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Abstract

Digitization has facilitated the proliferation of crowd science by lowering the cost of finding

individuals with the willingness to participate in science without pay. However, the factors

that influence participation and the outcomes of voluntary participation are unclear. We

report two findings from a field experiment on the world’s largest crowd science platform that

tests how voluntary contributions to science are affected by providing clarifying information

on either the desired outcome of a scientific task or the labor requirements for completing

the task. First, there is significant heterogeneity in the motivations and ability of contributors

to crowd science. Second, both of the information interventions lead to significant decreases

in the quantity and increases in the quality of contributions. Combined, our findings are con-

sistent with the information interventions improving match quality between the task and the

volunteer. Our findings suggest that science can be democratized by engaging individuals

with varying skill levels and motivations with small changes in the information provided to

participants.

Introduction

Digitization has facilitated the proliferation of crowd science, where the general public is vol-

untarily engaged in scientific research activities. While the concept of crowd science is not

new, the number and type of crowd science projects have sharply increased in the past decade.

The Internet has lowered the cost of finding individuals with the ability to participate in scien-

tific activities at different stages of the research process and technology has made it easier to

aggregate and compare a large quantity of data from different participants, thus improving

the accuracy and reliability of crowd science contributions. Examples of digital crowd science

projects include classifying images of galaxies (Galaxy Zoo), modifying the shape of a visual

3D model of a protein to optimize its shape (Foldit), using smartphone games for neurology

research [1], and finding solutions to prevent and treat tuberculosis [2]. While these activities
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have been shown to be economically important [3], the non-pecuniary incentives that moti-

vate volunteer participation and performance are less understood.

Importantly, the effectiveness of non-pecuniary incentives for volunteers in science depend

on understanding volunteer motivations and abilities [4]. If volunteers are heterogeneous in

their beliefs about the value of their contributions to a task, information that clarifies the even-

tual outcome of a task or the type and amount of labor required for a task can generate positive

belief updating among individuals whose priors lead them to incorrectly believe they were

ill matched for the task and negative updating among individuals whose priors lead them to

incorrectly believe they were well-matched for the task [5]. We argue that providing volunteers

with more information about the value of their labor output or input have theoretically ambig-

uous impacts on effort in terms of the quantity and quality of their contributions because it is

unclear ex-ante what individuals’ beliefs are in the absence of this information. We examine

whether the quantity and quality of voluntary contributions are affected by two information

treatments. We manipulate whether participants receive information on 1) the specific project

outcome that volunteer labor will contribute to in order to improve volunteer matching based

on the project mission [6], and 2) the specific labor input requirements of the task [4] in order

to improve volunteer matching based on skill needs. This study is the first to examine whether

motivation based on project mission or labor requirements affect the quantity and quality of

outcomes. We do so using a randomized control trial (RCT) on the world’s largest crowd sci-

ence platform.

We document two key findings. First, both information treatments improve the quality

(i.e., accuracy) of contributions. Second, however, the treatments reduce the quantity of con-

tributions completed per participant without changing the total time participants spend on

the task. While effort on our task is difficult to measure precisely, we consider the distinction

between effort invested in quantity and quality as distinct and important dimensions of this

measure. Effort spent on classifying a large number of images without attention to accuracy is

unlikely to be difficult, as it only requires mouse clicks. Accurate image classification is reason-

ably challenging and requires some amount of focus both on the questions being asked and

the image being presented [7]. Therefore, we interpret the higher accuracy among the treat-

ment groups to indicate they were more willing to spend effort on the more difficult aspect of

the task than those in the control. This increased willingness to undertake a costly action is

consistent with volunteers in the treatment groups being more intrinsically motivated by the

task than those in the control. We also find suggestive evidence that the treatments had mean-

ingful impacts on contributor motivations and backgrounds, and, thus, that they affected the

types of people who contributed to the task. Our results show that minor clarifications in sci-

ence task objectives can induce significant changes in the performance of contributors, poten-

tially by changing the types of people who contribute, even for tasks that require relatively low

skill.

The Zooniverse experiment

We investigate our research question by running a RCT on Zooniverse, the world’s largest

crowd science platform. Scientists post projects in a variety of fields (e.g., art, astronomy, biol-

ogy, history, etc.) on Zooniverse that require contributors to answer questions about images

the scientists would like to classify. Over 1 million registered Zooniverse contributors assist in

these projects with the understanding that they will not be paid or formally acknowledged for

their contributions. One notable feature that makes Zooniverse an attractive setting for isolat-

ing the impacts of task framing on outcomes is that contributors are anonymous and do not

see each other’s contributions. In addition, contributors rarely interact with each other on the
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platform, which suggests that reputation and social returns are unlikely motivations for contri-

butions in this setting.

Responses to a survey administered by Zooniverse demonstrate that the majority of con-

tributors have at least a Bachelor’s degree and over 25% have a graduate degree. In addition,

the majority are employed in some capacity suggesting they have outside options that pay

wages. Over 60% of contributors who responded to the survey reside in the United States or

the United Kingdom.

Contribution task and experimental treatments

The project we posted on Zooniverse is part of a larger East African rangeland crowdsourcing

project that seeks to improve interventions aimed at assisting pastoralists in the face of increas-

ing drought risks. During their routine herding, participating pastoralists took pictures of

rangelands in Northern Kenya and completed a survey in which they classified the types of

vegetation in the photos. For more information about this project, see https://www.udiscover.

it/applications/pastoralism/. We used a subset of these photos for our study classification task.

The task involves classifying 1,061 images on six dimensions: 1) Is there any green grass? 2)

Are there trees? 3) Are there shrubs? 4) Is this a picture of a rangeland? 5) Is this picture poor

quality (i.e., blurry, poor lighting or angle)? 6) Are there wild/domesticated animals?

We generated three separate project pages on Zooniverse with the same scientific content

and background information that differed only in their emphasis on the value of the individu-

al’s voluntary labor output and input, respectively. All three project pages asked contributors

to classify vegetation and wildlife in images of African rangelands. On the output treatment

page, we emphasized how volunteer effort would contribute to an eventual project outcome

on the email invitation, Zooniverse landing page, and project description page. On the input

treatment page, we emphasized the value of contributors’ labor supply and skill requirements

on the email invitation, Zooniverse landing page, and project description page. The control

page did not include separate text related to the value of contributors’ output or input. A sum-

mary of the differences between the input and output pages relative to the control is provided

in Fig 1. The additional text included on the input and output pages totaled one sentence on

the email invitation and on the landing and project description phases respectively relative to

the control page. This “light touch” intervention is employed to minimize concerns about

potential contributors selecting in or out of a page based on a higher volume of text alone. The

full text displayed on the project pages are provided in text displayed in S1 Fig for this article.

All three pages also included identical invitations for contributors to complete a short,

anonymous survey about themselves and their motivations for contributing. This invitation

was provided in a banner displayed on every tab and stated “In an effort to better understand

who our contributors are and how we might be able to attract more, please fill out a short,

anonymous questionnaire at the top right corner of our project page.” Although project pages

generally do not include a contributor questionnaire, after consulting with the Zooniverse

team on the issue, we concluded that including one was unlikely to be considered inappropri-

ate or disconcerting by contributors. Moreover, it was Zooniverse’s preferred method for us to

collect survey responses.

Implementation

In order to test whether the treatments have an effect on page contributions, we need to ensure

that all three pages were viewed by comparable populations of contributors. Ideally, we would

show the three pages to a set of contributors and have them choose which page to contribute

to based on their motivations and preferences. However, this was not possible because it
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would have alerted contributors to the experiment and led to potential bias in our estimates

[8]. To address these concerns, we worked with the Zooniverse organization to keep the

project pages private from the general population of contributors and allow only a randomly

selected 1,100 contributors to access each page through a link provided in an email sent by the

official Zooniverse email account. Given the large number of total email recipients, and that

the recipients were randomly assigned across 3,300 contributors, we are confident that the

average email recipient is statistically the same across the three pages.

The email text inviting people to make contributions to the pages was identical in all three

cases except for the inclusion of the statement “Your contributions will help the advancement

of crowd science and machine-learning algorithms!” in the output page treatment email, and

the inclusion of the statement “Your contributions will help us replace the hiring of university

student research assistants and save hours of our research time!” in the input page treatment

email. In addition, the three pages had slightly different titles because the platform does not

allow separate pages to have the same title. Specifically, the title of the control page project was

Fig 1. Summary of treatments relative to control. Figure summarizes the differences between the output treatment,

the input treatment, and the control. Bold text is text not included in other email scripts. The complete text provided in

all three project pages are presented in the text displayed in S2 Fig.

https://doi.org/10.1371/journal.pone.0224946.g001
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“Crowdsourcing for Rangeland Vegetation”, the title of the output page project was “Digital

Crowdsourcing for Rangeland Vegetation”, and the title of the input page project was “Digital

Crowdsourcing for Vegetation”. The full email text is provided in the text displayed in S1 Fig.

While we would like to separate the effect of the task framing on selection into contributing

from the effect of task framing on the effort exerted among those who do contribute, the

nature of the setting does not allow us to do so. Respondents can choose not to participate in

the task even after clicking on the email link, and we are not able to observe the characteristics

of these people that select out of participating. As such, we are unable to disentangle the extent

to which differences in the quality and quantity of work performed across our three pages are

driven by differences in who contributes or by differences in how contributors contribute. We

interpret our results as the total impact of task framing on outcome selection, combining its

impact on selection into the task (i.e., who participates) and selection into effort conditional

on performing the task (i.e., how well they participate).

This study was approved by the UC San Diego Institutional Review Board, project number

161424. Study participants were not aware they were participating in the research study

reported in this paper. A waiver of consent was approved for this study because the research

could not be practicably implemented without the waiver. The waiver was requested primarily

to ensure contributors were responding to the interventions as they would for other Zooni-

verse posted projects, and not to our experiment [8].

Data and analysis

Our final sample includes 197 participants across all three pages (61 control, 72 output, 64

input). A total of 201 contributors were observed opening the classification task, but 4 of these

did not log their contributions. These sample sizes are comparable to the sample size in related

studies that analyze the decision to donate time to charitable causes [9, 10]. We have also

assessed whether the response rate of our project is in line with other Zooniverse projects by

dividing the average number contributors in a Zooniverse project [3] by the total number of

registered Zooniverse users. These numbers give us an average response rate of less than 2%,

which suggests that our response rate is slightly higher than the expected response rate on this

platform. These response rates are also consistent with voluntary participation rates on other

crowd-based platforms. For instance, Wikipedia has over 37 million registered users that help

edit the pages but only about 123,000 contribute regularly (0.3%), and even less users actively

participate in community discussions and steward elections. Data on contributor characteris-

tics, including education, income, employment status, and Zooniverse activity was collected

from the subset of contributors who responded to the anonymous contributor questionnaire

posted on the project pages. The full set of survey questions is provided in S3 Fig. The survey

response rate was 48% for the control page, 44% for the output page, and 39% for the input

page.

We examine contributor effort both by the number of classifications they complete, and by

the quality, or accuracy, of their completed classifications. The quantity of classifications per

contributor, and the classifications made were collected from Zooniverse. These data are pro-

vided to all researchers who posted projects on the platform, and our data collection method

complied with the terms and conditions of the website.

To generate a measure of classification accuracy on which to compare contributor classifi-

cations, both authors separately classified all 1,061 images. In addition, we used data from the

pastoralists’ classifications on grass, shrub, and trees. Pastoralists did not classify whether there

were animals in the photos. Moreover, they were required to submit high quality photos of

rangelands so they were not asked whether their photos were of rangelands are of poor quality.
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Both of these baseline accuracy measures are useful for different reasons. Pastoralists have

expert knowledge of the rangelands in the project images and, therefore, their classifications

are based on better knowledge of the rangelands than those completed by the authors. The

authors’ classification data also includes information on image quality, the presence of ani-

mals, and whether or not the image is of a rangeland. Our preferred measure of question accu-

racy restricts the sample of image-question observations to those for which both authors and

the pastoralist agree in the case of grass, trees, and shrubs, and to those for which both authors

agree for the remaining questions, and drops image-questions for which there does not appear

to be a clear answer. However, our findings are robust to less stringent measures of accuracy,

such as comparing classifications only against those of pastoralists.

With this measure of image-question accuracy, we generate a combined accuracy measure

that equals one if each question of the image was answered accurately, and zero otherwise.

Using this quality measure at the image level of observation, we generate our indicator of qual-

ity, which is a count of the number of high quality classifications made by each contributor

weighted by the proportion of contributor classifications that are included in the combined

image accuracy measure. The dataset used in our analysis is publicly available through UC San

Diego’s Digital Collections data repository [11]

Results

We find that information treatments that emphasize output or input affect the quantity and

quality of contributions. While the number of contributors to each page is statistically the

same, significantly more images were classified on the control page than the output and input

pages. In fact, as Fig 2 demonstrates, control participants classify more than double the num-

ber of images than input participants. However, once we weight the number of classifications

by quality, the number of classifications are not statistically different across pages (Fig 2). This

Fig 2. Contribution quantity and quality by treatment groups. Figure plots the average quantity and quality of image

classifications on Zooniverse across control and treatment pages along with standard errors. Because not all images are assessed

for quality, we weight by the proportion of images that are in our quality weighted quantity measure.

https://doi.org/10.1371/journal.pone.0224946.g002

Trade-offs in motivating volunteer effort

PLOS ONE | https://doi.org/10.1371/journal.pone.0224946 November 21, 2019 6 / 12

https://doi.org/10.1371/journal.pone.0224946.g002
https://doi.org/10.1371/journal.pone.0224946


is because the input and output treatments are associated with more accuracy on classification

questions. In particular, 49% of output classifications and 45% of input classifications are accu-

rate across all task dimensions compared to 35% of classifications on the control page (p-values

of difference relative to control are 0.03 and 0.155 respectively). The finding that the output

treatment leads to significantly higher classification accuracy is robust to controlling for image

fixed effects in a regression (see S1 Table).

It is worth noting that, although the difference between the quality weighted quantity of

output generated by the input and control pages is statistically the same in our sample, power

analysis demonstrates that with our sample means and standard deviations, the control page

quality weighted quantity would become significantly higher with 260 contributors per page

which most pages on Zooniverse surpass.

We also find that input contributors spend significantly more time per classification com-

pared to control contributors (Fig 3). This result holds when outliers, defined as participants

who spend 6 minutes or more per classification on average, are dropped. We believe dropping

these participants is important because the length of time per classification indicates they may

be leaving their browsers open while performing other tasks or activities and, thus, falsely driv-

ing up the average time spent on the project. This is consistent with a quantity-quality trade-

off between the control and treatment pages, where contributors to the treatment pages appear

to exert more effort per classification in terms of accuracy at the expense of completing a fewer

number of classifications. Given that accuracy requires contributors to pay attention to the

questions being asked and to the image characteristics and quantity simply requires a series of

mouse clicks, these findings demonstrate that contributors to the treatment pages were more

willing to spend effort on the more difficult aspects of the task than those who contributed to

the control page.

Fig 3. Average time spent in seconds per classification by treatment groups. Figure plots the average number of seconds

contributors spend on a single image classifications on Zooniverse across control and treatment pages along with standard errors.

Sample excludes contributors who spent over 6 minutes per classification on average as these likely represent contributors who left

Zooniverse open while inactive on the site.

https://doi.org/10.1371/journal.pone.0224946.g003
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As we discuss above, these differences in the willingness of contributors to exert effort on

the more difficult aspects of the task across treatment and control could be driven by changes

in motivations among individuals who would always contribute, changes in the types of people

who contribute, or both. Given that contributors self-select into the task, our sample of con-

tributors are likely all very motivated. However, even among this highly motivated sample, the

possibility that the treatments alter how motivated contributors are is supported by existing

evidence. For instance, even among charity donors who donate similar amounts, there is sig-

nificant variation preferences for the effectiveness of the organizations they donate to [12].

While we cannot conclusively disentangle changes in motivations among existing contributors

from changes in the types of people who contribute, evidence from our contributor survey

provides suggestive evidence that the treatment effects on outcomes are driven at least in part

by differences in the pool of contributors across pages. In particular, Fig 4 demonstrates that

contributors who completed the survey on the control page claim to spend the most time per

month contributing to Zooniverse projects (7-10 hours), significantly more than the time

spent by input page contributors (3-6 hours). Moreover, while almost all contributors indicate

they contribute to projects on Zooniverse because they like that they are contributing to sci-

ence both output and control contributors who completed the survey are significantly more

likely to indicate that they contribute because of their skill-set than input page contributors.

Consistent with this, both output and control contributors in the survey sample are signifi-

cantly more likely to indicate that they have science related work experience. The three groups

do not differ in their average education level, employment status, age, or income.

The sample of contributors who responded to our survey is a subset of all contributors.

Since we cannot observe the characteristics of those who did not respond to our survey, we

cannot be certain about how representative these responses we did receive are of our sample

population. Therefore, the patterns presented in Fig 4 should be considered suggestive rather

Fig 4. Contributor characteristics by treatment groups. Figure plots the average Zooniverse contributor characteristics across

control and treatment pages along with standard errors.

https://doi.org/10.1371/journal.pone.0224946.g004
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than conclusive. However, to provide further evidence of this potential self-selection effect,

kernel density plots (Fig 5) demonstrate that contributors to the treatment pages are more

homogeneous in their contribution patterns (i.e., less disperse) relative to the control. The

narrower distribution plots for the treatments suggest that the probability of an outcome falls

under a tighter band compared to the control, suggesting that the treatments led to conver-

gence in beliefs about the value of contributor output and input.

Combined, our findings indicate that information that clarifies input requirements and

output values of volunteer research tasks impacts the quality and quantity of contributions.

This finding is consistent with the interpretation that the information treatments are associ-

ated with better matching on individuals’ skills and motivations. This improved matching is

associated with more cognitive control in the form of attention invested in the task [7] which

improves accuracy at the expense of a lower number of classifications completed. While prior

literature tended to focus on the extent to which providing information on the mission of an

organization can affect outcomes [13–15], our results suggest that clarifying labor require-

ments can also affect participation and performance outcomes. It also provides an additional

channel through which science can be democratized. In addition, our results that suggest

improved information on skill requirements may improve matching on volunteer capabilities

is consistent with existing evidence from paid labor opportunities [16], but to our knowledge,

has previously not been studied in the context of volunteer labor. Our results underscore the

fundamental trade-off between quality and quantity of production workers [17] and shows

that it remains an important consideration on digital platforms for volunteers, where attract-

ing large quantities of volunteers is relatively easy but screening volunteer quality is difficult.

Implications

Our study confirms that even within the subset of individuals who select into participation on

science-based crowdsourcing platforms like Zooniverse, there is substantial heterogeneity in

volunteer motivations and skill sets. These differences have implications for how successfully

volunteer labor can contribute to research progress. Importantly, since there is substantial het-

erogeneity in the types of research tasks that seek voluntary contributions, matching volunteer

types to project objectives has the potential to meaningfully improve research outcomes. For

instance, some routine tasks require a large number of participants to generate a solution due

to the sample size requirements of some algorithms [18], while more complex and uncertain

tasks require knowledge diversity and specialized skills [19]. Crowd science tasks vary across

these dimensions, with some being routine, well-understood tasks that can be broken into a

series of linear steps that include a defined range of acceptable solutions (e.g., tagging images,

improving search results), and others being non-routine, complex tasks (e.g., generating prod-

uct ideas, solving complex problems) that can be approached in different ways [20]. Research-

ers posting the former type of project may benefit from providing less information on why

volunteers are being sought in order to maximize the quantity of contributions by reducing

volunteers’ attachment to the project and thus, the time they spend per task element. In con-

trast, researchers posting the latter type of project may benefit from providing specific infor-

mation on the types of skills and motivations they are looking for to ensure volunteers who

select into the task invest in performing high quality output.

In addition, our findings demonstrate that science can be democratized by engaging indi-

viduals with varying skill levels. We show that even in a setting where the skill-level required

for a task is low, small changes in the information provided can facilitate participation by indi-

viduals who may otherwise underestimate their ability to contribute to science. This suggests

that, to the extent that breaking down large scale and complex scientific projects into smaller
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Fig 5. Kernel densities of contributor quantity and quality by treatment groups. Figure plots the Epanechnikov kernel

density of the number of classifications completed per user (Panel A) and number of high quality classifications completed

per user (Panel B) by treatment group. The narrower distribution plot for the treatment lines suggest that the probability of

an outcome (i.e., the number of classifications completed per contributor or the number of high quality classifications) on

treatment pages falls under a tighter band compared to the control.

https://doi.org/10.1371/journal.pone.0224946.g005
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and simpler pieces is possible, inducing the engagement of non-scientists in the research com-

munity can have a meaningful aggregate impact on overall science output.[21].

Supporting information

S1 Table. Effect of output and input treatments on accuracy. This Table compares how the

treatments affect the accuracy of classifications within the same image. Robust standard errors

are in parentheses. All columns include image fixed effects. � significant at 10%; �� significant

at 5%; ��� significant at 1%.

(TEX)

S1 Fig. Project page text. The Figure displays the text on the output treatment, input treat-

ment, and control project pages. The text displayed in italics is only included on the input

page, and text underlined is only included on the output page.

(TEX)

S2 Fig. Invitation email text. The Figure displays the text in the output treatment, input treat-

ment, and control invitation emails. The text displayed in italics is only included on the input

page, and text underlined is only included on the output page.

(TEX)

S3 Fig. Contributor survey. The Figure displays the survey text and questions given to con-

tributors who opted to complete it.

(PDF)
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