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Abstract

The term priority map is commonly used to describe a map of the visual scene in which objects 

and locations are represented by their attentional priority, which itself is a combination of low-

level salience and top-down control. The aim of this review is to examine how such a map may be 

represented at the neuronal level. We propose that there is not a single, common map in the brain, 

but that a number of cortical areas work together to generate the resultant behavior. Specifically, 

we suggest that the lateral intraparietal area (LIP) of posterior parietal cortex provides a simple 

representation of attentional priority, which remaps across saccades, so that there is an apparent 

allocentric map in a region with retinocentric encoding scheme. We propose that the frontal eye 

field (FEF) of prefrontal cortex receives the responses from LIP, but can suppress them to control 

the flow of eye movement behavior, and that the intermediate layers of the superior colliculus 

(SCi) reflect the final saccade goal. Together, these areas function to guide eye movements and 

may play a similar role in allocating covert visual attention.

Introduction

The concept of a priority map is derived from the saliency map models of Itti, Koch and 

colleagues [1], which were aimed at modeling shifts of visual attention. These models were 

primarily driven by low-level salience, with a modicum of top-down inputs. Attention was 

allocated, in a winner-take-all manner, to the peak of the map, which was then inhibited so 

that attention could move on to the next highest point. However, a whole host of factors 

influence the allocation of attention, so we [2] and others [3,4] prefer to use the term priority 

map to describe the map that ultimately is used to guide eye movements and covert visual 

attention. We define a priority map as a map of the visual scene, in which activity is driven 

by low-level salience and by a range top-down influences, such as task rules and goals, 

experience, expectations and saccade plans (Fig. 1). Below, we will describe regions of the 

non-human primate brain thought to act as priority maps and propose a mechanism for how 

these areas work together to guide saccades and the allocation of covert attention.
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Brain areas involved in priority map processing

A number of cortical and subcortical areas of the brain have been proposed as priority maps. 

These include the lateral intraparietal area (LIP) of posterior parietal cortex, the frontal eye 

field (FEF) of prefrontal cortex, the superior colliculus (SC) and several visual cortical areas 

[5–8, 9*, 10]. Given that our definition of a priority map is one in which the activity is 

primarily driven by attentional priority and which is involved in the allocation of covert 

attention and the guidance of eye movements, we think it unlikely that visual areas can act as 

true priority maps because their responses are primarily driven by stimulus features. 

However, it is clear that many visual areas include enhanced responses to salience within the 

feature space that they encode [5,6,10], so it may not be inappropriate to call them saliency 

maps. Indeed, the term saliency map is still used in several contexts, so it is worth 

differentiating them here. Some use the term to describe what we have called a priority map, 

that is a map that integrates both top-down and bottom-up inputs to guide attention and eye 

movements [8]. However, the term has also been used to illustrate the way visual area V1 [5] 

and the superficial layers of the superior colliculus [9*,11] preferentially respond to salient 

stimuli. Recent work has noted that the salience response emerges in the superficial layers of 

the superior colliculus before it emerges in V1 [11], which may be a result of the evolution 

of attentional behaviors in animals without a neocortex [12*, but see 13].

LIP, FEF and the intermediate layers of the superior colliculus (which we shall abbreviate as 

SCi) seem to fit the profile for a priority map. Each has responses that are modulated by 

low-level salience [14–16] and a variety of top-down factors [17*, 18–23, 24**]. In addition 

to being driven by the right sort of factors, LIP, FEF and SCi are involved in both the 

guidance of eye movements and covert attention [17*, 25–30].

The priority map for saccade goal selection

Behaviorally, we tend to think of a priority map as the final common map for guiding 

attention [31,32]. This is because behavioral studies can only manipulate external factors 

and then interpret the resulting behavior. As noted above, however, at least three brain areas 

in the non-human primate have been proposed as priority maps. This has led to questions 

about the underlying hypothesis [33*], such as: if there are multiple maps, which map is 

used to allocate attention or guide saccades? Here, we propose a way for these areas to work 

in concert to act, effectively, as a single priority map.

To elucidate the roles played by each area in more natural behavior, we refer to data from a 

series of studies using free viewing visual search tasks. In our work, we have used a visual 

foraging task, in which multiple target stimuli are presented among distractors, but only one 

target stimulus will give the animal a reward. This leads each animal to visually forage 

among the stimuli, until it finds the reward-bearing target. By aligning the stimuli so that one 

stimulus is in the recorded neuron’s receptive field when the animal is fixating another 

stimulus, data can be collected across multiple eye movements within a single trial and a 

representation of all aspects of the map can be built up within and across trials. Using this 

task, we have identified a number of differences between LIP and FEF, which allow us to 

identify the different roles they play in behavior.
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Responses in LIP seem to make up a simple priority map. In the visual foraging task, the 

majority of neurons respond more to a target than to a distractor and the remaining neurons 

tend to not have task-related responses [34]. When a saccade is to be made into a neurons’ 

receptive field, many neurons show a burst of activity leading up to the saccade, suggesting 

that they get top-down feedback indicating the goal of the upcoming saccade. The task-

responsive neurons also tend to show a reduced response to a target, if that target had been 

looked at earlier in the trial and did not give a reward [34]. This is similar to the inhibition of 

return incorporated into saliency map models [1], but is not as effective: neuronal responses 

are only slightly reduced. Most importantly, once the array of stimuli has appeared, 

responses stay fairly consistent during each fixation and are remapped after each saccade. 

We use the term remapped to describe the shifting of responses within LIP, analogous to the 

shifting of the image on the retina after an eye movement, but that occurs before the 

information could reach LIP from the retina. In the visual foraging task, LIP robustly reflects 

the identity of the stimulus in neurons’ receptive fields 20 ms after a saccade [35]. This 

means that, except for a brief period immediately after an eye movement, the representation 

of the entire visual field is present in LIP at all times during the task. Thus, LIP activity 

seems to be a simple priority map: most neurons have responses that are driven by the task 

demands and they respond the same way throughout the trial and across saccades.

FEF activity in this task is subtlety different. The majority of neurons in FEF respond like 

priority map neurons, i.e. they preferentially respond to targets more than to distractors and 

have reduced responses to previously fixated targets. However, unlike LIP neurons, the FEF 

responses get suppressed while animals make purposeful fixations [36]. Approximately 150 

ms after the eyes stop moving, the responses of these neurons drop down to below baseline 

levels. If one thinks of FEF as creating a map to identify saccade goals, then the suppression 

of the map makes sense: when the animal wants to keep its eyes stable, it removes any 

activity that could lead to the generation of a saccade. The neuronal responses reactivate 

about 150 ms before the next saccade, which could allow for the sort of rise-to-threshold 

decision-making process that has been hypothesized to occur in FEF [8], and it would do so 

on a saccade by saccade basis. For short fixations, the activity remains elevated throughout 

the fixation, just as it does in LIP. We hypothesize that while LIP provides a priority map at 

all times, the modulations in FEF allow the animal to control the timing and flow of 

saccades. When FEF inhibition is released, it uses the input from LIP to make the decision 

about where to look. This is consistent with other studies that have examined FEF activity in 

free viewing behavior of natural stimuli and which have found responses that primarily 

represent the goal of the next saccade [37–39].

Based on these results, we suggest that during natural visual behavior, in which eye 

movements are made 2–3 times per second, LIP acts as the default priority map, combining 

top-down and bottom-up inputs. When things change, whether externally or based on 

internal goals, the activity in LIP will change [40]. The priority map in FEF, on the other 

hand, can choose to use the activity from LIP to generate an eye movement or can remain 

silent to keep the eyes stable. We hypothesize that SCi would reflect the output of FEF and 

is unlikely to be active during stable fixation. Indeed, we expect that SCi is likely to 

represent the winner-take-all aspect of the priority map process, with activity that primarily 

identifies where and when the next saccade will go. Only two studies have examined 
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responses of neurons in SCi during free viewing. In both, activity was almost silent, unless 

an eye movement was about to go into the neuron’s receptive field [9*, 41].

The priority map for covert spatial attention

Most previous studies have examined activity in LIP, FEF and SCi using tasks in which 

animals were allowed to make only a single saccade. Unlike the free viewing responses 

described above, activity in these sorts of tasks is usually elevated throughout the duration of 

fixation in FEF and SCi [15, 42]. These tasks rely on explicit covert visual attention – if the 

animals make the wrong eye movement, then they will forfeit their reward – so they must be 

sure, covertly, that their saccade goal is the correct one before generating the eye movement. 

Such behavior is relatively uncommon in natural conditions (with the caveat that it can occur 

in non-human primates with social hierarchy rules that limit eye contact with dominant 

males). Instead, we tend to use eye movements to probe the visual scene. As such, it is 

unclear whether the activity in these conditions is different because the system is in a 

different state, in which covert attention is being explicitly used while the eyes don’t move, 

or because different neurons become active during this behavior. Whatever the genesis, data 

from these experiments gives important insight into how the activity in these areas might 

work as priority maps to guide covert attention.

We suggest that covert attention follows the same process as overt attention, particularly 

given the automatic allocation of attention at the goal of a saccade [28, 43–45] and the 

interactions between microsaccades and covert attention [46, 47]. The only exception would 

be that covert attention is allocated to the peak of a priority map on a moment-by-moment 

basis. However, understanding this process is hindered because the neural correlates of 

covert attention [48–50] have recently been dissociated from behaviors that would 

classically be described as covert attention [51**, 52]. This can lead to different 

interpretations of what roles areas play, depending on how one defines covert attention. So, 

for example, pharmacological activation of FEF modifies the attentional modulation of 

activity in visual areas [53], but the inactivation of SC does not [51**], yet the inactivation 

of SC has a much greater effect on behavior [30] than the inactivation of FEF [54].

Our hypothesis is that the priority map system is similar for overt and covert attention: LIP 

activity creates a first level priority map, influenced by both top-down and bottom up 

factors. FEF, which appears to remain active during periods of explicit covert attention, 

receives inputs from LIP and feeds back to visual areas to modulate their responses. SC, 

which likely represents similar activity to FEF and LIP via feedforward networks, seems to 

be critical in controlling the behavioral use of the activity represented in FEF and LIP. Under 

this hypothesis, during ongoing visual behavior, when FEF and SC are mostly suppressed, 

the corollary discharge sent to FEF from SC before an eye movement [55] is likely to drive 

the pre-saccadic benefit of attention seen at the goal of the saccade [28,43,44].

There are a number of experimental predictions that are born from this hypothesis, but the 

most obvious is that if FEF and SC are mostly silent during ongoing search, then one might 

predict that we should not see traditional attentional modulation in visual cortical areas 

during ongoing visual search. We know that V4 neurons show feature based attention during 
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ongoing search [6,56] and that they have clear modulation when saccades are made to 

neurons’ receptive fields [57], but whether they show the sort of responses seen in covert 

attentional tasks [48–50] is not known. It may seem counterintuitive to suggest that these 

effects are not present in natural viewing behaviors, but we have recently shown that covert 

attentional modulation is absent while animals perform a change detection task with 

multiple items [52], yet as soon as they utilize explicit covert attention, the attentional 

modulation is seen. The presence of feature based attentional modulation during ongoing 

search could mean that feature based attention is driven by LIP [58], which is active during 

each fixation, or FEF [18], which is active during short fixations, but it is also possible that it 

is driven by pre-frontal areas other than FEF [59]. While it is commonly thought that feature 

based attention is not spatial, it is implemented in a spatial based system, so it is possible 

that priority maps could play a role in this process.

This review has focused on the process occurring in the non-human primate, given our 

ability to probe the activity of individual neurons. Functional imaging and various 

electrophysiological methods have shown somewhat similar activity in putative priority 

maps in the human [60]. However, it is clear that the human has a more complex network. 

As such, it is also possible that the control of covert attention is even more complex than in 

the non-human primate. This possibility is supported by the subtle perceptual differences in 

the effects of covert attention in the human when driven by different mechanisms [61].
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Figure 1. 
A hypothetical priority map (right panel) in response to an array of stimuli (left panel) in 

which the subject is asked to find a circle. Each stimulus is represented by a response. The 

popout (yellow triangle) is represented by a slightly higher response due to its low level 

salience and the circle is represented by a much higher response as this represents the goal 

of the task, i.e. a top down input. Note that top down influences are not limited to task rules 

and goals; in natural behavior they can be driven by influences such as experience, saccade 

plans, memories and expectations.
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