UCLA

Department of Statistics Papers

Title
On Re-censoring for Censored Paired Data

Permalink
https://escholarship.org/uc/item/1rr8q7wh

Authors

J.J. Lee
K.C. Li
R.M. Elashoff

Publication Date
2011-10-24

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1rr8q7wb
https://escholarship.org
http://www.cdlib.org/

On Recensoring for Censored Paired Data

Author(s): J. Jack Lee, Ker-Chau Li, Robert M. Elashoff

Source: Journal of the American Statistical Association, Vol. 88, No. 421 (Mar., 1993), pp. 104-
118

Published by: American Statistical Association

Stable URL: http://www jstor.org/stable/2290703

Accessed: 18/05/2011 18:42

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://www jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/action/showPublisher?publisherCode=astata.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal
of the American Statistical Association.

http://www jstor.org


http://www.jstor.org/action/showPublisher?publisherCode=astata
http://www.jstor.org/stable/2290703?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=astata

On Recensoring for Censored Paired Data
J. JACK LEE, KER-CHAU LI, and ROBERT M. ELASHOFF*

In comparing two treatment regimens, a matched-pair design is often used for nonhomogeneous experimental units. A standard
method of analyzing the resulting data is to consider the difference within pairs, so that the nuisance parameters due to the heterogeneity
between pairs can be eliminated and the parameter of interest—the treatment effect—can be estimated. This procedure becomes
invalid when the data are subject to censoring, however. In addition, the available likelihood based methods for handling censored
data may suffer from the inconsistency problem incurred by the increasing number of nuisance parameters. In this article, we propose
a new approach for eliminating the nuisance parameters based on a crucial notion of “recensoring.” Assuming that the censoring
time for each observation is known, recensoring is a natural way to force a common lag between the two censoring times within each
pair by resetting one of them to a smaller value. After recensoring, we may treat the new observed times as the survival times without
censoring. Standard paired data analysis can be applied. M estimation is studied in detail. Root n consistency is established, and the
asymptotic variance is obtained. Residual plots can be constructed in the usual way to check model assumptions. Application to a
real data set is reported. Comparisons with the work of Holt and Prentice and Wei and Pee are made both in theory and in a

simulation study.

KEY WORDS: Consistency; Location models; M estimation; Nuisance parameters; Residual plots.

1. INTRODUCTION

The outcome of medical research is often influenced by
many factors. Even in a randomized controlled clinical trial,
one needs to control prognostic factors or risk factors to
detect the effectiveness of the treatment intervention (Ar-
mitage and Gehan 1974; Peto et al. 1976, 1977). The
matched-pair design can be used in comparing two treatment
regimens with correlated experimental units, as in twin stud-
ies (Cederlof, Epstein, Friberg, Hrubec, and Redford 1971;
Hauge et al. 1968; Jablon, Neel, Gershawitz, and Atkinson
1967). The extraneous effects, which may or may not be
known, can be greatly reduced by forming homogeneous
pairs so that both members of a pair are equally likely to
respond to the treatment. Hence the comparison of the
treatment effect can be made more powerful and less influ-
enced by extraneous effects.

We are interested in the time to an event (e.g., time to
death, time to relapse of a disease) where censoring might
occur. There are many tests available in the literature for
handling censored paired data (Cheng 1984; Dabrowska
1989, 1990; Lachenbruch, Palta, and Woolson 1982; Mantel,
Bohidar, and Ciminera 1977; Mantel and Ciminera 1979;
Michalek and Mihalko 1983, 1984; O’Brien and Fleming
1987; Schluchter 1985; Wei 1980; Woolson and Lachen-
bruch 1980, 1981). But quite often our major interest is not
only to know whether the null hypothesis of equal treatment
effects can be rejected or not, but also to estimate the differ-
ence of treatment effects. This estimation problem under
censoring is seldom addressed. The difficulty in applying the
usual likelihood-based estimation schemes, such as in max-
imizing the joint likelihood, profile likelihood, or marginal
likelihood, has two sides: the increasing number of nuisance
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parameters and the presence of censoring. First, each pair
carries a “pair effect,” which may be different from pair to
pair. We may consider one pair effect as one nuisance pa-
rameter. Consequently, the number of nuisance parameters
increases at the same rate as the number of pairs. Although
the general problem of estimating the treatment parameter
with the presence of increasing number of nuisance param-
eters is an old one (Neyman and Scott 1948), our problem
gets more complicated because of censoring. A general ap-
proach for dealing with nuisance parameters via semipara-
metric modeling can be found in Bickel, Klassen, Ritov, and
Wellner (1990).

Holt and Prentice (1974) first noted the difficulty and pre-
sented two estimation methods. The semiparametric one
based on the intrapair rank is consistent under the Cox’s
proportional hazard model, but the parametric one based
on the “marginal likelihood” is not (see, for example, Gross
and Huber 1987).

One possible way to fix the problem is to reduce the num-
ber of nuisance parameters. This can be achieved by either
assuming a prior distribution for nuisance parameters (Wild
1983) or by forming a model for the nuisance parameters
(pair effects) using covariate variables (Lee 1989). Both res-
olutions are consistent and efficient if the additional model
assumptions hold. Yet for the Bayesian approach, only spe-
cial cases such as gamma prior for Weibull survival are prac-
tically manageable (Wild 1983), and very little results on
robustness against prior misspecification are available. On
the other hand, modeling nuisance parameters with covari-
ates is also hard to do without convincing knowledge on how
the covariates affect the nuisance parameters.

Another approach is to invert a nonparametric test. Wei
and Pee (1985) gave a test-based estimation method based
on Wei (1980). The Wei test is a generalization of the Gehan-
Wilcoxon test in the context of censored paired design. As
pointed out by Tsiatis (1986), the test is not optimal in many
cases. The method also assumes independent identically dis-
tributed censoring times for all pairs, an assumption that
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may be questionable for heterogeneous samples. In addition,
test-based estimation usually requires substantial computa-
tion.

In this article, we present a new method of estimation
based on a concept of recensoring for eliminating nuisance
effects subject to censoring. We consider a location model,
as detailed in Section 2. We assume that censoring times are
known for each pair. Then in Section 3, we bring up a fa-
vorable situation (3.4), wherein the difference between the
two censoring times within each pair is equal to 6 (the treat-
ment effect). We find that if (3.4) holds, then the difference
between the two observed times within each pair will be
symmetric about 6. This finding motivates the idea of re-
censoring in Section 4.

Obviously, the censoring times in most data do not satisfy
(3.4) to begin with. Recensoring offers a natural first step in
forcing (3.4) to hold by readjusting one of the two censoring
times within pairs to keep a common difference b (4.1). After
recensoring, we can apply many standard estimation pro-
cedures to the new observed time differences for estimating
the treatment effect, as if no censoring had occurred. Then
we can compare the derived estimate §‘®) with b, the com-
mon difference in censoring times set earlier in the process
of recensoring. The value of b must be chosen appropriately
to yield a sensible estimate. The obvious suggestion is then
to use the one that yields itself as the estimate: b = § ¥, We
can achieve this either by iteration or by some global search
methods.

In Section 5 we study the sampling property of our recen-
soring method when M estimation is used. Fisher consistency
and root n consistency are obtained with the asymptotic
variance calculated. The derivation is a modification of the
standard M estimation theory to incorporate difficulties aris-
ing due to recensoring. In Section 6 we apply recensoring in
conjunction with likelihood-based estimators and obtain
large-sample properties.

We report asymptotic relative efficiencies in some simple
situations in Section 7, and some Monte Carlo results, com-
paring two recensoring methods to three existing methods,
in Section 8. In Section 9 we apply our methods to a real
data set from a tumorigenesis experiment, emphasizing
graphical aspects. Section 10 studies the hypothesis testing
problem based on recensoring. We provide further discussion
in Section 11, including issues of sensitivity and information
loss caused by recensoring.

2. MODELS AND OBJECTIVES

Suppose that the true survival times 75 for the # inde-
pendent pairs in the study are

(Tlol, TZOI)’ (T?23 TSZ)’ R (Tlon, T2°n)'

We may take j = 1 as the treatment group and j = 2 as the
control group. We consider the location effect model
T3=0+w + ey
T3 = + ex, (2.1

where 0 is the parameter of main interest (the treatment
effect), the u,’s are the nuisance parameters (the pair effects),
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and the (ey;, €2;)’s are iid random errors. We assume that
the joint density of (¢y;, £;) is diagonally symmetric; namely,
(e1:, €2;) and (e, €1;) have the same distribution.

Instead of observing the survival time Tj;, we assume that
it is subject to a right-censoring time Kj;. We can only observe
(Tli, 61,', Tz,', 52,’), where T}i = min(T;}, I(ji), and

6 =1 ifT; <K
=0 otherwise,
for i=1,...,n and j=1,2. (2.2)

We also assume that the values of K;;’s are given. A pair of
observed times may fall into one of four cases: (a) 6, = 6,
= 1, both true survival times observed; (b) 6, = 0, §, = 1,
TS observed but not T7; (c) 6; = 1, 6, = 0, T} observed but
not T'5; and (d) 6; = 6, = 0, none observed.

Our objective is to estimate the treatment effect in the
presence of nuisance parameters (pair effects) and censoring.
Point estimators and confidence intervals will be constructed,
and sampling properties such as consistency, efficiency,
length, and coverage rate of the confidence intervals will also
be examined.

In real applications to have a location model (2.1), one
might find it necessary to apply a suitable transformation
on the data. Specifically, we might start with (X{;, X3), i
=1,..., n, and find a monotone function 4(-) so that
h(XY) = TP and h(X5;) = T5;. For example, when taking
h(-) as the logarithm transformation, we can convert a mul-
tiplicative model

i = ¢B;Yy;

X5 = B;Y,; where Y} areiid (2.3)
into the location model (2.1). In general, although the trans-
formation function /(- ) also can be estimated from the data,
it might be convenient to try a few candidates from, say, the
family of Box—-Cox power transformations. This can be ac-
complished more easily by some graphical displays for
checking the symmetry in the errors assumed in the location
model (2.1). Unfortunately, we find no such graphical tools
available in others’ works on censored data. With recensor-
ing, however, we can construct residual plots in the usual
way; see Section 9 for illustration.

Note that under the exponential transformation, the lo-
cation model assumption leads to the accelerated life model
instead of the proportional hazards model. For constant ex-
planatory variables, Weibull distribution belongs to both the
accelerated life model and the proportional hazard model
(Cox and Oakes 1984).

The location model (2.1) assumed in this article is a com-
mon assumption imposed on many papers dealing with cen-
sored paired data (see, for example, Holt and Prentice 1974;
Lachenbruch et al. 1982; Prentice 1978; Schluchter 1985;
Wei and Pee 1985; and Woolson and Lachenbruch 1980).
The model also contains commonly used log-linear models
in survival analysis by taking a logarithm transformation of
(2.3) when the survival distribution is exponential, Weibull,
or lognormal. We shall also assume that the censoring time
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is given. Typically, the censoring time is observed due to an
earlier withdrawal from the study, loss to follow-up, or dying
of competing risks. When the death or the event of interest
happens, however, the censoring time is not directly ob-
served. But a potential censoring time, such as the time from
the subject entering the study to the termination of the study,
is often available. Note that we do not need to assume an
independently identical censoring distribution for all pairs.
Our model can be applied when the censoring time varies
greatly from pair to pair due to the heterogeneous nature of
the paired data and their different entry times. In addition,
as long as the censoring time is known, we do not need to
assume that the survival time and censoring time are inde-
pendent. In the next section we shall see how the censoring
information can be used to eliminate the nuisance param-
eters.

3. ELIMINATION OF NUISANCE PARAMETERS

If T’s are observable, a natural way to ‘get rid of the nui-
sance parameters y; is to take the difference in (2.1):

W= T5%=0+¢e; —e.
We can rewrite this equation as

D? =0+ W, 3.1

where D and W; are the within-pair differences for (73,
T5:) and (ey;, €2:). The difference Dy can be used to form
a pivotal quantity for estimating 6. Without censoring, this
is a standard location problem. 6 can be estimated by many
parametric, nonparametric, or robust methods, such as M
estimation, L estimation, and R estimation methods (see,
for example, Huber 1981).

But difficulty with censoring emerges when (T7§;, T5) is
no longer observable. We can only observe (Ty;, 6,;, T4,
8,; ) instead. Parallel to (2.1), we can write the observed time
as

Ti=0+m+el;

Ty = pi + &3, (3.2)

where e = min {¢;, Ki; — 0 — p; } and 3; = min {ey;, Ky
— ui }. We may view e:,’-',5 as the error ¢;; subject to a censoring
time, which depends on the unknown parameters.
Now take the difference of the two equations in (3.2) to
get
D; =Ty, -

Ty=0+eli—ei=0+Wr. (3.3)

Unlike (3.1), this equation does not lead to an immediate
solution for estimating the location parameter 6. In general
the distribution of W7 still depends on the unknown param-
eters and is no longer symmetric about 0.

A critical observation, however, is that under the special
condition of

Ky — Ky =0, (3.4)

WY is symmetric about 0. 3.5)

Journal of the American Statistical Association, March 1993

This is so because the censoring time is now the same for
¢y and ¢}>. Although the distribution of W7} still depends
on the pair effect, the symmetry of W} alone is enough to
ensure that 4 is the symmetric center for the distribution of
each observed difference D, .

The following algebraic explanation shows how condition
(3.4) leads to (3.5). Assume that K;; — K5; = 0 + 7; then

Ty — Ty = min(ey; + u; + 0, Ky;) — min(ey; + p;, Ky;)
= min(e;, Ky; — p; — 0)

—min(ey — 0, K5y — u; — 0)

min(ey;, Ko — p; + 7)

— min(ey — 0, Ky; — u; — 0)

6+ min(e”, Kz,‘ — M + 1')

— min(ey;, Ko — u;).
Therefore, T'; — T; is symmetric about § and E(Ty; — T»;)
=giffr = 0.

Thus under (3.4), most location estimators when applied
to D;’s will estimate # well. One important consequence is
that we will have an equal amount of censoring in both co-
ordinates if (3.4) holds. The expected numbers of cases (b)
and (c) of observed time as defined in the sentence following
(2.2) will be the same. The effect of the nuisance parameter
is still balanced within each pair under censoring. Then the
resulting intrapair difference is free from the influence of
nuisance parameters.

The influence of the nuisance parameters and censoring
on the pair difference may be better described by the follow-
ing example. As in model (2.1), suppose that one pair of
data (hence the subscript i will be dropped) is generated
without the error term. When 6 = 1 and K is fixed at 10,
we vary the pair effect 1 and K, to examine their effect on
the pair difference D = T, — T>.

The contour plot of D is displayed in Figure 1. As can be

X' o He L L D=-1
¢

I D=0
~

B D=1
8 L i aiepal el oo s ol i ) b T
<

O

O 7

Hoem o —dniimd b —H B8

Pair Effect (Nuisance Parameter, L)

Figure 1. Contour Plot of the Differences D Showing Confounding Be-
tween the Pair Effect and Censoring When 6 = 1 and K, = 10.
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seen, the upper left corner (denoted as part A) indicates that
both 7§ and TS are observed; it happens when p < 9 and
K, — u> 0. In this case D = T{ — T3 = 1, which gives the
correct estimate of #. The rest of the plane can be divided
into two parts: the lower part (part B) and the upper part
(part C). In part B, T'5 is always censored while 77 is cen-
sored when u > 9. In either case, D > 1 and the contour
lines of D are drawn in Figure 1. Similarly, in part C, 77 is
always censored but 7’5 is censored only when K, < u. Both
cases have D < 1, with the contour lines drawn in Figure 1.
One interesting observation is that when K, = K, — 0 = 9,
the pair difference, D, is always equal to 1, which is 4 re-
gardless of the value of u. Because we do not know p, and
in fact u varies from pair to pair, it seems that setting K,
— K, = 0 is a sensible way to make the pair difference in-
variant of the pair effect, u.

The favorable situation depicted by (3.4) rarely occurs in
practice. But it helps us to motivate the idea of recensoring,
a natural first step in forcing (3.4) to hold approximately.

4. RECENSORING

In this section we describe the idea of recensoring. To
proceed, we first decompose (3.4) into two equations:

Kli—K2i=b, for i= 1,...,7[ (41)

and

60="5b. 4.2)

Equation (4.1) sets the difference of the censoring times
within each pair to a constant b. Equation (4.2) further
equates this constant to the unknown parameter 6.

For each b, (4.1) can be achieved by the following pro-
cedure.

Recensoring (RC) Step. First, reset the new censoring
time K lf’ and K2, as follows:

(a) Ile,‘ - Ky < b, let
Ki) = Ky and K5 = K,; — b;
(b) Otherw1se, let

K® =K, + band K2 = Ky;.

Then recensor the on%mal data accordmgly to obtain the
new observed time TJ, = min { T};, K (21 and the new cen-
soring indicator

(&)
5]',' =

if 5]',' =1 and T}i = K;,'b)

=0 otherwise.
In addmon we denote D( ) as the difference of T\: &
and Tz, .

After recensoring, we can proceed with any estimation
procedure.

Estimation Step.  Several estimation methods can be ap-
plled in estimating #. For example, we can estimate # from
D( by M, L, or R estimates as if we have a standard location
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problem in the no censonn% case. Another possibility is to
use the information of D( and 6¢ ji ) as in the likelihood-
based estimation. We denote an estimator of § as §‘©). The
final estimate 6 for 6 is the b that solves the equation

§® = p. (4.3)

In the next section we examine the sampling properties
of our method under the framework of M estimation. The
likelihood-based estimation is discussed in Section 6.

5. M ESTIMATION

Consider the use of M estimation in the estimation step
described in the previous section. Without censoring, the
standard M estimator 8 for the location parameter 6, based
on an iid sample, {X;, i =1, ..., n}, can be obtained by
solving

é\I’(Xi —0)=
1

for some function ¥(-).

When X;’s are iid, under suitable regularity conditions ]
can be shown to have an asymptotic normal distribution
with mean 6 and the variance given by

4 [ Yx—0)dF(x)

B’

d 2>
[25[ ¥(x — 6) dF(x)}

where x ~ F(x).
Now applying M estimation, the estimation step in Section
4 is to solve

> ¥(D"

i=1

—0)=0 5.1

for finding . Thus from (4.3), we see that our final esti-
mate of 6, 6, is the solution of the equation

S wDP -p)=0.

i=1

(5.2)

Equation (5.2) is obviously more complicated than the
standard M estimation equation. In Sections 5.1-5.3, we
establish the Fisher consistency, the large-sample consistency,
and the asymptotic normality of the estimate  obtained by
solving (5.2). Section 5.4 discusses the numerical conver-
gence property of an iterative method for solving (5.2). Before
proceedlng, it is useful to observe the following properties
of D

b) . .
D§ ) is nondecreasing and

D,gb) — b is nonincreasing in b. (5.3)

The first property is obvious; to see that the second one holds,
observe that for b= K;; — Ky, D —b=0— b+ min{ey;,
K, —6— f }—min{eZi,Kl, b— p;},and for b < Kj;
—K2,,Di 0—b+min{€“,K2,’+b—0—ﬂ.i}
— min { &, K2i Bi}.
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5.1 Fisher Consistency
In this subsection we consider the population version of
(5.2). We show that the solution of the equation

EX WD —b)y=q

i=1

(5.4)

is equal to  under suitable regularity conditions on V.

Theorem 5.1. Equation (5.4) has a unique solution b
= 6 under the following conditions: (C.1) ¥(-) is antisym-
metric about 0; (C.2) ¥(-) is nondecreasing and ¥(¢) = 0
iff t = 0; (C.3) |¥(2)| < Co+ C,|t| for some Cy, Cy; (C.4)
(e1i, €2:) has a finite expectation for each i; and (C.5) The
distribution of (ey;, ;) is symmetric about the 45° line ¢,
= ¢,, and the support is the entire R2.

Proof. First, observe that (C.3) and (C.4) imply that the
expectation E\I/(D — b) exists for each i. Then, as dis-
cussed in Sect1on 3, D — f is symmetric about 0, implying
that E\II(D —0) = 0 due to (C.1). Hence we see that 6 is
a solution of (5.4). It remains to show that 6 is the only
solution of (5.4). This is easy to venfy due to (5.3), (C.2),
and (C.5), which ensure that \I/(D — b) is nonincreasing
in b and is decreasing in b with a positive probability.

5.2 Large-Sample Consistency

Fisher consistency often implies large-sample consistency
with additional regularity conditions. We need a suitable
asymptotic setting to regularize the sequences of the nuisance
parameters K,;, K,;, and u;’s.

Theorem 5.2. Under (C.1)-(C.5) and two more condi-
tions, (C.6) each (¢;;, €;) has a bounded second moment
and (C.7) there exist positive numbers C,, Cs such that
#{lKli - /.l,,-l < Cy and |K2,' - ;L,'l < Cz} > C3+ n, the
solution of (5.2) converges to 6 in probability.

Proof First, (C.6) and (C.3) imply that var(1/n X7
\I/(D — b)) converge to O at the rate 1/n. This 1mphes
that for any b,

¥(DP — b)

M =

—E%E ¥(D{® —b) >0

i=1

S| =

[
—

in probability. (5.5)

On the other hand, (C.7), (C.5), and (C.2) imply that

lim | £ £ > w(D?

o i=1

—b)[>0 forany b#6. (5.6)

Due to the monotonicity of \P(be) — !)) in b, (5.5) and
(5.6) imply that in the solution of (5.2) # converges to 8 in
probability.

5.3 Asymptotic Variance

Following a routine argument in M estimation, we see
that

0~60+B;'> ¥WD?

i=1

—0),

Journal of the American Statistical Association, March 1993

and the asymptotic variance for 8 is 4,/ B2, where

Ay = i var(¥(D” — 6))

i=1
and

z E\I/(D(b) b)
b=0

The asymptotic normality of 8 follows from the asymptotic
normality of 1/Vn S0 | W(D{” — ). The latter holds by
the central limit theorem when we regard (u;, K,;, K5;), i
=1,..., nasindependent realization from a common joint
dlstrlbuuon so that \If(D(o —0),i=1,...,nareiid with
mean 0 and finite variance. But weaker regularity conditions,
not pursued here, can be established from the well-known
Lindeberg-Feller condition.

Suppose that (C.8) ¥(-) is differentiable and has contin-
uous derivative ¥'(+). Then, as outlined in Appendix A, we
find that

B,= X E[V(D{" —)s\7]
i:0<K);i—Ky,
+ 3 E[Y(D{" - 9)85].
i:0> Ky, —Ky,
Example 5.1: RC mean method (RMN). For the RC

mean method, we take \I/(x) = x. For this method, § ® is

the sample mean of D( , and from Appendix A,
—-B,= X PGP =D+ ¥ PGY=1)
6<Ky,—Ky 6>Ky;—Ky,
1 n
=5 2 [P = 1)+ PGS = 1),

1

where the last equality is due to the fact that P{5{? = 1}

~
I

= P{ 52, I}A Hence the asymptotic variance can be esti-
mated by 4,/ B2, where
n -
Ay =32 (D" - )
i=1
and

% Z (6(0) + 69) = % (total number of uncensored

observations after recensoring).

For a given sample, the asymptotic variance can be ap-
proximated by the variance of # calculated from the data
after being recensored at f divided by the square of the pro-
portion not censored by recensoring. When there is no cen-
soring, B,; = —1, and it returns to the usual M estimation
situation. With censoring, the asymptotic variance is the
sample variance calculated from the recensored data, inflated
by the squared reciprocal of the uncensored proportion.

Example 5.2: RC median method (RMD). When the
median is used in the estimation step, we may take

¥(x) = —
0 ifx=0

if x > 0.

ifx<0

1l
—
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Although ¥ is not differentiable and (C.8) does not hold, the
asymptotic variance can be formed similarly. The term B,
is also given in Appendix A:

Ko;

fi(t2) dFai(t)

—0

_Bn = z {2
i:0<K),—K>,

+[1 - FZi(KZi)]ﬁi(Kli)]

+ f fil(tll)dFll(tl)

10>K1,—K2, {
+[1 — Fli(Kli)]fZi(KZi)} .

To ensure that 6 is the only value for solving (5.4), we need
an additional condition that the probability of doubly cen-
soring, after recensoring correctly, is less than 50%. Thus for
heavy censoring cases, RMD is not valid.

5.4 Convergence of the lteration Process

One way of solving (5.2) is to iterate between the recen-
soring step and the estimation step. This process converges
in general, unless the solution 8 is not unique. An outline of
the proof follows. Suppose that the initial value b = b, is
larger than the solution 8. It is enough to show that b, > b,
=N

First, due to the monotonicity of be) — b [see (5.3)], we
have

b) <3S wD® - §)=o0.

i=1

S WD -
i=1
For the fixed b;, the solution Y = p, of (5.1) must have
b, < by due to (C.2). X
Next, we want to show that b, = 6. Because D fb)
decreasing in b, we have

is non-

8)=0=3 W(D® —b,).

i=1

—9)=> wp®-

i=1

2 WD

i=1

Comparing the first and the last term in this expression, we
see that § < b,, again due to (C.2).

Note that for the median estimate, as in the censor-free
context, the solution may not be unique. This creates some
problems later on in our simulation study. But to solve (5.2),
we can always conduct a global search, such as the up-down
method, which might not be difficult for simple estimates
like the median.

6. RC LIKELIHOOD METHOD

In the previous section we showed the properties of the
recensoring /M estimation methods where a suitable kernel
function WV is applied to the difference of observed times
within each pair. The idea of recensoring can also be applied
to likelihood-based estimation methods. As can be seen later,
the argument of the ¥ function of the likelihood methods
involves the censoring indicators in addition to the differ-
ences. The ¥ function is also different for each of the four
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cases defined after (2.2). In this section we discuss how the
recensoring can be applied for the likelihood-based method.

Holt and Prentice (1974) proposed a likelihood-based es-
timator (denoted MAL) using the property that the difference
of the log survival time is marginally sufficient for the pa-
rameter of interest in the location model. This property
breaks down for censored cases, however, and the resulting
estimate is no longer consistent (Dabrowska 1989). In this
section we show how recensoring can restore the consistency
for the likelihood-based estimators. We consider the expo-
nential model as an example in constructing the likelihood,
but the results in Section 6.3 as well as in Appendixes A and
B can be applied to any survival distribution with suitable
modifications.

6.1 No Censoring

When there is no censoring, D; = Ty; — Ty; = T, — T5;

= § + W;. The usual likelihood function is L(f#) =

f(D; — 8), where fis the density of W;. For the case of the
exponential survival, the likelihood function becomes
n D,'—(i
Li(0)= H [T Py 6.1)

Considering the multiplicative form of (2.3) for the moment,
Holt and Prentice (1974) viewed r; = e? = x;/x; as a
marginal sufficient statistics for § and considered the asso-
ciated likelihood

-6

“ e
.Hl (1+re"?’

i=

Ly(0) = (6.2)
which is of course proportional to L, (6). On the other hand,
the likelihood based on the joint distribution of X;; and X5;
1S
L(¢,B) = H 1 e‘(%*%)
B - ® B,2 B, i /.
The maximum likelihood estimator (MLE) of B; is

5 X 1i

Bi=—|—+X5]).
2 ( s " )

Substituting these for B;’s and replacing ¢ with 6 (note: 6

= log ¢), we obtain the profile likelihood

n -0

e
4e72 —
o (xpe”? + X2)%’

which is proportional to L,(#) and L;(8). This shows the
equivalence between different likelihood approaches.

Ls(6) = (6.3)

6.2 Censoring But Without Recensoring

Focusing on the observed ratio r;, Holt and Prentice (1974)
assumed the equal censoring time (i.e., K;; = K5;). Exploring
the order relationship between the unobserved ratio r
(r? = X9/ X5)and r;, alikelihood function is constructed:

L(0) =TT /() IT S(r) T1 F(r).
(a) (b) (c)
Here f, S, and F are the density, the survival, and the cu-
mulative distribution function of r{ and (a), (b), and (c)
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refer to the first three cases of observed time as given after
(2.2). For the exponential survival that we are interested in:

1
_0g( 1+r,-e_5)'

(6.4)

As explained later, the MLE of this likelihood function pro-

duces an inconsistent estimator unless § = 0 when K; = K5;.
We take a closer look at the likelihood in (6.4). For case

(b) [case (c) is similar], we see that for some constant +,

Lo)=T]]

w +r, _")21_I 1+

(b)

X1 Xf
— =+~ and 6, =0, —>7.
X2 X2

6, = 1 1implies
But the density f( x;/x; =7, 6; = 0, §, = 1) is not proportional
to P((x?/x3%) > v). Hence (6.4) is not a true likelihood.
The true likelihood should be based on

f(£=7961=0362=1)
X2

o

K> x§
=f P(—;>7Ixé’ =xz)f(x§’ = X2)dxz.
0 X2

But this likelihood depends on pair effects, which cannot be
eliminated.

6.3 Applying Recensoring

To get a consistent estimator, we may apply the recen-
soring step in Section 4 in conjunction with the likelihood
kernel and call the method the recensoring maximum like-
lihood method (RML). Let us return to the log scale of the
survival time again. The estimation step is to solve

mu{HgU#“—ﬂ)H(l—Guﬂ“—e»
o Lqa) (b)
XHGwW—m}
(c)
where D(b) T(b) T(b) and g, G are the density and the

distribution function of W; = D? — 6. The log-likelihood
equation is

— (D" - 9) ®)
zde +s g(D;" —6)
o gDT -6 5 1-GDT -6
—g(D;” — 6)
+%—"F’_—G(D 5 =0 69

For exponential survival, we have g(w) = e*/(1 + e*)?, the
logistic distribution. Substituting this term in (6.5), we obtain

zeD,‘"’—o eDf")—o
2\ T Y T2 e,
@ \1+e w1t+e

1
_ % [————l " eD’(,,,_o] =0
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or, equivalently,

(5)
ePi -0 1

p{® 0

2O _g =0. (6.6)

@.m 1+ e @, 1 +e”

Equation (6.6) takes a form similar to the M estimation
(5.1). Let 8 ® be the solution of (6.6). We shall discuss Fisher
consistency and other properties of 6, the estimate of 8 ob-
tained by solving (6.6) and (4.3). The arguments are similar
to those in Section 5. Let

(&) () <(b)
Y(D;" — 0,61, 062")
pP—p
1+ eD,(b)—ﬂ 2i + eD‘(b) PRELE
b b . . . .
where 6( )and o ) are the readjusted indicators of censoring

defined in the recensoring step of Section 4.
The population version of (6.6) takes the form

9, 5 (b) (b))
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> E¥(D? -

i=1

Note that 5(1’}) is nondecreasing in b and 6(21,-’) is nonincreasing
in b.

As shown in Appendix B, we can directly verify that (1)
6 = b is a solution, (2) for any fixed b, ¥ is decreasing in 6,
and (3) with § = b, ¥ is decreasing in b. Therefore, similar
arguments to those in Section 5 can be used to prove the
Fisher consistency and large-sample consistency. But al-
though we are unable to show that the iterative procedure
always converges, at least we can find 8 by solving

b (b) (b))
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n
> WD -

i=1

directly, using the usual up—down method due to the mono-
tonicity in b.

The asymptotic variance of § is given in Appendix A. Note
that the true distribution for the difference of the log survival
time need not be logistic. The asymptotic variance can be
calculated for a given survival distribution and a suitable
kernel.

7. ASYMPTOTIC RELATIVE EFFICIENCY (ARE)

The full efficiency comparison among different estimators
may not be simple, because it depends on the complete spec-
ification of the survival distribution (¢;; or W), the nuisance
parameters (u;’s), and the censoring times (Kj;’s). In the next
section we evaluate these methods under different combi-
nations of the choices on the survival distribution, pair effects,
and censoring times via Monte Carlo studies. In this section
the asymptotic variance is computed and compared only for
simple cases. For convenience, we assume the exponential
survival without the pair effect; namely, B; = 1 in the mul-
tiplicative model (2.3) and Y}; follows an exponential distri-
bution with unit scale. The censoring time (K,;, K5;) is as-
sumed to be (oo, co ) when there is no censoring and (K + 6,
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K) when there is censoring. Four methods are considered
here
Method 1: RMD, the recensoring median estimator (see
Ex. 5.2 in Sec. 5.3)
Method 2: RMN, the recensoring mean estimator (see
Ex. 5.1 in Sec. 5.3)
Method 3: RML, the recensoring MLE applying the re-
censoring algorithm described in Section 6.3
Method 4: UML, the usual MLE assuming there is no
pair effect; that is, treating the estimation procedure as
a two-sample problem, with no recensoring applied.

UML is our benchmark for this setting, because it assumes
the knowledge of no block effects. The other three methods
do not assume no block effects, which is more appropriate
in analyzing the pair data. If block effects exist, UML will
not be consistent but the other three methods will be. Also,
note that although for a finite sample the MAL method pro-
posed by Holt and Prentice (1974) and the RML method
are different, they are asymptotically equivalent under (3.4).

7.4 No Censoring

The ARE in the no censored case is easy to calculate. The
asymptotic variances for the four methods are o7 = 4, o3
=w2/3, 63 = 3, and ¢} = 2, and the ARE (i, j), where i
denotes the row method and j denotes the column method,
are listed in Table 1.

7.2 With Censoring

Let ¢ = In K. The asymptotic variances for each of the
four methods are

ot =1/Bj3,
1
B ==(1— 'ZC,
1 2( e
A
2=——-
g2 B29

Ay =2{ay— ad + e~ [(1 — e™)(In ) — 2ayIn c] },

and
B,=1-— e’”,

where

In(c) In(c) ) N
X —
a1=f xe* ¢ dx and a2=f xe* ¢ dx,

-0 —00

As =§[1 +2(4c* +5c— 1)e™ — (42 + T — 1)e™*
2¢ e—t
—2c*(4c+ 9)f Y dt] >
[4

By = - [1 —2Q2c*+c+ e+ 22+ 2¢+ e

W | —

2¢ ,—t
+c(4c2+6c+3)f ft——dt],
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Table 1. Asymptotic Relative Efficiencies in the No Censoring Case

With No Block Effect
RMD RMN RML UML
RMD 1.00 .82 75 .50
RMN 1.22 1.00 91 .61
RML 1.33 1.10 1.00 .67
UML 2.00 1.64 1.50 1.00
and
2
2
05 = .
fl—e

The asymptotic variances are plotted in Figure 2 against the
censoring rate for each coordinate. As expected, the UML
has the smallest asymptotic variance, followed by the RML.
The RMN is preferable to the RMD, except for the censoring
rate in between .19 to .57, where the variance of the RMD
is slightly smaller than that of the RMN.

We have demonstrated how the asymptotic variance can
be computed for the recensoring methods when there is no
block effect. When there is block effect, as should be the case
for pair data, the formulas given in Appendix A can be ap-
plied to obtain the asymptotic variance.

8. MONTE CARLO STUDIES

To evaluate the finite sample properties of the recensoring
methods and to compare with existing methods, we design
the following Monte Carlo studies. We obtain the point es-
timates and the standard deviations of the estimates. In ad-
dition we construct confidence intervals with a 95% nominal
coverage probability. All simulations are performed with

Asymptotic Variance

1 " 1 1 1 L " " 1 n " L 1 I " n 1
0 0.2 0.4 0.6 0.8

Censoring Rate for Each Coordinate

Figure 2. Asymptotic Variance of the Usual Maximum Likelihood Esti-
mator (UML), the Recensoring Maximum Likelihood Estimator (RML), the
Recensoring Mean Estimator (RMN), and the Recensoring Median Esti-
mator (RMD) Under Censoring.
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1,000 replicates. Thus for estimating the true coverage prob-
ability 1 — «, the standard error of the reported coverage
probability is about 3% of Va(1 — a). At the true coverage
rate 95%, any interval that gives the coverage rate from 93.6%
10 96.4% is statistically no different from 95%. All trials with-
out any doubly observed pairs are considered as invalid trials.
They are skipped and replaced with valid trials. The number
of pairs in each group is chosen as N = 60 and N = 300.
The effective sample size depends not only on N but also on
the censoring rate. For example, N = 300 can be considered
a “large” sample when there is no censoring. But with 80%
censoring rate occurring in each group, we can observe only
4% (i.e., 12 pairs) doubly observed pairs and 64% (i.e., 192
pairs) doubly censored pairs. In this situation N = 300 can
only be considered as a small or moderate sample size. Five
methods are evaluated in the simulation: one conventional
marginal likelihood method without recensoring, the MAL
(Holt and Prentice 1974); one parametric and one non-
parametric recensoring method, the RML and RMN; one
nonparametric test-based method, the TWP (Wei and Pee
1985), and one method assuming the proportional hazard
model, the PHM (Holt and Prentice 1974). The methods
are implemented using five parameter sets. All parameter
sets assume ¢ = .5; that is, the treatment difference between
two groups, 0, is equal to —.693. The RMD estimate is not
included because of its nonuniqueness when heavy censoring
occurs.

Parameter Set 1. An exponential survival time with the
unit scale is assumed for the control group in the multipli-
cative model (2.3). We also assume to apply a common cen-
soring time (Cy, C,) = (eX', eX?) to all pairs. C; and C, are
chosen to yield a 0%, 20%, 40%, 60%, and 80% censoring
rate for each component of a pair. The values of C, are oo,
1.609, .916, .511, and .233. The value of C; is equal to ¢C>.
In parameter set 1 no pair effect is assumed, but the analysis
was carried out without this knowledge.
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Parameter Set 2. Weuse C=C;=C, = w0, 1.609, 916,
.511, and .223 for each case. In this setup, C, does not equal
¢C5. Other parameter settings are the same as in set 1.

Parameter Set 3. This set is the same as in the simulation
of Holt and Prentice (1974). The fixed common censoring
times C = C; = C, = o0, 25, and 5 are used. The block
effects B;’s in (2.3) are set by B; = a + b*Mod (i, 60), with
a=5and b =.5. (Mod(i, 60) is the remainder of i divided
by 60.) When C = 25, the probability for cases (a), (b), (c),
and (d) is (.39, .11, .34, .16). This changes to (.05, .10, .21,
.64) for C = 5.

Parameter Set 4. The survival distributions are assumed
to be Weibull with shape 2 for both the control and the
treatment groups. The scale parameter for the control group
is set at 1, and a block effect similar to parameter set 3 is
assumed with ¢ = 0 and b = .5. The fixed common censoring
times C = C, = C; = 00, 7.7, and 3.6 are used to yield 0%,
30%, and 60% of doubly censored pairs.

Parameter Set 5. Lognormal distributions are assumed
for the control and the treatment groups with both mean
and variance as 1 in the control group. Again, similar block
effect as in parameter set 3 is assumed with ¢ = 0 and b
= .05. The fixed common censoring times C = C; = C,
= 00, 9.2, and 3.4 are used to yield 0%, 30%, and 60% of
doubly censored pairs.

The results from the simulation study are presented in
Tables 2-6. Cases are sorted according to the probability of
censoring (PC) for Table 2 and common censoring time (C)
for Tables 3-6. The first line of each case gives the point
estimator for the three estimators considered, with standard
deviations from 1,000 trials in parentheses. The next line
gives the coverage probability of a 95% confidence interval.
For the MAL, RML, RMN, and PHM, the confidence in-
tervals are constructed symmetric about the point estimates

Table 2. Simulation Results for Parameter Set 1

PC MAL AML RMN WP PHM
N = 60
0 -.70(.22) -.70(.22) —.71(.23) -.70(.21) —.71(27)
.95 (.84) .95 (.76) 95 (.91) 97 (.91) .97 (1.09)
2 —.70(.28) —.69 (.23) —.68 (.30) —.70(.23) —.71(.29)
.95 (1.04) .96 (.83) 95 (1.12) .97 (.98) .97 (1.13)
4 —.71(.35) —.70(.26) —.68 (.36) -.70(.27) ~.73(.32)
96 (1.42) 96 (.92) 95 (1.37) 97 (1.14) 97 (1.27)
6 —.72(47) —.72(.33) —.67 (48) —.71(.37) —.74(:39)
.96 (1.88) 95 (1.27) .96 (1.80) .97 (1.50) .96 (1.52)
8 —.74(73) ~73(52) —.65 (.74) —.73(.50) —.76 (54)
95 (2.81) .93 (1.83) 95 (2.73) .97 (2.54) 97 (2.15)
N = 300
0 —.70(.10) —.70(.10) —.70 (.11) —.70 (.09) ~.70(.12)
.96 (.40) 96 (.39) 95 (.41) .97 (.38) .96 (.48)
2 —.70(.12) ~.70(.10) —.70(.12) —.70(.09) —.70(.13)
.96 (.50) .96 (.40) .96 (.48) .97 (.40) 95 (.51)
4 —.70(.15) —71(.12) —.70 (.15) —.70(.11) —.70 (.14)
.96 (.64) .95 (.44) .96 (.58) .96 (.45) .97 (.56)
6 —.71(.20) —.70 (.14) —.70(.18) —.70(.14) —.70 (.16)
.96 (.83) 95 (.54) 97 (.74) 97 (.56) .96 (.66)
8 —.71(.30) -.70(.21) —69 (.28) —.70(.20) —.71(.23)
.96 (1.33) .94 (.80) .97 (1.10) .96 (.82) 96 (.91)

NOTE: This parameter set assumes exponential survival without block effect, censoring times C, = ¢C,, §, = —.693, and 1 — 2« = .95.

PC refers to the probability of censoring for each member of the pair.
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Table 3. Simulation Results for Parameter Set 2

c MAL AML RMN WP PHM
N = 60
@ ~.70(.22) ~.70(.22) —.71(.23) -.70(.21) —71(27)
.95 (.84) .95 (.76) 95 (.91) 97 (.91) .97 (1.09)
1.609 —.81(.25) —.68 (.22) —72(.27) -.70(:22) -.71(.27)
.94 (.95) .96 (.96) .95 (1.06) .97 (.95) .97 (1.09)
916 -.92(:31) —.70(.25) -.73(:32) —.71(.25) —.71(.28)
.90 (1.17) .95 (.95) .95 (1.25) .97 (1.07) 97 (1.12)
511 —1.04 (.40) —.74(.31) —.75(.42) —.72(32) —.72(31)
.87 (1.49) .93 (1.08) .95 (1.59) .97 (1.32) 96 (1.24)
223 -1.18 (61) —.79(51) —.78 (.59) —.76 (.57) —.74(41)
.90 (2.38) .90 (2.07) 95 (2.30) 97 (2.12) .96 (1.60)
N = 300
@ —.70(.10) —.70(.10) —.70 (.10) —.70 (.09) —.70(12)
.96 (.40) .96 (.39) .96 (.41) .97 (.38) .96 (.48)
1.609 —.80 (.11) -.70(.10) —.70(.12) —.70 (.09) —.70(12)
.87 (46) 95 (.41) 96 (.47) 97 (.39) .95 (.48)
916 —.92(.14) —71(11) —71(.14) —.70(.10) —.70(.12)
65 (.56) .95 (.44) .96 (.56) .96 (.44) .95 (.50)
511 -1.03 (.17) —.72(.14) —-.71(17) —.70(.13) -70(.13)
55 (.73) .94 (.50) .96 (.70) .97 (53) .96 (.54)
223 -1.13(.25) —.74(.20) —72(.25) —.71(.18) —71(17)
63 (1.07) 95 (.77) 95 (1.00) .96 (.74) .96 (.69)

NOTE: This parameter set assumes exponential survival without block effect, censoring time C, = C, = C, , = —.693, and 1 — 2« = .95.
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under the asymptotic normal assumption. For the TWP,
however, we assume the asymptotic normality of the test
statistics and invert the test. The confidence interval obtained
for the TWP may not be symmetric about the point esti-
mates. The average length of the confidence interval is given
in parentheses following the coverage rate.

As can be seen in Table 2, all five methods work well for
point estimation, except for N = 60 with PC = .8 for param-
eter set 1. The MAL works because the censoring times are
chosen luckily so that (3.4) holds even without recensoring.
The standard deviation of the RML and TWP are smaller
than that of the MAL, RMN, and PHM. The RMN is slightly
more efficient than the PHM when there is no censoring, is
about as efficient as the PHM on slight to moderate censoring,
and is less efficient than the PHM on heavy censoring. All
five methods also give the desired 95% coverage rate. The
RML has the shortest length of the confidence interval in
both censored and no censored cases. On the other hand,
the PHM gives longest interval when the censoring proba-

bility is less than or equal to 20% for each member of the
pair. The MAL yields the longest interval when the censoring
rate is moderate to heavy. For all censoring rates, the lengths
of the TWP confidence intervals are about the same as those
of the RML when N = 300 but are consistently wider than
those of the RML when N = 60. The TWP gives tighter
intervals compared to the RMN, except when the sample
size is small (N = 60) with little censoring.

Parameter set 2 is identical to set 1 except that the cen-
soring condition (3.4) does not hold. Table 3 shows that the
MAL fails except in the no censoring case. All other four
methods still work in general. The point estimators are
slightly off for N = 60 with C = .511 and .223. The coverage
rate for the RML is lower for N = 60 and C = .223.

The general patterns of behaviors for the RML, RMN,
TWP, and PHM are similar to what we have seen in param-
eter set 1, except that when the censoring rate is extremely
high (C = .223, 80% censoring in the control group), the
PHM outperforms all other methods. This is due to the fact

Table 4. Simulation Results for Parameter Set 3

c MAL RML RMN WP PHM
N =60
o -70(.22) ~.70(.22) —.69 (.24) —.70 (.21) —71(27)
.95 (.84) 95 (.75) .94 (.92) .97 (.93) .97 (1.09)
25 —.95 (.34) —.71(.28) —.70(.36) —.71(27) —.72(.30)
.90 (1.25) .93 (1.00) .93 (1.36) .97 (1.18) .96 (1.19)
5 —1.20 (.73) —.78 (.47) —.61(.65) —77(52) —.75(.50)
.90 (2.62) .93 (1.69) .94 (2.66) .97 (2.70) .98 (1.90)
N = 300
o —.70 (.10) —.70(.10) —.70(.11) —.70 (.09) ~70(12)
.96 (.40) .96 (.38) 95 (.41) .96 (.39) .96 (.48)
25 —.94 (.15) —71(12) —.70(.15) —71(1) ~.70(.13)
64 (.62) .94 (.48) .96 (.61) .96 (.48) .96 (.53)
5 -1.15 (:31) —.74(.23) —.71(:30) -.72(.22) —.71(.20)
71(1.29) 94 (.82) 94 (1.19) .95 (.89) .95 (.81)

NOTE: This parameter set assumes exponential survival with block effect, censoring time Cy = C, = C, §, = —.693, and 1 — 2« = .95.
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Table 5. Simulation Results for Parameter Set 4

c RML RMN WP PHM

N =60

© —70(11)  —70(11)  —70(11) —72(17)
.96 (.38) .95 (.45) .98 (.51) .97 (.65)

7.7 —72(17)  —71(19) —.71(.18) —.73(.20)
.95 (.54) 95 (.75) .97 (.80) .97 (.79)

36 ~-76(25) —.72(.28) —-72(30) —.75(28)
94 (.81) .93 (1.04) 97 (1.24) .98 (1.09)

N = 300

o —-70(.05  —.70(.05) ~.70 (.05) —.70 (.07)
.96 (.20) .96 (.20) 95 (.21) .95 (.28)

7.7 —-70(07)  —.70(.09) -.70 (.08) —.70 (.09)
.96 (.32) .95 (.34) .96 (.32) .96 (.34)

36 ~71(11)  -70(12)  -70(12) —71(11)
.95 (.43) .94 (.48) .94 (.46) .96 (.46)

NOTE: This parameter set assumes Weibull survival with block effect and censoring time C, = C;
=C.

that equal censoring is the optimal design for PHM, whereas
C, = ¢C, is optimal for the recensoring methods.

For parameter set 3 (Table 4), the RML corrects the in-
consistency problem of the MAL. In addition, the RML is
also more efficient than the RMN, TWP, and PHM for all
censoring at N = 60. When N = 300, the performance of
the TWP is close to that of the RML for all censoring, and
the performance of the PHM is close to that of the RML
and TWP on high censoring (C = 5).

We drop the MAL on parameter sets 4 and 5 because we
know that it will not work well in the case of ¢ = .5 and C,
= (,. For parameter set 4, similar results to those for pa-
rameter set 3 can also be found in Table 5. When N = 60
and no censoring is done, the length of the confidence interval
is the smallest for the RML, followed by the RMN, the TWP,
and then the PHM. The RMN vyields a shorter interval than
the TWP when N = 60; but when N = 300, both methods
give comparable results.

Last, we evaluate these four methods on the lognormal
distribution. Table 6 shows that the PHM failed because the
lognormal distribution is not a proportional hazard model
on which the method is constructed. Among the three re-
maining methods, all give the correct point estimates and
the desired coverage probability, except for a somewhat lower
coverage rate for the RMN when N = 60, C = 3.4. When N
= 60, the length of the confidence interval for the TWP is
wider than that for the RMN and the RML; when N = 300,
the TWP gives a similar length as the RMN. The RML still
has the best performance in general, however.

9. APPLICATION TO THE DATA ANALYSIS FROM
TUMORIGENESIS EXPERIMENT

Mantel, Bohidar, and Ciminera (1977) considered a litter-
matched tumorigenesis experiment. For each block of size
three, rats were randomly assigned into one drug-treated
group and two control groups. The weeks to tumor appear-
ance were recorded to evaluate whether the drug had any
effect on tumorigenesis. All rats were sacrificed at the end
of 104 weeks. Table 7 gives the time to tumor appearance
for the drug-treated group and control group 1 in the female
rats, which had also been analyzed by Wei and Pee (1985).
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In this particular example the rats either developed tumors,
died of other reasons (treated as censored), or were still alive
at 104 weeks without tumors (also treated as censored). Be-
cause all rats were to be sacrificed at the end of 104 weeks,
we use this number as the potential censoring time for those
uncensored cases. Note that the censoring rate is very high
in the data set. There are 24 /50 (48%) doubly censored pairs,
18/50 (36% ) when the drug-treated group was observed but
the control group is censored, 4/50 (8% ) when the control
group is observed but the drug-treated group is censored,
and only 4/50 (8% ) doubly observed.

After taking the logarithm transformation on the data and
applying the estimation methods, the results of the point
estimator and its standard error (in parentheses) are RMN:
—.159(.142); RML: —.275 (.268); and MAL: —1.082 (.405).
The corresponding 95% confidence intervals are RMN:
(—.437, .119); RML: (—.800, .250); and MAL: (—1.876,
—.288). Wei and Pee (1985) had # = —.195 and two versions
of the 95% confidence interval as (—.844, —.010) and (—.916,
—.020). Figures 3 and 4 give 8(b) as a function of b and
shows the solution 6 for the RMN and RML. The RMN,
RML, and Wei and Pee methods indicate that the drug may
reduce the time to tumor by 15-24% (percent survival time
reduced = (1 — ¢) X 100% = 1 — exp(#)). This is rather
different from the 66% derived from the MAL. Wei and
Pee’s confidence intervals are highly asymmetric and barely
exclude 0. The box plot of the residual tfb’ - tﬁb) — bisgiven
in Figure 5 for b from —1 to .4. It is clear that the residual
distribution in either extreme case, b = —1 or .4, is not sym-
metric about 0. Yet it is more symmetric when b is between
—.2 and —.1. Discussion of this data set is continued in Sec-
tion 10.

10. TESTING HYPOTHESIS AND INVERTING THE TEST
UNDER RECENSORING

The application of recensoring is not restricted to the es-
timation problem. In this section we discuss the hypothesis
testing problem. By inverting the test, one can construct
confidence intervals as usual.

Consider the two-sided test of Hy: 6 = 6, against H,:
# 6. Recensor the data as in Section 4 with b = 6,. Then,
under the null hypothesis, D™ is symmetric about 6.

Table 6. Simulation Results for Parameter Set 5

c RML RMN WP PHM

N =60

o —71(19) —71(19) —71(20) —.82(.28)
94 (.79) .94 (.71) 96 (.82) .96 (1.11)

9.2 —70(23) -.71(25) —.71(24) —.91(.36)
.93 (.80) 92 (.93) .96 (1.02) .94 (1.37)

34 —69(33) —.72(34) -72(34) —1.07(52)
95(1.10)  90(1.27) .97 (1.44) 94 (1.91)

N = 300

@ —69(08) —.69(08)  —.70(08) —.79(13)
.96 (.29) 97 (:32) .96 (.34) 89 (:49)

9.2 -69(10) -70(10)  —.70(.10) —.89(.15)
.94 (.36) .96 (.43) 96 (.42) .77 (.60)

34 —69(14) —69(14) —-70(13)  —1.01(21)
98 (.53) .95 (.58) .96 (.55) 69 (.81)

NOTE: This parameter set assumes lognormal survival with block effect and censoring time
C,=C;=C.
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Table 7. Time to Tumorigenesis in Weeks for 50 Female Rats (Drug-Treated Group, Control Group)

(101+, 49), (88, 96), (89, 91+), (85+, 72+), (104+, 104+)
(89, 104+), (76+, 87+), (94, 104+), (72, 95+), (49+, 83+)
(104+, 102+), (104, 94+), 91+, 70+), (104+, 63+), (104+, 104+)
(78+, 104+), (103, 73), (104+, 104+), (73, 104+), (89, 104+)
(104+, 104+), (96, 104+), (39, 45+), (104+, 104+), (104+, 83+)
(104+, 81), (102, 104+), (104+, 101), (92, 104+), (88+, 79+)
(77, 97+), (82+, 77+), (103, 69+), (81+, 104+), (87+, 104+)
(86, 55), (80, 104+), (76+, 84), (104+, 98+), (103, 91+)
(89+, 104+), (70, 104+), (93+, 104+), (67, 104+), (104+, 104+)
(34, 104+), (45, 79+), (80, 81), (55+, 104+), (104+, 104+)
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Therefore, we can apply tests for symmetry, such as the sign
test or signed-rank test. The ties, D,W = fy, occurring for
doubly censored pairs will be ignored.

Let SIGN = number of cases for which D§0°) > 6 and let
Ny = number of cases for which D fa") # 6,. Then, conditional
on Ny, SIGN is a binomial random variable with n = N,
and p = .5 under H,. The two-sided sign test can be found
in the usual way by rejecting H, if SIGN is either too large
or too small. The signed-rank test can be formed in the
same way.

As usual, inverting a test leads to a procedure of con-
structing confidence intervals. The resulting 95% confidence
intervals for the tumorigenesis experiment data of Section 8
based on signed test and signed rank test are (—.56, —.02)
and (—.87, .08). It is seen that the sign test-based interval
barely excludes O (similar to Wei and Pee’s result), while the
signed-rank test interval includes 0. Because this is a highly
censored data set without strong treatment effect, we have
grave reservations in concluding the existence of treatment
effect.

11. CONCLUSION

Paired-data analysis is one of the basic topics covered in
almost all elementary statistics textbooks. The method taught

there is unanimous; namely, converting the paired-data
problem into a one-sample problem by taking the difference
of the two observations in each pair so that heterogeneity
due to distinct characteristics for different pairs can be elim-
inated. Here we assume that the definition of treatment effect
is given in terms of location parameters, possibly after a suit-
able scale transformation. When paired data are subject to
censoring times, however, this approach has apparently been
abandoned for the obvious reason that the observed differ-
ences within pairs no longer reflect the treatment effect un-
biasedly. In the literature, alternative methods have been
sought under rather different rationales.

We have a different attitude toward the traditional method.
We enjoy its simplicity and believe in its rationale. To save
these merits, we introduce the idea of recensoring for ab-
sorbing the destructive impact from censoring. Recensoring
is motivated by the discovery that the difference in observed
times within each pair can still be unbiased in estimating the
treatment effect if we were to have a favorable situation in
which the difference in the two censoring times within each
pair is equal to the treatment effect. Such a favorable situation
rarely exists automatically, but we can try to create it by first
forcing the censoring times within each pair to take a com-
mon difference. This can be done easily by resetting one of
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Figure 3. The Convergence of the Recensoring Mean Method (Initial
Value = .54, 8 = —.159).

Figure 4. The Solution of the Recensoring Maximum Likelihood Method
(8 = —.275).
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(2 -

Figure 5. Box Plot of t — t — b Versus b for Nondoubly Censored
Pairs. The number of positive and negative t® — t® — b pairs are given
above the corresponding box plot. The top figure is the number of positive
pairs, and the bottom figure is the number of negative pairs.

the two censoring times in each pair to a smaller value. We
use these new censoring times to recensor the existing data.
After recensoring, we can resort to the traditional method
of paired-data analysis. The remaining question involves the
choice of the common difference for the new censoring times.
We resolve this question by using the one that yields itself
as the estimate of the treatment effect after recensoring.

As we have rigorously shown, recensoring has successfully
removed the ill effect due to censoring for many estimation
procedures, including M estimation in the location model
and the likelihood-based estimate of Holt and Prentice
(1974). Asymptotic results for the derived estimates have
been obtained. In addition, our approach preserves another
important feature of the traditional method: graphics. As is
well known, one standard assumption on the one-sample
problem converted from the differences within pairs is that
these differences follow a symmetric distribution (with the
symmetric center being the treatment effect). Many plots
are available for visually assessing symmetry in the data.
These graphical procedures are equally vulnerable to the ill
effect of censoring. But with recensoring, all of them can still
be used for checking symmetry.

To evoke recensoring, the censoring times must be given
for all experimental units. Although censoring times may
not be observed directly for the uncensored cases, ‘“potential
censoring times” are usually available. Almost all studies
have a definite study period. For example, laboratory ex-
periments generally have a predefined observation period,
and clinical trials are typically set up for certain years of
accrual plus follow-up. Such information can be used to de-
termine the censoring time for each uncensored case.

One referee raised the issue of the sensitivity of the various
estimates to the censoring times in the event that they cannot
be accurately determined. We have one result that is easy to
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verify. For the sample median method, each estimate §?’
(5.1) does not depend on the true censoring times for the
noncensored cases. Thus the derived estimate is completely
insensitive to the undetermined censoring times. But, before
jumping to any conclusion, we must realize that our sensi-
tivity issue has two sides. Although we want our procedure
to be as robust as possible under the false censoring times,
we also want it to respond well to the correct censoring times.
For example, both Holt and Prentice’s intrapair rank method
and Wei and Pee’s method are insensitive to the undeter-
mined censoring times—in fact, they do not need it at all.
However, the former assumes a common censoring time for
the two experimental units in each pair, and the latter de-
pends on an iid assumption about the censoring times. These
methods are not designed to incorporate the empirical in-
formation on the censoring times for the uncensored cases.
The induced insensitivity is not necessarily a virtue if their
assumptions meet challenges from the well-informed cen-
soring times. Apparently, an in-depth study on this important
issue is warranted.

APPENDIX A: THE DERIVATION OF ASYMPTOTIC
VARIANCE OF THE RECENSORING ESTIMATORS

As described in Section 5.3, the asymptotic variance of § can be
expressed as A4,/ B2.
We now present a method of deriving

n n
B= 3 [ L EwD® - 5,52, 6] =3 B @AD)
i=1 db b=0 i=1
where
W(D;” ~ b, 517, 85) = V(D" - b)8}65)
+ (DI - b)(1 — 81705
+¥5(D{” - b)(1 — 85185 (A2)
for some functions ¥, ¥,, and ¥;. For the RMN and RMD meth-
ods, ¥, = ¥, = ¥,. For the RML, ¥,, ¥,, and V; are the derivatives
of the log density, survival, and cumulative density of D? .
We shall compute
d

= ) _
7 EN(D; b)

_ i EY(D — (b + Ab)) - EW(D” — b)
260 Ab ’

Let F;(t, &), F1;(+), and F,;(-) denote the distributions of (Tf;,
T5%), Tt:, and T3;. We consider the case K|, > K,; + b only (the
other case can be derived similarly), so that K fi) = Ky + b and
K §?’ = Kj;. Clearly, by definition we have

E¥Y(D — (b + Ab)) — E¥(D® - b)
Ko Ko+ (b+Ab)
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- L f V3(ty — Ko — b) dFi(41, 12). (A.3)
2i ©
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Assuming the differentiability of ¥;, we can approximate this
expression by

Ky pKait+b
ff (— ALYV (11 — o — b) dFi(ty, 1)

fl(z, fK 2u+b+0b
K21

Ky (Ko+b+ab
f f Vi (Ky — ) dFi(4, t2)

Ky +b

V() — p — (b + Ab)) dFi(1y, 1)

00 Kai+b
+ f f (—Ab)Y5(t — Ky — b) dFi(t1, 1)
KZ:

Ko, +b+4Ab
+ f f V,(t
Ky VKy,+b

Ky, K2, +b
;—Ab{ff Wit — 1 — b) dFi (1, 1)

Kai
+ fii (Ky + b)f_ [V2(Koi — t2) — W1(Ky — 1)] dF2i(82)

— Ky — (b+ Ab)) dFi(ty, &)

Koi+b

+ (1 — Fy(K2)) [f Vi5(t — Kz — b) dFyi(1y)

= V3(0) fi; (Ka + b)]} .
Therefore, when 0 < Kj;

K2, Kpi+0
—Bm=ff Vit — 1o — 0) dF,(tr, 1) + fis (Kt + 6)

— K,;, we have

K2i
X J: [Wa( Ko — 1) — ¥1(Ky — 1)] dFai ()

Kai+0
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— ¥3(0)/1: (K + 0) | (A.4)

Similarly, when 0 > K;; — K;;, we have

Kii—0 Ky
~B.= [ Vit — 1o — 0) dE, (1, 1) + fu (Kt — 0)
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Note that in the special case of ¥, = ¥, = ¥, and ¥;(0) = 0, this
is reduced to

Ky, K2,+6
—B, = [f f V'(ty —t, — 0) dFi(t,, t)

Kau+o
+ (1 — F5(Ky)) f_w ¥'(t — Ko — 0) dFli(tl)] )

for 0 <K, — Ky
and
Ky~ K1,
—B, = f V'(t, — tn — 0) dFi(4y, 12)
Kyi—6
+(1 —Fu(Ku‘))J; V(K — 1o — 0) dFyi (),
for 6> K],- - Kz,'.
Therefore, we obtain
—Bn = E¥(D{" — 0)5) + E¥'(D,” - 0)85).  (A.6)
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Note that although the independence assumption between T'$; and
T'5; is used in this derivation, (A.6) holds without it.

Example 1: RMN. The RMN method takes the form of the
identity kernel and can be considered as a special that has ¥, = ¥,
= ¥;and ¥(0) = 0. By (A.6), when 0 < K;; — K»;,

Ky (Kytt K+
‘Bm‘=J: J: dFi(t, ) + (1 —FZ:‘(Kzi))f~ dFy;(t)

= Fp (Ky ) Fri (Ko + 0) + (1 — Fpi(Ky)) Fii (Ko + 6)

=F,(Ka +0)

= Pr(T; uncensored after recensoring).

Example 2: RMD. Similar to the RMN method, the RMD
method also has ¥, = ¥, = ¥; and ¥(0) = 0. The additional
complexity occurs due to the nondifferentiability of ¥ at 0. But this
can be handled directly in the first approximation of our general
derivation. From the definition of the median kernel, terms 3, 4,
5, and 6 in (A.3) can be directly computed. The first and the second
term in (A.3) can be obtained by fixing #, at a certain constant,
breaking the inner integral into the positive and negative parts, and
then integrating over £,. The final result is

K,

—'Bm =2 ﬁ:(tz)szz(lz)+(1 _FZI(K21))ﬁz(K11

for K, — Ky > 0.

By symmetry, the result of K; — Kj; < 6 can also be obtained easily.

Example 3: RML. For the RML method with the logistic kernel
as discussed in Section 6.3, we take

@
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This leads to
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for 6> K;

Note that the second term of — B,,; involves the density function
of ¢, (or t;), which contains the pair effects.
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APPENDIX B: PROPERTIES OF THE LIKELIHOOD
KERNEL FOR THE RECENSORING MAXIMUM
LIKELIHOOD METHOD

First, we show that, assuming g( - ) is symmetric about 0,
d

. o ng.‘"’—a)
EW(D{” - 9,8, 8%) = E{z —
@ gD -0

g(D” - 9) —g(D{” - o)]

®1-GD? -8 o G(DP -0

is antisymmetric at b = 6.
First, note that the first summation term is antisymmetric because

d d
%g(x— 0) _ - Eg(_(x —0))

g(x—19) g(—=(x—19))
The numerators and the denominators are equal on both sides due
to the symmetry of g(- ). Second, parts (b) and (c) are antisymmetric
about O when b = 6. Let u = Df” — 0; then if u > 0, we have the
case in part (b). On the other hand, when u < 0, the case will
contribute in part (c). Note that the negative of the negative in the
argument of part (b) is

—8(—u) _ —g(w)
1 -G(—u) G(u)
also by the symmetry of g(-). Because the probability of being in
case (b) and case (c) is equal when b = 6, parts (b) and (c) are
antisymmetric about 0.
Second, we show that ¥ is a monotone function for the logistic
kernel. Let

= part (c)

—g(u) g(u) —g(u)
Y(u) = + )
W=22 " 2726w " 2 5w
Then
; —&(u)g(u) + g(u)? gu)(1 — G(u)) + g(u)?
\II =
O C D T rcTon
—g(u)G(u) + g(u)®
tZ G(u)
For the logistic kernel,
eu u
g(u)=m, G(u)—1+e,,
and
() = e*(1 — e¥) ,_e'(1—2e")
& (1 +e9° (1 +e)* °
2 u
part (a) = (—1'_:%?2' >0,
and
part (b) = (Tfe_)_z = part (¢) > 0.

The monotonicity may not hold for other distributions in general,
however.

[Received February 1991. Revised September 1991.]
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