut-microbial-derived metabolites,
such as hippurate and p-cresol, have also repeatedly been implicated in ASD, suggesting
alterations in the microbiota–gut–brain axis [12,19–23]. However, it remains unknown
how early metabolic abnormalities may arise in ASD and other developmental disabilities.
Investigating early metabolic trajectories—even before neurodevelopmental diagnoses are
made—may help guide strategies that directly target metabolism and possibly reduce ASD
incidence/severity.

The objective of the present study was to investigate early alterations in key metabolic
pathways by investigating differences in the urinary metabolome of infants at 3, 6, and
12 months of age in children who were later diagnosed with ASD, or non-typical devel-
opment (Non-TD), compared to neurotypical controls (TD). By investigating ASD, and
Non-TD, compared to TD controls, we can better characterize metabolic differences and
similarities associated with these neurodevelopmental disabilities. Building off the ex-
isting literature and our previous analysis, we hypothesized a priori that alterations in
one-carbon-metabolism-related metabolites (serine, betaine, N,N-dimethylglycine, glycine,
choline, methionine, 2-aminobutyrate, and 2-hydroxybutyrate) would differ among chil-
dren with ASD compared to TD controls. Additionally, we hypothesized some overlap
between Non-TD and ASD children including TCA cycle metabolites (2-oxoglutarate,
cis-aconitate, citrate, fumarate, succinate) though expected Non-TD cases to also have
unique metabolic differences distinguishing them from ASD and TD. Differences were also
expected in urinary-specific metabolites produced by the gut microbiome (e.g., hippurate)
among ASD children compared to Non-TD and TD. Overall, our goal was to investigate
the early urinary metabolome differences associated with later adverse neurodevelopment,
focusing on key metabolic pathways repeatedly implicated in ASD.

2. Results

Table 1 shows the study population demographics for this subset of MARBLES par-
ticipants. More ASD cases were males compared to females, as expected due to the 4:1
male-to-female ratio seen in autism across the literature, though the proportion of males to
females was about equal among those with TD and Non-TD in our study population. In our
study population, children with non-TD tended to be younger at the age of introduction to
complementary foods/solids compared to ASD and TD cases, but this was not statistically
significant. Breastfeeding duration was similar across diagnoses, with most children still
receiving some/any breastmilk beyond 12 months of age; there was no difference based
on diagnosis, although TD children tended to receive breastmilk longer compared to ASD
and Non-TD cases. Racial/ethnic proportions were also similar between ASD, Non-TD,
and TD groups, with about equal frequencies of White, Hispanic, or other ethnicities.
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Socioeconomic factors were also similar across groups, with most participants’ parents
having used private insurance to pay for the child’s delivery, although a greater proportion
of mothers of children with ASD tended to be renters compared to mothers of children
with non-TD or TD, but this was not statistically significant. Similarly, maternal level of
education did not differ significantly across groups; however, mothers of children with
Non-TD tended to be less educated than mothers of children with TD or ASD. Interestingly,
most mothers in our study population tended to be older with no significant difference
observed between groups. Figure 1 illustrates the flow chart of the sample selection for
the study.

Metabolomics analysis was performed on children with ASD (n = 17), Non-TD (n = 11),
and TD (n = 42) to investigate urinary metabolite differences at 3, 6, and 12 months of
age. A total of 83 metabolites of diverse chemical classes were identified in urine sam-
ples and included in an overall analysis. These included amino acids and their metabo-
lites (1-methylnicotinamide, 2-oxobutyrate, 3-aminoisobutyrate, 3-hydroxyisovalerate, 3-
methylhistidine, 4-aminobutyrate, asparagine, carnosine, creatine, creatinine, guanidoac-
etate, histidine, lysine, proline, taurine, threonine, and urocanate), branched-chain amino
acids (BCAA) and their metabolites (3-hydroxy-3-methylglutarate, 3-hydroxyisobutyrate,
isoleucine, leucine, and valine), glycolysis-related metabolites (lactate, pyruvate, and alanine),
bacterial co-metabolites (1,2-propanediol, dimethyl sulfone, hippurate, trimethylamine, and
trimethylamine-n-oxide), ketone bodies (3-hydroxybutyrate, acetoacetate, and acetone), lipid
metabolism (carnitine and o-acetylcarnitine), short-chain fatty acids (acetate, butyrate, and
propionate), one-carbon metabolism (choline, serine, betaine, N,N-dimethylglycine, glycine,
methionine, 2-aminobutyrate, and 2-hydroxybutyrate), neurotransmitter precursors (pheny-
lalanine, tyrosine, glutamate, glutamine, tryptophan (and its metabolite 3-indoxylsulfate)),
sugars and their derivatives (fucose, galactose, gluconate, glucose, lactose, mannitol, and
myo-inositol), tricarboxylic acid cycle (TCA) metabolites (2-oxoglutarate, cis-aconitate, citrate,
fumarate, and succinate), and others (2-hydroxyisobutyrate, 4-hydroxyphenylacetate, adipate,
ascorbate, dimethylamine, ethanolamine, ethylmalonate, formate, glycolate, homovanillate,
hypoxanthine, methanol, methylguanidine, pantothenate, quinolinate, trigonelline, uracil,
urea, and xanthosine).

Table 1. Characteristics of the study participants by neurodevelopmental diagnosis.

Diagnosis

N = 70 TD
(N = 42)

ASD
(N = 17)

Non-TD
(N = 11) p-Value a

Child sex, n (%)
Female 21 (50.00%) 02 (11.76%) 06 (54.55%) 0.016 *
Male 21 (50.00%) 15 (88.24%) 05 (45.45%)

Child race/ethnicity, n (%)
Non-Hispanic White 15 (35.71%) 07 (41.18%) 05 (45.45%) 0.55

Hispanic, any race 15 (35.71%) 04 (23.53%) 05 (45.45%)
Other b 12 (28.57%) 06 (35.29%) 01 (09.09%)

Age (months) of introduction to complementary foods/solids, mean (SD)
5.42 (0.92) 5.39 (1.04) 4.78 (1.30) 0.19

Age (months) when breastfeeding stopped, mean (SD)
14.2 (9.38) 12.2 (8.99) 13.1 (9.84) 0.76

Maternal age at child’s birth (years), mean (SD)
35.11 (4.60) 34.41 (3.93) 34.55 (4.70) 0.77

Maternal education, n (%)
Some college or less 20 (47.62%) 09 (52.94%) 07 (63.64%) 0.63
Bachelor’s or higher 22 (52.38%) 08 (47.06%) 04 (36.36%)
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Table 1. Cont.

Diagnosis

N = 70 TD
(N = 42)

ASD
(N = 17)

Non-TD
(N = 11) p-Value a

Insurance delivery type c, n (%)
Private 34 (85.00%) 14 (82.35%) 08 (72.73%) 0.61
Public 06 (15.00%) 03 (17.65%) 03 (27.27%)

Parental homeownership c, n (%)
Renter 14 (35.00%) 09 (56.25%) 04 (36.36%) 0.33

Homeowner 26 (65.00%) 07 (43.75%) 07 (63.64%)
a p-value from the Pearson’s chi-squared test for categorical variables and ANOVA test for continuous variables,
* p-value < 0.05; b includes Black/African American (1%), Asian (17%), and multiracial (1%); c missing infor-
mation (n): age (months) at the introduction to complementary foods/solids (3), insurance delivery type (2),
homeownership (3).

Figure 1. Flow chart of study population selection.

Multivariate PCA analysis was used to investigate inherent patterns in the metabolomic
profiles (Figure 2). On the scores plot, each point represents a sample, and the loadings
plot indicates the contribution of the measured metabolites to the principal components.
Principal component 1 (PC1) accounted for 21.5% of the variation, and PC2 accounted for
9% of the variation on the scores plot. Clear differences in the urinary metabolic profile
were observed based on time point, with tighter clustering observed at 3 months and
dispersing at 12 months. However, there was no distinguishable cluster based on later neu-
rodevelopmental diagnosis, indicating the urinary metabolome in the first year of life did
not clearly distinguish metabolic profile based on a later neurodevelopmental diagnosis.
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Figure 2. A comparison of the urinary metabolic profile of children with ASD, Non-TD, and TD at 3,
6, and 12 months of age based on PCA analysis. The shapes and colors indicate neurodevelopmental
diagnosis and time points according to the legend. (A) PCA plot of participants. On the x-axis,
PC1 accounts for 21.5% of the variation, and on the y-axis, PC2 accounts for 9% of the variation.
(B) Corresponding loadings plot for PCA plot. The loadings plot indicates the contribution of the
measured metabolites to the principal components. (C) Same as in A; however, PCA (top) and PCA
centroid (bottom) plots are color-coded based on time point with clear differences in the urinary
metabolome based on time point (3, 6, and 12 months of age) along with principal component 1
(PC1). (D) Same PCA plot as shown in A; however, PCA (top) and PCA centroid (bottom) plots are
color-coded by diagnosis showing substantial overlap regardless of neurodevelopmental diagnosis.
PCA and loadings plot for each time point: (E) 3 months, (F) 6 months, and (G) 12 months.
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Subsequently, GEE analysis was used to evaluate changes in the urinary metabolome
in association with neurodevelopmental outcome (with TD as reference) while controlling
for the child’s sex, age of introduction to solid foods, race and ethnicity, and parental
homeownership (Table 2). In general, children who went on to develop ASD had decreased
urinary dimethylamine (estimate: −0.036; 95% CI: −0.065, −0.007), guanidoacetate (es-
timate: −0.109; 95% CI: −0.210, −0.007), hippurate (estimate: −0.136; 95% CI: −0.247,
−0.025), and serine (estimate: −0.083; 95% CI: −0.155, −0.012) compared to children
who were later diagnosed with TD, while children who went on to develop Non-TD
had higher urinary ethanolamine (estimate: 0.074; 95% CI: 0.029, 0.118) and hypoxan-
thine (estimate = 0.098; 95% CI: 0.007, 0.188) but lower methionine (estimate: −0.085; 95%
CI: −0.167, −0.002) and homovanillate (estimate = −0.085; 95% CI: −0.154, −0.016) com-
pared to children who went on to have typical development. Urinary 3-aminoisobutyrate
was similarly lower among children who were later diagnosed with ASD (estimate: −0.291;
95% CI: −0.429, −0.008) and Non-TD (estimate: −0.278; 95% CI: −0.486, −0.069) compared
to controls. Effect size differences for metabolites of interest are presented in Figure 3.

Table 2. Changes (β) in metabolite concentrations of children with ASD and Non-TD compared to
TD controls estimated by GEE analysis. Models were adjusted for the child’s sex, age of introduc-
tion to complementary foods, child’s race/ethnicity, and parental homeownership. p-values <0.05
(unadjusted) are shown in bold.

Class/Pathways Metabolite 1 Dx β (95% CI) p

Amino acid metabolism

1-Methylnicotinamide ASD −0.002 (−0.1161, 0.1112) 0.967

Non-TD 0.098 (−0.0270, 0.2237) 0.124

2-Oxobutyrate ASD −0.026 (−0.1103, 0.0577) 0.540

Non-TD 0.075 (−0.0458, 0.1953) 0.225

3-Aminoisobutyrate ASD −0.219 (−0.4293, −0.0085) 0.041

Non-TD −0.278 (−0.4866, −0.0698) 0.009

3-Hydroxyisovalerate ASD −0.047 (−0.1462, 0.0521) 0.352

Non-TD −0.096 (−0.2133, 0.0221) 0.111

3-Methylhistidine ASD −0.029 (−0.1085, 0.0506) 0.476

Non-TD −0.004 (−0.0961, 0.0887) 0.938

4-Aminobutyrate ASD 0.002 (−0.0767, 0.0798) 0.969

Non-TD −0.031 (−0.1270, 0.0645) 0.523

Asparagine ASD 0.016 (−0.0916, 0.1233) 0.773

Non-TD 0.000 (−0.1078, 0.1084) 0.995

Carnosine
ASD −0.104 (−0.2706, 0.0637) 0.225

Non-TD −0.011 (−0.2039, 0.1824) 0.913

Creatine
ASD −0.213 (−0.5197, 0.0934) 0.173

Non-TD 0.164 (−0.0916, 0.4185) 0.209

Creatinine
ASD −0.006 (−0.1383, 0.1258) 0.926

Non-TD −0.030 (−0.1717, 0.1109) 0.673

Guanidoacetate
ASD −0.109 (−0.2103, −0.007) 0.036

Non-TD −0.015 (−0.1049, 0.0753) 0.747

Histidine
ASD −0.078 (−0.2056, 0.0492) 0.229

Non-TD −0.008 (−0.1497, 0.1330) 0.908

Lysine ASD −0.050 (−0.1868, 0.0869) 0.475

Non-TD −0.085 (−0.2245, 0.0553) 0.236

Proline
ASD −0.027 (−0.1184, 0.0651) 0.569

Non-TD 0.007 (−0.0810, 0.0953) 0.874
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Table 2. Cont.

Class/Pathways Metabolite 1 Dx β (95% CI) p

Taurine
ASD −0.011 (−0.1662, 0.1436) 0.886

Non-TD 0.010 (−0.1274, 0.1481) 0.883

Threonine
ASD 0.022 (−0.0729, 0.1175) 0.647

Non-TD 0.090 (−0.0200, 0.1990) 0.109

Urocanate
ASD 0.027 (−0.0630, 0.1168) 0.558

Non-TD 0.069 (−0.0402, 0.1772) 0.217

Branched chain amino acid
metabolism, amino acid

metabolism

3-Hydroxy−3-
methylglutarate

ASD −0.006 (−0.0550, 0.0430) 0.809

Non-TD −0.002 (−0.0519, 0.0489) 0.954

3-Hydroxyisobutyrate ASD −0.007 (−0.0905, 0.0767) 0.871

Non-TD 0.042 (−0.0409, 0.1256) 0.319

Isoleucine
ASD −0.012 (−0.0909, 0.0665) 0.761

Non-TD 0.030 (−0.0467, 0.1065) 0.444

Leucine
ASD −0.009 (−0.0968, 0.0791) 0.843

Non-TD −0.010 (−0.1155, 0.0952) 0.850

Valine
ASD 0.012 (−0.0586, 0.0830) 0.736

Non-TD 0.001 (−0.0806, 0.0835) 0.973

Glutathione metabolism
2-Aminobutyrate ASD −0.055 (−0.1982, 0.0887) 0.455

Non-TD −0.030 (−0.1866, 0.1257) 0.702

Glutathione metabolism, amino
acid metabolism

2-Hydroxybutyrate ASD −0.023 (−0.1304, 0.0842) 0.673

Non-TD 0.003 (−0.0922, 0.0973) 0.958

Glycine, serine, and threonine
metabolism, homocysteine

metabolism, lipid metabolism
Choline

ASD 0.010 (−0.1479, 0.1671) 0.905

Non-TD −0.025 (−0.0991, 0.0500) 0.518

Glycine, serine, and threonine
metabolism, one-carbon
metabolism, amino acid

metabolism

Serine
ASD −0.083 (−0.1549, −0.0117) 0.023

Non-TD −0.058 (−0.1282, 0.0132) 0.111

Glycine, serine, and threonine
metabolism, homocysteine

metabolism

Betaine
ASD 0.067 (−0.0519, 0.1863) 0.269

Non-TD −0.052 (−0.2141, 0.1100) 0.529

N,N-Dimethylglycine ASD −0.013 (−0.1341, 0.1089) 0.839

Non-TD −0.006 (−0.1964, 0.1845) 0.951

Glycine, serine, and threonine
metabolism, homocysteine

metabolism, glutathione
metabolism, amino acid

metabolism

Glycine ASD −0.013 (−0.1448, 0.1195) 0.851

Non-TD −0.020 (−0.1132, 0.0727) 0.669

Glycolysis

Lactate
ASD −0.002 (−0.1137, 0.1094) 0.970

Non-TD 0.022 (−0.0999, 0.1446) 0.720

Pyruvate ASD −0.012 (−0.1355, 0.1111) 0.847

Non-TD 0.047 (−0.0546, 0.1489) 0.364

Glycolysis, amino acid
metabolism Alanine

ASD −0.024 (−0.1294, 0.0819) 0.660

Non-TD −0.016 (−0.1151, 0.0833) 0.754

Homocysteine metabolism,
methionine cycle, amino acid

metabolism
Methionine

ASD −0.050 (−0.1683, 0.0677) 0.403

Non-TD −0.085 (−0.1672, −0.0022) 0.044

Ketone bodies

3-Hydroxybutyrate ASD −0.120 (−0.2594, 0.0191) 0.091

Non-TD −0.062 (−0.1690, 0.0446) 0.254

Acetoacetate
ASD 0.014 (−0.1191, 0.1468) 0.839

Non-TD 0.034 (−0.1020, 0.1703) 0.623
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Table 2. Cont.

Class/Pathways Metabolite 1 Dx β (95% CI) p

Acetone
ASD 0.027 (−0.1237, 0.1776) 0.726

Non-TD 0.034 (−0.1707, 0.2388) 0.745

Lipid-related metabolism

Carnitine
ASD 0.174 (−0.0425, 0.3903) 0.115

Non-TD 0.014 (−0.2345, 0.2622) 0.913

O-Acetylcarnitine ASD 0.069 (−0.1149, 0.2537) 0.461

Non-TD −0.026 (−0.1911, 0.1398) 0.761

Neurotransmitter precursor
amino acid, amino acid

metabolism

Phenylalanine ASD −0.013 (−0.1189, 0.0937) 0.816

Non-TD −0.001 (−0.0777, 0.0762) 0.985

Tyrosine ASD −0.064 (−0.1563, 0.0274) 0.169

Non-TD 0.002 (−0.0971, 0.1011) 0.969

Neurotransmitter precursor
amino acid, glutathione
metabolism, amino acid

metabolism

Glutamate
ASD 0.025 (−0.0826, 0.1334) 0.645

Non-TD −0.006 (−0.0844, 0.0719) 0.876

Glutamine
ASD −0.012 (−0.0905, 0.0662) 0.761

Non-TD −0.013 (−0.1067, 0.0811) 0.790

Other

2-Hydroxyisobutyrate ASD 0.020 (−0.0731, 0.1129) 0.676

Non-TD −0.041 (−0.1179, 0.0356) 0.293

4-Hydroxyphenylacetate ASD 0.068 (−0.0641, 0.1991) 0.315

Non-TD −0.090 (−0.2625, 0.0836) 0.311

Adipate ASD 0.002 (−0.1411, 0.1444) 0.982

Non-TD 0.076 (−0.0379, 0.1905) 0.190

Ascorbate
ASD −0.111 (−0.4801, 0.2583) 0.556

Non-TD 0.026 (−0.3430, 0.3942) 0.892

Dimethylamine ASD −0.036 (−0.0646, −0.0072) 0.014

Non-TD −0.020 (−0.0490, 0.0088) 0.173

Ethanolamine
ASD −0.025 (−0.1043, 0.0543) 0.537

Non-TD 0.074 (0.0291, 0.1184) 0.001

Ethylmalonate ASD −0.001 (−0.1267, 0.1245) 0.987

Non-TD −0.070 (−0.2024, 0.0619) 0.298

Formate
ASD 0.143 (−0.0232, 0.3082) 0.092

Non-TD −0.132 (−0.2644, 0.0004) 0.051

Glycolate ASD −0.024 (−0.1259, 0.0785) 0.649

Non-TD −0.004 (−0.1516, 0.1443) 0.962

Homovanillate
ASD −0.004 (−0.0560, 0.0476) 0.873

Non-TD −0.085 (−0.1539, −0.0156) 0.016

Hypoxanthine ASD −0.009 (−0.0954, 0.0765) 0.830

Non-TD 0.098 (0.0076, 0.1883) 0.034

Methanol
ASD 0.049 (−0.0706, 0.1689) 0.421

Non-TD 0.011 (−0.1641, 0.1854) 0.905

Methylguanidine ASD −0.001 (−0.0690, 0.0666) 0.972

Non-TD −0.035 (−0.0803, 0.0106) 0.132

Pantothenate
ASD 0.049 (−0.0715, 0.1700) 0.424

Non-TD 0.002 (−0.0907, 0.0941) 0.972

Quinolinate ASD −0.044 (−0.1296, 0.0423) 0.320

Non-TD 0.004 (−0.1313, 0.1389) 0.956
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Table 2. Cont.

Class/Pathways Metabolite 1 Dx β (95% CI) p

Trigonelline ASD −0.054 (−0.1897, 0.0813) 0.433

Non-TD 0.029 (−0.1421, 0.2000) 0.740

Uracil
ASD −0.049 (−0.1545, 0.0564) 0.362

Non-TD 0.034 (−0.0464, 0.1146) 0.407

Urea
ASD −0.010 (−0.0933, 0.0739) 0.820

Non-TD −0.011 (−0.1232, 0.1009) 0.846

Xanthosine
ASD −0.012 (−0.1087, 0.0846) 0.807

Non-TD −0.025 (−0.1152, 0.0644) 0.579

Other, bacterial metabolite

1,2-Propanediol ASD 0.147 (−0.2108, 0.5039) 0.422

Non-TD −0.111 (−0.4332, 0.2108) 0.498

Dimethyl sulfone ASD 0.027 (−0.1084, 0.1631) 0.693

Non-TD 0.079 (−0.0477, 0.2060) 0.222

Hippurate ASD −0.136 (−0.2474, −0.0248) 0.017

Non-TD −0.110 (−0.3162, 0.0954) 0.293

Trimethylamine ASD −0.007 (−0.0764, 0.0628) 0.848

Non-TD −0.060 (−0.1197, 0.0007) 0.053

Trimethylamine-N-oxide ASD 0.023 (−0.2011, 0.2465) 0.843

Non-TD 0.112 (−0.1495, 0.3740) 0.401

Short-chain fatty acids

Acetate
ASD 0.089 (−0.1046, 0.2815) 0.369

Non-TD −0.014 (−0.2219, 0.1949) 0.899

Butyrate ASD 0.033 (−0.0865, 0.1519) 0.591

Non-TD −0.011 (−0.1153, 0.0942) 0.843

Propionate ASD 0.017 (−0.1438, 0.1779) 0.835

Non-TD −0.060 (−0.2233, 0.1033) 0.472

Sugars and their derivatives

Fucose
ASD −0.077 (−0.2306, 0.0764) 0.325

Non-TD −0.039 (−0.1815, 0.1028) 0.588

Galactose
ASD −0.054 (−0.3535, 0.2454) 0.724

Non-TD −0.031 (−0.3001, 0.2390) 0.824

Gluconate
ASD 0.035 (−0.0717, 0.1422) 0.519

Non-TD 0.068 (−0.0340, 0.1697) 0.192

Glucose
ASD −0.070 (−0.1782, 0.0379) 0.203

Non-TD −0.030 (−0.1106, 0.0513) 0.473

Lactose
ASD 0.014 (−0.1285, 0.1561) 0.849

Non-TD 0.041 (−0.1356, 0.2169) 0.652

Mannitol
ASD 0.021 (−0.0686, 0.1113) 0.641

Non-TD 0.028 (−0.0675, 0.1240) 0.563

myo Inositol ASD 0.093 (−0.0580, 0.2432) 0.228

Non-TD 0.035 (−0.1126, 0.1834) 0.639

Tricarboxylic acid cycle

2-Oxoglutarate ASD −0.039 (−0.2292, 0.1507) 0.686

Non-TD 0.135 (−0.0973, 0.3663) 0.255

cis Aconitate
ASD 0.026 (−0.0927, 0.1445) 0.668

Non-TD 0.043 (−0.0386, 0.1250) 0.301

Citrate
ASD 0.036 (−0.0889, 0.1613) 0.571

Non-TD 0.054 (−0.1154, 0.2234) 0.532
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Table 2. Cont.

Class/Pathways Metabolite 1 Dx β (95% CI) p

Fumarate
ASD −0.061 (−0.2150, 0.0926) 0.435

Non-TD 0.048 (−0.1070, 0.2029) 0.544

Succinate
ASD 0.010 (−0.1787, 0.1992) 0.915

Non-TD −0.049 (−0.2232, 0.1251) 0.581

Tryptophan metabolism, amino
acid metabolism

3-Indoxylsulfate ASD −0.091 (−0.2464, 0.0645) 0.252

Non-TD −0.024 (−0.1817, 0.1338) 0.766

Tryptophan ASD −0.072 (−0.145, 0.0019) 0.056

Non-TD −0.020 (−0.1027, 0.0627) 0.636

1 Metabolite concentrations are expressed as micromoles of metabolite per millimole of creatinine and were log-10
transformed before analysis.

Figure 3. Effect size differences (95% CI) for metabolites with p-values (p < 0.05, unadjusted) and
those trending toward statistical significance (p < 0.09, in italics) based on GEE results among (A) ASD
vs. TD and (B) Non-TD vs. TD at each time point (3, 6 or 12 months).
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Therefore, among our a priori hypothesized metabolites of one-carbon metabolism,
children who went on to develop ASD tended to have lower urinary serine compared to
TD controls. Additionally, we found some evidence that the gut-microbial co-metabolite
hippurate was also lower among children who developed ASD compared to children who
had typical neurodevelopment. Tryptophan, which has repeatedly been implicated in
autism [12,15–17], also trended towards statistical significance (p < 0.10) with lower urinary
concentrations among those who went on to develop ASD compared to neurotypical
controls. These results may hint at the onset of metabolic shifts already occurring in the
first year of life before neurodevelopmental diagnoses are made. For metabolites with
p-values < 0.05 for GEE results, differences in metabolite concentration across time points
and diagnosis are presented in Figure 4.

Figure 4. Comparison of urine metabolites that differed across time points in association with
neurodevelopmental diagnosis based on GEE analysis. Urinary metabolites that differed among
children who went on to develop ASD vs. TD: (A) dimethylamine, (B) guanidoacetate, (C) hippurate,
and (D) serine. Metabolites that differed among children with Non-TD vs. TD: (E) Ethanolamine,
(F) Homovanillate, (G) Hypoxanthine, (H) Methionine. (I) 3-Aminoisobutyrate differed for children
diagnosed with ASD vs. Non-TD vs. TD. Data are presented as the mean ± SEM (p < 0.05 (unadjusted)
as indicated).

3. Discussion

This study aimed to investigate changes in the urinary metabolome to examine early
biochemical markers associated with neurodevelopmental outcomes. Our results high-
light subtle differences in several metabolites which differed among children who were
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later diagnosed with ASD and non-typical development (Non-TD) compared to typically
developed (TD) controls in the first 12 months of life—years before neurodevelopmental
assessments. Specifically, we found that urinary dimethylamine, guanidoacetate, and serine
were all lower among children who went on to develop ASD compared to TD controls—of
which, we had hypothesized a priori that serine and hippurate would differ among ASD
cases. These decreased urinary metabolites had large effect size differences at 6 and 12
months, except for guanidinoacetate, which had large effect size differences at 3 and 6
months among ASD cases compared to controls. Children who went on to have Non-TD
tended to have decreased methionine and homovanillate (both of which had large effect
size differences at 3, 6, and 12 months) but elevated ethanolamine (which had a large effect
size difference at 6 months) and hypoxanthine (with a large effect size difference at 3 and 6
months) compared to children who had typical neurodevelopment. We hypothesized a
priori that methionine would differ among children with developmental disabilities though
expected to see the difference among ASD cases rather than Non-TD cases. In addition,
children who went on to develop ASD or Non-TD, similarly, had decreased urinary 3-
aminoisobutyrate as compared to children who went on to have typical neurodevelopment.
These results suggest that investigating the urinary metabolome in the first year of life
may help characterize early metabolic shifts in key pathways associated with adverse
neurodevelopmental and is worth exploring further.

For example, as previously discussed, one-carbon metabolism pathway abnormalities
have repeatedly been implicated with autism. In the present study, we found that levels of
urinary serine (an amino acid that plays a critical role as a methyl donor in the one-carbon
metabolism folate cycle through its formation of S-adenosylmethionine (SAM)) tended to
be lower among children who went on to develop ASD compared to children who did not.
Others have also similarly found decreased urinary serine levels among children with ASD
compared to controls [10,24,25]. While we had previously reported elevated plasma serine
in ASD cases compared to age-matched controls [8], this discrepancy is likely due to the
differences in biofluids analyzed (urine, a waste product, vs. plasma, which is maintained
under tight homeostatic control) and/or due to variations in study participants (infants
vs. children). In addition to its role in one-carbon metabolism, serine is also a precursor
to other non-essential amino acids, the antioxidant glutathione, and plays a role in the
synthesis of nucleotides. We also found that among children who went on to develop ASD
or Non-TD, both tended to have decreased urinary 3-aminoisobutyrate (a catabolite of the
nucleotide thymine). Ma et al. also found decreased urinary 3-aminoisobutyrate among
ASD children (aged 2 to 18 years) compared to healthy controls. The methyl group of
thymine is derived from a one-carbon intermediate originating from the interconversions
of serine and glycine [26]. Therefore, decreased urinary 3-aminoisobutyrate may suggest
diminished nucleotide metabolism conceivably due to altered serine levels. Interestingly,
3-aminoisobutyrate has been shown to improve insulin sensitivity and protect against high-
fat-diet-induced obesity in mice [27]. Similarly, in a large human cohort study (n = 2067),
plasma levels of 3-aminoisobutyrate were inversely correlated with plasma glucose, insulin,
triglycerides, and total cholesterol, suggesting that 3-aminoisobutyrate may have beneficial
metabolic properties. As such, decreased 3-aminoisobutyrate levels observed in our study
may be related to decreased serine levels or may be related to adverse metabolic health (such
as decreased insulin sensitivity, for example). Overall, alterations in serine metabolism
may have extensive metabolic implications given the diverse roles of serine, including
one-carbon metabolism, glutathione metabolism, and nucleic acid metabolism.

Another example of subtle metabolic changes which may already be arising in the
first year of life are differences in amino acids involved in the production of major neuro-
transmitters. For instance, urinary tryptophan tended to be lower among children who
went on to develop ASD compared to those who did not, though these trended towards
significance (p < 0.09). However, dysregulated tryptophan metabolism has been proposed
in the pathophysiology of autism, and numerous metabolomics analyses have also found
altered tryptophan among individuals with ASD [12,15–17]. Tryptophan is an essential
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amino acid that serves as a biochemical precursor for serotonin, melatonin, and nicotinic
acid (an important cofactor in metabolism). Yap et al. [23] previously found an increase
in nicotinic acid metabolites among ASD cases compared to age-matched controls. The
authors suggested this shift in tryptophan metabolism toward a shunt pathway resulted in
increased formation of nicotinic acid and decreased production of the other tryptophan
metabolites, such as those in the tryptophan–serotonin–melatonin pathways. This may
explain why altered serotonin levels have previously been associated with mood disor-
ders and temperament issues in children with ASD [28]. Furthermore, alterations in key
regulatory enzymes, which compete for available tryptophan, have also been associated
with autistic behaviors [29]. Interestingly, we also found decreased urinary homovanillate
among children who went on to develop Non-TD compared to children with typical neu-
rodevelopment. Homovanillate is the major terminal metabolite of the neurotransmitter
dopamine and is excreted in urine when dopamine is broken down by the liver. Decreased
dopamine has previously been associated with depression, schizophrenia, and autism [30].
Our results may indirectly suggest decreased levels of dopamine among children who
went on to have Non-TD. Conversely, children who went on to develop Non-TD also had
elevated urinary ethanolamine compared to children who went on to have typical devel-
opment. Ethanolamine is a precursor of the excitatory neurotransmitter acetylcholine and
is a major component of cell membranes as the phospholipid phosphoethanolamine [31].
An older study found that elevated urinary ethanolamine was associated with neuronal
white matter degeneration and the authors suggested high ethanolamine in urine was
derived from the increased breakdown of ethanolamine-containing phospholipids [32].
The elevated urinary ethanolamine we observed among children who were later diag-
nosed with Non-TD may indicate alterations in acetylcholine or phosphoethanolamine
metabolism. Collectively, these results provide some evidence that key analytes involved
with neurotransmitter-related pathways appear to be altered among children who ended
up having neurodevelopmental disabilities.

We also found some evidence that children who went on to develop ASD tended to
have lower urinary hippurate levels compared to children who went on to have typical
neurodevelopment, pointing to differences in gut-microbial-related metabolites among
individuals with ASD. Hippurate is a gut-microbial-host cometabolite primarily produced
in the intestine by bacterial action on phenolic compounds of dietary origin [33]. While we
did not directly investigate dietary differences among children who went on to develop ASD
compared to TD (such as differences in consumption of phenolic-containing foods, such
as fruits and vegetables, which may be common, even at an early age, among individuals
with ASD), our models did adjust for age at introduction to solids to try to mitigate some
possible dietary differences in our study population. Several other studies have found
similar results among individuals with autism. Emond et al. [22] found decreased urinary
hippurate concentrations in 6- to 9-year-old autistic children compared to age-matched
healthy children, as did Nadal-Desbarats et al. who reported decreased urinary hippurate
levels in thirty ASD children (ages 6–14) compared to healthy age-matched controls. Yap
and colleagues [23] also found a trend for lower urinary hippurate levels in autistic children
aged 3–9 years old compared to age-matched healthy controls and neurotypical siblings,
although this was not statistically significant. In contrast, Lussu et al. [12] reported finding
elevated urinary hippurate levels among Italian children with ASD (n = 21; ages 4–16
years) as compared to healthy siblings (n = 21; ages 4–17 years). Mussap et al. [34] also
found elevated urinary hippurate among Italian children (ages 2–11 years old) among
ASD cases (n = 31) compared to age-matched controls (n = 26). Kałużna-Czaplińska et al.
also found elevated hippurate in the urine of autistic children (n = 35, ages 4–10 years)
compared to non-autistic controls (n = 30, ages 4–10 years) [25]. Numerous factors which
shape the gut microbiome (such as genetics, diet, lifestyle, ethnicity, and environment),
may play a contributing role to the discrepancies observed among hippurate levels. Along
the same line, we also found dimethylamine levels tended to be lower among children
who went on to develop ASD compared to children who did not. Dimethylamine is
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derived from ingested choline and lecithin, and its formation is dependent on bacterial
action in the intestine [35]. Similarly to hippurate, there are contradictory results in the
literature regarding dimethylamine levels associated with autism. While decreased urinary
dimethylamine was found among 6- to 14-year-old children with ASD, others reported
elevated urinary dimethylamine among 3- to 9-year-old children with ASD [23]. Despite
the discrepancies in levels of these gut-microbial cometabolites, taken together, these
differences in hippurate and dimethylamine may suggest early differences in the gut
microbiome specifically related to autism.

Notably, we did not find evidence of differences in the TCA cycle intermediates among
children who went on to develop aberrant neurodevelopment, as hypothesized. However,
it is possible that we did not see differences in TCA cycle metabolites as the kidneys, which
are highly dependent on mitochondrial function [36], are still maturing, and the TCA cycle
takes place in the mitochondrial matrix. At birth, the kidneys are considered immature and
develop continuously until 6–12 months of age when the renal system becomes mature
enough to concentrate urine like an adult. Additionally, exclusive breastfeeding vs. formula
feeding, or the introduction of complementary food may play a contributing factor in the
differences in the urinary metabolome during the first year of life. Indeed, there are clear
differences in the urinary metabolome based on age in our PCA analysis (Figure 2) as
indicated by shifts in the urinary metabolome, where samples at 3 months of age are more
closely clustered together and begin to disperse with age. Additionally, the shifts we see
in the first year of life are also likely due to the introduction of solid foods, which the
American Academy of Pediatrics recommends introducing at approximately 6 months of
age [37], although the average age of introduction of solid foods was around 5 months of
age in our study population, with Non-TD cases slightly younger. Furthermore, parents of
children with ASD frequently report that their children have selective eating behaviors and
refuse many foods [38–43]. Feeding problems are estimated to affect 46% to 89% of children
with ASD [42]. Although the great majority of studies investigating feeding issues in autism
have been carried out in samples of children over the age of 3 years [42], some signs of
feeding issues may arise before this age [44]. Food selectivity and pickiness can affect the
urinary metabolome, as urine biomarkers may be correlated with habitual diet [45–47].
This is a limitation in our study, as we did not investigate the child’s diet in association
with urinary metabolites, nor did we assess food problems in our present study.

A further limitation of this investigation is that our study participants are a subset
of the MARBLES study—a high-risk ASD population with an older sibling with ASD.
Study participants (even TD controls) were at elevated risk for ASD because of their family
history of this condition. Therefore, our findings may not be generalizable to the greater
ASD population as there may be a greater genetic contribution to the metabolic pathways
discussed in the current study. Although the MARBLES study is relatively large (n = 260 at
the time of our sample analysis), the current investigation was limited to individuals who
had sufficient urine available for a metabolomics investigation collected at 3, 6, and/or
12 months of age, and therefore we had a relatively small sample size (n = 70). While the
MARBLES study aims to collect urinary samples from all enrolled children during the
first year of life on the day of the study visit, a clean-catch urine sample is not always
available for each site visit. At that age, it is difficult to catch the infant when they are
urinating; hence, very early postnatal samples were not always available. In the past, we
attempted to use diapers with the idea that the urine could be extracted and analyzed,
but after considerable effort trying this out, it was concluded that the matrix of the diaper
would interfere with many analyte measurements (due to contaminants from the diapers,
differences in diaper brands, differences in absorbency, possible fecal contamination, etc.).
As such, we had a limited sample size available for the present investigation and were
unable to successfully analyze samples at 3, 6, and 12 for all our study participants. A larger
sample size may have better characterized early metabolic differences associated with
adverse neurodevelopment. Furthermore, unlike the blood metabolome where analyte
concentrations are narrowly maintained, urine concentrations can vary from sample to
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sample depending on hydration status (water reabsorption). However, to mitigate this,
we normalized metabolites to urinary creatinine concentration to control for variations in
urine flow rate. Another limitation in our analysis was that we did not know the exact
composition of breastmilk vs. formula which made up the child’s diet and may also
influence the urinary metabolome. However, most children were reported to have received
some breastmilk past 12 months of age with no differences based on diagnosis, and we
adjusted our models for age of introduction to solid foods, to try to minimize these effects.
On the other hand, a strength of this study is that we measured metabolite changes very
early on before neurodevelopmental diagnoses were made. Most other comparable studies
have investigated older children already diagnosed with autism [8,10,16,23,48,49]. An
exception is a recent metabolomics investigation that analyzed dried blood spots (DBS) of
newborns who were later diagnosed with ASD (n = 37) compared to controls (n = 37) [50].
DBS are routinely collected shortly after birth and have the potential to identify biochemical
markers of disease present at birth. Although that study was able to identify metabolites
previously associated with ASD in DBS, none of these features remained significant after
adjusting for FDR correction.

It is worth noting that there are several analytical platforms for carrying out metabolomics
studies. The most common are NMR (as conducted in this analysis) and mass-spectrometry-
based (MS) analysis—each brings its advantages and limitations. Unlike MS, NMR is in-
herently quantitative and requires little sample preparation. However, the sensitivity of
NMR spectroscopy is a limitation compared to MS (which can be combined with differ-
ent approaches, such as liquid chromatography (LC) and gas chromatography (GC), to
increase the number of metabolites detected). For example, a previous GC-MS-based analysis
was used to detect volatile organic compounds (VOCs) in the urine of 24 autistic children
compared to 21 healthy controls [50]. Because of their volatility, structural diversity, and dif-
ferences in polarity, urine VOCs are difficult to measure. However, in that study, researchers
used solid-phase microextraction (SPME) coupled with GC-MS to successfully differentiate
healthy controls from autistic cases based on VOC profiles. Other MS-based metabolomics
analyses have also previously found abnormal tryptophan metabolism [16], altered TCA
cycle [51], elevated concentrations of organic acids and sugars [15], differences in microbial
co-metabolites [10,15,22,52], and altered amino acid metabolism [10,50] among children with
ASD as compared to healthy controls, many of which indeed overlap with other NMR-based
metabolomics analyses in ASD [7,13,23,48]. Given the dynamic range of metabolite con-
centrations and structural diversity within a biological sample, the use of complementary
and comprehensive analytical cross-platform approaches, e.g., NMR, gas chromatography
(GC)-MS, and liquid chromatography (LC)-MS, rather than a single technique may be utilized
in future analysis to cope with analyte diversity.

Overall, our results highlight changes in one-carbon metabolism, gut-microbial co-
metabolism, and neurotransmitter precursors that may be worth monitoring early in
life, especially among children with an increased risk of autism, such as those with an
older sibling with autism. Additionally, we did not find evidence of altered TCA cycle
abnormalities at this age range. A larger sample size will be required to pinpoint early
robust metabolites associated with ASD and other neurodevelopmental disorders. Further
investigating early changes in metabolic pathways may provide better clues about what sort
of biomedical and early intervention may help mitigate neurodevelopmental symptoms
and severity.

4. Materials and Methods
4.1. Study Population

All study participants are a subset of the MARBLES (Markers of Autism Risk in Babies—
Learning Early Signs) study [53]. The MARBLES study is an enriched-risk prospective
cohort that follows pregnant women who are at high risk for delivering another infant(s)
who will develop ASD, primarily because they previously delivered a child who developed
ASD [54]. Although all these offspring are at high risk, only some (~20 %) will develop
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ASD, others will have different developmental outcomes, and many will develop typically.
MARBLES began recruiting mothers in 2006. MARBLES families are primarily recruited
from lists of children receiving services for autism through the California Department of
Developmental Disabilities, as well as from other studies, by self- or provider referrals
and obstetrics/gynecology clinics. Inclusion criteria of MARBLES are (1) the mother
or father has a child or other first-degree relative with ASD; (2) the mother is 18 years
old or older; (3) the mother is pregnant; (4) the mother speaks, reads, and understands
English; and (5) mother resides within 2.5 h of the Davis/Sacramento region at the time of
enrollment. For families who consent to participate in the MARBLES study, demographic
information, medical records, outcomes, exposures, confounders, and biological specimens
are all collected prospectively. The MARBLES study was approved by the State of California
Department of Developmental Services and the institutional review board at the University
of California Davis. Informed consent was obtained from all parents prior to enrollment.
No data or specimens were collected or analyzed until informed consent was obtained.
The informed consent included analysis of all specimens for any research related to child
development. This study is reported in accordance with Strengthening the Reporting of
Observational Studies in Epidemiology [55] (Supplementary Table S1).

At 36 months of age, children were assessed for ASD by a licensed clinical psychologist
using the gold standard Autism Diagnostic Observation Schedules (ADOS) [56]. Cognitive
development was assessed using the Mullen Scale of Early Learning (MSEL) with four sub-
scales including visual reception, fine motor, receptive language, and expressive language.
Neurodevelopmental outcomes were determined using both the ADOS and MSEL scores.
Participants with ASD outcomes had scored over the ADOS cutoff and met the Diagnostic
and Statistical Manual of Mental Disorder 5th edition (DSM-5) criteria for ASD. Participants
with non-typical development (Non-TD) outcomes had scores within three points of the
ADOS cutoff and/or Mullen Scores 1.5 to 2 standard deviations below average. The rest of
the samples were classified as typical development. Details of the selection criteria for each
categorization are available elsewhere [53].

For the present study, we investigated the urinary metabolome in association with
neurodevelopmental diagnosis. In 02/2019, when we began to query samples available
for the present analysis, 260 children who had completed the MARBLES study were
considered for inclusion in this metabolomics analysis. However, 176 of these children were
excluded as they did not have at least one clean-catch urine sample collected between 3
and 12 months of age available for the present investigation. Additionally, children missing
a final neurodevelopmental diagnosis (n = 13) due to moving out of state or dropping
from the study were also excluded. Furthermore, one urine sample was shown to have
high levels of acetate, butyrate, and propionate and was removed from the analysis due to
suspected fecal contamination [57]. Therefore, a total of 70 children (TD n = 42, ASD n = 17,
Non-TD n = 11) with urine collected at 3, 6, and/or 12 months of age for a total of 109 spot
urine samples were investigated in this analysis. Each participant contributed 1 to 3 urine
samples for metabolomics analysis (Supplementary Tables S2 and S3).

4.2. 1H-NMR Metabolomics Analysis

Urinary biospecimens were collected using a pediatric urine bag and subsequently
stored at −80 ◦C at the UC Davis biorepository. Urine samples for our study participants
were collected from 03/2014 to 12/2018. 1H-NMR analysis was conducted from 04/2019
to 05/2019. For metabolomics analysis, urine samples were thawed and prepared by
centrifuging to remove particulate matter, and 65 µL of internal standard (Chenomx Inc.,
Edmonton, AB, Canada) (consisting of ~5 mM DSS [sodium 2,2-dimethyl-2-silapentane-5-
sulfonate, and 0.2% sodium azide in 99% D2O]) was added to 585 µL of supernatant, as
described by Slupsky et al. [58]. The pH of each sample was adjusted to 6.8 ± 0.1 by the
addition of small amounts of NaOH or HCl. The volumes of HCl and NaOH added were
recorded. A 600 µL aliquot of the mixture was then transferred to a labeled 5 mm Bruker
NMR tube and stored at 4 ◦C until NMR acquisition (within 24 h of sample preparation).
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Samples were run on a Bruker AVANCE 600 MHz NMR spectrometer equipped with a
SampleJet autosampler using the NOESY-presaturation pulse sequence (noesypr). NMR
spectra were acquired at 25 ◦C, with water saturation of 2.5 s during the prescan delay,
a mixing time of 100 ms, 12 ppm sweep width, an acquisition time of 2.5 s, 8 dummy
scans, and 32 transients. All spectra were zero-filled to 128 K data points and Fourier
transformed with a 0.5-Hz line broadening applied. Spectra were manually phased and
baseline-corrected and metabolites were identified and quantified using NMR Suite v8.1
(Chenomx Inc., Edmonton, AB, Canada) [59]. Subsequently, a list of compounds together
with their respective concentrations, based on the concentration of the added internal
standard (DSS-d6), was generated. All compounds in the database have been verified
against known concentrations of reference NMR spectra of the pure compounds and are
reproducible and accurate [58]. Investigators were blinded to child diagnosis and any
participant information during sample preparation as well as NMR data acquisition and
spectral analysis.

4.3. Statistical Analysis

Metabolite concentrations were expressed as micromole of metabolite per millimole of
creatinine (/mmole creatinine) and log-transformed before analysis to approximate nor-
mality. Unsupervised principal component analysis (PCA) was used to identify inherent
cluster detection and examine patterns in the metabolomic profiles. PCA was performed
using the “prcomp” function, where each variable was centered by subtracting the variable
means (center = True) but not scaled to the standard deviation (scale = FALSE) using
ggplot2 library in R. Generalized estimating equation (GEE) analysis was performed on
each metabolite to examine changes in metabolite concentrations in relation to adverse
neurodevelopment. This method provides robust variance estimates, which account for
the correlation among repeated observations in the same individuals and allows the char-
acterization of effects from time-varying factors. GEE models were performed using the
“Proc Genmod” function in SAS using a linear link and autoregressive correlation struc-
ture. Possible confounders were selected a priori based on a directed acyclic graph (DAG)
(Supplementary Figure S1). The DAG was constructed using variables broadly associated
(p < 0.20) with the neurodevelopmental diagnosis and urinary metabolites. Covariates
considered in our DAG were the child’s sex, race/ethnicity, maternal age at the child’s
birth, child’s age at introduction of solid foods, and attributes of maternal socioeconomic
variables such as parental homeownership, insurance payer at delivery, and maximum
maternal education. From the DAG, we then identified a sufficient set of adjustment factors
that would remove confounding and minimize the estimated associations between the
diagnostic group and metabolites—only the child’s sex and age at the introduction to first
solids met these criteria. Additionally, as we were interested in evaluating our results in
the context of our previous plasma metabolomics investigation [8], we also included the
child’s race/ethnicity and parental homeownership in our GEE models. Therefore, the final
GEE models were adjusted for the child’s sex (male, female), age of introduction to first
solids (continuous (months)), child’s race/ethnicity (White, Hispanic, other), and parental
homeownership (homeowner, renter) are presented in our analysis. The application of
a false discovery rate (FDR) resulted in non-significant findings for all metabolite data.
Therefore, unadjusted p-values < 0.05, in combination with large effect sizes were used to
interpret the results. For metabolites with p-values < 0.05, the effect size between ASD vs.
TD and Non-TD vs. TD at each time point was evaluated using Cliff’s delta (δ) statistic
(cliff.delta function from the effsize package). Effect sizes were interpreted as follows:
|δ| < 0.33, small; |δ| < 0.474, medium; and |δ| > 0.475, large effect size in metabolite
concentration differences [60]. Differences in metabolite concentration at each time point
across diagnosis were evaluated using independent t-tests or 2-way ANOVA followed by
post hoc Tukey.
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