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ABSTRACT OF THE DISSERTATION

A Digital RF Transmitter with Background Nonlinearity Correction

by

Seyed Mehrdad Babamir

Doctor of Philosophy in Electrical and Computer Engineering
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Professor Behzad Razavi, Chair

This dissertation describes a new digital transmitter architecture that automatically corrects static

and dynamic nonlinearities with no need for digital predistortion or adaptation. We draw upon the

Newton-Raphson method of solving equations and show that it leads to ∆Σ modulation as a special

case and to a compact, efficient transmitter in the general case. A complete transmitter realized in

28-nm CMOS technology achieves an overall efficiency of 50% while delivering +24 dBm with

an adjacent channel power of −35.4 dB and a receive-band noise of −137 dBc/Hz.
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CHAPTER 1

Introduction

Digital radio-frequency (RF) transmitters (TX’s) have gained popularity in recent years. The re-

alization of transmit functions in the digital domain offers many advantages: (1) analog blocks,

such as baseband filters, variable-gain amplifiers, offset-cancellation digital-to-analog convert-

ers (DACs), upconversion mixers, and predrivers, are omitted, thus contributing no noise in the

receive-band, (2) carrier feedthrough and quadrature mismatches can be suppressed in the digital

domain, (3) RF power control is readily implemented within the output DAC, and (4) while an

analog transmitter must deal with nonlinearity-gain trade-offs at all points in the chain, a digital

transmitter contains only a single analog port at the RF DAC output.

The greatest challenge facing RF transmitters, analog or digital, is the trade-off between linear-

ity and efficiency, which in turn has led to many linearization techniques. Since the die temperature

varies considerably with the TX output power, the linearization must continue in real time; i.e.,

foreground calibration techniques lose their efficacy if they attempt to correct a highly nonlinear

output stage.

This dissertation introduces a new approach to TX linearization that corrects for both static

and dynamic nonlinearity in the background. The correction’s efficacy allows designing the DAC

for maximum efficiency with almost arbitrary integral nonlinearity (INL). Targeting the wideband

code-division multiple access (WCDMA) standard as an example, the simple, compact architecture

affords the highest efficiency reported to date. Realized in 28-nm standard CMOS technology, the

complete transmitter delivers +24.1 dBm with an adjacent channel power ratio (ACPR) of −35.4

dB and an overall efficiency of 50%.

The next section provides a brief background on nonlinearity calibration, and Section 1.2 deals
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with the performance requirements. Section 3.1 describes the basic idea, and Section 3.2 presents

the evolution of the TX architecture. Section 4 describes the design of the building blocks, and

Section 5 summarizes the experimental results.

1.1 Background

In the past 15 years, extensive work has been dedicated to digital transmitters [2]-[8]. As expected,

the RF DAC has been the focus of these developments since it limits the overall TX performance.

Figure 1.1(a) shows an architecture example [9], where the baseband quadrature signals, Iin and

Qin, are applied to a digital predistortion (DPD) block before reaching the RF DACs. The DPD can

be viewed as the inverse of the DAC’s characteristic. The DACs are clocked by the local oscillator

(LO) phases, LOI and LOQ, so as to upconvert the baseband signals. Figure 1.1(b) depicts a unit

cell of the DACs, where Dj denotes the cell’s digital input [9]. In order to maximize the power

efficiency, the transistors in the cell act as switches with a low on-resistance. The two DACs thus

suffer from a low output resistance, affecting each other’s signals. This interaction between the I

andQDACs requires a two-dimensional (2D) polynomial correction [9], hence the need for the 2D

look-up table (LUT) in Fig. 1.1(a). The situation becomes even more challenging in the presence

of dynamic nonlinearities, calling for “complex predistortion” (delayed polynomials) [10].

In addition to the complexity of the look-up tables, conventional digital transmitters also suffer

from the drift of the DAC nonlinearity with the temperature. As an example, Fig. 1.2 plots the inte-

gral nonlinearity of our DAC (Section 3.2) at 0 ◦C and 75 ◦C, revealing a change of several percent

and underscoring the need for background nonlinearity correction. For example, the power control

loop between a WCDMA base station and a mobile user can adjust the mobile TX output power

by 60 to 70 dB according to the path loss between the two. As a result, the TX die experiences a

substantial temperature change during communication.

Prior work on background calibration of analog transmitters relies on FPGA-based or Matlab-

based correction with off-the-shelf components [11], [12]. Also, the system in [12] takes half a

second to adapt to new conditions, and corrects for only static nonlinearity. To our knowledge, no
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Figure 1.1. (a) Simplified TX architecture in [9], and (b) the DAC unit cell.

background nonlinearity correction has been reported for digital transmitters.

1.2 Performance Requirements

Before presenting our work, we summarize the performance requirements that a generic digital

transmitter would need to satisfy. As an example, we consider the WCDMA specifications [13]:

data rate: 3.84 Mcps; channel bandwidth: 5 MHz; carrier frequency: 1920 to 1980 MHz (band I);

peak output power: +24 dBm (for “class C” as defined by the standard); ACPR at this power level:

33 dB; ACPR for alternate adjacent channel (ACPR2): 43 dB; output noise in the receive band:

-125 dBm/Hz.

The RF DAC output quality is dictated by the ACPR [or the error vector magnitude (EVM)]

and the receive-band noise (RXBN), the former imposing a maximum INL of 6.5% and the latter

requiring a resolution of 13 bits and an output thermal noise floor below −125 dBm/Hz. These

bounds must be met at a clock rate of 2 GHz for WCDMA with acceptably small differential

nonlinearity (DNL) and output glitches, both of which tend to raise the noise floor.

A digital TX employing background calibration can downconvert the RF DAC output to base-

band signals, digitize these signals, and provide real-time feedback. The analog-to-digital convert-
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ers (ADCs) necessary in the loop must also satisfy certain conditions so as to negligibly corrupt the

downconverted signals. We expect that the necessary INL and resolution of the ADCs are similar

to those of the RF DAC.
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CHAPTER 2

Predistortion Method

In this chapter, we study different approaches in modeling power amplifiers for predistortion pur-

poses. Some of the data in this chapter are brought from [1].

2.1 Physical Models

Physical models are derived based on KVL, KCL, and equations governing different components

in the circuit such as differential equations between inductors’ and capacitors’ voltage and current.

Transistors as nonlinear components have sophisticated models; therefore, this makes the overall

physical model of a Digital PA very complicated. We prefer simplest models since they will be

implemented on-chip. Hence, physical models are not good candidates.

2.2 Empirical Models

Empirical models are classified into three categories and are listed in order of their complexity.

• Memoryless nonlinear models or static nonlinear models

• Nonlinear models with memory or dynamic nonlinear models

• Nonlinear models with non-uniform tap memory

In the subsequent sections, different static and dynamic models are introduced and compared.

These models are tested using an off-the-shelf class-AB power amplifier. The input signal is

WCDMA whose power is 5 dB more than the input referred 1-dB compression point of the power
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amplifier. In other words,

Pin,avg = P1 dB + 5 dB (2.1)

This assures that the power amplifier is heavily saturated and it has a nonlinear model.

The comparison among different models is based on two metrics defined as follows.

1. Error in ACPR prediction or ∆ACPR

∆ACPR is the difference between the measured ACPR of the PA under test and the predicted

ACPR by the model. That is to say,

∆ACPR = ACPRmeasured − ACPRmodel (2.2)

where

ACPR =

∫
adjacent channel

|Y (f)|2df)∫
main channel

|Y (f)|2df
(2.3)

where Y (f) is the output spectrum.

2. Normalized Mean-Square Error or NMSE

The normalized mean-square error is defined as follows.

NMSE =

∑
|ymeas(i)− ymodel(i)|2∑

|ymeas(i)|2
(2.4)

where y represents the output samples.

2.2.1 Static Nonlinear Models

In static nonlinear models, the output is only a function of the current input samples whereas

dynamic nonlinear models represent a relation based on the current and past input samples. Poly-

nomial model is one the most used static nonlinear models. The polynomial order depends on

how nonlinear the Digital PA is. Another static nonlinear model is “Saleh”, which is used to be

employed for Traveling Wave Tube Amplifiers (TWTAs). Nowadays, a modified version of Sale

model is used for solid-state PAs (SSPAs).
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Table 2.1. Performance of the polynomial model

Polynomial order NMSE (dB) ∆ACPR

5 -30.9 1.5

13 -33.4 0.9

2.2.1 1 Polynomial Model

The first model to examine is polynomial model. Since power amplifiers are usually differential,

we eliminate the even order sentences. The coefficients of the polynomial, α1, α3, ... are found

by curve fitting based the measured data. Based on these coefficients, the ACPR is predicted and

compared with the measured ACPR.

y(t) = α1x(t) + α1x(t)3 + · · · (2.5)

For this special system, having fifth order polynomial is enough as no significant improvement

is observable when the order is raised to 13.

2.2.1 2 Saleh Model

Prior to explaining the Saleh model, AM/AM and AM/PM conversion concepts should be clarified.

Suppose x(t) = r(t) cos(ω0t) is input of the power amplifier. Then, the output will look like

y(t) = g(r) cos(ω0t+φ+Φ(r)). In this relation, g(r) is called AM/AM conversion function which

represents how the envelope will be affected when the input signal passes through the nonlinear

power amplifier. Moreover, Φ(r) denotes the AM/PM conversion function and implies how the

input envelope affects the phase of the output signal.

In spite of the polynomial model, Saleh model defines relations for AM/AM and AM/PM

conversions. The general formula for these relations is,

(αrη)/(1 + βr2)ν (2.6)

where η and ν will have different values for AM/AM and AM/PM conversions. For the power

7



amplifier under test,

g(r) = αr/(1 + βr2) (2.7)

Φ(r) = (αr2)/(1 + βr2) (2.8)

are assumed. We can observe that the performance of the Saleh model is poor.

Table 2.2. Performance of Saleh model

Model NMSE (dB) ∆ACPR

Saleh -8.3 20.2

Saleh (AM/AM only) -27.5 1.3

The reason of the poor performance is that this model is designed for TWTAs whose AM/PM

conversion function does not fit solid-state power amplifiers. If only the AM/AM conversion is

considered, the result improves. Poor fitness of AM/PM function is clearly shown in Fig. 2.1.

It can be seen that AM/PM curve of TWTA (with the right y-axis) does not cross zero except

at origin. As expected, Φ(r) = (αrη)/(1 + βr2)ν does not have zero except at origin. In contrast,

AM/PM curve of LDMOS (with the left y-axis) crosses zero at the input amplitude of one so when

AM/PM Saleh model is fitted, poor performance is achieved. To amend this model to be usable for

solid-state power amplifiers, a constant ε is subtracted from the Saleh AM/PM model.

Φ(r) =
αrη

(1 + βr2)ν
− ε (2.9)

The performance for the modified Saleh model is shown in Table 2.3.

Table 2.3. Performance of the modified Saleh model

Model NMSE (dB) ∆ACPR

Saleh -8.3 20.2

Modified Saleh -32 0.9

8



Figure 2.1. Phase distortion for TWTA and SSPA.

2.2.1 3 Berman and Mahle

Berman and Mahle proposed a relation solely for AM/PM distortion. Therefore, this model comes

with another function for modeling the AM/AM distortion. The performance of this model along

with other models is shown in Table 2.4.

Comparing performance and complexity of different models, we can conclude that among

these static models, polynomial is preferable because of its simplicity in implementation and good

performance.
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Table 2.4. Performance of all the aforementioned models

Model NMSE (dB) ∆ACPR

5th order polynomial -30.9 1.5

13th order polynomial -33.4 0.9

Saleh -8.3 20.2

Saleh (AM/AM only) -27.5 1.3

Modified Saleh -32 0.9

AM/PM: Berman & Mahle

AM/AM: Power series
-32.8 0.6

2.2.2 Dynamic Models

The simplest and the most general dynamic model is two-box model. In this model, memory effect

and nonlinearity are decomposed. For the memory effect, a simple FIR filter is employed while

for nonlinearity, any static model can be used. If the nonlinear box follows the linear one, it is

called Wiener model. On the other hand, if the linear box follows the nonlinear one, we call it

Hammerstein model.

Figure 2.2. Wiener model.

Figure 2.3. Hammerstein model.
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Also, there are some more dynamic models such as Chebyshev and Hermite ones which are

not appropriate for on-chip implementation due to their complexity.

2.3 Polynomial Implementation

To model the nonlinearity, the polynomial model is used. Polynomial is the most commonly used

model and can be employed for any analytical function. Since the digital power amplifier model

and its inverse are clearly analytical, polynomial model is a good option. On the other hand,

polynomials can be easily implemented using Horner’s method. Therefore, it suits on-chip imple-

mentation for a nonlinear block.

yI [n] =
∑
k

αkxI [n]k +
∑
i,k

βkxQ[n]k (2.10)

yQ[n] =
∑
k

γkxI [n]k +
∑
i,k

ζkxQ[n]k (2.11)

Figure 2.4. Horner’s method.

y[n] = α0 + α1x+ α2x
2 + α3x

3 + · · ·+ αnx
n

= α0 + x(α1 + x(α2 + (α3 + · · ·+ x(αn−1 + xαn))))
(2.12)

Figure 2.4 shows the Horner’s method. This loop only uses one multiplier and one adder. x[n]

circulates in this loop and is multiplied by itself to generate all of the polynomial sentences. To
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implement inverse of the digital power amplifier, YI and YQ must be replaced with Iin and Qin,

respectively. Similarly, XI and XQ need to be replaced with Iout and Qout, respectively.

Iin → yI

Qin → yq

Iout → xI

Qout → xQ

2.4 Finding Coefficients Using Adaptation

Digital predistortion implements a mathematical relation such as polynomial, and the coefficients

in this relation are unknown. After finding them, it is desirable to keep the coefficients updated

on the fly since the temperature or any other condition may change. To achieve this goal, adaptive

algorithms are the best candidates.

Adaptive algorithms are used to estimate the inverse model of a power amplifier. They collect

the input and output samples of the power amplifier and estimate its inverse model. These algo-

rithms are classified into two categories. One is Stochastic Gradient family and the other one is

Recursive Least-Square (RLS) family.

Stochastic Gradient family includes Normal/Leaky/sign LMS, among which, sign-LMS is the

simplest one. RLS family includes the RLS algorithm itself and its derivatives. As this adaptation

is aimed to be on chip, the hardware complexity will be one of the major concerns. Therefore, it is

reasonable to choose LMS family for our adaptation as it needs less hardware to implement.

To use any adaptive algorithm, first we need to assume a model for the digital predistorter

that can be perfectly fit. This model should be chosen based on the behavior of the digital power

amplifier. For example, if we want to model a system which compresses as the input grows, it’s not

reasonable to choose a model (such as an exponential one with positive exponent) which expands

as the input rises. After choosing a proper model for the digital predistorter, we have to reshape the
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model’s relation in the form of y = XA where y is the output sample, X is a vector based on the

input samples, and A is the vector of coefficients which we wish to find. Adaptation is an iterative

procedure through which, the vector A shall be found. Every iteration contains 3 steps as follow.

ŷ = XnAn

en = yn − ŷn = yn −XnAn

An+1 = An + µXT
n en = An + µXT

n (yn −XnAn)

(2.13)

In this notation, ŷn is the polynomial model output (model’s prediction), and yn is the measure-

ment power amplifier output. In the first two steps, the error of the model is found and in the third

step, a new A is calculated based on the old A and the error, e. We can tune how fast the adaptive

algorithm converges by factor µ. This factor should be between 0 and 1. As µ is raised, adaptive

algorithm converges faster but with higher probability of disconvergence.

To better understand this adaptive algorithm, assume that the model accurately predicts the

power amplifier behavior. That is to say, en equals zero. Consequently, the third step will be

simplified to An+1 = An. Therefore, coefficients have already converged to the optimum values.

This usually happens once the model becomes mature enough through iterative adaptation.

2.5 Transmitter’s Performance

In this section, the performance of the designed digital power amplifier is discussed. Since this

digital power amplifier is very nonlinear, we need to choose an appropriate predistorter model to

linearize the transmitter. Therefore, a two-dimensional polynomial is used. This polynomial is

found by interpolation according to Fig. 2.5.

By changing the input amplitude, the transmitter’s output power, efficiency and linearity change.

Figure 2.6 (and Fig. 2.7) shows a comparison between Iin and Iout (and Qin and Qout) waveforms.

In addition, Fig. 2.8 and 2.9 show the digital power amplifier’s output spectrum and ACPR.

Peak to Average Power Ratio (PAPR) is an important factor that affects the digital power am-
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Figure 2.5. Applied input and the resulting output constellation for the digital power amplifier.

plifier efficiency.

PAPR =
Pout,max(t)

Pout,avg(t)
(2.14)

Assuming a constant maximum transmission power level, as PAPR increases, the average output

power decreases, causing a decrease in efficiency. On the other hand, if constant average output

power is assumed, as PAPR increases, the maximum transmission power level increases, resulting

in worse ACPR. Therefore, achieving acceptable performance with higher PAPR is more difficult.

The PAPR for this WCDMA standard is 3.3 dB. As it can be seen, with such a high-order polyno-

mial, we barely meet WCDMA mask. This polynomial can potentially consume so much power

that drastically affect the transmitter’s efficiency. In the next section, we explain our proposed

linearization method that has simpler hardware than a predistorter but is stronger in linearizing the

digital power amplifier.
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Figure 2.6. Input (gray) and output (black) in-phase waveforms.

Figure 2.7. Input (gray) and output (black) quadrature waveforms.
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Figure 2.8. Output spectrum around carrier frequency.

Figure 2.9. Required ACPR (dashed) and achieved ACPR (solid).
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CHAPTER 3

Proposed Linearization Technique

3.1 Basic Idea

Figure 3.1(a) shows a DAC that, for now, is assumed to have only static nonlinearity, exhibiting an

input-output characteristic f(x). To linearize the DAC, we wish to precede it with a block whose

behavior is to be determined [Fig. 3.1(b)]. Here, w is the main input and eventually represents

the TX baseband data. In conventional predistortion, the first block approximates f−1(·) by a

polynomial of the form α1w + α2w
2 + ... + αnw

n with the coefficients αj selected so as to make

y = f(x) a faithful replica of w. Equivalently, f−1(·) maps each value of w uniquely and statically

to a value of x once the coefficients are frozen.

Let us approach the problem from a different perspective by focusing on x. For y = f(x) in

Fig. 3.1(b) to become equal to w, we must force f(x) − w to zero, where both f(·) and x are

known. We denote this difference (the “error function”) by g(x). For every value of the input, w,

we wish to choose x so that g(x) → 0, i.e., so that x is a root of g(x). To ensure that x satisfies

g(x) = 0, we can utilize any equation solver, e.g., the Newton-Raphson technique. That is, to

solve g(x) = 0, we iteratively select

xn+1 = xn −
g(xn)

g′(xn)
. (3.1)

The iteration relies on memory in the system, introducing a dynamic behavior. In our case,

g′(xn) ≈ f ′(xn) if w changes slowly with time.

Before reducing these seemingly abstract concepts to practice, we make two remarks. First, the

Newton-Raphson iteration must occur fast enough to keep up with the dynamics of the baseband

signal, w. Second, the computation of g(xn)/g′(xn) must be managed such that it can be realized
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Figure 3.1. (a) Nonlinear DAC, (b) linearization by predistortion, and (c) linearization by ∆Σ loop.

efficiently. In this regard, let us, for now, make a rather coarse approximation and write g′(xn) ≈ 1.

Since f ′(xn) = g′(xn), we have

xn+1 = xn − [f(xn)− wn]

= xn − (yn − wn).
(3.2)

This result implies that the next value of x can be obtained by subtracting the present error, yn−wn,

from the present value of x, leading to the implementation shown in Fig. 3.1(c). Here, the one-

cycle delay, z−1, senses xn + (wn − yn) and generates xn+1. Interestingly, the function within the

dashed box is simply an integrator, thereby revealing that the overall system acts as a first-order

∆Σ modulator (DSM). That is, the DSM is a “poor man’s” realization of the Newton-Raphson

technique.

In retrospect, we could have directly conceived this idea: by placing the transmitter in a
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∆Σ loop, we can suppress the static and dynamic imperfections of the RF DAC. If the DAC errors

are viewed as components appearing at its output, the high loop gain provided by the integrator

substantially reduces them within some bandwidth. Nevertheless, our original idea, Eq. (3.1), in

fact proves more powerful and allows us to further refine the transmitter architecture. Specifically,

we will approximate 1/g′(xn) by a function that readily lends itself to hardware implementation,

thus reducing the receive-band noise (Section 3.2).

3.2 Proposed Transmitter Architecture

From the developments in the previous section emerges the conceptual TX architecture depicted

in Fig. 3.2. Here, the I and Q paths and their integrators form two ∆Σ modulator loops. The

TX output is downconverted, digitized, and subtracted from the input baseband signals, Iin and

Qin. Unlike digital predistortion techniques, this architecture requires no look-up tables, digital

multipliers, or finite impulse response (FIR) filters.

−1
z

−1
z

Matching
Network

ADC

ADC

I

F

FQ

fADC LOQ

LO I

LO

DAC

DAC I

LOQ

I

I

Q
Q

I

in

in

Figure 3.2. Conceptual TX architecture
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3.2.1 Architecture Evolution

In this section, we describe a multitude of techniques that, step by step, simplify this transmitter,

eventually offering a compact, efficient architecture. The final signal processing machine preced-

ing the RF DAC contains only 512 flip flops.

In the first step of architecture evolution, we note the DACs in Fig. 3.2 must be configured

as a segmented topology (using nominally equal units) and be driven by a thermometer code.

Segmentation proves essential here as it minimizes both the DNL and the output glitch energy [14].

We must then decide whether, in Fig. 3.2, binary-to-thermometer decoders should be interposed

between the integrators and the DACs or the integrators themselves should be so realized as to

generate a thermometer-code input. Figure 3.3 depicts the situation for the I path (the Q path

is similar). An important observation comes to our aid here: a simple shift register holding a

−1
zw

Register

LO I

ADC

x

Thermometer
Code

DAC I

Figure 3.3. The I branch showing the thermometer-code register

thermometer code can, in fact, act as an integrator if it receives a 1-bit input: when the input is +1,

we shift the code up by one and insert another 1 at the bottom, and when the input is (equivalently)

−1, we shift the code down by one. Thus, the explicit integrator in Fig. 3.3 can be omitted if the

data is available in 1-bit form., i.e., as an oversampled sequence.

These thoughts lead to the conceptual arrangement shown in Fig. 3.4, where the baseband data

is applied to a parallel-to-serial converter (e.g., a multiplexer) and the feedback signal is digitized

by means of an oversampling ADC. We now have 1-bit representations in both paths. Note that
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the overall TX feedback loop still operates as a ∆Σ modulator. Further simplification is possible

if we recognize that the parallel-to-serial converter need not be a memoryless multiplexer and can

alternatively be realized as an oversampling converter. For example, a digital ∆Σ modulator can

convert the multi-bit data at Iin to a 1-bit sequence. We can therefore “factor out” the oversampling

modulators from the input and feedback paths and employ only one after the subtractor [Fig. 3.5].

The architecture illustrated in Fig. 3.5 merits five remarks. First, the system requires no adap-

LO I

I in

1 bit

1 bit1 bit

Oversampling
ADC

Parallel�
to�Serial

Converter

D
A

C

I

Figure 3.4. Use of register as integrator

LO I

I in
Oversampling

ADC

IF

DAC I

Y

E

Figure 3.5. Simplified architecture

tation or training. After an initial settling time (about 50 ns in our work), the negative-feedback

loop automatically corrects the DAC imperfections. Second, the oversampling converter digitizes

the difference between Iin and IF and hence its dynamic range can be much narrower than that of

ADCs in Fig. 3.2. In our design, this transformation is equivalent to relaxing the ADC resolution
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by about 7 bits. Third, since IF is an analog signal, so should be Iin, requiring proper implemen-

tation (Section 4). Fourth, the loop oversampling ratio must be high enough to suppress the DAC

imperfections in the adjacent channels and in the RX band. Similarly, the ADC resolution and

oversampling ratio must be chosen as to ensure acceptable quantization noise. Fifth in more de-

manding applications, the system in Fig. 3.5 can accommodate digital predistortion in the form of

a look-up table interposed between the register and the DAC. One issue in the TX architecture of

Fig. 3.5 is the low loop gain, an effect that can substantially degrade the performance. In Section 4,

we explain the cause of this low gain and introduce a simple method of compensating it.

3.2.2 Choice of Loop Oversampling Ratio

We expect trade-offs among various parameters in the architecture of Fig. 3.5, e.g., the DAC reso-

lution and raw nonlinearity, the loop oversampling clock rate, fCK , and the ADC’s oversampling

ratio. Based on practical DAC design issues (Section 4), we assume for it a resolution of 8 bits and

the INL profile depicted in Fig. 1.2. Note the very large nonlinearity. Higher resolutions lead to ex-

cessive complexity in the TX layout, and design for higher linearity degrades the power efficiency.

We wish to determine the minimum acceptable fCK . Our analysis employs a transistor-level model

for the DAC and is performed in Agilent’s ADS for its efficient frequency-domain analysis. For

now, we assume the oversampling ADC has an infinite resolution.

Figure 3.6 plots the simulated TX output spectra for both open-loop and closed-loop operation.

We observe that the latter exhibits an adjacent channel power of −29 dB, −31 dB, and −33 dB

as fCK rises from 1 GHz to 2 GHz to 4 GHz, respectively. From simulations, we also arrive at

the corresponding results for the RX band noise, obtaining −110 dBm/Hz, −113 dBm/Hz, and

−116 dBm/Hz, respectively.

This analysis suggests that even with fCK = 4 GHz, we do not meet the WCDMA specifications

of RXBN = −125 dBm/Hz. We must also revisit these results after we include the oversampling

ADC’s nonidealities.
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Figure 3.6. Output spectra for different values fCK .

3.2.3 Architecture Refinement

In this section, we introduce a refinement to the TX architecture of Fig. 3.5 that substantially

improves the performance, thus easing the design of the building blocks. Our focus is on the ACPR

and the RX-band noise. Let us return to the Newton-Raphson method expressed by Eq. (3.1) and

ask whether the approximation for g′(xn) can be improved from a constant value to a function that

still lends itself to efficient implementation. The Newton-Raphson method requires that the error,

g(x) = f(x) − w, be multiplied by 1/g′ in each iteration, leading to the architecture depicted in

Fig. 3.7(a). We factor out this coefficient and insert it in the input and output paths [Fig. 3.7(b)].

The output is now equal to y/g′ rather than the desired output, y, but if we multiply the main input

by g′, the output changes back to y. That is, the 1/g′ factor after w should be removed.

We now turn to the 1/g′ factor following the DAC and seek a hardware-efficient implemen-

tation for it. Specifically, we explore the possibility of merging the two. Denoting the transfer

characteristic of the cascade by P (x), we make two observations: (1) a 1-LSB increase in x pro-

duces a change of P (x+1 LSB)−P (x) at the TX output, which can be considered the derivative of

P with respect to x; and (2) according to simulations, the derivative of P (x) behaves as shown in
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Figure 3.7. (a) Inclusion of 1/g′(x) to improve the accuracy of Newton-Raphson technique, and (b) transformation

showing that 1/g′(x) can be included in the DAC.

Fig. 3.8. [For a given DAC design, P (x) = f(x)/f ′(x) is known.] Let us see how the 1/g′ block

can be absorbed by the DAC. The first observation made above must apply to the new DAC as

well: in response to a 1-LSB increment in x, its output must change by an amount equal to P ′(x).

This change is created by turning on one more DAC unit. With the P ′ shape depicted in Fig. 3.8,

we predict that the DAC output increment should be smaller for low x values and larger for high x

values. Correspondingly, the DAC unit cells should be “weaker” for low x values and “stronger”

for high x values. In principle, we can taper the units according to the shape of P ′(x), but the DAC

design is greatly simplified if we approximate P ′(x) by a staircase function [Fig. 3.8]. Specifically,

we choose scaling factors equal to 0.25, 0.375, 0.5, 0.75, 1, 2, and 4 for 1 ≤ x ≤ 64, 64 < x ≤ 80,

80 < x ≤ 160, 160 < x ≤ 192, 192 < x ≤ 208, 208 < x ≤ 240, and 240 < x ≤ 256, respectively.

Derived from the Newton-Raphson technique, this free modification of the RF DAC reduces

the ACPR by 4 dB and the RX-band noise by 3 dB. Figure 3.9 plots the TX output spectrum before

and after nonuniform sizing of the DAC units.

24



50 100 150 200 250

x

0

1

2

3

4

5

P
'(

x
)

Figure 3.8. Behavior of P ′(x) and its staircase approximation

-20 -10 0 10 20

Frequency offset [MHz]

-70

-60

-50

-40

-30

-20

-10

0

O
u

tp
u

t 
S

p
e
c
tr

u
m

 [
d

B
c
]

Uniform 

Sizing

Nonuniform 

Sizing

Figure 3.9. Simulated output spectra showing reduction of ACPR.

25



CHAPTER 4

Design of Building Blocks

In this chapter, we describe the design of the RF DACs, the oversampling ADC, and the downcon-

version mixers. A number of new ideas are proposed that improve the TX performance.

4.1 RF DAC

As the most power-hungry block in a transceiver, the RF DAC merits extensive design iteration and

optimization. In contrast to conventional PA design, our methodology maximizes the efficiency for

the peak desired output power with no emphasis on the DAC nonlinearity; the ∆Σ modulator loop

effectively removes the resulting static and dynamic distortion.

Each DAC cell in the I and Q paths must translate the baseband data to RF and convert the

resulting voltage to current. Figure 4.1(a) depicts a simple implementation where the two paths

operate with 25%-duty-cycle LO waveforms and meet in the current domain. But we can also view

the output current combining operation as an OR function and, since only one output transistor is

on at a time, we move this function to the digital domain [Fig. 4.1(b)]. This merging of I and Q

DACs halves the area and the output capacitance.

The merged DAC consists of 256 differential cells, each implemented as shown in Fig. 4.2. To

maximize the efficiency, the DAC output stage and the off-chip matching network are designed for

class-E operation, but at the cost of a single-ended drain voltage swing of 4.1 Vpp. Thus, the unit

cells employ triple cascodes, with M3 and M6 realized by thick-oxide transistors. Note that the

1.8-V supply tied to gates need not deliver any dc current and can be generated on chip by a charge

pump. (Our experimental prototype uses an external 1.8-V supply.)
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Figure 4.1. (a) A conceptual slice of RF DAC cell, and (b) merging of output transistors.

Beyond class-E operation, the series resistance of M1-M3 and M4-M6 in Fig. 4.2 determines

the efficiency, as these devices must act as switches rather than current sources. On the other

hand, wider transistors translate to greater input and output capacitances, with the former directly

reducing the efficiency. Viewing the three NAND gates preceding M1 (and M4) as a “predriver,”

we note that their power dissipation, given by fCV 2
DD, rises with W1. In this work, the total width

of the input transistor on each side is about 5.65 mm, leading to a total predriver power of about

12 mW at 2 GHz.

Recall from Section 3.2 that the DAC units are scaled by factors of 0.25, 0.375, 0.5, etc. A

width of 6.25 µm is chosen for the scaling factor of 0.25 and is used in cells number 1 to number

64.

4.2 Oversampling ADC

The oversampling ADC in Fig. 3.5 plays a critical role in the overall TX performance in terms of

ACPR and the receive-band noise. We propose the use of a highly-oversampled ∆ modulator as
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Figure 4.3. Simple ∆ modulator.

an ADC. As explained below, the simplicity of the circuit, along with several new ideas, affords an

efficient solution.

Figure 4.3 shows a simple ∆ modulator, where the high gain of the comparator ensures that

the output’s running average, produced by the feedback RC network, tracks the analog input. For

our subsequent design work, we must formulate the quantization noise spectrum of the output.

The comparator itself acts as a 1-bit quantizer, exhibiting a total quantization noise power equal to

∆2/12, where ∆ = VDD (Appendix I).

The low-pass feedback loop around the comparator creates a high-pass shaping function for the

noise. Figure 4.4 depicts a linear model for the modulator, indicating that the quantization noise,
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Q, is shaped by

Vout
Q

=
1

1 +
A0

R1C1s+ 1

=
R1C1s+ 1

R1C1s+ 1 + A0

.

(4.1)

We thus expect a suppression factor of 1 + A0 for noise frequencies below 1/(2πR1C1).
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Vout
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Q
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1

1

R1C1 R1C1

A0+1
ω

Vout

Q

Figure 4.4. Quantization noise model.

We must now address two questions: (1) how much is A0? and (2) how do we select R1C1?

For the former, we first note that the gain of a 1-bit quantizer depends on its input amplitude.

Let us observe that the high loop gain produces a small difference between Vin and the running

average that appears in VF in Fig. 4.3 if the input frequency is sufficiently smaller than fCK .

That is, the comparator does not see a significant differential voltage related to Vin. However, VF

still experiences moderate changes due to the output rail-to-rail swings (Fig. 4.5). The triangular

waveform at VF exhibits a peak swing of approximately [VDD/(4R1C1)](TCK), which we assume

much greater than the difference seen by the comparator due to the analog input. To find the

gain, we view the comparator as an amplifier that senses this triangular waveform and generates
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an output first harmonic amplitude equal to 2VDD/π. Finding the first harmonic of the triangular

waveform, we define the gain as the ratio of the output and input fundamental amplitudes:

A0 ≈
2VDD/π

(8/π2)VDD/(4R1C1fCK)

≈ πR1C1fCK .

(4.2)

While intuitive, the forgoing calculation of A0 tends to overestimate the gain. In Appendix I, we

formulate A0 using a different approach and observe that A0 is closer to R1C1fCK . In practice, A0

depends on the input signal statistics and lies in this range. We hereafter conservatively assume

that A0 ≈ R1C1fCK .

t

VDD

VF

Figure 4.5. Circuit’s waveform.

The comparator’s quantization noise spectrum, ∆2/(12fCK), is divided by (1 + A0)
2 up to a

frequency of 1/(2πR1C1), emerging as

SQ(f) ≈ V 2
DD

12R2
1C

2
1f

3
CK

for f <
1

2πR1C1

. (4.3)

For example, if 1/(2πR1C1) = 100 MHz and fCK = 4 GHz, we have SQ(f) ≈ 3.5×10−13 V2/Hz ≡

−94 dBm/Hz. This is the quantization noise in the ∆ modulator output. To refer this noise to the

TX output in Fig. ??(d), we must divide it by the gain from Y to E through the feedback path. We

return to this point in Section 4.4.

Equation (4.3) makes it desirable to maximize the value of R1C1, but an excessively low cor-

ner frequency in the feedback path attenuates the signal of interest in VF (the running average),

affecting the information carried by Vout. Since in our TX environment, both the baseband signal

and the RX-band noise are of interest, we choose 1/(2πR1C1) ≈ 100 MHz.
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4.3 Circuit Refinements

The architecture and circuit developments in the previous sections have assumed an 8-bit RF DAC

with an INL of about 40% and a 4-GHz ∆ modulator acting as the oversampling ADC in Fig. 3.5.

To meet the performance specifications described in Section 1.2, the TX loop must reduce the DAC

INL to about 6.5%. Moreover, the ∆ modulator quantization noise spectral density must be further

lowered by about 6 dB. In this section, we introduce a multitude of new circuit techniques that

dramatically improve the performance.

In order to reduce the ∆ modulator quantization noise, we double the effective oversampling

rate by interleaving two ∆ modulators. Illustrated in Fig. 4.6, the circuit employs two StrongArm

comparators while running with fCK = 4 GHz. Each comparator draws only 250 µW. The

quantization noise drops by 1.2 dB in this case.

R1

C1

fck

fck

R

Vin

M
U

X

fck

C2

2

Figure 4.6. Time-interleaved ∆ modulators.

As observed in the derivation leading to Eq. (4.2), the open-loop gain of the ∆ modulator can

potentially increase if we attenuate the clock swing sensed by the comparator. We now present

three methods for this purpose. In the interleaved circuit of Fig. 4.6, we recognize that the two

comparator outputs carry the first clock harmonic with opposite signs and the signal of interest
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with the same sign. We therefore feed the output of each comparator to the input of the other

[Fig. 4.7(a)] thereby reducing the clock swings at their inputs. With R1 = · · · = R4, simulations

indicate that the quantization noise falls by another 5.3 dB. We also interpose a passive notch filter

between the feedback network and each comparator’s input, with the notch frequency chosen equal

to 4 GHz [Fig. 4.7(b)]. With this change, the ∆ modulator’s quantization noise drops by another

0.8 dB, reaching 6.5× 10−14 V2/Hz.
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Figure 4.7. (a) addition of R3 and R4 to attenuate clock swings, and (b) use of notch filter to attenuate clock swings.

4.4 ∆ Modulator with High Gain

The next modification of the ∆ modulator deals with the low loop gain of the overall TX architec-

ture. We first describe the cause of the low gain. To measure the loop transmission, we break the
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loop at the mixer output in Fig. 3.5, apply a 1-mV step to the subtractor input, and examine the

DAC output voltage sensed by the mixer. For simplicity, we assume a mixer conversion gain of

unity. The oversampling ADC (the ∆ modulator) generates a periodic sequence consisting of one

pulse of height VDD (=1 V) and 999 low levels so as to deliver an average value equal to 1 mV.

The register thus increments by 1 LSB every 1000 clock cycles, producing at the DAC output a

staircase voltage with a slope of VLSB,DAC/(1000TCK), where VLSB,DAC denotes the DAC output

voltage LSB size. More generally, for a step of ∆V at the subtractor input in Fig. 3.2, the DAC out-

put has a slope of (VLSB,DAC/VDD)(∆V/TCK). The discrete-time loop transmission is therefore

given by (VLSB,DAC/VDD)[z−1/(1 − z−1)], implying a gain of VLSB,DAC/VDD for the integrator.

If the DAC output full-scale voltage is comparable to VDD, then this factor is around 1/256 for an

8-bit DAC, degrading the TX loop’s ability to correct the DAC distortion.

Since the overall loop consists of the ∆ modulator, the register, the DAC, and the downconver-

sion mixer, we have few options for introducing a gain of 200-300 to compensate for the integrator

loss. If realized by a conventional amplifier, such a high gain would entail severe nonlinearity and

noise issues. We thus propose a new amplification method that simply draws upon the ∆ modula-

tor’s comparator.

Illustrated in Fig. 4.8, the idea is to view the comparator as a high-gain amplifier and place a

resistive network around it to obtain a low-frequency closed-loop gain of 1 + R1/RM . We select

(R1||RM)C1 according to the desired corner frequency and R1/RM ≈ 200 to achieve a high

closed-loop gain.

R1
C1

Vin

fck

X

Vout

RM

Figure 4.8. ∆ modulator having a closed-loop gain of 1 + R1/RM .

The topology resembles a high-gain feedback amplifier except that the comparator acts as a
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discrete-time circuit running at a high oversampling ratio. Figure 4.9 plots the simulated input

and output spectra of the high-gain ∆ modulator with Vin = (2 mV) cos(2π × 15.875 MHz),

R1 = 300 kΩ, RM = 1.5 kΩ, and C1 = 1 pF. We observe a gain of about 46 dB. Simulations also

indicate little change in the harmonic distortion at the ∆ modulator output when dc gain is raised

from 1 to 200.
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Figure 4.9. Simulated output spectrum showing the gain.

We should mention that the comparator offset, VOS , is compensated by the overall TX loop be-

cause VOS appears before the integrator. For the integrator output to remain bounded, the feedback

path in Fig. 3.5 must bring to the subtractor an offset exactly equal to VOS .

The foregoing modifications dramatically reduce the ∆ modulator’s quantization noise as it is

referred to the TX output. With a gain of 200 and a mixer loss of 15 dB, the −102-dBm/Hz noise

calculated in the previous section is attenuated by approximately 31 dB when referred to the TX

output, well exceeding WCDMA specification of −125 dBm/Hz.
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4.5 ∆ Modulator with Baseband Inputs

We must still address an issue raised in Section 3.2: in Fig. 3.5, we must somehow subtract the ana-

log output of the mixer from the digital baseband data. To this end, we convert node X in Fig. 4.8

to a virtual ground by grounding the other input of the comparator, utilize a binary-weighted re-

sistor DAC to convert Iin to an analog current, and inject the result into X (Fig. 4.10). Similarly,

the mixer output, Vmix, is summed with Iin in the current domain. In this work, the unit resistor,

R = 2.9 kΩ, is chosen large enough so that resistor mismatches still allow a monotonic behavior

for the DAC. Note thatR||(2R)|| · · · ||(26R)||(27R)||(27R)||Rmix acts asRM in Fig. 4.8 and, along

with R1, defines the closed-loop gain.

R1
C1

fck

X

Vout

Rmix

D8

D7

D1

Vmix

2R

2R

R

Baseband
Digital

Signal
Iin

Figure 4.10. Conversion of digital baseband signal, Iin, to analog form.

We now describe another simplification in the ∆ modulator design. The ∆ modulator/subtractor

studied thus far has single-ended inputs. Shown in Fig. 4.11 is the fully-differential, interleaved

circuit. For simplicity, the baseband input is denoted by BB and its DAC by a single resistor in

a dashed box. An interesting question that arises here is whether we can short the virtual ground

nodes X1 and X2. These nodes carry the desired signal with the same polarity and the clock wave-

form with opposite polarities. Thus, shorting X1 to X2 and Y1 to Y2 removes the odd harmonics of

the clock, reduces the clock swings at these nodes, and hence increases the open-loop gain of the

comparators. According to simulations, this method raises the signal-to-quantization-noise ratio

(SQNR) at the output by 6 dB. The topology can be further simplified if the multiplexer is inserted

within the feedback loop, as shown in Fig. 4.12.
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Figure 4.11. Differential interleaved ∆ modulators.
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Figure 4.12. Simplified topology.

4.6 Mixer Implementation

Implementing Newton-Raphson technique requires a quadrature demodulator since Newton-Raphson

technique is applied on the base band signal but the transmitter’s output signal is at RF. Therefore,

a demodulator is needed to extract the base band information to be used by Newton-Raphson tech-

nique.

Figure 4.13 shows how any distortion added by downconversion affects the transmitter’s char-

acteristic. Based on (4.4), any distortion added by the mixer directly appears at the transmitter’s

output. Therefore, linearity of the mixer is one of the key factors affecting the transmitter’s linear-

ity.
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Figure 4.13. Effect of different imperfections on the transmitter’s output.

Y = Xz−1 +DDAC(1− z−1) +DMixerz
−1 (4.4)

Due to the importance of mixer’s linearity, passive mixers are preferred over the active ones.

Moreover, active mixers have transistors operating in saturation whereas passive ones have transis-

tors acting only as switches. Hence, passive mixers are better choices for an all-digital transmitter.

Finally, passive mixers are better options as downconverters because of no power consumption

(except the power consumed to drive LOs).

(a) (b)

Figure 4.14. Feedback from the output node.

As for linearity, larger swing of input RF signal deteriorates the passive mixer’s linearity. It is

due the fact that large input swing causes significant variation of Vgs − Vth. Change of Vgs − Vth

of mixer transistors causes variation in their channel resistance and therefore, the gain of the mixer.
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Another important point is shown in Fig. 4.14(a) where a demodulator receives the transmitter’s

output signal and extracts its in-phase and quadrature components. However, in this configuration

the demodulator is connected to a node (i.e. X) which does not exist on the chip. This is not

desirable as it needs extra routings on PCB. Moreover, the bond wire and PCB also affect the

transmitter’s output signal, distorting the Newton-Raphson operation as the demodulated signal is

not the same as the transmitter’s output signal. To solve this problem, Newton-Raphson is applied

on the RF DAC’s output signal rather than the transmitter’s output signal (Fig. 4.14(b)). It helps

ensure the RF DAC’s output meets the WCDMA requirements. This means that the transmitter’s

output signal also meets the WCDMA requirements since the output matching circuit passes the

in-band signal with only some voltage gain. Although using node Y has the benefit of avoiding

off-chip routing, this node has stronger higher harmonics compared to node X as the signal at

node Y is unfiltered. Using the unfiltered signal results in a number of issues. First, the higher

harmonics raise the amplitude of the mixer’s input signal and thus, the mixer becomes nonlinear.

Second, assuming a square-wave LO, it’s 3rd harmonic downconverts the 3rd harmonic present at

the RF DAC’s output, resulting in an unexpected base band signal added to the main one. To avoid

3rd harmonic downconversion, we can use interpolated LOs for mixers which have weaker 3rd

harmonic. However, this method requires eight-phase LO which needs extra hardware to generate.

Figure 4.15 shows the ACPR of the transmitter in a single-tone test after attenuating the mixer’s

input.

To solve these issues, we filter the 3rd harmonic before downconversion. An on-chip low-pass

filter cannot attenuate the 3rd harmonic without attenuating the fundamental one well. Another

option to attenuate higher harmonics is to notch them. An LC notch filter at 3fLO has limited

attenuation due to low quality factor of on-chip inductors. In addition, on-chip inductors are bulky

and occupy a wide area. Due to the aforementioned problems, a twin-T notch filter is a better

option (Fig. 4.16(a)). The notch frequency of twin-T filter changes by process and temperature

variation. Assuming a change of 10% in fn = 1
RC

, a twin-T still attenuates the input 3rd harmonic

by more than 20 dB (Fig. 4.16(b)). To compare this filter by a first order low-pass filter, 10 dB

attenuation of 3fLO is achieved by attenuating the main signal by 3 dB.
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Figure 4.15. Transmitter’s output ACPR.

Figure 4.17 shows the 3rd harmonic amplitude of the mixer’s output (normalized to the funda-

mental one) when input RF amplitude varies. In other words, this figure shows the transmitter’s

ACPR in a single-tone test. Based on this figure, the input RF amplitude of this downconverter

must not exceed 0.72 Vpp . This ensures that the ACPR criterion is met. Based on our simulations,

the amplitude of the RF signal at the RF DAC’s output exceeds this value; therefore, attenuating

this signal before reaching the mixer is necessary. However, it is important to accommodate the

largest possible input swing for the mixer since its pre-attenuation decreases the entire loop gain

and consequently, deteriorates the linearity. Moreover, the downconverted signal is later processed

by an analog-to-digital converter. Smaller amplitude of the downconverted signal worsens the data

converter’s SQNR; therefore, the output noise floor will be higher. To realize the attenuator, a

resistive divider is not a good candidate for RF signal attenuation due to its noise and nonlinearity.

Rather, a capacitive divider can serve the same purpose without aforementioned disadvantages.

To realize such a divider, a capacitor is added before the twin-T filter (Fig. 4.18). This capacitor

attenuates the signal by Zin

Zin+1/jC1ω
.

Moreover, it is observed that doubling W and L improves the downconverter’s linearity. This

is explained by the short-channel effect, drain-induced barrier lowering. Doubling L reduces this

effect and helps improve the mixer’s linearity (Fig. 4.19).
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(a)

(b)

Figure 4.16. (a) Twin-T filter preceding the mixer switch, (b) transfer function of twin-T filter.

Another important aspect is the trade-off between the large and small value of the load capaci-

tance (C2). Its larger value helps better attenuate the upconverted signal at the output of the mixer

but deteriorates the loop’s phase margin and raises the chance of instability. In contrast, smaller

C2 attenuates the upconverted signal insufficiently. This insufficient attenuation raises the swing

of the mixer’s output. This larger swing, however, exacerbates the mixer’s linearity (due to larger

Vgs − Vth variation). Therefore, to make a compromise a value of C2 = 300 fF is chosen.

Another important point in designing a mixer for this system is its LO duty cycle. The RF

DAC has 25% inphase and quadrature LOs. Moreover, this RF DAC is functioning as a mixer,

upconverting the base band input signal to RF frequencies. The downconverter used in this sys-
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Figure 4.17. ACPR as a function of input swing.

Figure 4.18. RF signal division.

tem functions inversely, making the output (upconverted) signal revert to base band. Hence if the

same LOs are used, the difference between the RF DAC’s base band input signal and the down-

converted base band signal must be explained by the RF DAC’s nonlinearity since the RF DAC is

quite nonlinear but mixer is sufficiently linear. Based on this rationale, 25% LOs are used for the

downconverter.

Lastly, it is essential to set the dc level of the downconverted signal. Based on Fig. 4.20, node

A is connected to supply, ground and input through capacitors. Therefore, this node is dc-wise

float. However, it is later connected to a data converter whose input dc level is 0.5 V, dictating the
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Figure 4.19. ACPR as a function of input swing for doubled width and length.

Figure 4.20. Dc level of the mixer’s output.

dc level of node A to be 0.5 V too. This dc level causes very poor linearity for this mixer. Let’s

assume that the mixer’s output swing is 0.6 Vpp; therefore, its output changes from 0.2 V to 0.8 V.

Consequently, Vgs − Vth changes from -0.2 V to 0.4 V when Vg = 1 V (assuming Vth ≈ 0.4 V).

This means that the switch is sometimes off when it is supposed to be on. Therefore, this dc level is

too high for downconverter to be sufficiently linear. To solve this problem, we use clock boosting

technique in which the dc level of the mixer’s LO is shifted accordingly [Fig. 4.21(a)]. Raising

LO’s dc level helps increase the switch gate voltage when it is supposed to be on. Figure 4.21(b)

shows an HPF filter resetting the dc level to 750 mV.
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(a)

(b)

Figure 4.21. (a) Clock boosting, (b) resetting the dc level.

In this new circuit, when Vg = 1.5 V , Vgs − Vth changes from 0.3 V to 0.9 V which implies

that this switch is always on. When Vg = 0.5 V , Vgs − Vth changes from -0.7 V to -0.1 V, ensuring

the switch is off. Figure 4.22 shows the mixer’s output spectrum in a single-tone test after the clock

boosting technique is applied.
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Figure 4.22. Mixer’s output spectrum.
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CHAPTER 5

Experimental Results

The complete transmitter has been fabricated in TSMC’s 28-nm CMOS technology. It consists

of four ∆ modulators, two registers, each containing 256 flipflops, the merged RF DAC, two

downconversion mixers, and I/Q clock generation with 25% duty cycle. Receiving 8-bit baseband

digital I and Q inputs, the TX operates with a 1-V supply, except for the gates of the thick-oxide

devices in Fig. 4.2, which are tied to 1.8 V. Figure 5.1 shows the die photograph with an active area

of 0.35 mm × 0.32 mm.

0
.3

2
 m

m

0.35 mm

Figure 5.1. Chip photograph.

The TX generates differential outputs, which travel through multiple bond wires and tapered

transmission lines on the printed-circuit board for matching and differential to single-ended con-

version.

The TX is measured with digital baseband data that has been subjected to root-raised-cosine

filtering in an FPGA. All of the clock phases are generated on-chip by means of frequency dividers

and logic from an external 8-GHz input.
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The results reported here are in the context of WCDMA, but the highly-flexible architecture

readily lends itself to other standards as well. Figure 5.2 shows the measured output spectrum.

The output power is 24.1 dBm (including 2.7 dB loss due to cables, connectors and bond wires).

The ACPRs in the adjacent and alternate adjacent channels are equal to −35.4 dB and −44.6 dB,

receptively, exceeding the WCDMA specifications. The receive-band noise is −137 dBc/Hz at

50-MHz offset. Under these conditions, the efficiency is 50%.

Figure 5.2. Measured output spectrum, ACPR and RXBN

Figures 5.3, 5.4, and 5.5 respectively plot the EVM, ACPR, and efficiency as a function of

the output power. The EVM remains much less than the WCDMA specification, and ACPR1 and

ACPR2 reach a minimum of −53 dB and −58 dB, respectively. The efficiency begins from about

4% at Pout = +5 dBm and sharply rises to 50%.

Table 5.1 summarizes the performance of our TX and compares it with prior-art transmitters in

the range of 0.8 GHz to 2 GHz. We have achieved the highest efficiency and the smallest die area.

Table 5.2 compares our RX-band noise with those of transmitters in the vicinity of 2 GHz. A

far higher efficiency and smaller area can be observed for our prototype. Note that only our work
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Figure 5.3. EVM as a function of output power.

corrects the nonlinearity in the background.

Table 5.1. Performance summary and comparison to prior art

Reference

Supply (v)

Efficiency (%)

Standard

Technology

Calibration

Yin
ISSCC 2018

Ko
ISSCC 2017

Yamamoto

1.95 1.98 1.88

 This 
Work

Oishi

0.8

28 28 29.8 22.9

2

24.1

39 35.1 40.8 26.1 50

1.2/3.7 3.4 3.4 1.2/2.4 1/1.8

WCDMA WCDMA WCDMA WIFI WCDMA

CMOS/GaAs
hybrid

14 3.01 1.11 0.1127.5*

* Glass epoxy laminate

None None None Foreground Background

90�nm 153�nm 55�nm 28�nm
CMOS CMOS CMOS CMOS

outP (dBm)

JSSC Dec. 2014 MTT Mar. 2016

Frequency (GHz)

Area 2(mm  )
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Table 5.2. Performance summary and comparison to prior art

Efficiency (%)

outP (dBm)

2 2.2 2

14.5 24 24.1

12.2 16 50

7 9 8Resolution (bit)

65 nm

140 MHz
�137 @
50 MHz

Frequency (GHz)

65 nm 28 nm

Noise Floor
(dBc/Hz)

CMOS Technology
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�123 @ �149 @

offsetoffsetoffset

ISSCC 2017
Bhat

RFIC 2015
Yuan

Reference This Work
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1.75 0.1132Area (mm  )
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Figure 5.5. Efficiency as a function of output power.
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CHAPTER 6

Conclusion

A simplified implementation of the Newton-Raphson equation solver leads to a TX embedded

in a ∆Σ modulator loop. Moreover, the high-speed feedback ADCs necessary for background

calibration can be realized as 1-bit ∆ modulators. With other simplifications, a compact, highly

efficient architecture emerges that can serve in multiple standards.
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APPENDIX I

In this appendix, we describe another approach to computing the gain of the comparator in the

∆ modulator of Fig. 4.3. The gain can be defined so as to ensure a zero correlation between the

output quantization noise, Q, and the comparator input differential voltage, X [21]. Expressing

the comparator output as

Y = A0X +Q, (6.1)

we find the correlation by writing

E[XQ] = E[X(Y − A0X)]

= E[XY ]− A0E[X2].
(6.2)

Thus, E[XQ] = 0 if

A0 =
E[XY ]

E[X2]
. (6.3)

For simplicity, let us assume that the comparator output swings between −VDD/2 and +VDD/2.

With Vin = 0 in Fig. 4.3, Y toggles at a rate of fCK/2, creating a triangular wave at the other

input with a peak amplitude of [VDD/(4R1C1)]TCK . Note that X = Vin − VF = −VF . Since

the comparator acts as a discrete-time circuit, the correlation between its input and output must be

calculated at the sampling points, namely, at the positive and negative peaks of the triangular wave.

We thus have

E[XY ] =
VDD

4R1C1

TCK
VDD

2
+
−VDD
4R1C1

TCK
−VDD

2
. (6.4)

Also,

E[X2] = (
VDD

4R1C1

TCK)2 + (− VDD
4R1C1

TCK)2. (6.5)

It follows that

A0 = 2R1C1fCK . (6.6)

The forgoing calculation assumes that in Fig. 4.3, Vin = 0. If, for example, Vin = VDD/4, then

A0 ≈ R1C1fCK . With a time-varying input, and depending on its statistics, A0 has an average

value in the range of R1C1fCK and 2R1C1fCK .
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According to [22], the quantization noise of a 1-bit quantizer can be approximated by ∆2/12,

where ∆ denotes the total height of the quantizer’s bang-bang characteristic. In our case, ∆ =

VDD, yielding ∆2/12 = V 2
DD/12.

52



REFERENCES

[1] D. Schreurs et al, RF Power Amplifier Behavioral Modeling, Cambridge University Press,
2010.

[2] R.B. Staszewski et al., “All-digital PLL and transmitter for mobile phones,” IEEE J. Solid-
State Circuits, Vol. 40, pp. 2469-2482, Dec. 2005.

[3] A. Kavousian et al., “A Digitally modulated polar CMOS power amplifier with a 20-MHz
channel bandwidth,” IEEE J. Solid-State Circuits, Vol. 43, pp. 2251-2258, Oct. 2008.

[4] M. Collados et al., “High-power digital envelope modulator for a polar transmitter in 65nm
CMOS,” Proc. IEEE Custom Integrated Circuits Conference, pp. 733-736, Sept. 2008.

[5] A.D. Presti et al., “A high-resolution 24-dBm digitally-controlled CMOS PA for multi-
standard RF polar transmitters,” European Solid-State Circuits Conference, pp 482-485, Sept.
2008.

[6] D. Chowdhury et al., “A 2.4GHz mixed-signal polar power amplifier with low-power inte-
grated filtering in 65nm CMOS,” Proc. IEEE Custom Integrated Circuits Conference, pp. 1-4,
Sept. 2010.

[7] K. Seah et al, “A digital polar amplifier for ultra-wideband with dynamic element matching,”
Proc. IEEE International Conference on Ultra-Wideband, pp 1-4, Sept. 2010.

[8] D. Chowdhury et al, “An efficient mixed-signal 2.4-GHz polar power amplifier in 65-nm
CMOS technology,” IEEE J. Solid-State Circuits, Vol. 46, pp. 1796-1809, June 2011.

[9] C. Lu et al., “A 24.7dBm all-digital RF transmitter for multimode broadband applications in
40nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 332-333, Feb. 2013.

[10] F. Roger, “A 200mW 100MHz-to-4GHz 11th-order complex analog memory polynomial pre-
distorter for wireless infrastructure RF amplifiers,” IEEE ISSCC Dig. Tech. Papers, pp. 94-95,
Feb. 2013.

[11] Y. Guo et al., “Power adaptive digital predistortion for wideband RF power amplifiers with
dynamic power transmission,” IEEE Trans. MTT, vol. 63, no. 11, pp. 3595-3607, Nov. 2015.

[12] S. Chung et al., “Digital predistortion using quadrature ∆Σ modulation with fast adaptation
for WLAN power amplifiers,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4, June 2011.

[13] 3GPP TS 25.101 V16.0.0: 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; User Equipment (UE) radio transmission and reception (FDD) (Re-
lease 16)

[14] B. Razavi, Principles of Data Conversion System Design, 1995.

53



[15] K. Oishi et al., “A 1.95 GHz fully integrated envelope elimination and restoration CMOS
power amplifier using timing alignment technique for WCDMA and LTE,” IEEE J. Solid-
State Circuits, Vol. 49, pp. 2915-2924, Dec. 2014.

[16] K. Yamamoto et al., “A WCDMA multiband power amplifier module with Si-CMOS/GaAs-
HBT hybrid power-stage configuration,” IEEE Trans. MTT, Vol. 64, no. 3, pp. 810-825,
March 2016.

[17] J. Ko et al., “A high-efficiency multiband class-F power amplifier in 0.153µm bulk CMOS
for WCDMA/LTE applications,” IEEE ISSCC Dig. Tech. Papers, pp. 40-41, Feb. 2017.

[18] Y. Yin et al., “A compact dual-band digital doherty power amplifier using parallel-combining
transformer for cellular NB-IoT applications,” IEEE ISSCC Dig. Tech. Papers, pp. 408-410,
Feb. 2018.

[19] W. Yuan et al., “A quadrature switched capacitor power amplifier in 65nm CMOS,” IEEE
Radio Freq. Integr. Circuits Symp. Dig., pp. 135-138, May 2015.

[20] R. Bhat et al., “A >1W 2.2GHz switched-capacitor digital power amplifier with wideband
mixed-domain multi-tap FIR filtering of OOB noise floor,” IEEE ISSCC Dig. Tech. Papers,
pp. 234-235, Feb. 2017.

[21] S.H. Ardalan et al., “An analysis of nonlinear behavior in Delta-Sigma modulators,” IEEE
Trans. Circuits Syst., Vol. 34, no. 6, pp. 593-603, June 1987.

[22] R. Schreier et al, Understanding delta-sigma data converters, Piscataway, NJ: IEEE Press,
2005.

54




