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Abstract
We describe the design and performance of a high-fidelity wearable head-, body-, and eye-tracking system that offers 
significant improvement over previous such devices. This device’s sensors include a binocular eye tracker, an RGB-D scene 
camera, a high-frame-rate scene camera, and two visual odometry sensors, for a total of ten cameras, which we synchronize 
and record from with a data rate of over 700 MB/s. The sensors are operated by a mini-PC optimized for fast data collection, 
and powered by a small battery pack. The device records a subject’s eye, head, and body positions, simultaneously with 
RGB and depth data from the subject’s visual environment, measured with high spatial and temporal resolution. The headset 
weighs only 1.4 kg, and the backpack with batteries 3.9 kg. The device can be comfortably worn by the subject, allowing a 
high degree of mobility. Together, this system overcomes many limitations of previous such systems, allowing high-fidelity 
characterization of the dynamics of natural vision.

Keywords Eye tracking · Human vision · Hardware · Natural scene statistics

Introduction

The visual system evolved and developed in the natural envi-
ronment, so obtaining a full understanding of its function 
requires studying how vision is engaged in everyday tasks. 
For this reason, there is a great need to expand vision science 
beyond the controlled laboratory setting and into the natu-
ral world. Data collected in such natural conditions provide 
crucial information about mechanisms underlying stereop-
sis (Liu, Bovik, & Cormack, 2008; Sprague, Cooper, Tošić, 
& Banks, 2015; Gibaldi & Banks, 2019; Gibaldi & Banks, 
2021), eye movements (Gibaldi & Banks, 2019) and their 
coordination with head movements (Kothari et al., 2020; 
Hausamann, Sinnott, & MacNeilage, 2020; Land & Hayhoe, 
2001), eye optics (Gibaldi, Labhishetty, Thibos, & Banks, 
2021), and other motor behaviors (Matthis et al., 2018; Bon-
nen et al., 2019, 2021). To create a better account of natural 
sensory-motor relationships, data must be collected along 

with eye tracking, depth, and motion information when 
the subject performs everyday tasks in the real world. Fur-
thermore, many applications, such as measurement of the 
power spectrum (DuTell, Gibaldi, Focarelli, Olshausen, & 
Banks, 2020), require data to be recorded with high spatial 
and temporal resolution but without compression artifacts. 
Designing and building a device that fits these requirements 
presents many serious technical challenges. We first review 
previous work and then describe our device.

Early work in mobile eye tracking was restricted to the 
indoor laboratory environment: for instance using hard-
wired acquisition computers and coil-based eye tracking 
(Grossman, Leigh, Abel, Lanska, & Thurston, 1988). Later 
work pioneered the collection of real-world scene and gaze-
tracking data, adapting eye-tracking hardware designed 
for use in the laboratory into devices that allowed mobile 
recording outside the lab (Imai, Moore, Raphan, & Cohen, 
2001; Einhäuser et al., 2007; Liu et al., 2008; Yamada et al., 
2010; Sprague et al., 2015; Gibaldi & Banks, 2019). Unfor-
tunately, cameras in these devices had very limited spatial 
and temporal resolution, and heavy and bulky eye-tracking 
hardware limited subject mobility.

More recent efforts utilized compact hardware that is 
amenable to mobile data collection outside the lab; see Cog-
nolato, Atzori, and Müller (2018) for a recent review. In 
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particular, the introduction of lightweight, mobile-friendly 
eye trackers such as the Pupil Labs system (Kassner, Patera, 
& Bulling, 2014) and Tobii glasses (Tobii Pro AB, 2014), as 
well as lightweight sensors such as Intel RealSense devices 
(Keselman, Iselin Woodfill, Grunnet-Jepsen, & Bhowmik, 
2017), has led to more work in this area (Matthis, Yates, 
& Hayhoe, 2018; Shankar, Sinnott, Binaee, Lescroart, & 
MacNeilage, 2021; Solbach & Tsotsos, 2021). In addi-
tion, improved usability of collection software has allowed 
collection of hundreds of hours of data for many subjects 
(Valsecchi, Akbarinia, Gil-Rodriguez, & Gegenfurtner, 
2020; Shankar et al., 2021). However, these datasets offer 
only low-to-medium temporal resolution and medium-to-
high spatial resolution because of the limited capabilities 
of the scene cameras. An exception is the high-resolution 
data reported by Emery, Zannoli, Warren, Xiao, and Talathi 
(2021); but this is for subjects navigating virtual environ-
ments. Many of the previous devices also employ cameras 
with on-device H.264/H.265 encoding, which introduces 
compression artifacts into the data.

We present a solution to these issues with a wearable 
device optimized to obtain robust, high-fidelity, multi-
modal data, while remaining lightweight and portable 
enough to enable data collection during everyday behavior 
in the natural environment. Our solution adapts consumer 
electronics and laboratory hardware to the needs of mobile, 
head-mounted tracking. The hardware is combined with 
custom software that enables accurate, high-resolution data 
acquisition and post-processing with a convenient interface.

Hardware

Devices and sensors To record information from the subject 
and scene, our device uses six sensors (Table 1). To capture 
high-fidelity video, we use a XIMEA PCIE RGB camera 
with a global shutter running at 200 Hz. The configuration 

shown uses a lens offering a  61∘×  46∘ field of view, but this is 
easily changeable with a different lens. We supplement this 
color video with corresponding depth information by includ-
ing an Intel RealSense D435i, which records both depth and 
RGB video streams (Fig. 1).

Our device allows us to match the high-fidelity world-
camera data to a lower-resolution depth signal. It also allows 
us, by coordinating with the eye tracker, to estimate the 
subject’s fixation point in the three-dimensional scene. To 
track the eyes, we use the Pupil Labs binocular eye-tracker 
(Kassner et al., 2014). To track the subject’s head and body 
motion, we use two Intel RealSense T265 tracking sensors 
(Grunnet-Jepsen et al., 2019) (Fig. 2). One is mounted on 
the subject’s back to measure body position and motion. 
The other is mounted on the head, attached rigidly to the 
headband, to measure head position and motion.

At full resolution and framerate, the total data flow 
produced is substantial at ∼700MB/s. The XIMEA camera 
contributes more than 90% of this. The mini-PC, with 3TB 
on-board M.2 storage, allows just over an hour of recording 
time at the highest framerate.

Because our device pushes the framerate limits of the 
sensors, one challenge was minimizing dropped frames, 
especially in the visual sensors. The combination of image 
resolution and framerate settings reported in Table  1 
maximizes spatial and temporal resolution without 
causing a significant number of dropped frames. With 
this configuration, frame loss is less than two frames over 
2 min of data collection with the XIMEA and RealSense 
RGB cameras. The depth stream typically varies in its 
effective framerate between 70 AND 90 Hz. We handle 
the frame drops that do occur with up-sampling during 
post-processing.

Device ergonomics We had two key goals in designing the 
head-mounted part of the device (Fig. 3): (1) to be as light-
weight and comfortable as possible, and (2) to be adjustable 

Table 1  Device sensors and settings utilized by the system

These settings yield the best overall results for our experimental setup, but resolution and frame-rate settings for the RGB-D and eye-tracking 
cameras can be easily modified in the GUI. The XIMEA camera’s spatial and temporal resolution is easily changed in a YAML file, and the field 
of view modified with a lens change

Device Resolution FoV Model Location Data format Accuracy

High-Fidelity 
RGB Camera

2064 × 1544 @ 
200Hz Global Shutter

Variable 
(61 x 46)

XIMEA MX031CG-
SYX2G2-FL

Head 8-bit CMYK Raw 
binary

–

RGB-D Camera RGB: 640 × 480 @ 60Hz
D: 848 x 480 @ 90Hz

64∘×  41∘  86∘× 57 RealSense D435I Head MPEG-4
NumPy/PNG

D: 2% at 2m

 – NumPy/PNG  –
Binocular Eye Tracker 192 × 192 @ 200Hz 37∘×  37∘ Pupil Labs L/R Eye MPEG-4 0.60∘ (Pupil Labs 

Algorithm)∘

Odometry Tracker 1 200 Hz 163 ±  5∘ RealSense T265 Head .pldata < 1% drift
Odometry Tracker 2 200 Hz – RealSense T265 Body .pldata < 1% drift
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to accommodate each participant’s head and face shape, and 
the task at hand. The headband is modified from a binocular 
indirect ophthalmoscope and adapted to hold the sensors. 
Custom components were designed in SolidWorks and 3D 
printed in PLA, making them robust yet lightweight. The 
three scene cameras (XIMEA, RealSense D435i, and T265) 
are mounted together on the same 3D-printed bracket. This 
is connected to the headband via three-point 3D-printed 
adjustable ball-and-socket joints and is secured by clamps. 
This arrangement enables adjustment of the pitch of the 
camera ensemble depending on the task. For tasks involv-
ing far viewing (e.g., outdoor walking), pitch can be adjusted 
upward to ∼ 0

◦ , and for tasks involving near viewing (e.g., 
cooking) pitch can be adjusted to ∼ 30

◦ downward; mid-
range tasks (e.g., seated chatting) are recorded using a mid-
angle pitch. The XIMEA camera’s switch box is strapped to 
the back of the headband (Fig. 3). This switch box converts 
the PCIE connection from the computer to the ribbon-cable 
connection on the camera.

The two eye-tracking cameras are connected to the head-
band with custom designed and 3D-printed spherical joints 

(Fig. 3), which allow convenient, stable positioning of the 
camera. We anticipated degradation of eye tracking in out-
door scenes due to intense scene illumination. To deal with 
this, a neutral-density filter can be placed in front of the 
lenses when recording outdoors (Binaee, Sinnott, Capurro, 
MacNeilage, & Lescroart, 2021). The filter can make pupil 
detection more difficult, but this can be addressed when run-
ning pupil detection during post-processing.

The power and data cables connecting the sensors and 
computer are bound together into a clean band (Fig. 3); we 
loop this band behind the subject’s back with slack in the 
loop. The binding and slack eliminates tangling while allow-
ing the subject to move freely. We secure the body tracker 
on the back using a posture-correcting strap, which is under-
neath the backpack, but leaves the back tracker’s cameras 
exposed. This avoids occluding the subject’s and camera’s 
views of the scene ahead, which would have occurred with 
front mounting.

The head mount weighs only 1.4 kg. In the future, we 
will investigate whether the device affects natural motion 
dynamics.

Fig. 2  Example trajectory of head position as a person walks through 
an indoor environment. Color evolves over time from purple to yel-
low over 2 min. A RealSense T265 tracking sensor collects head posi-

tion data (such as this one) along with orientation and velocity data at 
200 Hz. Another tracker placed on the body provides odometry infor-
mation for the body

Fig. 1  Left to right: Sample frames collected from XIMEA camera, RealSense D435i RGB stream, RealSense D435i depth stream, and Pupil 
Labs binocular eye-tracking cameras. Images shown are frames as captured by each sensor, before post-processing
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Operating computer To collect data from all sensors simul-
taneously, we built a PC using consumer parts (Table 2). 
The high-speed camera requires an x8 PCIE port for which 
no laptop solutions were available, so we custom-built the 
computer. To minimize the form factor, we use a Mini ITX 
motherboard with 32 GB of RAM, dual M.2 support, a 
PCIE port, and integrated WiFi. We use the Intel i7-8700 
processor, which has sufficient computational power, yet 
maximizes battery life due to its low power consumption 
(65 W). To maintain sufficient disk-write speed and avoid 
RAM overflow, we use M.2 SSDs—one with 1 TB and one 
with 2 TB—capable of writing at 1.2 GB/s. We mounted a 

touchscreen inside the PC case for quick viewing and control 
of the computer while mobile. Power is provided by a pair of 
compact batteries designed to power CPAP machines. The 
batteries are connected in parallel and power both the com-
puter’s DC power supply and the PCIE camera’s external 
power supply. We modified a standard mini ITX computer 
case with a custom 3D-printed enclosure. The enclosure cov-
ers the ports at the back of the computer case, exposing only 
the ports for DC power, an external monitor, and Ethernet, 
leaving the band of sensor cables permanently connected. 
One CPU heatsink/fan is sufficient for cooling the computer. 
To cool the high-speed camera, we attached two 25-mm fans 

Fig. 3  Subject wearing the device. Left: front view of the subject 
wearing the headset. The two scene cameras (XIMEA and RealSense 
D435i) and the tracking camera for the head (RealSense T265) are 
mounted together with a custom 3D-printed mount, adjustable in 
position with a three-point ball-and-clamp adjustable mount. Custom 
ball-and-socket joints combined with set screws enable positioning of 
eye trackers below the eyes. A white ribbon cable  (not visible) con-
nects the XIMEA camera to the rear switch box. Right: rear view of a 

subject wearing the device with the backpack in mobile configuration. 
Computer and batteries are housed in the backpack. XIMEA switch 
box is mounted with Velcro on the back of the head. Cords are bound 
in an adjustable loop enabling head mobility. The tracking camera 
(RealSense T265) for body tracking is mounted on a back strap that 
holds it tightly against the body with the sensor positioned just above 
backpack, and marked with white tape

Table 2  Details of operating computer used to control sensors and save collected data

Device Model Form factor Size Notable specs

Motherboard Asus ROG Strix Z390-I Mini ITX – Dual M.2, Wifi, PCIE
Hard drives 2x Samsung 970 Evo M.2 1TB, 2TB Write 1.2 GB/s
Memory Crucial Ballistix Sport LT DDR4 RAM 2 x 16 GB 3200 MHz
CPU Intel i7-8700 – – 6 Cores, 65 Watts
Batteries BPS freedom CPAP 2x bricks (7.5”x5”x1”) 2x 100Wh 12V/8A out
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to either side of the camera, powered by the camera switch 
box.

A video overview of the device hardware is available at: 
https:// www. youtu be. com/ playl ist? list= PLElo utX3o XFbi2 
CoA3_ koqFS wKpdx LliF

Acquisition software

Software structure We wrote the device acquisition soft-
ware in Python 3 (Van Rossum & Drake, 2009) as plugins 
for Pupil Labs’ Pupil Capture software (Kassner et  al., 
2014) allowing for control of all the devices in a single 
graphical interface (Fig. 4). We use the RGB sensor on the 
Intel D435i as the world camera, and a plugin to the Pupil 
Capture software to save depth information as either raw 
NumPy values (Harris et al., 2020) or lossless PNG images 
with multiple images per file rather than the default lossy 
MPEG-4 encoding. Our software includes a plugin to align 
the RealSense depth and RGB streams online. This online 
alignment reduces the highest achievable framerate, so we 
perform spatial alignment of frames during post-processing 
instead. We also wrote a plugin to view and record from 
the XIMEA camera as well as load and apply camera set-
tings from a YAML file. For the odometry sensors, we use 
the tracker code from Hausamann, Sinnott, Daumer, and 
MacNeilage (2021), modified slightly to support recording 
from both tracking devices and the Intel RGB/depth device 
simultaneously.

During data collection, we use the Pupil Labs’ Capture 
software, modified by our plugins, to observe and control 

the computer, switch between visual stream views, run eye-
tracking calibration, adjust camera framerate and gain, and 
start and stop collection. When the subject’s task does not 
involve locomotion, we control the computer and observe 
the video stream using an external monitor and Bluetooth 
keyboard and mouse with the computer placed on a table 
next to the subject. During tasks involving locomotion, we 
control the acquisition computer through Remote Desktop 
over WiFi with a laptop or iPad (Fig. 4). For eye tracking, we 
use the default Pupil Capture eye-camera recording software, 
which records infrared video of each eye at 200 Hz. We turn 
off Pupil Capture’s online pupil detection and accomplish 
detection offline with the Pupil Player software after data 
collection is completed. This reduces the computational load 
on the acquisition computer, and allows manual adjustment 
of the pupil-detection parameters, which in turn minimizes 
the number of frames with failed pupil detection.

To accommodate various lighting conditions, we 
include an analog (sensor) gain adjustment switch for the 
XIMEA camera in our GUI (Fig. 5), which can be used 

Fig. 4  Hardware control during data collection is performed in Pupil 
Lab’s Pupil Capture with custom plugins running on the acquisition 
computer. The computer is controlled remotely with Chrome Remote 
Desktop over WiFi. Settings are adjusted and acquisition started and 
stopped by the experimenter using an iPad or laptop

Fig. 5  Custom plugin for recording from the high-speed XIMEA 
camera has a GUI interface built as a plugin for the Pupil Capture 
software allowing control of camera settings and recording by the 
experimenter

https://www.youtube.com/playlist?list=PLEloutX3oXFbi2CoA3_koqFSwKpdxLliF
https://www.youtube.com/playlist?list=PLEloutX3oXFbi2CoA3_koqFSwKpdxLliF
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in combination with aperture adjustment for the varying 
light levels in indoor and outdoor data collection. This 
adjustment, along with imaging a standard color checker 
chart (Ernst, Papst, Ruf, & Garbas, 2013), allows the 
experimenter to account for the system’s luminance gain 
and perform color balancing.

We incorporate various software scripts related to eye-
tracking calibration. The high-fidelity raw image data (par-
ticularly from the XIMEA camera) is very storage intensive. 
To deal with this, we include a framerate adjustment switch 
for the XIMEA camera in our GUI. The adjustment allows us 
to reduce framerate during calibration, which saves storage 
space significantly. We also use a custom Pupil Capture plugin 
to visualize a nine-point marker placed within the world cam-
era’s field of view (Fig. 6) together with a custom 3D calibra-
tion routine adapted from Gibaldi, DuTell, and Banks (2021).

High‑speed acquisition The most significant design chal-
lenge for this system was acquiring and writing the high-
speed RGB data from the XIMEA camera, particularly 
in accommodating the high rate of data input (637 MB/s 
for this sensor alone). To interface with and control the 
camera, configure settings, and collect data, we use xiAPI, 
XIMEA’s Python API. We utilize Python’s threading and 
queue packages to create data-collection worker threads 
that continuously check for and collect images and their 
associated timestamps from the camera’s buffer, placing 

them in FIFO queues. These queues are simultaneously 
checked by data-saving worker threads, which write 
queued frames and timestamps to disk. We save frames in 
the raw binary format from the camera (1000 images per 
file) for offline conversion to a standard image format. We 
tried other acquisition methods and they failed because 
either the camera’s internal buffer was overwritten due 
to buffer overflow or because of a buildup of frames in 
the computer’s RAM due to insufficient transfer of frames 
from RAM to disk. We use a similar multi-threaded queu-
ing strategy for saving depth frames (also stored in raw 
format) to stabilize the effective framerate for the depth 
stream, and to avoid dropped frames.

The data collection software plugins are available at: https:// 
github. com/ vdute ll/ hmet_ aquis ition. The analysis software is 
available at: https:// github. com/ vdute ll/ st- bravo_ analy sis.

Post‑processing

After each recording session, pupil detection is performed 
offline inside the Pupil Player software. Then, the data are 
transferred to a computational server via the exposed Eth-
ernet port for post-processing. During this offline phase, 
timestamp synchronization and image registration are 
performed to align the streams spatially and temporally. 

Fig. 6  The custom Pupil Labs plugin toggles nine-point calibration positions overlaid on the video stream used for directing the subject to posi-
tion a handheld calibration target for the calibration procedure

https://github.com/vdutell/hmet_aquisition
https://github.com/vdutell/hmet_aquisition
https://github.com/vdutell/st-bravo_analysis
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This alignment allows the depth-map and gaze-position 
information to be overlaid in the high-framerate camera 
space. Finally, we perform the remainder of the eye-track-
ing analysis pipeline including calibration and gaze-point 
estimation.

Temporal synchronization To temporally align data from 
the multiple streams, we first align the timestamps of all 
streams (Fig. 7). Many multi-sensor devices address tem-
poral synchronization issues with a synchronized trigger-
ing system so that timestamps are already aligned during 
data collection. This method is not supported in Pupil Labs, 
so to maximize each device’s frame-rate, we instead allow 
individual sensors to ‘free-run’ at their specified framerates 
during data collection, and then synchronize their times-
tamps in post-processing. For the XIMEA camera, we meas-
ure clock offsets between the sensor’s internal clock and 
the computer’s Unix timestamp at the beginning and end of 
recording. We then align the recorded timestamps to ensure 
there is minimal temporal drift between the two clocks dur-
ing recording. For the other devices, Pupil Labs’ software 
handles timestamp synchronization internally with Unix 
timestamps directly. We investigated the accuracy of the syn-
chronization and found that the match between cameras is 
within one 200-Hz frame (± 5ms) with typically fewer than 
one dropped frame over 2 min of data collection. In post-
processing, a ground-truth timeline at the desired frame-rate 
is generated, and frames from each stream resampled at their 
nearest matching timestamp. This addresses any dropped 
frames and allows for resampling lower framerate streams 
at higher frequencies as needed.

Spatial registration For spatial registration of the images, a 
standard offline camera and stereo calibration is combined 
with depth-dependent alignment. This is done twice, once 
for an ‘indoor’ setting with an open aperture on the XIMEA 
camera and once for an ‘outdoor’ setting with a smaller 
aperture. For each aperture setting, we first use a checker-
board grid to estimate the distortion matrix for the XIMEA 
camera. The RealSense RGB distortion matrix is factory 
calibrated and the image is undistorted on the chip. Then, 
we use the same checkerboard grid to run a stereo calibra-
tion, fixing the distortion matrices and estimating the extrin-
sics matrix between the RealSense RGB and XIMEA RGB 
streams. Because the rectification of the depth stream into 
the RGB frame of reference is depth-dependent, we use the 
Pyrealsense2 align_to() method to rectify the depth stream 
to XIMEA RGB space in two steps: 1) storing the frames in 
.bag file format and 2) reading in the .bag file for alignment. 
In the first step, we provide the RealSense camera’s self-
reported depth to RGB extrinsics to the alignment method, 
rectifying the depth frames into the RealSense RGB cam-
era’s frame of reference. This puts depth information into 

Fig. 7  Visual streams are temporally synchronized to the framerate of 
the slowest visual stream (60 Hz). Temporally synchronized frames 
from three visual streams (top to bottom): XIMEA RGB stream, 
RealSense RGB stream, RealSense depth stream. White boxes indi-
cate zoom-in on bottom panel, showing the ball in same position at 
moment of release from hand during toss, which is evidence that 
timestamps are well matched. Note the greater motion blur of the ball 
in the RealSense RGB stream running at 60 Hz (bottom middle panel) 
compared to the XIMEA RGB stream running at 200 Hz (bottom left 
panel)



39Behavior Research Methods (2024) 56:32–42 

1 3

the RealSense RGB camera’s frame of reference for gaze 
localization. Next, we combine the RealSense to XIMEA 
RGB extrinsics matrix (measured during the stereo calibra-
tion) with the RealSense camera’s self-reported depth to 
RGB extrinsics matrix to create a depth-to-XIMEA extrin-
sics matrix. Finally, we used this combined RealSense RGB 
to XIMEA RGB extrinsics matrix in the .bag file alignment, 
rectifying these depth frames directly into the XIMEA cam-
era’s frame of reference. Performing the alignment in one 
step with a combined extrinsics matrix avoids loss of image 
data due to the vertical field of view of the RealSense RGB 
being smaller than the depth and XIMEA RGB streams. We 
perform all spatial registration offline after data collection. 
Figure 8 shows an example set of aligned frames. The plots 
on the right report the edges detected on the RGB images 
superimposed on the corresponding depth maps, and serve 
to verify the correctness of the alignment.

Accuracy

Spatial There are various sources of error within the sen-
sors, their synchronization, and eye-tracking calibration that 
individually contribute to the overall spatial and temporal 
accuracy limits of the system. The largest source of spa-
tial uncertainty in our system is in the eye tracking. We use 
a custom, depth-aware calibration and gaze-localization 

method, which reduces estimated error to 0.25∘ in the best 
case, and 0.5–0.6∘ for an average subject. This is smaller than 
the <  1∘ and the 1.5–2.5∘ accuracy reported for the Pupil Labs 
2D and 3D gaze mapping methods, respectively (Kassner 
et al., 2014). We report the details of this custom method in 
previous work (Gibaldi, DuTell, & Banks, 2021). With the 
magnification factor of the lens used in our system, 0.25∘ 
corresponds to approximately eight pixels; a wider angle 
lens would reduce the pixel error, and a temporal smooth-
ing window could also be applied to the eye trace to reduce 
high-frequency jitter.

Temporal The largest source of temporal uncertainty in our 
system is in the depth stream, which is framerate limited by 
maximum sampling rate of the RealSense depth sensor of 
90 Hz. We up-sample the depth stream in post-processing 
from the native 90-Hz to the 200-Hz sampling rate of the 
high-fidelity cameras. Because our gaze mapping and spa-
tial re-projection methods are depth-dependent, this depth 
accuracy limitation propagates through our analysis and is 
a limiting factor of the system.

Odometry In addition to accuracy limitations in the visual 
sensors, the system’s estimate of the head and body positions 
and velocities are limited by the accuracy and precision of 
the RealSense T265 sensors. The accuracy of this sensor 
has been thoroughly evaluated in the literature for robotics 

Fig. 8  Visual streams are spatially aligned through registration 
with extrinsics matrices. Top: Original depth frame as provided by 
RealSense camera before spatial alignment. Middle: RealSense RGB 
frame reference (left) and aligned depth (center). Bottom: XIMEA 

RGB frame reference (left) and aligned depth (center). The right plots 
show the edges detected on the RGB images and superimposed on the 
corresponding depth maps
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(Alapetite, Wang, Hansen, Zajaczkowski, & Patalan, 2020), 
and in a head-mounted context similar to ours (Hausamann, 
Sinnott, Daumer, & MacNeilage, 2021), where errors tend 
to accrue over time. Accuracy is best for slow walking in 
small- to medium-sized environments (< 5% error in speed, 
< 10% error in trajectory length when walking in a hall-
way) but suffers when the subject is running, and navigating 
larger environments ( ∼25% error in speed, ∼20% error in 
trajectory length for running in an outdoor courtyard). Given 
our device utilizes two T265 sensors, some post-processing 
could use this partial redundancy to address re-position 
errors and temporal drift, but we have not yet implemented 
this. It is important to note that these accuracy limitations 
in the T265 sensors affect only the head and body odometry 
signal, and therefore for most use cases, have no effect on 
the spatiotemporal resolution of the visual streams. This is 
because gaze localization is performed independently with 
only the D435i, XIMEA, and Pupil Labs sensors. Such error 
accrual in the T265 sensor would, however, need to be con-
sidered in the case that gaze localization is desired in a world 
(non-head) reference frame, where head and/or body pose 
tracking is used.

Discussion

To our knowledge, the apparatus and data collection 
and analysis methods are novel in their enabling 
of uncompressed, high-fidelity, data-intensive, and 
synchronized multi-sensor signal capture in a mobile 
eye-tracking device. Our device enables a high-quality 
reconstruction of the natural visual input as experienced by 
the human eye as a subject goes about everyday activities. 
At the same time, it records the subject’s body, head, and 
eye movements.

While our device has been optimized for minimal 
weight on the head and body, the unavoidable weight and 
bulk of the device is a limitation. The high-frame-rate 
camera (particularly in its switch-box/PCIE system) adds 
weight and bulk to the head, which may restrict subject 
movement during data collection, and may affect the 
statistics of the measured body, head, and eye motion as 
has been previously reported for head-mounted displays 
(Knight & Baber, 2007). When we designed the device, 
this camera was the best available option for high-speed 
collection without introducing artifacts due to on-camera 
compression. Since then, new cameras have been released 
that connect directly to a computer  via other methods 
including USB-C. As such they enable high-fidelity and 
lighter weight.

The weight in the backpack can also affect the biome-
chanics of standing and walking (Devroey, Jonkers, De 
Becker, Lenaerts, & Spaepen, 2007). Given that head, 

body, and eye motion are linked (Imai et al., 2001), the 
weight of our acquisition computer may affect the statistics 
of a subject’s head, eye, and body motion. Consequently, 
in the future we intend to determine how the device affects 
measured statistics.

There are a number of contexts in which our device 
is ideally suited for data collection, due to design 
considerations that prioritize uncompressed, high spatial 
and temporal resolution visual data, yet allow a reasonable 
degree of mobility. This high-fidelity visual stream data 
coupled with gaze localization and corresponding depth 
data allows for reconstruction of the signal seen by the 
retina in natural conditions. Combined with odometry data, 
this system can be used to study the role of environmental, 
body, head, and eye movement (and their coordination) in 
generating this dynamic retinal image. Potential avenues 
of exploration include the predictability of head and eye 
motion from environmental features and motion, differences 
in motion statistics between foveal and peripheral vision, 
and the role of binocular vision and gaze stabilization in 
locomotion.

Studying specific features of human oculomotor behavior 
in the natural environment necessitates this type of high-fidel-
ity system. This is especially true for studying smooth pursuit, 
saccades, and vergence. High temporal fidelity is also crucial 
for studies of the vestibulo-ocular reflex (VOR), and finally 
for high-accuracy fixation localization. Our system enables 
these studies to occur outside the laboratory under more natu-
ral conditions. In studying hand/eye motor coordination, high 
temporal fidelity is also critical in situations where fast motion 
is present such as sports, although the weight and bulk of the 
system limits the use of this device in the most active sports. 
Finally, in addition to the specific aspects of human visual 
behavior that can be well studied with our system, many 
methods of downstream data analysis methods such as Fou-
rier analysis, optic flow, and spatiotemporal motion saliency, 
require and/or are aided by the high-fidelity, compression-free 
data collection offered by our system.

Data collected with this device reveal the complex 
spatiotemporal patterns of light that strike the retina during 
everyday life. Quantifying the statistics of these patterns 
will be important for gaining a better understanding of the 
human visual and motor systems and how they have adapted 
to the natural environment. The data collected with this 
device will be useful to a number of scientific and technical 
communities including vision science, experimental 
psychology, neuroscience, bioengineering, computer 
science, and display technology.
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