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Abstract: This paper studies the problem of simultaneously locating trauma centers and helicopters.
The standard approach to locating helicopters involves the use of helicopter busy fractions to model
the random availability of helicopters. However, busy fractions cannot be estimated a priori in our
problem because the demand for each helicopter cannot be determined until the trauma center locations
are selected. To overcome this challenge, we endogenize the computation of busy fractions within an
optimization problem. The resulting formulation has non-convex bilinear terms in the objective, for
which we develop an integrated method that iteratively solves a sequence of problem relaxations and
restrictions. Specifically, we devise a specialized algorithm, called the Shifting Quadratic Envelopes
algorithm, that 1) generates tighter outer-approximations than linear McCormick envelopes, and 2)
outperforms a Benders-like cut generation scheme. We apply our integrated method to the design of a
nationwide trauma care system in Korea. By running a trace-based simulation on a full year of patient
data, we find that the solutions generated by our model outperform several benchmark heuristics by up
to 20%, as measured by an industry-standard metric: the proportion of patients successfully transported
to a care facility within one hour. Our results have helped the Korean government to plan its nationwide
trauma care system. More generally, our method can be applied to a class of optimization problems
that aim to find the locations of both fixed and mobile servers when service needs to be carried out
within a certain time threshold.

Subject Classification: Health care: ambulance service, hospitals. Programming: integer: algorithms:
Benders/decomposition. Simulation: applications
Area of Review : Policy Modeling and Public Sector OR
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1 Introduction
Trauma is a body wound or shock produced by sudden physical injury, as from violence or accident,

which may lead to the death of a patient if proper care is not administered in a timely fashion. Trauma

is the sixth leading cause of death worldwide and the leading cause of death in the U.S. for those under

age 44 (Centers for Disease Control and Prevention (CDC) 2013). Trauma is a serious public health

problem with significant social and economic costs.

Providing proper care to trauma patients requires seamless health care delivery operations. When

a trauma case occurs, critical care paramedics are quickly dispatched to the scene either by ground

ambulance or helicopter. They provide first aid to stabilize the patient at the scene, and then transport

him/her to a trauma center. Because any delay in transporting a patient to a trauma center can severely

affect his/her survival rate, a general rule of thumb is that an appropriate clinical intervention should

be provided within an hour from the moment of an injury incident (e.g., CDC 2012). Many countries,

including Canada, Germany and Israel, have reported significant improvements in major injury care

from designating dedicated trauma care centers (Peleg et al. 2004). A trauma center is a type of hospital

that has resources and equipment needed to help care for severely-injured patients. In the U.S., trauma

centers are classified as Level I (the highest level of care) to Level IV. The CDC estimates a 25%

reduction in deaths for severely-injured patients who receive care at a Level I trauma center rather than

at a non-trauma center.

Our paper studies the design of a nationwide trauma care system. Specifically, our paper is part

of a broader study commissioned by the Korean Ministry of Health and Welfare (KMHW) to make

recommendations for establishing a nationwide trauma care system in Korea. In the broader study (Kim

et al. 2011), a group of experts conducted research on a variety of issues related to trauma care, including

infrastructure, human resources, governance, financing, and quality control. Our paper expands the

infrastructure part of this broader study, and provides a quantitative model and analysis using one-

year nationwide data of 190,193 trauma cases. Our results have helped the Korean government outline

its initial plan in 2011. The Korean government is currently refining its initial plan by incorporating

feedback from relevant communities. The first trauma center in Korea is scheduled to open in 2014,

and the government is planning to open an additional 15 trauma centers across the country. The results

developed in this paper can also support future decision-making of the government as it rolls out its

final plan. Although we generate numerical results based on the data from Korea, the models and

methods developed here could be applied to the design of trauma care systems in other countries or

regions. More generally, they could also be applied to a class of optimization problems that aim to find

the locations of both fixed servers (e.g., trauma centers, hospitals, warehouses) and mobile servers (e.g.,

helicopters, ambulances, trucks) when service needs to be carried out within a certain time threshold.

Our objective is to find the optimal locations of trauma centers and helicopters that maximizes

the effective coverage of trauma care. Ideally, we would like to always transport every citizen in the

country to an available trauma center in under an hour. However, due to limited budgets, this is not

practically possible – even in the U.S., nearly 45 million people do not have access to a Level I or II
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trauma center within one hour’s transportation distance (CDC 2012). At the request of the KMHW, we

explore trauma care system designs with various numbers of trauma centers and helicopters, assuming

that a sufficiently high number of ground ambulances are deployed.

When there are a limited number of trauma centers, helicopters play the important role of expanding

geographic coverage by transporting patients from rural areas to trauma centers. Thus, in designing a

nationwide trauma care system, it is important to simultaneously locate trauma centers and helicopters.

The problems of locating only one type of resource (i.e., either trauma centers or helicopters) belong to

well-known classes of optimization problems. The trauma center location problem can be formulated as

a capacitated maximal covering location problem (e.g., Pirkul and Schilling 1991), and the helicopter

location problem is structurally similar to a probabilistic ambulance location problem (e.g., Daskin

1983). However, our problem poses a unique challenge because the locations of trauma centers affect

the demand for helicopters, and vice versa. This dependency is particularly problematic if we explicitly

model the probabilistic availability of helicopters. Specifically, in the probabilistic location problem

(e.g., ReVelle and Hogan 1989, Borras and Pastor 2002), it is common to model the probabilistic nature

of ambulance availability using a “busy fraction” of an ambulance (or a helicopter, in our case). This

fraction is usually estimated as a ratio of the workload of an ambulance at a given location (e.g., the

daily number of service requests times average service time per patient) to the available service hours

of an ambulance. In our model, however, such busy fractions cannot be estimated a priori because the

demand for helicopters at each given location cannot be determined until after the trauma centers are

chosen.

To address this challenge, we endogenize the computation of busy fractions within an optimization

problem, and formulate the problem as a mixed-integer nonlinear program (MINLP) with the objec-

tive of maximizing the expected (approximate) number of trauma patients that can be successfully

transported within an hour. However, due to the inherent dependency described above, our MINLP

formulation has non-convex bilinear terms which present serious computational challenges. Fortunately,

we are able to exploit problem-specific structure to develop an integrated method that iteratively solves

a sequence of problem relaxations and restrictions, thereby establishing bounds on our model’s ob-

jective. Specifically, we devise a specialized method, called the Shifting Quadratic Envelopes (SQE)

algorithm, that creates and shifts quadratic envelopes at each iteration. We show that SQE generates

tighter outer-approximations than classical linear McCormick envelopes (McCormick 1976, Floudas and

Pardalos 2012), and also outperforms a cut generation scheme based on Generalized Benders Decom-

position (GBD) (e.g., Geoffrion 1972). The use of SQE allows us to get within 6% of optimality in

most problem instances on the scale required in our problem setting. This is significant, especially

considering that the leading global solver BARON (c.f. Tawarmalani and Sahinidis 2005) achieves only

21% of optimality in the same allotted time.

As a point of comparison, we also develop two simple heuristics that are motivated by existing

methods in the literature. The first “no-congestion” heuristic is modeled after Branas and ReVelle

(2001) who also consider a joint location problem of trauma centers and helicopters as in our paper,
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but ignore random availability of helicopters. The second “decoupled” heuristic solves for the locations

of trauma centers and helicopters sequentially, ignoring the dependency between these two resources.

We have found that the best trauma center locations differ significantly across the three approaches,

especially when a large number of helicopters are available. We then compare the performance of the

location solutions generated by our integrated approach with those from the two heuristics by carrying

out a trace-based simulation using one year of patient data. Our simulation treats the locations of

trauma centers and helicopters as given, and sequentially processes the times and locations of patient

calls from the input stream. We simulate the real-time processes of transporting each patient to a

trauma center, and categorize each patient as successful (≤ 60 min transport to an under-capacity

trauma center) or unsuccessful. Our results show that our integrated approach outperforms the two

heuristics significantly. For example, when using 10 trauma centers and 20 helicopters, we achieve a

12% (resp., 14%) larger number of successful transports using our integrated approach than the no-

congestion heuristic (resp., the decoupled heuristic), which translates into a potential 23,000 (resp.,

26,000) additional lives saved per year.

The rest of this paper is organized as follows. In §2, we review related literature. In §3, we describe

the problem. In §4, we present our solution approaches. In §5, we describe our data and simulation

model, and present the results of applying our methods to a trauma center design problem in Korea.

We conclude our paper in §6.

2 Related Literature
Our paper is related to the literature on location problems in health care delivery systems. Due to the

large volume of literature in this area, we review only the most related papers, and refer readers to

Owen and Daskin (1998), Berman and Krass (2002), Brotcorne et al. (2003), Daskin and Dean (2004),

ReVelle and Eiselt (2005), and Li et al. (2011) for a more comprehensive review.

Toregas et al. (1971) and Church and ReVelle (1974) are among the first researchers to study

Emergency Medical Services (EMS) vehicle location problems. Toregas et al. (1971) study the Location

Set Covering Problem (LSCP) that identifies the minimum number of facilities (or ambulances) and

their locations which cover all demand points within a certain distance. Church and ReVelle (1974)

propose the Maximal Covering Location Problem (MCLP), which locates a fixed number of facilities

so as to maximize the amount of demand that is covered by at least one facility. Many variations

and extensions have followed these early studies: for example, Schilling et al. (1979) develop a model

of locating multiple types of vehicles such as basic and advanced life support ambulances; Hogan and

ReVelle (1986) and Gendreau et al. (1997) consider double coverage models in which all demands must

be covered by ambulances located at most r2 minutes away, and in addition, a certain proportion of the

demand must also be at most r1 minutes away.

While these models deal with deterministic location problems, another stream of research takes into

account randomness in the availability of ambulances. This randomness is usually modeled as the busy

fraction of an ambulance, i.e., the probability that an ambulance is unavailable to respond to a service

3



request immediately. Assuming a uniform busy fraction for all ambulances, Chapman and White (1974)

formulate a probabilistic version of the LSCP, and Daskin (1983) proposes the Maximum Expected

Covering Location Problem (MEXCLP) that maximizes the expected value of coverage within a time

standard. ReVelle and Hogan (1989) formulate a chance-constrained program, called the Maximum

Availability Location Problem (MALP), which positions ambulances so as to maximize the demand

covered within a time standard with a given probability. They also propose a method to estimate busy

fractions that are specific to each demand region. Several probabilistic location models have extended

these models, including Ball and Lin (1993), Marianov and ReVelle (1994, 1996), Borras and Pastor

(2002), and Sorensen and Church (2010). All these models require the estimation of busy fractions.

However, as ReVelle and Hogan (1989) rightly point out, busy fractions are difficult to estimate because

“these values are an output of the model and cannot be known a priori,” i.e. before knowing the locations

of ambulances (Brotcorne et al. 2003).1 This issue is even more serious in our problem of jointly locating

trauma centers and helicopters because, unlike all previous models reviewed above, the busy fraction

of a helicopter depends on the locations of both trauma centers and helicopters, which are not given a

priori.

To the best of our knowledge, Branas and ReVelle (2001) is the only paper that considers a joint

location problem of trauma centers and helicopters as in our paper. Branas and ReVelle model this as

a deterministic location problem, and formulate the problem as a mixed-integer linear program. They

could not attain solutions within a reasonable amount of time using CPLEX directly, so they developed

an iterative heuristic that identifies the best locations of helicopters, holding the locations of trauma

centers fixed, and then finds the best locations of trauma centers, holding the locations of helicopters

fixed, and so on.

Similar to Branas and ReVelle (2001), this paper considers a joint location problem of trauma centers

and helicopters, but takes a fundamentally different approach in both model and solution method. First,

our model explicitly models the capacity constraints of trauma centers, which are critical to ensure that

trauma centers do not become over-crowded. Second, our model takes into account the randomness in

the availability of helicopters as in the second stream of research reviewed above. To address the issues

regarding the estimation of busy fractions discussed above, we endogenize the computation of helicopter

site-specific busy fractions within an optimization problem. According to ReVelle and Hogan (1989),

“It should be noted that the busy fractions used here are not specific for a particular site. The use of [ambulance]

site-specific busy fractions, rather than [demand] area-specific busy fractions, would certainly be preferable but

such a formulation is not undertaken here for two reasons. First, such site-specific busy fractions cannot be

obtained without knowledge of the positions of all other servers, and these positions are only known as an output

of the model, not in advance. Second, the constraints that follow from such information are of a form which

1Descriptive queueing models such as Larson (1975) and Burwell et al. (1992) can estimate busy fractions under fairly

realistic assumptions. However, as Marianov and ReVelle (1994) point out, such descriptive queueing models usually fix

the locations of ambulances a priori. There are recent developments in queueing-based location models (see, e.g., Berman

and Krass (2002), Aboolian et al. (2008), Zhang et al. (2010) and references therein), but as Berman and Krass (2002)

point out, “one invariably has to make simplifying assumptions and approximations to render the model tractable.”
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requires an integer programming code capable of solving large zero-one problems without special structure.”

As ReVelle and Hogan (1989) predicted, the use of site-specific busy fractions within an optimization

model requires us to solve a large-scale MINLP with a specialized algorithm. Indeed, our optimization

model is a complex mixed-integer nonlinear program that determines the allocation of patient demand to

trauma centers (using either ground ambulance or helicopter), as well as the locations of trauma centers

and helicopters. To solve this program, we develop a novel method that iteratively solves a sequence

of problem relaxations and restrictions. Our method exploits the specific structure of the problem

formulation to tighten bounds by systematically pushing the solution toward a global optimum. In

this way, our method theoretically guarantees convergence to an optimal solution, whereas the heuristic

developed by Branas and ReVelle (2001) does not.

In addition, we validate our optimization model’s location solution by conducting a trace-based

simulation using one year of nationwide patient data from Korea. Our use of simulation for validation

is in line with Goldberg et al. (1990), Repede and Bernardo (1994), Borras and Pastor (2002), and

Sorensen and Church (2010).

Lastly, we note that our model and solution method may be used in other applications that require

the simultaneous location of fixed and mobile servers when service needs to be carried out within a

certain time threshold. For example, in the transportation literature, the location-routing problem (see

Nagy and Salhi 2007, as well as Prodhon and Prins 2014, for extensive reviews) involves (a) choosing a

number of depot locations from which to ship products, (b) assigning one or more trucks to each depot,

and (c) finding a short route (tour) for each truck that starts at a depot, makes deliveries to one or more

customers in sequence, and returns to the same depot. If we consider the special case where each truck

makes a delivery to only one customer, then we can compare this to our problem, and describe how

extensions of this problem more closely relate to ours. Notably, location-routing problems usually do

not consider transportation delays, since each truck only makes one tour, and unanticipated demands

do not occur in the planning horizon. However, if customers order the product at random times and

need the product urgently (e.g., pizza delivery from a chain of pizza outlets) then, as in our model, it is

appropriate to minimize transportation-delay-induced congestion, and such an objective will naturally

have bilinear (or more generally, if multiple trucks are stationed at each depot, nonlinear) terms that

can be tackled by our Shifting Quadratic Envelopes algorithm.2 Although these are the main structural

properties that we need to use SQE, we point out that our model and SQE are particularly important

for problems where the busy fractions for the mobile servers are hard to estimate a priori, such as when

fixed servers also need to be located and the mobile servers must stop at one fixed server along their

route. This is because, in this case, route lengths depend on where the fixed servers are located, and so

utilization and thus busy fractions depend directly on the route lengths.3

2Specifically, we need both the arrival rate and workload assigned to each mobile server to be linear functions of the

same set of variables. However, as we will see from our model in §4, this occurs quite naturally.
3In a location-routing problem, depots are usually facilities that house trucks, and they are analogous to the heliports

in our model where the helicopters are stationed; there is no analog to our trauma centers in the canonical location-routing
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3 Problem Description
Consider the problem of locating k trauma centers and m helicopters (i.e., air ambulances) to serve

ı̄ demand regions. We call the station where a helicopter is based a “heliport.” There are j̄ (≥ k)

candidate sites for trauma centers and h̄ candidate heliports. A heliport can either be on the roof of

an open trauma center or at a separate location (e.g., an airport) that permits helicopter take-off and

landing. We index demand regions by i ∈ I = {1, 2, ..., ı̄}, heliports by h ∈ H = {1, 2, ..., h̄}, and trauma

centers by j ∈ J = {1, 2, ..., j̄}. More specifically, we assume without loss of generality that heliports

1 through j̄ are located on the rooftops of trauma centers 1 through j̄, while heliports j̄ + 1 through

h̄ are not co-located at trauma center sites. Each demand region i has expected demand rate λi, and

each trauma center j has the fixed capacity of treating up to cj patients per unit of time. A trauma

patient from any demand region can be transported to a trauma center either by a ground ambulance

(hereinafter, in short, ambulance) or by a helicopter.

A patient is geographically covered if s/he can be transported to an open trauma center within 60

minutes. To define sets of these patients and their transportation modes, we convert travel times (e.g.,

60 minutes) into distances between locations as follows (see Figure 1 for illustration). Let dri denote

the road distance between the center of demand region i and its nearest ambulance station, drij denote

the road distance between the center of demand region i and trauma center j, dij denote the Euclidean

distance between the center of demand region i and trauma center j, and dhi denote the Euclidean

distance between heliport h and the center of demand region i. Demand region i is geographically

covered by an ambulance if there exists a trauma center j with dri + drij ≤ dground, or by a helicopter if

there exists a heliport and trauma center pair (h, j) such that dhi + dij ≤ dair.
4 In collaboration with

practitioners, we have set dground = 46 km and dair = 120 km, considering the average time spent in

each step of operations (a1-a3) and (h1-h5), respectively, as follows:

• Ambulance: (a1) drive to patient location i from the nearest station (dri /(50/60) minutes), where the

average ambulance speed of 50 (km/h) is used; (a2) load the patient into the ambulance (5 minutes);

and (a3) drive from patient location i to trauma center j (drij/(50/60) minutes).

• Helicopter: (h1) take off at heliport h (6 minutes); (h2) fly from heliport h to patient location

i (dhi/(180/60) minutes), where the average helicopter speed of 180 (km/h) is used; (h3) load the

patient into the helicopter (8 minutes); (h4) fly from patient location i to trauma center j (dij/(180/60)

minutes); and (h5) land and hand-off the patient to the trauma center (6 minutes). We assume that a

helicopter at heliport h is used to cover demand region i only when dri + drij > dground. Moreover, we

assume that each patient is transported (as necessary) to a place where a helicopter can land (e.g., an

elementary school, a farming area, etc.) while a helicopter is en route to the patient; thus, maneuvering

to the exact pick-up location does not impose any additional delay.

problem. In this sense, although it is tempting to consider depots as fixed servers, they are not. Thus, strictly speaking,

the canonical location-routing problem locates only mobile servers, and not fixed servers.
4Alternatively, we can define dri as the average road distance between each historical patient in demand region i and

his/her nearest ambulance station, and define drij similarly. Geographic coverage is qualitatively unchanged under this
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Figure 1: (a) ambulance coverage: dri + drij ≤ dground; and (b) helicopter coverage: dhi + dij ≤ dair,

excluding the area covered by ambulance (note: h and j can be co-located).

We now define the following sets of geographically covered patients and their transportation modes:

• FG = {(i, j)|i ∈ I, j ∈ J, and dri + drij ≤ dground}: all feasible ambulance routes (i, j) in which a

patient from region i can be transported to trauma center j within 60 minutes;

• FGi = {j ∈ J |dri + drij ≤ dground for fixed i}: the subset of trauma center sites to which a patient from

demand region i can be transported by ambulance within 60 minutes;

• FGj = {i ∈ I|dri + drij ≤ dground for fixed j}: the subset of demand regions whose patients can be

transported by ambulance to trauma center j within 60 minutes;

• F = {(h, i, j)|h ∈ H, i ∈ I, j ∈ J, dri +drij > dground and dhi+dij ≤ dair}: all feasible helicopter routes

(h, i, j) in which a helicopter from heliport h can transport a patient from region i to trauma center

j within 60 minutes, excluding any routes that are close enough to be within the ambulance coverage

area;

• Fh = {(i, j)|dri + drij > dground and dhi + dij ≤ dair for fixed h, where i ∈ I, j ∈ J}: the subset of

pairs of demand region i and trauma center site j to which a helicopter originating from heliport h can

transport a patient from demand region i to trauma center j within 60 minutes;

• Fi = {(j, h)|dri + drij > dground and dhi + dij ≤ dair for fixed i, where j ∈ J, h ∈ H}: the subset of

pairs of trauma center j and heliport h that can be used to transport a patient from demand region i

by air (using the route h→ i→ j) within 60 minutes;

• Fj = {(h, i)|dri + drij > dground and dhi + dij ≤ dair for fixed j, where i ∈ I, h ∈ H}: the subset of

pairs of heliport h and demand region i that can be used to transport a patient by air to trauma center

j (using the route h→ i→ j) within 60 minutes.

Geographic coverage is a feasibility criterion, and does not take into account the possibility that

patients may be delayed due to congestion. For example, a patient must wait for a helicopter if the

nearest helicopter is already transporting another patient. Some proportion of patients who are geo-

graphically covered will not receive timely service in expectation. To take into account this congestion

effect, we define expected covered demand as the expected number of patients that will be transported

to an open trauma center in under 60 minutes, without incurring any delays in transportation.

Our objective is to find the locations of k trauma centers and m helicopters that maximize the

expected covered demand within a time standard of 60 minutes, considering randomness in the avail-

alternative definition.
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ability of helicopters. Starting with Daskin (1983), this objective is commonly used in the literature for

ambulance location problems (see, e.g., §11.2.1 of Berman and Krass 2002, Sorensen and Church 2010,

and references therein). Like ambulances, helicopters in our problem are complimentary to trauma cen-

ters since each patient needs both transportation and a care facility. However, unlike ambulances, it is

interesting to note that helicopters also act as substitutes for trauma centers by allowing fewer trauma

centers to serve a larger coverage area. To model the availability of helicopters, we compute the average

service time τhij for a helicopter to fly the circuit h → i → j → h, including steps (h1)-(h5) described

above and the following additional steps: (h6) travel from trauma center j to heliport h (where travel

time = djh/(180/60) minutes if j 6= h or 0 otherwise), and (h7) land and refuel at heliport h (5 minutes).

During this service time, a helicopter is busy, and thus it is not available to serve any other patients.

As discussed earlier in §1, this problem is challenging due to many reasons – in particular, in-

terdependency in demands for trauma centers and helicopters, and inherent uncertainties. To build a

tractable model to support the decision-making of the KMHW, we make a set of assumptions as follows.

First, we do not consider randomness in the availability of ambulances.5 This assumption allows us to

ignore the availability and routing details of thousands of ambulances across the country. In fact, the

average time it takes for an ambulance to reach a patient location from the moment of a patient call

is 10 minutes in major cities in Korea, suggesting that the availability of ambulances is not a serious

concern in Korea. We note, however, that we could also consider random availability of ambulances

by modeling it in the exact same way as we model random availability of helicopters. Second, in our

base model, we assume that each heliport can have at most one helicopter. We give up little with

this assumption because, in Korea, 38 candidate hospitals for trauma centers can operate at most one

helicopter, whereas 16 separate heliports might be able to operate more than one helicopter. Moreover,

helicopters primarily assist rural patients in more sparsely populated areas, and so, assuming helicopters

are a scarce resource, this suggests that they should naturally be more spread out rather than clustered

together. Indeed, helicopters are scarce in our case: in our numerical study, we have many more can-

didate heliports (54) than helicopters (between 5 to 25). For completeness, however, Online Appendix

A describes how our method can be generalized to the case where more than one helicopter is allowed

at each heliport. Moreover, Online Appendix B formulates multi-period and multi-scenario extensions

of our model. Third, to make long-term decisions of where to locate trauma centers and helicopters,

our optimization model abstracts away from the detailed real-time decision-making processes used in

practice. For example, in reality, a central operator for EMS (such as 9-1-1 service in the United States)

keeps track of each helicopter’s availability at each point in time, and dispatches either an ambulance

or a helicopter, depending on which option would provide faster service given the system state. The

central operator also monitors the availability of beds in each trauma center, and may divert a patient

to a farther away, yet less congested, trauma center. To test the performance of the location solutions

5Branas and Revelle (2001) also make the same assumption, saying: “This is a consideration that is both realistic and

advantageous in analyzing state [Maryland] trauma systems because the number of ambulance depots at the state level is

prohibitively large and only a relatively small percentage of ambulance transports are devoted to severe trauma.”
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our optimization models generate, we use a simulation that captures these real-time decision-making

processes. We present details of our simulation model and test results in §5.

4 Optimization Models and Solution Methods
In this section, we model and solve our problem as described in §3. In §4.1, we present an integrated

model and outline a general scheme that iteratively solves a sequence of problem relaxations and re-

strictions to sequentially find tighter bounds for the integrated model. In §4.2, we describe two specific

solution methods that tighten the optimality gap in the integrated approach: the Shifting Quadratic

Envelopes (SQE) method and a method based on Generalized Benders Decomposition (GBD). Finally,

in §4.3, as a point of comparison, we develop heuristic methods that build on existing approaches from

the literature.

4.1 Integrated Model and Approach
In our integrated approach, we endogenize the computation of busy fractions within an optimization

problem, and formulate the problem as a mixed-integer nonlinear program (MINLP). We explicitly

model the allocation of patient demands to trauma centers as well as to ambulances and helicopters.

As noted earlier, this allocation represents the long-run average allocation rather than the real-time

allocation (which we simulate later in §5). Consequently, our math program has four principal decision

variables:

• binary variables yj that indicate whether or not a trauma center should be opened at site j;

• binary variables xh that indicate whether or not a helicopter is stationed at heliport h;

• continuous variables sGij that represent the (expected) number of patients per unit time to transport

from demand region i to trauma center j by ambulance; and

• continuous variables shij that represent the (expected) number of patients per unit time to transport

from demand region i to trauma center j using a helicopter originating from heliport h.

We also define the following four quantities, which are auxiliary decision variables in our math

program:

λG =
∑

i∈I,j∈FGi

sGij ; (1)

λh =
∑

(i,j)∈Fh

shij ∀h ∈ H; (2)

λj =
∑
i∈FGj

sGij +
∑

(h,i)∈Fj

shij ∀j ∈ J ; (3)

rh =
∑

(i,j)∈Fh

τhijshij ∀h ∈ H, (4)

where λG in (1) represents the total number of patients that we plan to transport by ground ambulance

(across all demand regions and all trauma centers); λh in (2) represents the total number of patients

that we plan to transport using heliport h; λj in (3) represents the total number of patients that we

plan to transport to trauma center j; and rh in (4) is the workload assigned to heliport h, which can

be explained as follows. Each patient assigned to heliport h uses some helicopter time. Specifically,
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a patient flown from demand region i to trauma center j using a helicopter originating from heliport

h causes a helicopter to be in service for τhij units of time, i.e. the time it takes to fly the circuit

h → i → j → h, plus loading, unloading, and cleanup. The total workload generated by all patients

flying from i to j using a helicopter from h is τhijshij , which is unitless because τhij is measured in

units of time/patient while shij is measured in units of patients/time. The workload assigned to heliport

h is simply the sum of the workloads from all patients that the plan assigns to heliport h.6 Table 1

summarizes our notation.

Symbol Definition
k Number of trauma centers to be located
m Number of helicopters to be located
i Index for demand regions; i ∈ I = {1, 2, ..., ı̄}
h Index for heliports; h ∈ H = {1, 2, ..., h̄}
j Index for trauma centers; j ∈ J = {1, 2, ..., j̄}
λi Expected demand for region i
cj Capacity of trauma center j
dri Road distance between the center of demand region i and its nearest ambulance station
drij Road distance between the center of demand region i and trauma center j
dij Euclidean distance between the center of demand region i and trauma center j
djh Euclidean distance between trauma center j and heliport h
dhi Euclidean distance between heliport h and the center of demand region i

dground (dair) Maximum distance that can be covered by an ambulance (a helicopter)
τhij Average service time for a helicopter to fly the circuit h→ i→ j → h

FG, FGi , F
G
j Sets of patients that are covered by ambulances (see §3 for their precise definitions)

F , Fh, Fi, Fj Sets of patients that are covered by helicopters (see §3 for their precise definitions)
yj Variable: Equals 1 if a trauma center is opened at site j, or otherwise equals 0
xh Variable: Equals 1 if a helicopter is stationed at heliport h, or otherwise equals 0
sGij Variable: Number of patients per unit time to transport from i to j by ambulance
shij Variable: Number of patients per unit time to transport from i to j by helicopter h

λG Variable: Total number of patients per unit time to be transported by ambulance
λh Variable: Total number of patients per unit time to be transported by helicopter h
λj Variable: Total number of patients per unit time to be transported to trauma center j
rh Variable: Workload assigned to heliport h

Table 1: Summary of Notation

Ideally, we would like to maximize the expected number of patients that are transported and begin

to receive care at a trauma center by the 60-minute threshold. Such an objective would simultaneously

incorporate the congestion at both heliports and trauma centers. However, the expression for such

an objective involves convolutions of random variables, and is too complex to work with. Instead, we

maximize the expected number of patients that are transported without delay, and use a constraint to

6In practice, there may be times when a helicopter can fly directly to pick up its next patient without returning to

its home heliport. Although such call-to-call travel does not affect the heliports located on the roofs of trauma centers

(which comprise 38 out of 54 candidate heliports), it may shorten the service time of a helicopter located in a heliport

separate from a trauma center. Berman and Vasudeva (2005) have proposed an approximate approach to model such

call-to-call travel. However, if we follow their approach, our objective becomes highly nonlinear and does not yield a

tractable solution. When we retain our existing location solutions and add call-to-call travel to our simulation, we find the

percentage of successful patients increases by 1%-3%, and that our main results presented in §5.3 remain valid.
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ensure sufficient capacity exists at each trauma center, so that patients rarely need to wait for a trauma

center bed once they get there. To write down an expression for our objective, we note that when

heliport h is open (i.e. xh = 1), heliport h can be considered as a single-server queue with the helicopter

as the server, arrival rate λh, mean service time τh = rh/λh, and utilization rh (where workload and

utilization are equivalent in a single-server queue). Then, the probability that an arriving patient finds

heliport h busy is equal to the heliport’s utilization rh under the following two assumptions: (i) a patient

will wait for a helicopter as needed (the heliport queue backlogs demands; it is not a loss system),7 and

(ii) patient arrivals are Poisson.8 In other words, rh is the site-specific busy fraction for heliport h, and

it is endogenously-computed, since it depends on the decision variables {shij} (see (4)). Thus, the total

number of patients that we expect to be transported (by helicopter or ambulance) without any delay

is: ∑
h∈H

(1− rh)λh + λG, (5)

where, since we assume there are ample ambulances, all λG ambulance-transported patients are trans-

ported without delay. Our math program maximizes (5), which is a proxy for the expected number of

patients transported within 60 minutes.9 Our objective is consistent with the so-called “expected cov-

ered demand” objective commonly used in the literature starting from Daskin (1983) (see, e.g., §11.2.1

of Berman and Krass 2002, Sorensen and Church 2010, and references therein). However, we make the

important distinction that we determine heliport-specific busy fractions rh endogenously instead of es-

timating busy fractions exogenously that are specific to each demand region i (see our earlier discussion

in §2).

To ensure that trauma center congestion is kept in check, we pre-compute an appropriate value for

the effective capacity cj of each trauma center j. We briefly describe how we derive an appropriate

value for cj from a probabilistic constraint, while presenting details in Online Appendix C. By following

Marianov and Serra (1998) and Berman and Krass (2002) who use an M/M/k queueing model to

approximate the flow of patients through a trauma center, we can express the probabilistic constraint

Prob[waiting time at trauma center j ≤ ω] ≥ ξ as ρj ≤ ρ
ω,ξ
j , where ρj is the total workload assigned to

trauma center j and ρω,ξj is a constant that depends on ω and ξ. Moreover, by defining µj as the service

rate of each server at trauma center j, we can rewrite the constraint ρj ≤ ρω,ξj as λj ≤ µjρ
ω,ξ
j . Finally,

we define the effective capacity of trauma center j as cj = µjρ
ω,ξ
j , and impose a capacity constraint of

7Having patients queue for service is in line with Ball and Lin (1993). Others (e.g., see Borras and Pastor 2002) assume

that patients do not wait for ambulances and find alternate (private) modes of transportation. Our assumption seems

reasonable because in our problem helicopters transport only those patients who are far away from a trauma center and

cannot be reached by ambulance within 60 min.
8Poisson arrivals is a common assumption in the literature, made for tractability as a first-order approximation of

complex systems (e.g., see Berman and Krass 2002, Zhang et al. 2010) even in cases when Markovian assumptions may

not hold in a strict sense.
9In fact, our objective function is a conservative underestimate for the number of patients transported within 60 minutes.

This follows from the fact that the probability a patient experiences no delay is less than or equal to the probability that

a patient’s delay is small enough that s/he can be transported to a trauma center within 60 minutes.
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the form λj ≤ cjyj , which limits the number of patients served by trauma center j to cj when it is open,

or to zero when it is closed.

Putting all this together, we write our full MINLP model as follows:

(P ) max λG +
∑
h∈H

(1− rh)λh

s.t. (1)-(4)

rh ≤ xh ∀h ∈ H (6)∑
j∈J

yj ≤ k (7)

∑
h∈H

xh ≤ m (8)

∑
j∈FGi

sGij +
∑

(h,j)∈Fi

shij ≤ λi ∀i ∈ I (9)

λj ≤ cjyj ∀j ∈ J (10)

xj ≤ yj ∀j ∈ J (11)

sGij ≥ 0 ∀(i, j) ∈ FG; shij ≥ 0 ∀(h, i, j) ∈ F (12)

yj ∈ {0, 1} ∀j ∈ J ; xh ∈ {0, 1} ∀h ∈ H. (13)

Constraint (6) ensures that the busy fraction (or utilization) of heliport h, rh, should be less than or equal

to 1; in other words, heliports should not be overloaded. Constraints (7) and (8) ensure that at most k

trauma centers are opened and at most m helicopters are stationed across all heliports. Constraint (9)

says we cannot plan to serve more people from region i than the expected demand λi from that region,

and constraint (10) is our capacity constraint that keeps congestion at trauma center j under control.

Constraint (11) makes sure that when a trauma center is closed, so is the heliport on its roof (recall that

the set H(⊇ J) is indexed such that heliport j is on the roof of trauma center j). Finally, constraint

(12) makes sure that the number of patients served by all transportation modes must be nonnegative,

and constraint (13) makes sure that each trauma center is either open or closed, and each heliport is

assigned either one helicopter or no helicopter. Note that, taken together, constraints (2), (4), and

(6) enforce the condition that no demands are allocated to closed heliports (i.e., xh = 0 ⇒ shij = 0

∀(i, j) ∈ Fh ⇒ λh = 0).

There are a few ways that our model differs from much of the existing literature. Instead of pre-

grouping demand regions into districts and assuming that each district is served by a pool of helicopters,

we make no such assumptions (so called “districting assumptions” in the literature), and allow the

math program to determine the assignment of patients to heliports through decision variables shij . As

discussed in Borras and Pastor (2002), demand-area-specific busy fractions within a district can either

be server-independent or server-dependent, which boils down to whether servers within a district are

modeled as independent single-server queues or one multi-server queue, respectively. In the body of

our paper, we assume that each heliport is its own single-server queue. However, if we allow multiple
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helicopters per heliport, we can model server dependence, as described in Online Appendix A. Moreover,

in our model, because busy fractions are endogenous, we also have another type of dependence, which

spans across heliports (analogous to dependence spanning across districts). To illustrate this point,

imagine that a demand region can be served by two heliports, h1 (nearby) and h2 (further away).

Initially, it is optimal to direct patients to h1. However, as utilization rh1 rises, congestion at h1

increases, and the math program begins to direct patients to h2 (which increases rh2). Consequently,

demands get balanced across heliports h1 and h2, which is mediated by the fact that the busy fractions

rh1 and rh2 are linked through decision variables shij .

The chief computational difficulty in solving the MINLP problem (P ) is the set of non-convex

bilinear terms λhrh that appear in the objective. As others (c.f. Floudas and Pardalos 2012) have

reported, bilinear terms can be notoriously challenging to cope with. In our case, these bilinear terms

are embedded in a generalized facility location problem that models both trauma center and heliport

locations, as well as the routing of helicopters and ambulances. The resulting problem is significantly

more difficult to solve than the canonical facility location problem with linear objective, which itself is

hard (c.f. Owen and Daskin 1998). Fortunately, we are able to exploit problem-specific structure to find

solutions to (P ) that are near-optimal and significantly outperform our benchmark heuristics.

We find solutions of (P ) by iteratively solving a sequence of problem relaxations and restrictions,

all of which are convex optimization problems and can be solved using a Mixed Integer Quadratic

Programming (MIQP) solver such as CPLEX. This turns out to be a more computationally efficient

approach than using a general global optimization solver such as BARON, which has the ability to

cope with non-convexities but doesn’t exploit the problem-specific structure as well as our specialized

methods. Our general scheme works as follows. Since we are maximizing the objective, any relaxation

yields a valid upper bound, while any restriction produces a lower bound. At each point in time, we

can compute an optimality gap by taking the difference between the best (lowest) upper bound and the

best (highest) lower bound found thus far, and use this gap to determine whether to continue iterating

or stop. In the following, we first introduce some relaxations of (P ) in §4.1.1 and then a restriction of

(P ) in §4.1.2. In §4.2, we describe two methods that we use to reduce the optimality gap.

4.1.1 Relaxations

First, we relax (P ) by using McCormick envelopes (McCormick 1976, Floudas and Pardalos 2012) to

linearly outer-approximate the bilinear λhrh terms. A Mixed Integer Linear Program (MILP) relaxation

of (P ) based on McCormick envelopes is:

(PMcCormick) max λG +
∑
h∈H

λh −
∑
h∈H

wh

s.t. (1)-(4), (6)-(13)

wh ≥ λMAX
h rh + rMAX

h λh − λMAX
h rMAX

h ∀h ∈ H (14)

wh ≥ 0 ∀h ∈ H. (15)
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Let us explain how we have obtained (PMcCormick). The McCormick envelopes are derived using known

constants λMIN
h , λMAX

h , rMIN
h and rMAX

h , which are lower and upper bounds on the allocated demand

rate and workload, respectively. Specifically, the McCormick envelope for the bilinear expression wh =

λhrh is:

wh ≥ λMAX
h rh + rMAX

h λh − λMAX
h rMAX

h (16)

wh ≥ λMIN
h rh + rMIN

h λh − λMIN
h rMIN

h (17)

wh ≤ λMAX
h rh + rMIN

h λh − λMAX
h rMIN

h (18)

wh ≤ λMIN
h rh + rMAX

h λh − λMIN
h rMAX

h . (19)

Since our objective will try to make wh as small as possible, it is only the lower bounds for wh that

are needed in our formulation. Thus we include only (14) and (15) in (PMcCormick), where (14) is the

collection of constraints of type (16) for all heliports, and (15) was obtained by substituting λMIN
h =

rMIN
h = 0 into (17) for all heliports. The values for λMAX

h and rMAX
h are instance-specific; for example,

we can define rMAX
h = 1 as the maximum utilization at heliport h and λMAX

h =
∑

i∈I:(i,j)∈Fh λi as the

total demand from regions near heliport h. In general, the relaxation (PMcCormick) can be tightened by

using smaller bounds λMAX
h and rMAX

h , which we derive in Online Appendix D. However, it turns out

that the relaxation (PMcCormick) is quite weak, regardless of the bounds we choose.

To derive a significantly tighter relaxation, we exploit the fact that the variables λh =
∑

i,j shij

and rh =
∑

i,j τhijshij are both defined as linear combinations of shij variables. In particular, we can

interpret τh = rh/λh as the mean service time of heliport h; that is, the amount of time it takes a

helicopter stationed at heliport h to fly h → i → j → h, averaged over all pick-up and drop-off points

(i, j). Defining τMAX
h = maxi,j τhij and τMIN

h = mini,j τhij as the maximum and minimum mean

service times respectively, we derive a quadratic outer-approximation by sandwiching the bilinear term

λhrh as follows:

τMIN
h ≤ rh/λh ≤ τMAX

h ⇔ τMIN
h λ2

h ≤ λhrh ≤ τMAX
h λ2

h.

The lower bound for λhrh gives us the following Mixed Integer Quadratic Program (MIQP) relaxation

of (P ):

(PSQEM ) max λG +
∑
h∈H

λh −
∑
h∈H

τMIN
h λ2

h

s.t. (1)-(4), (6)-(13).

To compare the quadratic envelope used in (PSQEM ) with the linear McCormick envelope used in

(PMcCormick), we first introduce some notation and then compare both envelopes using an example.

Treating the mean service time τh as known and fixed, we let rh(λh|τh) = τhλh and wh(λh|τh) =

rh(λh|τh)λh = τhλ
2
h denote the workload rh and the quantity wh, respectively, as a function of λh.

Given a problem instance of (P ) with τMIN
h = 60 minutes and τMAX

h = 140 minutes, we know that the

optimal value for τh will be in the range [60, 140]. Let us assume, for purposes of illustration, that the

optimal τh is midway between its bounds; i.e., τh = 100 minutes. Figure 2 plots wh(λh|100) (dotted

curve), which is sandwiched by the quadratic envelope between wh(λh|τMIN
h ) and wh(λh|τMAX

h ) (two
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solid curves). The linear McCormick envelope for τh = 100 minutes (two dashed lines) is computed

using (16)-(19) and rh(λh|τh) as follows. The bottom line comes from (16), and is the McCormick lower

bound for wh, assuming τh = 100 is fixed (which is tighter than wh ≥ 0 from (17)). The top line is the

McCormick upper bound for wh, assuming τh = 100 is fixed, and is derived from (18) (which in this

example is tighter than (19)). Recall that the lower bound for wh, not the upper bound, is important

in our formulation because our objective will try to make wh as small as possible. As Figure 2 shows,

for low values of λh the quadratic envelope is tighter (higher), whereas the linear McCormick envelope

is tighter for high values of λh (the lowest solid curve crosses the lowest dashed line at λh = 0.0055

per minute). Note that we used λMAX
h = 1/(2τMIN

h ) = 1/120, which comes from the tightened bounds

described in Online Appendix D.
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Figure 2: Comparison of the quadratic envelope used in (PSQEM ) with the linear McCormick envelope

used in (PMcCormick), plotted over the range λh ∈ [0, λMAX
h = 1/120].

In our computational experiments, we have observed that formulation (PSQEM ) solves faster than

(PMcCormick), suggesting that the quadratic envelope is usually tighter than the McCormick envelope,

possibly owing to the fact that the continuous relaxation of our problem spreads demands across many

heliports, causing λh to be on the low side, where the quadratic envelope is tighter as depicted in

Figure 2. We conjectured that we could even do better by enforcing both the quadratic and McCormick

envelopes, as in the following (PGBDM ) formulation (where wh ≥ 0 is redundant):

(PGBDM ) max λG +
∑
h∈H

λh −
∑
h∈H

wh

s.t. (1)-(4), (6)-(13)

wh ≥ τMIN
h λ2

h ∀h ∈ H

wh ≥ λMAX
h rh + rMAX

h λh − λMAX
h rMAX

h ∀h ∈ H

wh ≥ 0 ∀h ∈ H.

However, this turns out to be a bad idea because CPLEX is better at handling the quadratic objective
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of (PSQEM ) than the quadratic constraints in (PGBDM ); see Online Appendix E for computational details.

Therefore, in §4.1.2, we will use (PSQEM ) as our master problem.

4.1.2 Restriction

Solving the master problem (PSQEM ) gives us a feasible solution to (P ), since all of (P )’s constraints

are present in (PSQEM ). We evaluate the quality of this solution using the true objective from (P ), i.e.,

λG+
∑

h λh−
∑

h λhrh. The optimality gap of this solution is the difference between the optimal value of

(PSQEM ) and the true value of this solution; i.e., (λG+
∑

h λh−
∑

h τ
MIN
h λ2

h)−(λG+
∑

h λh−
∑

h λhrh) =∑
h(λhrh − τMIN

h λ2
h). Notice that since rh/λh ≥ τMIN

h , the optimality gap will always be nonnegative.

Although we could use the feasible solution from (PSQEM ) directly, we can often find better feasible

solutions to (P ) by re-optimizing over a subset of the decision variables. Specifically, from a feasible

solution from (PSQEM ), we fix the set of open trauma centers {yj}, the locations of helicopters {xh},
the demand for helicopters {λh}, and the demand for ambulances ({sGij}, λ

G). Then, we ignore the

helicopter routing pattern {shij} suggested by the master problem and re-assign helicopter-transported

patients across heliports and trauma centers, with the goal of shifting the workload {rh} to the heliports

that are under-utilized. That is, given the fixed values for the set of master problem variables Θ ={
{yj}, {xh}, λG, {λh}, {sGij}

}
, we solve a restriction of (P ) to optimize over the remaining variables

{{shij}, {rh}}.10 With the variables Θ fixed, constraints (1), (7), (8), (11), and (13) in (P ) can be

ignored because any feasible master problem solution already satisfied these constraints. For brevity,

define the constants aj = cjyj −
∑

i s
G
ij ∀j and bi = λi −

∑
j s

G
ij ∀i, which depend only on problem data

and the fixed variables Θ. Our restriction of (P ), which we call our subproblem, optimizes over the

variables {{rh}, {shij}} and is defined as the following Linear Program (LP):

(PΘ
S ) min

∑
h∈H

λhrh

s.t.
∑

(h,i)∈Fj

shij ≤ aj ∀j ∈ J

∑
(j,h)∈Fi

shij ≤ bi ∀i ∈ I

∑
(i,j)∈Fh

shij = λh ∀h ∈ H

∑
(i,j)∈Fh

τhijshij − rh = 0 ∀h ∈ H

rh ≤ xh ∀h ∈ H

shij ≥ 0 ∀(h, i, j) ∈ F.

The optimality gap between the master problem and subproblem is still measured as

(λG +
∑
h∈H

λh −
∑
h∈H

τMIN
h λ2

h)− (λG +
∑
h∈H

λh −
∑
h∈H

λhrh) =
∑
h∈H

(λhrh − τMIN
h λ2

h), (20)

10Technically, since λj depends on shij , it is also re-optimized when we solve (PΘ
S ). However, since λj does not appear

directly in (PΘ
S ), it is clearer to omit λj from the set of remaining variables.
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but now the (smaller) {rh} values come from the subproblem instead of the master problem, and as a

result the gap is reduced.

4.2 Solution Methods for Tightening the Relaxation
Once we have a feasible solution to (P ) and a corresponding optimality gap, the next question is: Can

we make any inferences from the incumbent solution or its dual that allow us to tighten the master

problem’s relaxation and thereby reduce the optimality gap? A tighter relaxation of (PSQEM ) yields

not only a tighter (i.e., lower) upper bound for (P ), but also when Θ is fixed to a solution that is

closer to the true optimum, the subproblem (PΘ
S ) finds better (i.e., higher) lower bounds for (P ). We

have studied two methods to tighten the master problem’s relaxation: a method that relies on shifting

quadratic envelope boundaries (§4.2.1), and a Benders-like cut generation scheme (§4.2.2).

4.2.1 Shifting Quadratic Envelopes (SQE) Algorithm

The first method that we use to tighten the master problem uses one or more quadratic envelopes for

each heliport. We use binary variables to control which envelope is active at each candidate solution,

and re-define the envelope boundaries at each iteration in an attempt to tighten the relaxation. We first

describe a näıve implementation of our approach, and then discuss modifications that we have made for

computational tractability.

From (PΘ
S ), we have a feasible solution to (P ), which we denote Ψ = Θ ∪ {{rh}, {shij}} ={

{yj}, {xh}, λG, {λh}, {λj}, {sGij}, {rh}, {shij}
}

. The two crucial variables that describe the performance

of heliport h are its allocated demand λh and its workload rh. Therefore, for each heliport h, we use the

point (λh, rh) ∈ R2 from the feasible solution Ψ to update the quadratic envelope boundaries for heliport

h. Let τh = rh/λh be the mean service time of candidate solution (λh, rh) and τ∗h = r∗h/λ
∗
h be the mean

service time of the optimal solution (λ∗h, r
∗
h) of (P ). For each heliport h, our goal is to pick a mean service

time τFIXh that underestimates the optimal mean service time τ∗h as closely as possible. This will allow us

to closely underestimate the bilinear term wh = λhrh using a convex quadratic function of λh. Define two

functions of λh; namely, rh(λh|τFIXh ) = τFIXh λh and wh(λh|τFIXh ) = λhrh(λh|τFIXh ) = τFIXh λ2
h. As long

as τh ≥ τFIXh , it follows by definition that rh(λh|τFIXh ) ≤ rh and wh(λh|τFIXh ) ≤ wh. That is, for points

(λh, rh) where rh ≥ rh(λh|τFIXh ) = λhτ
FIX
h , the convex quadratic function wh(λh|τFIXh ) = τFIXh λ2

h pro-

vides a valid underestimate for wh. Since, in general, we know only that τ∗h ∈ [τMIN
h , τMAX

h ] before

solving our problem (P ), the best choice for τFIXh that is always guaranteed to underestimate the op-

timal mean service time is τMIN
h . This is why, in §4.1.1, we used the underestimate τFIXh = τMIN

h to

construct (PSQEM ) by replacing the bilinear terms wh = λhrh in the objective of (P ) with their quadratic

relaxations wh(λh|τMIN
h ) = τMIN

h λ2
h. We will now describe how we can use other estimates for τFIXh

that lead to tighter relaxations.

Notice that since rh = τhλh and τh ∈ [τMIN
h , τMAX

h ], all feasible (λh, rh)-points must lie in the cone

defined by τMIN
h λh ≤ rh ≤ τMAX

h λh, as shown in Figure 3 (e.g., consider rh(λh|τh,1) = τMIN
h λh and

rh(λh|τh,2) = τMAX
h λh in Figure 3(a)). Moreover, we can subdivide this cone into mh slices of equal size

by splitting the domain of τh into the mh subdomains [τh,1, τh,2], [τh,2, τh,3], . . . , [τh,mh , τh,mh+1], where

τh,n = τMIN
h + ((n − 1)/mh)(τMAX

h − τMIN
h ) for n = 1, 2, ...,mh + 1. When the solution (λh, rh) is in
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the nth subdomain (i.e., in the slice defined by τh,nλh ≤ rh ≤ τh,n+1λh), we can use τFIXh = τh,n as an

underestimate for the true mean service time τh at the point (λh, rh). To keep track of which subdomain

each heliport’s mean service time is in, we use binary variables; i.e. we let xhn = 1 if heliport h’s mean

service time is in the subdomain [τh,n, τh,n+1], or xhn = 0 otherwise. Moreover, we use the constraint∑
n xhn = 1 to ensure that each heliport’s mean service time falls in exactly one subdomain (and when

τh is on the boundary of two subdomains, we count heliport h’s mean service time as being in only one

of the neighboring subdomains). Such a setup allows us to activate the lower bound rh ≥ rh(λh|τh,n)

whenever the solution (λh, rh) to (PSQEM ) is in the nth subdomain, thereby replacing the objective term

wh = λhrh of (P ) with the quadratic underestimate wh(λh|τh,n) = τh,nλ
2
h. The full formulation of

(PSQEM ), which has slices indexed by the sets Nh = {1, ...,mh}, is as follows:

(PSQEM2 ) max λG +
∑
h∈H

λh −
∑

h∈H,n∈Nh

τh,nλ
2
hn

s.t. (1)-(4), (6)-(13)

λh =
∑
n∈Nh

λhn, rh =
∑
n∈Nh

rhn ∀h ∈ H

0 ≤ λhn ≤ λMAX
h xhn, 0 ≤ rhn ≤ rMAX

h xhn ∀h ∈ H, ∀n ∈ Nh

τh,nλhn ≤ rhn ≤ τh,n+1λhn ∀h ∈ H, ∀n ∈ Nh∑
n∈Nh

xhn = 1 ∀h ∈ H

xhn ∈ {0, 1} ∀h ∈ H, ∀n ∈ Nh.

In addition to the variables and constraints of (PSQEM ), the formulation (PSQEM2 ) includes the binary

variables {xhn} that define subdomain membership, new continuous variables {λhn} and {rhn}, and

several logical constraints that link these quantities. The added constraints make sure that when

xhn = 1, then λhn and rhn are equal to the allocated demand and workload of heliport h (i.e., λhn = λh

and rhn = rh), whereas when xhn = 0, then λhn = rhn = 0. Therefore, for each heliport h, only one

conic slice τh,n′λhn′ ≤ rhn′ ≤ τh,n′+1λhn′ is ever active at a time (corresponding to the n′ with xhn′ = 1).

As we subdivide the domain of each τh into finer slices, our relaxation (PSQEM2 ) becomes tighter.

Moreover, as the number of slices mh →∞ for all heliports h, the area of each slice collapses to zero and

the optimal value of (PSQEM2 ) converges to the optimal value of (P ); that is, in theory we can approximate

(P ) to any arbitrary precision by simply slicing the subdomains of τh finely enough. However, as the

number of slices mh increases, the problem (PSQEM2 ) becomes much harder to solve due to the larger

number of binary variables {xhn}. As a result, we abandon the idea of using equally-spaced slices, and

instead use a more efficient method to decide where to slice each cone τMIN
h λh ≤ rh ≤ τMAX

h λh, thereby

producing a tight relaxation of (P ) using only a few slices.

Our Shifting Quadratic Envelopes (SQE) algorithm begins with only one slice defined for each

heliport; i.e., mh = 1, τh,1 = τMIN
h , and τh,2 = τMAX

h ∀h. At each iteration and for each heliport, the

algorithm subdivides one (judiciously chosen) slice into two. The general idea is that we should focus
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Figure 3: Illustration of the Shifting Quadratic Envelopes algorithm

our attention on narrowly refining the partition of τh’s domain in areas that are likely to be close to

the (P )-optimal τ∗h. Therefore, at each iteration, we solve (PSQEM2 ) and (PΘ
S ) to get the (P )-feasible

solution (λh, rh), which lies in a particular slice, say the slice defined by τh,n∗hλh ≤ τh ≤ τh,n∗h+1λh for

some n∗h. Next, we subdivide this slice into two unevenly-sized slices. Because we care about producing

underestimates for τh rather than overestimates, we cut the slice in two along the ray rh(λh|τNEWh ) =

τNEWh λh, where τNEWh = (τh + τh,n∗h)/2 is the average of the true mean service time τh = rh/λh at the

point (λh, rh) and the slope τh,n∗h of the lower boundary of that slice (which can be interpreted as the

previous underestimate of the mean service time at the point (λh, rh)). Note that, although we choose

where to split each slice heuristically, our choices are motivated by efficiency and have no bearing on

the correctness of our approach, or on our ability to generate valid quadratic envelopes. Moreover,

to keep the total number of slices small, whenever we suspect that the (P )-optimal (λ∗h, r
∗
h) has a low

likelihood of being in a particular slice, we merge that slice with the slice below it. From one iteration

to the next, we may add or delete slices, but we never use more than a small number of slices per

heliport, which keeps the computational complexity of (PSQEM2 ) in check. It turns out that in practice,

keeping just 3 slice boundaries below and 1 slice boundary above the current solution (λh, rh) results in

a good trade-off between precision and tractability. Because this procedure causes the boundaries of the

subdomains of τh to “shift” at each iteration, which in turn define the quadratic envelope boundaries
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wh(λh|τh,n) = τh,nλ
2
h, n = 1, 2, . . . ,mh, we call this method the Shifting Quadratic Envelopes (SQE)

algorithm.

At each iteration of the SQE algorithm, we proceed as follows: (1) solve the master problem (PSQEM2 )

to get a “good” solution to (P ); (2) solve the subproblem (PΘ
S ) to improve this solution; (3) evaluate

the quality of the improved solution by computing its optimality gap using Equation (20); and (4)

terminate if a time limit or optimality gap threshold is reached, otherwise shift the quadratic envelope

boundaries in (PSQEM2 ) and continue. Figure 3 illustrates the progression of the SQE algorithm on a

hypothetical example. For each iteration, we plot the subdomains of [τMIN
h , τMAX

h ] for a single heliport

h as conic slices in the (λh, rh)-plane. (Although we only describe what happens at a single heliport h,

the conic slices are adjusted for all heliports at each iteration of our algorithm.) Graphically, we make

use of the fact that, for any fixed value of τh, the function rh(λh|τh) = τhλh defines a ray from the

origin with slope τh. Thus, we begin with a single slice bounded by rh(λh|τh,1) and rh(λh|τh,2), where

τh,1 = τMIN
h and τh,2 = τMAX

h (Figure 3(a)). At Iteration 1, we solve (PSQEM2 ) and (PΘ
S ), and use the

solution (λh, rh) to compute the mean service time τh = rh/λh (this τh is the slope of the dotted ray

in Figure 3(b)). Next, we split the subdomain of [τh,1, τh,2] into two slices by introducing a new slice

boundary rh(λh|τNEWh ), where τNEWh = (τh + τh,1)/2 is the average of the actual mean service time τh

at the point (λh, rh) and the previous underestimate τh,1 (Figure 3(b)). At Iteration 2, after re-labelling

the slice boundaries τNEWh and τh,2 as τh,2 and τh,3 respectively, we then re-solve (PSQEM2 ) and (PΘ
S ) to

get a new point (λh, rh) and its associated mean service time τh = rh/λh. Assuming the point (λh, rh)

is in the top slice (Figure 3(c)), we proceed by splitting the top slice in two. We do this by creating a

new slice boundary with slope τNEWh = (τh + τh,2)/2, i.e. a slope that is midway between the actual

mean service time τh and the previous underestimate τh,2 (Figure 3(d)). Once again, we re-label the

slice boundaries and re-solve (PSQEM2 ) and (PΘ
S ). At Iteration 3, assume the point (λh, rh) also falls into

the topmost slice (Figure 3(e)). As in the previous iteration, we split the top slice in two by defining

a new region boundary with slope τNEWh = (τh + τh,3)/2 that is midway between τh = rh/λh and

the underestimate defined by the lower boundary of that slice, τh,3 (Figure 3(f)). But before the next

iteration, we also delete one region boundary to keep the problem size manageable. Motivated by our

desire to generate underestimates, we keep up to three region boundaries below the incumbent point

(λh, rh), and only one region boundary above. Specifically, we delete the region boundary defined by

rh(λh|τh,2), i.e. the lowest region boundary that can be deleted. Note that we must keep the original

region boundaries rh(λh|τMIN
h ) and rh(λh|τMAX

h ), since the solution (λh, rh) may have a mean service

time τh = rh/λh that falls anywhere in the full domain [τMIN
h , τMAX

h ]. At Iteration 4, with the slice

boundaries re-labelled, we re-solve (PSQEM2 ) and (PΘ
S ) once again. Assuming the new solution (λh, rh)

now falls into the bottommost slice (Figure 3(g)), we split the bottommost slice in two by introducing

the slice boundary τNEWh = (τh+τh,1)/2 and delete all but one slice boundary that lies above the point

(λh, rh); i.e. we delete rh(λh|τh,2) and rh(λh|τh,3) (Figure 3(h)). Finally, Iteration 5 begins with two

slices for heliport h, as shown (Figure 3(i)). The algorithm continues until either the optimality gap is

reduced below a desired threshold or a time limit has been reached. Pseudocode for the SQE algorithm
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can be found in Online Appendix F.

4.2.2 Algorithm Based on Generalized Benders Decomposition

The second method that we use to tighten the master problem is based on Generalized Benders De-

composition (GBD) (e.g., Benders 1962, Geoffrion 1972). GBD is a technique that can be used to

solve a complex math program by structurally decomposing it into a master problem and one or more

subproblems. The subproblems’ dual solutions are used to infer one or more cuts that are then added to

the master problem to make its formulation tighter. GBD iterates back and forth between solving the

master problem and subproblems until a provably near-optimal solution to the full problem is found.

It is worth pointing out that when the math program being decomposed is nonlinear, special care must

be taken to implement GBD to make sure that Benders cuts do not inadvertently cut off the optimal

solution; see, e.g., Geromel and Belloni (1986) and Sahinidis and Grossman (1991). In our case, this

“special care” requires us to add binary variables to our formulation for each cut generated.

At each iteration t, we augment the master problem (PGBDM ) with a Benders cut of the form

z ≤ Bt(·), where z is the objective of the master problem. For completeness, the full master problem

used in the Benders decomposition takes the form:

(PGBDM2 ) max z

s.t. (1)-(4), (6)-(13)

z ≤ λG +
∑
h∈H

λh −
∑
h∈H

wh

z ≤ Bt(·) ∀t = 1..nCuts

wh ≥
∑
h

τMIN
h λ2

h ∀h ∈ H

wh ≥ λMAX
h rh + rMAX

h λh − λMAX
h rMAX

h ∀h ∈ H

wh ≥ 0 ∀h ∈ H.

The Benders subproblem is the restriction of (P ) with the variables in the set

Θ =
{
{yj}, {xh}, λG, {λh}, {sGij}

}
fixed to the master problem solution. This is exactly the previously-

introduced linear program (PΘ
S ) from §4.1.2. Its dual at each iteration t is the linear program (DΘ

S )

that optimizes over the variables
{
{αtj}, {β

t
i}, {∆t

h}, {γth}
}

(derived in Online Appendix G). Define:

Bt(Θ) = λG +
∑
j

αtjaj +
∑
i

βtibi +
∑
h

∆t
hλh +

∑
h

max(λh, γ
t
h)xh. (21)

Lemma 1 At each iteration t, z ≤ Bt(Θ) is a Benders optimality cut.

To implement the max(λh, γ
t
h)xh expressions in the Benders cut z ≤ Bt(Θ), we introduce binary vari-

ables. For details of this implementation and the proof of Lemma 1, see Online Appendix G.

4.2.3 Computational Results

To test the SQE and GBD-based algorithms described in §4.2.1 and §4.2.2, respectively, we ran various

instances while varying the number of trauma centers k and the number of helicopters m. We conducted
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all of our computational experiments on a Dell Precision T5500 workstation with Intel Xeon CPU

X5680 @ 3.33GHz (6 cores) and 12.0 GB RAM, running Windows 7, 64 bit. We used CPLEX 12.3

and AMPL 2011.07.25 to solve the MIQP and MILP formulations of our problem instances. We have

found that: (1) when using SQE, the (PSQEM ) formulation outperforms the (PGBDM ) formulation, and

(2) SQE outperforms the GBD-based algorithm. Performance varied by instance (k,m), with the

optimality gap of the SQE method after 18 hours being in the range of 1.64% to 9.34%. For example,

for (k,m) = (10, 15), we reached a gap of 7.61%, whereas for (k,m) = (14, 25), we reached a gap of

2.8%. Our SQE method is substantially faster than the global solver BARON, which, at the 18-hour

mark has a gap of 21.9% and 13.6% for (k,m) = (10, 15) and (14, 25), respectively. Further details of

our computational experiments are in Online Appendix E.

Although striving for a low optimality gap and solution time is theoretically justified, when it comes

to measuring the real-world performance of a particular solution, one of the best ways is to run the

location solutions through a simulation model. For this reason, in §5 we use simulation to compare

the performance of the solutions that we get using SQE with the solutions from two heuristics that we

present next.

4.3 Benchmark Heuristics
We now introduce two benchmark heuristics that were inspired by existing methods in the literature.

We call the first the “no-congestion” heuristic, and the second the “decoupled” heuristic.

The no-congestion heuristic is inspired by the model of Branas and ReVelle (2001). As described

in §2, Branas and ReVelle (2001) also study a joint location problem of trauma centers and helicopters,

but model the problem as a deterministic location problem without taking into account the random

availability of helicopters. To isolate the effect of helicopter congestion, we construct a Mixed Integer

Linear Program (MILP) relaxation from (P ) by simply dropping the bilinear λhrh terms from its

objective:

(PNC) max λG +
∑
h∈H

λh

s.t. (1)-(4), (6)-(13).

Problem (PNC) maximizes the number of patients served, assuming heliports do not get congested. The

no-congestion heuristic is simpler to implement (in terms of computation) than our original problem

(P ) because the non-convex bilinear terms λhrh do not appear in the objective. As we shall see in §5.3,

ignoring helicopter congestion has a detrimental impact on overall performance. (Note that (PNC) is

not exactly the same as the formulation of Branas and ReVelle (2001) because, most notably, (PNC)

additionally models the capacity constraints of trauma centers.)

In contrast, the decoupled heuristic models congestion, but locates trauma centers and helicopters

in sequence, allowing us to test how important it is for trauma centers and helicopters to be located

simultaneously. This heuristic has practical relevance, since one of the planning methods the KMHW

considered was to determine the locations of trauma centers first, while postponing the decision of where

to locate helicopters. Recall from our discussion in §1 that both of the single-resource allocation problems
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(i.e., either trauma centers or helicopters) belong to well-known classes of optimization problems: trauma

centers can be located using a capacitated version of the maximal covering location problem (e.g., Pirkul

and Schilling 1991), and helicopters can be located using a probabilistic ambulance location formulation

(e.g., Daskin 1983). The latter method estimates a helicopter busy fraction, which can only be computed

after the trauma center locations are fixed. Thus, our decoupled heuristic solves the problem sequentially

as follows. First, we solve a capacitated variant of the maximal covering location problem, assuming

that a helicopter is stationed at every heliport. The solution from this problem yields the trauma center

locations as well as an allocation of patient demands to trauma centers. Second, after we estimate a

helicopter busy fraction from the solution of the first step, we solve a variant of the maximum expected

covering location problem (Daskin 1983) to establish the heliport locations. Further details of the

decoupled heuristic are presented in Online Appendix H.

5 Application
In this section, we apply our model and solution methods to the design of a nationwide trauma care

system in Korea. In §5.1, we briefly describe the data used for our analysis. Then, in §5.2, we present

a trace-based simulation model, which takes the location solution of an optimization model as input,

and simulates the arrival and service processes of trauma patients. Finally, in §5.3, we present the

location solutions from the different approaches described in §4 on the map of Korea, and compare their

performance, as measured by our simulation.

5.1 Data
We use the following two data sets that were produced as part of the broader study (Kim et al. 2011)

commissioned by the KMHW: (1) demand-side data: one year’s worth of nationwide trauma patient

calls, including the times and locations of incidents; and (2) supply-side data: the number and location

of candidate trauma centers and heliports.

[1] Demand-Side Data: Estimating the demand-side data involves many practical challenges such as

fragmented data sources and a lack of clinical information to measure injury severity scores. Below we

briefly describe the main data issues, and refer the reader to Kim et al. (2011) for further details.

Estimates of the total annual number of trauma patients come from two data sources: the National

Emergency Department Information System (NEDIS), and the National Health Insurance (NHI). Injury-

related Emergency Department (ED) visits were identified by their diagnosis code, yielding a total of

1,223,750 cases. Among these, only those cases with an Excess Mortality Ratio-Based Injury Severity

Score (EMR-ISS) higher than 15 were classified as trauma cases, yielding a total of 190,193 trauma

cases.

The NEDIS and NHI data sets, while useful for computing accurate total patient volumes, lack the

fine granularity that we need to model patient arrivals. For the specific locations and times of trauma

incidents, we consulted the nationwide data of emergency telephone calls. This data set includes field-

triage records of which 80,300 were classified as trauma cases. Additionally, from the NEDIS data we

identified 32,630 trauma patients who were self-transported or transferred from other local hospitals;
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for these patients, the locations and times of their incidents were assumed to be those of their ED visits.

For the remaining 77,263 (= 190, 193 − 80, 300 − 32, 630) trauma patients, we assigned their locations

and times by subsampling from the 112,930 (= 80, 300 + 32, 630) trauma patients, while taking care to

match the regional demand rates in the original data.11 See Figure 4(a) for the geographical distribution

of trauma patients in Korea.

For our tests, we split the year into two halves: January-June (90,265 trauma cases) and July-

December (99,928 trauma cases). This allowed us to test our methods both in-sample (e.g., by optimizing

the trauma center and heliport locations using January-June data and then evaluating the performance

of this solution with a simulation using January-June data) and out-of-sample (e.g., optimizing with

January-June data and evaluating with July-December data). We report only the in-sample results

from the January-June data set here, and include the out-of-sample results, which are qualitatively

similar but serve as a robustness check, in Online Appendix I.

Finally, we aggregated patient demand by geographic area to keep the size of our optimization

models manageable. After consultation with practitioners, we used a 25km × 25km grid to subdivide

Korea into 204 (= ı̄) demand regions. The optimization models use the aggregate demand rates λi for

each region i ∈ I = {1, 2, ..., ı̄}, where all patient demands in a region are assumed to come from its

center. As a precautionary measure, we also solved our optimization models with other grid sizes (e.g.,

15km× 15km and 20km× 20km) and found that solutions were similar – i.e., a reasonable amount of

data aggregation seems to have only a marginal impact on solution quality.12

(a) (b) (c) 

Figure 4: Geographical distribution of: (a) trauma cases in Korea, (b) candidate trauma centers, and

(c) candidate heliports (excluding the heliports co-located at trauma centers)

[2] Supply-Side Data: The KMHW provided us with a list of 38 (= j̄) candidate trauma center sites,

all of which are existing hospitals that expressed interest in dedicating resources specifically for trauma

patients. These hospitals are general hospitals with operating emergency departments, most of which

11Alternatively, we could have used the locations and times of the ED visits of these 77,263 patients. After much debate

among medical and field professionals, Kim et al. (2011) concluded that the sampling approach described here captured

reality better than this alterative approach.
12We have also conducted simulation experiments with both aggregated and unaggregated data, and tested solutions by

increasing or decreasing regional demands by x% (where x = ±5, ±10, and ±15). Our results are robust against these

changes.
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are associated with medical schools. Figure 4(b) shows the locations of these candidate trauma centers.

To limit congestion at trauma centers, the effective capacity of each center, cj , is set to 50 patients per

day. More details on this derivation can be found in Online Appendix C.

For candidate heliports, we use 16 that the Korean National Emergency Management Agency

(NEMA) is currently operating; see Figure 4(c) for their locations. Recall that helicopters can also

be stationed at open trauma centers. So, the total number of candidate heliport locations, h̄, is 54

(= 38 + 16). Currently, the NEMA operates helicopters for fire-fighting and rescue as well as for EMS

missions, so its helicopters are not specifically designed for transporting trauma patients. Thus, the

KMHW was interested in exploring the optimal deployment of new EMS-dedicated helicopters. For this

purpose, we vary the total number of available helicopters, m, in our study.

5.2 Simulation Model
To benchmark the performance of the location solutions generated by our integrated (SQE) method

from §4.1 and §4.2 with those generated by the heuristics from §4.3, we use a trace-based simulation.

Taking the locations of trauma centers and helicopters as given, we sequentially process each patient

call from the historical data set. We simulate the real-time processes of serving each patient according

to the flowchart shown in Figure 5, and categorize each patient as successful or unsuccessful. Successful

patients are those that get transported to an available (under-capacity) trauma center within 60 minutes.

After processing all patient calls, we measure the proportion of the nation’s trauma patients that are

served successfully.

The following features of our simulation, which are abstracted away in our optimization model and

heuristics, capture the real-time decision-making processes in practice:

• Helicopter Assignment: We keep track of each helicopter’s availability at each point in time. While a

helicopter is transporting a patient to a trauma center or returning to its home heliport, it is temporarily

unavailable for serving another patient. If more than one patient must wait for a helicopter, patients

get served according to the first-in-first-out rule.

• Helicopter Diversion: We monitor the availability of beds at each trauma center. If a trauma center

does not have an available bed to admit a new patient, we divert helicopters to the nearest trauma

center that has an available bed.13

• Multiple Resources: When multiple resources are available to serve a patient (e.g., multiple trauma

centers that operate under their capacities, multiple helicopters/ambulances), we always transport a

patient to the nearest available (under-capacity) trauma center in the fastest way possible.

For further details of our simulation, most notably the decision points marked A, B, C, and D in

Figure 5, see Online Appendix J.

13We have obtained similar results when implementing alternative diversion policies based on the number of waiting

patients or boarding patients.
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Figure 5: Simulation flowchart

5.3 Results
We tested the following three approaches: the integrated approach (presented in §4.1 and §4.2), and

the no-congestion and decoupled heuristics (presented in §4.3). The KMHW was interested in exploring

different numbers of trauma centers (k) and helicopters (m), since the budget for the trauma care

system had not yet been determined. Below, we report test results for k = 10, 12, 14, and m = 5, 10,

15, 20, 25. Let TkHm denote the test case with k trauma centers and m helicopters.

First, we examine the location solutions of the trauma centers computed under the three different

approaches. Figure 6 plots the test cases T10H5, T10H15, and T10H25 as we increase the number

of helicopters from 5 to 25 holding the number of trauma centers fixed at 10. From this figure, we

can make the following two important observations. First, the trauma center locations depend on the
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number of available helicopters, implying that it is important to consider the locations of trauma centers

in conjunction with helicopter transportation. Second, the trauma center locations differ significantly

across the three approaches, especially when a large number of helicopters are used. For example, in the

case of T10H25, both the no-congestion heuristic and the decoupled heuristic place five trauma centers

at different locations, as compared to the integrated approach. The integrated approach tends to locate

trauma centers in high demand regions (darker areas in the figure), whereas the two heuristics tend

to spread trauma centers more broadly across the country. This is because the two heuristics ignore

helicopter congestion when locating trauma centers, and simply maximize the total geographic coverage.

This tends to result in trauma centers that are placed in areas that make heavy use of helicopters and

light use of ambulances. On the other hand, the integrated approach overcomes this shortcoming by

accounting for helicopter congestion when choosing trauma center sites.
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Figure 6: Trauma center locations determined from the three approaches for T10H5, T10H15 and

T10H25 (Note: Helicopter locations are omitted to avoid clutter.)

Next, given the locations of trauma centers and helicopters determined from each of the three

approaches, we examine the percentage of successful transports as measured by our simulation. As seen

in Figure 7, when the number of helicopters is very low (e.g., TkH5), the performance is about the

same across all three approaches. This is expected because with a small number of helicopters most

patients are transported by ambulances, which are modeled roughly in the same manner in all three

approaches. As the number of helicopters increases (i.e., m increases), we observe that the integrated
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approach outperforms the two heuristics significantly. Moreover, as more helicopters become available,

the percentage of successfully transported patients increases under the integrated approach (which is

intuitive), whereas it decreases in some cases under the two heuristics (which is counter-intuitive).14
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Figure 7: The proportion of successful patients when: (a) k = 10, (b) k = 12, and (c) k = 14.

To explain these intuitive and counter-intuitive results, we examine the role of helicopter trans-

portation and how helicopter congestion affects the performance of the trauma care system. Figure 8

shows the total number of patients transported by helicopters when different numbers of helicopters

are available. When there are enough helicopters (e.g. m = 10, 15, 20 or 25), the two heuristics assign

significantly more patients to helicopters than the integrated approach, and a larger number of these

patients under the heuristic solutions fail to get to a trauma center within 60 minutes. The reason for

the larger number of failures in the heuristic cases is due to the delay caused by helicopter congestion,

as is evident from Figure 9: A higher proportion of the patients transported by helicopter experience

delay under the heuristic solutions than under the integrated solutions. In addition, patients experience

fewer delays as more helicopters become available under the integrated approach, whereas using more

helicopters does not always lead to fewer delays under the heuristics. While Figures 8 and 9 show the

results for the 10 trauma center test cases (i.e., k = 10), we also observe the same pattern with different

numbers of trauma centers.

We explain the underlying reasons for the results presented in Figures 7, 8 and 9 as follows. When the

number of helicopters is very low (m = 5), the location solutions from the three approaches do not differ

much (as shown in Figure 6), hence we see similar performance. As the number of helicopters increases

(e.g., m = 10 or 15), helicopter transport becomes more crucial. Compared to the two heuristics, the

integrated approach makes more judicious use of helicopters (Figure 8), keeping helicopter utilization

14We have also evaluted the value of the objective given in equation (5) analytically by substituting the solutions from

the integrated approach and the no-congestion heuristic into (5). We have observed the same general pattern as shown in

Figure 7: as m increases, the objective value increases under the integrated approach, whereas the objective value decreases

in some cases under the no-congestion heuristic.
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Figure 8: The total number of successful and unsuccessful helicopter transports under the solutions

determined by: (a) integrated approach, (b) no-congestion heuristic, and (c) decoupled heuristic.
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Figure 9: The proportion of helicopter transports that were delayed under the location solutions deter-

mined by: (a) integrated approach, (b) no-congestion heuristic, and (c) decoupled heuristic.

and the frequency of helicopter delays lower (Figure 9). As the number of helicopters increases further

(e.g., m = 25), helicopters become a less-constrained resource: utilization drops even for the heuristics,

although the integrated method still outperforms by a significant margin.

The simulation demonstrates the advantages of our integrated approach. First, by locating trauma

centers and helicopters simultaneously, our integrated approach significantly outperforms the decoupled

heuristic, which sites trauma centers and helicopters sequentially. Second, by taking helicopter con-

gestion into account, our integrated approach significantly outperforms the no-congestion heuristic. In

the case of T10H20, Figure 7 shows that we achieve a 12% (resp., 14%) larger number of successful

transports using our integrated approach than the no-congestion (resp., decoupled) heuristic, which

translates into a potential 23,000 (resp., 26,000) additional lives saved per year!

6 Concluding Remarks
This paper studies the problem of simultaneously locating trauma centers and helicopters. Our problem

poses a unique challenge because the locations of trauma centers affect the demand for helicopters, and

vice versa. To overcome this challenge, we endogenize the computation of a busy fraction within an
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optimization problem, and develop the Shifting Quadratic Envelopes algorithm that outperforms a

Benders-like cut generation scheme. We apply our method to the design of a nationwide trauma care

system in Korea. By running a trace-based simulation on a full year of patient data, we find that the

solutions generated by our model outperform several benchmark heuristics significantly.

Our main methodological contribution, the Shifting Quadratic Envelopes method, can be applied

more generally to network design problems cast as mathematical programs where the probability of

a server being busy is a function of the workload sent to that server, and both the arrival rate and

workload are linear functions of the same set of variables (e.g., in our case, the routing variables shij).

It would be interesting to know what classes of problems that fit this general description can be solved

using the SQE method more efficiently than other solution methods. For example, the problems of

locating two classes of fixed servers (c.f. Marianov and Serra 2001, Grmez et al. 2011) or two classes of

mobile servers (c.f. Mandell 1998) share several features with our model. In these problems, demand

for one type of server depends on the locations of a second type of server, in which case modeling

congestion requires both types of servers to be simultaneously located, making our model relevant. For

these problems, we expect SQE to be particularly helpful when service times are a function of where

the demands originate. We leave a more exhaustive computational study of the SQE method, including

a comparison of different heuristics for slice selection and subdivision, to future work.

To date, the Korean government has taken several steps toward implementing a nationwide trauma

care system. The earlier, broader study by Kim et al. (2011) was used in the government’s initial

feasibility study, and the KMHW has continued to refine its plan, taking into account recommendations

we prepared in an earlier version of this paper. The first trauma center in Korea is scheduled to open

in spring 2014. In addition, the KMHW designated five trauma centers in fall 2012 and another four

centers in 2013, and it plans to establish six more trauma centers in the near future. We are pleased to

report that the ten hospitals selected by the KMHW to become trauma centers are generally consistent

with our recommended solutions, with minor variations owing to qualitative factors such as hospital

reputation. Moreover, with our completed paper in hand, the KMHW now has more accurate sensitivity

analyses for selecting additional trauma centers and deploying helicopters moving forward. In addition

to the current project of designing a trauma care system, the KMHW has been working to create or

redesign many parts of the country’s healthcare service infrastructure such as restructuring the current

tiered EMS system and deploying two different types of ambulances (advanced and basic life support

ambulances), and helicopters (specialized air ambulances and multi-purpose helicopters). Our methods

would likely benefit these other projects, since they also involve integrated planning of fixed and mobile

servers where congestion is a concern, and busy fractions cannot be reasonably estimated a priori.
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Online Appendix

A. Multiple Helicopters per Heliport

The Shifting Quadratic Envelopes (SQE) method can be extended to handle multiple helicopters per heliport.

This section illustrates the theory, and provides some computational results. The multi-helicopter (per heliport)

instances are more difficult to solve computationally than single-helicopter instances. As a result, we were not

able to solve multi-helicopter instances on the scale required in our problem setting. However, the multi-helicopter

SQE extension is theoretically interesting in its own right, and may be useful for smaller instances (e.g., trauma

center planning at the scale of a metropolitan area, for example).

Recall that, in the single-helicopter case, we used the variable rh to mean either (i) the probability a patient

routed via heliport h experiences transportation delay, (ii) the utilization of heliport h, or (iii) the workload

assigned to heliport h (measured in Erlangs). Throughout the paper, we have used all three interpretations,

depending on which definition was more convenient for the context at hand. In the multi-helicopter case, however,

we need to be more careful, since the expressions for (i), (ii), and (iii) are no longer equal. We begin this section

by defining analytical formulas for (i), (ii), and (iii), that apply more broadly to the multi-helicopter case. Then,

we show how our model and the SQE method can be generalized to the multi-helicopter case.

We begin by modeling heliport h as an M/M/k queue15, where each server is a helicopter, we have exactly

k helicopters stationed at heliport h, and the time a helicopter is in service is the time it takes to fly the circuit

h → i → j → h, plus loading, unloading, and cleanup times. Therefore, the workload assigned to heliport h

remains defined as rh =
∑
i,j τhijshij , whereas utilization is now rh/k, since the workload is now distributed

across k helicopters. Finally, the probability that a patient routed via heliport h experiences transportation delay

is fk(rh), where

fk(r) =
rk

(k − 1)!(k − r)
×

[
k−1∑
i=0

ri

i!
+

rk

(k − 1)!(k − r)

]−1

(22)

is known as the Erlang-C formula. As a check, notice that if k = 1, both utilization rh/k and the delay probability

fk(rh) simplify to rh, which is what we expect for the M/M/1 case.16 We now state three useful lemmas.

Lemma 2 The Erlang-C function fk(r) is a non-negative, non-decreasing, convex function in r.

Proof. See Lee, H. L. and M. A. Cohen 1983. A note on the convexity of performance measures of M/M/c

queueing systems. Journal of Applied Probability. 20(4) 920–923.

Lemma 3 Let a(x) and b(x) be two non-negative, non-decreasing convex functions. Then, their product c(x) =

a(x)b(x) is also non-negative, non-decreasing, and convex.

15Although the M/G/k queue would technically be a more accurate model, the M/M/k queue has a closed-form analytical

expression for the delay probability (the well-known Erlang-C formula), whereas the M/G/k queue does not. Moreover, it

is well-known that the Erlang-C formula provides a good approximation to the delay probability of an M/G/k queue; see,

for example: Kimura, T., 2010. The M/G/s Queue. Wiley Encyclopedia of Operations Research and Management Science.

Cochran, J. et al., Eds. John Wiley & Sons, Inc.

16Writing fk(r) = rkπ0
(k−1)!(k−r) , where π0 =

[∑k−1
i=0

ri

i!
+ rk

(k−1)!(k−r)

]−1

, we substitute k = 1 to get π0 =[
r0

0!
+ r1

(1−1)!(1−r)

]−1

=
[
1 + r

(1−r)

]−1

=
[

1
1−r

]−1

= 1− r; and fk(r) = r1π0
(1−1)!(1−r) = r

1−r · π0 = r
1−r · (1− r) = r.
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Proof. Differentiating twice, we see that c′(x) = a′(x)b(x) + a(x)b′(x) and c′′(x) = a′′(x)b(x) + 2a′(x)b′(x) +

a(x)b′′(x). Since a and b are convex, we have a′′(x) ≥ 0 and b′′(x) ≥ 0. Since a and b are non-decreasing, we

have a′(x) ≥ 0 and b′(x) ≥ 0. Finally, since a and b are non-negative, we have a(x) ≥ 0 and b(x) ≥ 0. Therefore,

both terms of c′(x) are non-negative, which implies c is non-decreasing. Moreover, all three terms of c′′(x) are

non-negative, which implies c is convex.

Lemma 4 The expression λhfk(τFIXh λh) is convex in λh on the domain λh ≥ 0, for any non-negative constant

τFIXh .

Proof. Since both λh and fk(τFIXh λh) are non-negative, non-decreasing, convex functions of λh on the domain

λh ≥ 0, the result follows by Lemma 3.

In the multi-helicopter case, we would like the number of helicopters at heliport h to be modeled by the

variable xh ∈ {0, 1, . . . , k}, where k is the maximum number of helicopters per heliport. However, it is instructive

to first describe the special case where we fix the number of helicopters at heliport h to the constant kh. For this

special case, our objective, which maximizes the number of patients that don’t experience a transportation delay,

is:

maxλG +
∑
h∈H

λh(1− fkh(rh)),

which is the natural generalization of our previous objective (5). The nonlinear terms λhfkh(rh) present a

computational challenge in much the same way that the bilinear terms λhrh did in our original model. We will

first describe how a generalization to our SQE method can tackle these nonlinear terms. Afterward, we will return

to the issue of generalizing our results to the case where the number of helicopters at each heliport is variable.

A.1 Description of Multi-Helicopter SQE Method

Let us now describe how SQE works in the multi-helicopter case with a fixed number of k helicopters at heliport h.

Generally speaking, all that is required is to replace the (convex) quadratic underestimate wh(λh|τFIXh ) = τFIXh λ2
h

with the more general convex (non-quadratic) underestimate wh(λh|τFIXh ) = λhfk(τFIXh λh). As a check, we note

that for k = 1, we recover λhf1(τFIXh λh) = τFIXh λ2
h, as before. The main parts of the SQE algorithm described in

Section 4.2.1 remain unchanged, except for the second paragraph of Section 4.2.1, which we generalize as follows

(the complete paragraph is copied, with changed parts in bold):

From (PΘ
S ), we have a feasible solution to (P ), which we denote Ψ = Θ ∪ {{rh}, {shij}}

=
{
{yj}, {xh}, λG, {λh}, {λj}, {sGij}, {rh}, {shij}

}
. The two crucial variables that describe the per-

formance of heliport h are its allocated demand λh and its workload rh. Therefore, for each heliport

h, we use the point (λh, rh) ∈ R2 from the feasible solution Ψ to update the quadratic envelope

boundaries for heliport h. Let τh = rh/λh be the mean service time of candidate solution (λh, rh)

and τ∗h = r∗h/λ
∗
h be the mean service time of the optimal solution (λ∗h, r

∗
h) of (P ). For each heliport h,

our goal is to pick a mean service time τFIXh that underestimates the optimal mean service time τ∗h as

closely as possible. This will allow us to closely underestimate the nonlinear term wh = λhfk(rh)

using a convex function of λh. Define two functions of λh; namely, rh(λh|τFIXh ) = τFIXh λh and
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wh(λh|τFIXh ) = λhfk(rh(λh|τFIX
h )) = λhfk(τ

FIX
h λh). As long as τh ≥ τFIXh , it follows by

definition that rh(λh|τFIXh ) ≤ rh and wh(λh|τFIXh ) ≤ wh. That is, for points (λh, rh) where

rh ≥ rh(λh|τFIXh ) = λhτ
FIX
h , the convex function wh(λh|τFIXh ) = λhfk(τ

FIX
h λh) provides a

valid underestimate for wh. Since, in general, we know only that τ∗h ∈ [τMIN
h , τMAX

h ] before solving

our problem (P ), the best choice for τFIXh that is always guaranteed to underestimate the optimal

mean service time is τMIN
h . This is why, in §4.1.1, we used the underestimate τFIXh = τMIN

h to

construct (PSQEM ) by replacing the nonlinear terms wh = λhfk(rh) in the objective of (P ) with

their convex relaxations wh(λh|τMIN
h ) = λhfk(τ

FIX
h λh). We will now describe how we can use

other estimates for τFIXh that lead to tighter relaxations.

A.2 Variable Number of Helicopters per Heliport

Of course, we do not know a priori how many helicopters to assign to each heliport. To address this problem, we

can make the following changes to our model. First, we introduce binary variables xhk = 1 when k helicopters

are stationed at heliport h, and xhk = 0 otherwise. Next, we add constraints of the form
∑
k=0..n xhk = 1 for

all heliports h ∈ H. Finally, we introduce continuous variables λhk, where we force λhk = λh when xh = k, and

λhk = 0 otherwise. This is accomplished using constraints λh =
∑
k=1..n λhk ∀h ∈ H in conjunction with Big-M

constriants λhk ≤ λMAX
h xhk. This allows us to write our objective function as:

maxλG +
∑

h∈H,k=1..n

λhk(1− fk(rh)).

The chief computational difficulty is dealing with the nonlinear products of the form λhkfk(rh), which we have

already seen can be addressed using an extension of our Shifting Quadratic Envelopes (SQE) approach (simply

substitute λhk for λh in the preceding analysis).

A.3 Details of Multi-Helicopter SQE

We now describe the necessary changes to the master problem (PSQEM2 ) and subproblem (PΘ
S ). We will refer to

the multiple-helicopter versions of these problems as (PSQEM2−MULT ) and (PΘ
S−MULT ), respectively. In the master

problem, we replace (11) with its generalization

xj ≤ kyj ∀j ∈ J, (23)

where k is the maximum number of helicopters allowed at a single heliport. Let K0 = {0, 1, 2, . . . , k} be a set

that lists the possible number of helicopters that can be stationed at a heliport, and K = {1, 2, . . . , k} be the

same set without zero. We also replace (13) with

yj ∈ {0, 1} ∀j ∈ J ; xh ∈ K0 ∀h ∈ H, (24)

since now xh, the number of helicopters at heliport h, can be more than 1. The binary variable xhn is replaced by

the binary variable xhkn, which we set to 1 if the solution (λh, rh) is in slice n and there are k helicopters placed

at heliport h, or 0 otherwise. Analogously, λhn and rhn are replaced by λhkn and rhkn, and we allow the bound
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rMAX
hk to depend on k (a reasonable value for this bound is rMAX

hk = k). Thus, the master problem is now:

(PSQEM2−MULT ) max λG +
∑
h∈H

λh −
∑

h∈H,k∈K,n∈Nh

λhknfk(τhnλhkn)

s.t. (1)-(4), (6)-(10), (12), (23), (24)

λh =
∑

k∈K,n∈Nh

λhkn, rh =
∑

k∈K,n∈Nh

rhkn ∀h ∈ H

xh =
∑

k∈K,n∈Nh

kxhkn ∀h ∈ H

0 ≤ λhkn ≤ λMAX
h xhkn, 0 ≤ rhkn ≤ rMAX

hk xhkn ∀h ∈ H, ∀k ∈ K, ∀n ∈ Nh

τh,nλhkn ≤ rhkn ≤ τh,n+1λhkn ∀h ∈ H, ∀k ∈ K, ∀n ∈ Nh∑
k∈K0,n∈Nh

xhkn = 1 ∀h ∈ H

xhkn ∈ {0, 1} ∀h ∈ H, ∀k ∈ K0, ∀n ∈ Nh.

The subproblem (PΘ
S−MULT ) is nearly identical to the single-helicopter version (PΘ

S ). The constraint set is

unchanged, and the objective becomes min
∑
h∈H λhfk(rh), where λh is a fixed parameter, k = xh is fixed, and

f0(rh) = 0 is defined for completeness17.

At each iteration of the SQE algorithm, we proceed exactly as in the single-helicopter case: (1) solve the

master problem to get a “good” solution to (P ); (2) solve the subproblem to improve this solution; (3) evaluate the

quality of the improved solution by computing its optimality gap; and (4) terminate if a time limit or optimality

gap threshold is reached, otherwise shift the quadratic envelope boundaries (in exactly the same way as in the

single-helicopter case) and continue.

A.4 Computational Results

We solved some small multi-helicopter instances, using KNITRO rather than CPLEX to solve both the master

problem and subproblem.18 The first instance we tested is from the southwest corner of Korea and has 38 demand

regions, 10 candidate trauma centers, and 4 candidate heliports. Allowing for up to 3 helicopters per heliport,

and assuming we can open up to 4 trauma centers and use up to 8 helicopters, we ran the multi-helicopter

version of SQE and found a near-optimal solution very quickly: After 1 iteration (3 seconds), we had a solution

within 1.64% of optimality; after 3 iterations (37 seconds) we had a solution within 0.54% of optimality; after

6 iterations (2 minutes) we got to within 0.27%; and after 10 iterations (5 minutes) we had reduced the gap to

0.07%. The second instance we tested is from the northwest corner of Korea, which includes Seoul and is more

populous. In this instance there are 52 demand regions, 25 candidate trauma centers, and 9 candidate heliports.

With 6 trauma centers and 8 helicopters, and allowing up to 3 helicopters per heliport, we get within 2.1% from

optimality after 3 hours, and with 8 trauma centers and 10 helicopters, we get within 0.7% of optimality after 3

17When xh = 0, then we must have λh = 0, so the whole term λhfk(rh) reduces to 0 regardless of how f0 is defined.
18The master problem is now a convex MINLP (Mixed Integer Nonlinear Program), and the subproblem is a convex NLP

(Nonlinear Program). KNITRO can solve both convex MINLP’s and convex NLP’s, whereas the only nonlinear functions

that CPLEX can handle are quadratic. Thus, while in the single-helicopter case, we can use CPLEX to solve both the

master problem MIQP and subproblem LP, we now need to use KNITRO, which supports a broader problem class.
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hours, with additional time necessary to further close the gap. Some heliports were assigned 2 or 3 helicopters,

which we expect since there are more helicopters than heliports. We also attempted to run the multi-helicopter

SQE method on our full Korea-wide instance, but this proved to be too large for KNITRO to find good solutions

in a reasonable amount of time. Thus, we conclude that the single-helicopter SQE is better suited for nation-scale

trauma center design problems, while multi-helicopter SQE is viable for planning smaller, e.g. metropolitan, areas.

B. Robust Model

The Shifting Quadratic Envelopes (SQE) method that we introduce in this paper is quite general, and can be

applied more broadly to other, more complex, variants of our trauma care system design problem. For instance,

we may be interested in knowing how to locate trauma centers and helicopters when, over some time horizon, one

or more of the following is expected to change in a predictable way: (i) the demand for care in each region, (ii)

the effective capacity of each trauma center, (iii) the number of helicopters, or (iv) the number of trauma centers.

The problem in this case would be to produce an optimal rollout plan, which would decide where both trauma

centers and helicopters would be placed at each stage in a multi-period horizon. Generally speaking, multi-period

location problems are known as dynamic facility location problems, and many specialized algorithms have been

developed to tackle different such variants19.

It is up to the modeler to decide what model variant is most appropriate for a given setting. In the main body

of our paper, our focus was on the single-period problem, which is appropriate if either (i) problem parameters

such as demands, capacities, and the number of helicopters and trauma centers do not appreciably change over

time; (ii) some problem parameters may change, but not in a predictable way (when they change, we re-solve

the single-period model); or (iii) we are most interested in knowing what the best location solution is given the

current parameter values, without regard to possible future values. In practice, single-period models are often

periodically run to check how far from optimal the current system is. The magnitude of the optimality gap allows

policymakers to assess how important re-configuring the system is, and differences between the optimal solution

and the current system suggest how the current system should be modified. In our case, the KMHW is planning

substantial changes to Korea’s trauma care system which involve many logistical details beyond the strategic

decision of where to locate trauma centers and helicopters. A single-period model (i) allowed the KMHW to focus

on improving the current state of care versus what previously existed, and (ii) was reasonable, given that some of

the parameters (e.g., trauma center capacities) may change in the future, but in ways that cannot be accurately

predicted at present.

On the other hand, when it is known how demand and resource availability will change over time, a multi-

period model may be more appropriate. However, multi-period models make more assumptions about logistical

details, and as a result their solutions specify not only where to locate trauma centers and heliports, but when to

open and close them over time. Constraints in such models can be used to restrict how the solution changes over

time; e.g., since there are significant fixed costs for establishing a trauma center, it makes sense to assume that

once a trauma center is designated, it remains open for an extended period of time. Helicopters, on the other

hand, may be more easily re-located, especially if the heliports themselves are already built. We view multi-

19For a comprehensive review, see chapter 15 of Farahani, R. Z., and M. Hekmatfar (Eds.) 2009. Facility location:

concepts, models, algorithms and case studies. Springer-Verlag, Berlin.
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period models as being complementary to single-period models, and recommend that they be used to supplement

single-period strategic analysis when additional logistical details are available. For example, if the population

in certain areas is growing or aging, we can predict the impact on future trauma rates. Governments may also

have visibility into future resource availability, e.g., if multi-year budgets have been approved to purchase 2 new

helicopters per year for the next 5 years, then it may be useful to run a multi-period model as a robustness check

to confirm that the single-period model does not select trauma centers that are in completely different locations

than will be needed in 5-years’ time.

For an example of a multi-period model, assume the KMHW wants to designate all k trauma centers at the

beginning of the horizon, and initially procure m1 helicopters. Then, over the time periods t = 1..T , the KMHW

could add additional helicopters so that mt, the total number of helicopters available in period t, is nondecreasing.

A multi-period variant of our problem (P ) can be used to decide (i) where to place the trauma centers, (ii) where

to initially locate the m1 helicopters, and (iii) where to locate the mt helicopters in each of the subsequent periods

t = 2..T . Moreover, we can also account for growing and shrinking populations by using forecasts for λti, the

number of people who will need trauma care in each region i in each time period t. The extension to (P ) that

we can use in this case is as follows, where xth, sG,tij , sthij , λ
G,t, λth, and rth are the analogs of the original decision

variables that apply to each period t:

(P ) max
∑
t=1..T

wt

(
λG,t +

∑
h∈H

(1− rth)λth

)
s.t. λG,t =

∑
i∈I

∑
j∈FG

i

sG,tij ∀t = 1..T

λth =
∑

(i,j)∈Fh

sthij ∀h ∈ H, ∀t = 1..T

rth =
∑

(i,j)∈Fh

τhijs
t
hij ∀h ∈ H, ∀t = 1..T

rth ≤ xth ∀h ∈ H, ∀t = 1..T∑
j∈J

yj ≤ k (25)

∑
h∈H

xth ≤ mt ∀t = 1..T

∑
j∈FG

i

sG,tij +
∑

(h,j)∈Fi

sthij ≤ λ
t
i ∀i ∈ I, ∀t = 1..T

∑
i∈FG

j

sG,tij +
∑

(h,i)∈Fj

sthij ≤ cjyj ∀j ∈ J, ∀t = 1..T (26)

xtj ≤ yj ∀j ∈ J, ∀t = 1..T (27)

sG,tij ≥ 0 ∀(i, j) ∈ FG; sthij ≥ 0 ∀(h, i, j) ∈ F, ∀t = 1..T

yj ∈ {0, 1} ∀j ∈ J ; xth ∈ {0, 1} ∀h ∈ H, ∀t = 1..T (28)

The weights wt in the objective function determine the relative importance of optimizing the solution for each

period t. If all periods are the same length, then we could choose wt = w1δ
(t−1) ∀t, where δ ∈ (0, 1) is a discount

rate. This would ensure that w1 > w2 > · · · > wT ; i.e., that we place more weight on optimizing the present than

the future. Or, if periods differ in length, then each wt could be chosen proportionally to the length of period
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t. For example, if period 1 is a 5-year initial ramp-up period, and period 2 is the next 20 years, then we could

choose w1 = 1 and w2 = 4 if we do not discount the future, or w2 < 4 if we choose to apply some discounting.

If heliports should only be added but never moved or shut down, then we’d also impose the following con-

straint, to make sure that the set of heliports in service at period t is always a superset of the set of heliports in

service at period t− 1:

xt−1
h ≤ xth ∀h ∈ H, ∀t = 2..T.

Moreover, we can also model the introduction and/or closure of a number of trauma centers over time by

using the variables ytj to model whether or not trauma center j is open in period t, using kt as a parameter that

denotes the total number of trauma centers to operate in period t, and replacing (25), (27), and (28), respectively,

with: ∑
j∈J

ytj ≤ kt;

xtj ≤ ytj ∀j ∈ J, ∀t = 1..T ; and

ytj ∈ {0, 1} ∀j ∈ J, ∀t = 1..T ; xth ∈ {0, 1} ∀h ∈ H, ∀t = 1..T.

As well, if the effective capacity of each trauma center is expected to change over time, we can use the

parameter ctj to denote the effective capacity of trauma center j at period t, and replace (26) with:∑
i∈FG

j

sG,tij +
∑

(h,i)∈Fj

sthij ≤ ctjytj ∀j ∈ J, ∀t = 1..T.

Finally, if new trauma centers can be established over time, but old ones cannot be moved or shut down, then

we’d additionally want to enforce the following constraint:

yt−1
j ≤ ytj ∀j ∈ J, ∀t = 2..T.

Since the functional forms of the objective and the constraints are preserved in all of these model adaptations,

the Shifting Quadratic Envelopes (SQE) algorithm developed for our original model can handle all of these model

variants. However, it is perhaps no surprise that the introduction of multiple periods increases the number of

binary variables in the formulation, and hence makes the problem instances more computationally challenging.

While it should be possible to exploit the structure of these problems using decomposition techniques tailored for

multi-period problems whose periods are weakly linked, this is beyond the scope of the current paper, and so we

leave this question for future research.

C. Modeling Congestion at Trauma Centers

This appendix describes how our model limits congestion at trauma centers. Specifically, we present our approach

of deriving the effective capacity cj for constraint (10) that limits the number of patients served by trauma center

j.

Let us first describe (potential) patient flows within a trauma center in practice. As mentioned in the main

body, Korea does not yet have any open trauma centers, and thus many of the operational details still need to be

determined. Consequently, the broader study of Kim et al. (2011) uses data from large hospitals that currently
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operate EDs, and describes patient flows among major resources as follows. A trauma center operates as an

independent facility with all its resources exclusively dedicated to treating trauma patients arriving at the center.

At a high level, a patient moves among three major departments: Emergency Room (ER), Intensive Care Unit

(ICU), and Inpatient Ward (IW); see Figure 10.20 All patients enter a trauma center through the ER. There are

three different types of trauma patients:

(i) ER Type: This type of patient is treated in the ER, and then s/he is discharged;

(ii) ICU Type: This type of patient requires intensive care. If an ICU has an available bed, then s/he is admitted

immediately to the ICU; otherwise, s/he stays in the ER until an ICU bed becomes available;

(iii) IW Type: This type of patient is first treated in the ER, and then s/he is transferred to the IW.

The data from large hospitals in Korea shows that 63.5% of trauma patients are of ER type, 7.9% are of ICU

type, and 28.6% are of IW type. Moreover, the average Length Of Stay (LOS) of an ER-type or IW-type patient

in the ER is 9.24 hours21; the average LOS in the ICU is 10 days; and the average LOS in the IW is 10 days for

ICU-type patients and 10.6 days for IW-type patients, respectively. For the current demand of trauma patients,

the study estimates that each trauma center will need 30 beds at the ER, 50 beds at the ICU, and 220 beds at

the IW.

Emergency Room 
Avg. LOS = 9.24 hr 

Intensive Care Unit 
Avg. LOS = 10 days 

Inpatient Ward 
Avg. LOS = 10.6 days for Type IW 

                   10 days for Type ICU 

arrival 

Discharge 

Trauma Center 

Type ICU 

Type IW 

Type ER 

Figure 10: Patient flows within a trauma center

As discussed in the main body of the paper, when locating trauma centers and helicopters, one might wish

to maximize the expected number of patients that are transported and begin to receive care at a trauma center

by the 60-minute threshold. Such an objective would simultaneously incorporate the congestion at both heliports

and trauma centers. However, the expression for such an objective involves convolutions of random variables, and

it is too complex to work with in our optimization model. Instead, we maximize the expected number of patients

that are transported without delay, and use a constraint to ensure sufficient capacity exists at each trauma center,

20Note that there are a number of other resources in a trauma center, including physicians, nurses, various testing

equipment, and operating rooms. Kim et al. (2011) state that beds at the ER, the ICU and the IW are most critical

resources at major EDs in Korea, and that other resources rarely become bottlenecks.
21The average LOS at the ER is from Jang, H., Kim, Y., and Lee, T. 2012. A framework for building an ED simulation

model to investigate ED overcrowding. KIIE Fall Conference, Ansan, Korea.
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so that patients rarely need to wait for a trauma center bed once they get there. For this constraint, we follow

the approach developed by Marianov and Serra (1998) and Berman and Krass (2002), which we will now describe

briefly.

Marianov and Serra (1998) develop a location model that considers the congestion of fixed servers. In their

model, each customer is allocated to a particular facility (a trauma center in our case), and each facility is

assigned one or more servers. They model the congestion at each facility by using the the probabilistic constraint

Prob[waiting time at facility j ≤ ω] ≥ ξ; i.e., the probability that a customer arriving to facility j waits at most

ω units of time must be greater than or equal to ξ. Berman and Krass (2002) show how the M/M/1 queueing

model used by Marianov and Serra (1998) can be naturally extended to an M/M/k model. The M/M/k queueing

model is well-suited for our purpose, since we can employ a closed-form analytical formula to measure congestion

that does not require estimates of higher moments of the service time distribution. Moreover, the M/M/k model

is often used as a first-order approximation of complex systems (e.g., Zhang et al. 2010) even in cases when

Markovian assumptions may not hold in a strict sense.

In such models, this constraint has the effect of capping the capacity of each facility, turning the formulation

into a capacitated facility location problem. Using the analysis from Berman and Krass (2002) (page 354), we

can rewrite the probabilistic constraint Prob[waiting time at trauma center j ≤ ω] ≥ ξ as ρj ≤ ρω,ξj , where ρj

is the total workload assigned to trauma center j and ρω,ξj is a constant that depends on ω and ξ. Moreover,

by defining λj =
∑
i∈FG

j
sGij +

∑
(h,i)∈Fj

shij (patients/day) as the total patient arrival rate into trauma center j

from all sources, and µj (patients/day) as the service rate of each server at trauma center j, we can rewrite the

constraint ρj ≤ ρω,ξj as λj ≤ µjρ
ω,ξ
j . Finally, we define the effective capacity of trauma center j as cj = µjρ

ω,ξ
j ,

so that we can write our capacity constraint in the form λj ≤ cjyj , which limits the number of patients served

by trauma center j to cj when it is open, or to zero when it is closed.

To find an appropriate value for the effective capacity cj of trauma center j, we first compute ρω,ξj . This

requires the estimated values for parameters ω and ξ. To this end, we have consulted the EMS physicians who

participated in the broader study of Kim et al. (2011). They argued that delays ought to be avoided entirely to

the extent possible, and hence suggested that the congestion target should be specified in terms of the fraction

of patients who experience no delay. Based on their suggestions, we fix ω = 0, and consider a target value for

ξ between 0.9 and 0.95. Having estimated the values of ω and ξ, we can then compute ρω,ξj as follows. For an

M/M/k queue, Prob[waiting time > 0] is modeled by the Erlang-C probability fk(ρj) defined by (22) in Appendix

A, where k is the number of servers and ρj = λj/µj is the total workload assigned to trauma center j. By Lemma

2 in Appendix A, fk(ρj) is an increasing function of ρj . Therefore, as ρj increases, Prob[waiting time at trauma

center j ≤ 0] decreases. It follows that there exists some threshold value ρj = ρω,ξj such that Prob[waiting time

at trauma center j ≤ 0] equals ξ. By taking ρω,ξj to be the value of ρj that satisfies 1 − fk(ρj) = ξ, we find the

largest value of ρj that satisfies Prob[waiting time at trauma center j ≤ 0] ≥ ξ. (Note that ρω,ξj can be computed

for any ω ≥ 0 by following a similar method; c.f. Berman and Krass 2002).

A remaining issue is what constitutes the servers when we approximate the patient flow at a trauma center

using an M/M/k queue. As shown in Figure 10, a trauma center consists of different types of resources, and

patients follow various paths through the trauma center. If we could identify the bottleneck resource, then we

could approximate the entire trauma center with only the bottleneck resource. However, as mentioned earlier,

no trauma centers are open yet, so we are working with limited information. Thus, we examine each scenario in
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which one of the ER, the ICU, and the IW is the bottleneck. The service rate µj in each scenario is obtained

as the inverse of the respective average LOS, and k is taken to be the number of beds.22 The resulting values of

effective capacity cj are shown in the following table, where we consider two cases in which ξ = 0.9 and ξ = 0.95:

Bottleneck Resource k µj cj when ξ = 0.9 cj when ξ = 0.95

ER 30 2.597 58.92 55.18

ICU 50 0.100 51.16 48.69

IW 220 0.096 52.17 51.01

Units for µj and cj are patients/day.

From the above results, we conclude that a reasonable value for effective capacity cj is 50 patients/day.

Constraint (10) then has the following interpretation: Given the number of beds in each trauma center department,

we cap the rate at which patients are sent to each trauma center j to 50 patients/day. This ensures that 90-95%

of patients receive care immediately without delay.

D. Bounds on Allocated Demand and Workload

Our relaxations of the math program (P ) rely on upper bounds for λh and rh, which we have denoted λMAX
h and

rMAX
h , respectively. In this section, we describe how the values for these upper bounds were computed.

We define λMAX
h as the minimum of three upper bounds:

λMAX
h = min(

∑
i∈I:(i,j)∈Fh

λi,
∑

j∈J:(i,j)∈Fh

cj , 1/(2τMIN
h )) (29)

The first bound,
∑
i∈I:(i,j)∈Fh

λi, is the total patient demand surrounding heliport h, and the second bound,∑
j∈Fh

cj , is the total trauma center capacity surrounding heliport h. The third bound comes directly from

a first order condition that we derive as follows. Recall that the contribution of heliport h to (P )’s objective

function, i.e., the number of patients transported without delay by heliport h, is λh − wh, where wh = rhλh.

Treating the mean service time τh as known and fixed, we can define the objective contribution of heliport h

given τh as f(λh|τh) = λh − wh(λh|τh) = λh(1 − rh(λh|τh)) = λh − τhλ2
h. The function f(λh|τh) is concave

quadratic in λh, which means that beyond a certain point, increasing the number of patients served by that

heliport causes enough congestion that the number of patients served without delay (our performance metric)

begins to decrease. Since the point λh = 1/(2τh) maximizes the function f(λh|τh), we know that λh ≤ 1/(2τh)

must hold for any optimal solution to the problem (P ). Of course, τh is not known before solving (P ), but we

do know that τh ∈ [τMIN
h , τMAX

h ]. Therefore, we can impose the upper bound λh ≤ 1/(2τMIN
h ) on λh, since

τMIN
h ≤ τh =⇒ 1/(2τh) ≤ 1/(2τMIN

h ). Note that this congestion-based bound is significant, since in many of

the instances we tested, it ends up being the tightest for most of the heliports.

Next, we define rMAX
h as the minimum of two upper bounds:

rMAX
h = min(1/2, λMAX

h τMAX
h ) (30)

22Defining service rate as the inverse of average LOS implies that we treat LOS as equivalent to service time. Since LOS

tends to be larger than service time, it gives an underestimate for the service rate µj , which in turn leads to a conservative

estimate of cj(ω, ξ).
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The first bound, 1/2, follows from applying the congestion-based bound once again. Notice that λh ≤ 1/(2τh)

can be rewritten as λhτh ≤ 1/2, and from here we just need to make the substitution rh = λhτh to get rh ≤ 1/2.

Finally, the second bound in (30) holds because rh = λhτh ≤ λMAX
h τMAX

h , where λMAX
h and τMAX

h are upper

bounds for λh and τh, respectively. In most instances that we tested, the first bound tends to be tighter than

the second. However, sometimes a few heliports have small λMAX
h values and in these cases the second bound is

tighter.

E. Computational Results: SQE vs. GBD-based Algorithm

In this appendix, we report the computational results for the test case (k,m) = (10, 15) when using four different

techniques that we developed: (1) Tightening (PSQEM ) by Shifting Quadratic Envelopes, (2) Tightening (PGBDM )

by Shifting Quadratic Envelopes, (3) Tightening (PGBDM ) without the linear McCormick envelope constraints

using the GBD-based algorithm, and (4) Tightening (PGBDM ) using the GBD-based algorithm. We compare the

performance of our specialized methods with the global solver BARON 11.8 run on the original problem (P ).

Recall that the formulation of (PSQEM ) includes only quadratic envelopes, while (PGBDM ) includes both quadratic

and linear McCormick envelopes. In Figure 11, we show how the optimality gap decreases over time as each

method progresses. We plot the performance of the T10H15 test case with 16 candidate heliports (i.e., trauma

centers do not have their own heliports), as well as with 54 candidate heliports (i.e. trauma centers have their

own heliports). As shown in Figure 11(a), the 16-heliport case yields initial solutions very quickly for technique

1 and BARON (within 10 minutes, which appears at hour 0 on the plot), and we continue to run the solver for

an additional 4 iterations of 3 hours each. For the 54-heliport case shown in Figure 11(b), we ran the solver for 6

iterations of 3 hours each. In each iteration, if the master problem (PSQEM ) or (PGBDM ) is not solved to optimality

in the allotted 3 hours, the solution found thus far is used to compute the optimality gap.
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Figure 11: Optimality gaps when using four different methods of tightening the relaxations or the global solver

BARON: (a) 16 candidate heliports (none of which are trauma centers), and (b) 54 candidate heliports. (Param-

eters: k = 10 trauma centers and m = 15 helicopters)
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As you can see from Figure 11, technique (1) outperforms techniques (2), (3), and (4). The difference is

most pronounced for the 16-heliport case shown in Figure 11(a): when using technique (1), the optimality gap is

reduced to 5.09% in 9 seconds after the first iteration, to 2.30% in 10 minutes after the second iteration, and to

1.89% in 1.6 hours after 6 iterations (at which point we terminated the algorithm). In comparison, the second-

best method, technique (2), reaches an optimality gap of 4.54% in 5 minutes after the first iteration, then slowly

narrows the gap to 3.47% by the 12-hour mark after 5 iterations. All of our methods significantly outperform the

global solver BARON.

F. Formal Specification of the SQE Algorithm

In this appendix we present a formal description of our Shifting Quadratic Envelopes Algorithm. The main

algorithm is called SQESolve, which makes use of the subroutine ShiftEnvelopes.

F.1 Main Algorithm: SQESolve

Description: The main Shifting Quadratic Envelopes algorithm produces a near-optimal solution to the trauma

system design problem (P ).

1. Required Parameters.

tol = the optimality gap target; once we get below this threshold, we terminate.

2. Initialization.

Set Iter ← 1; LB ← −∞; UB ←∞; gap←∞; and bestSol← ∅.
Begin with a single slice for each heliport, with boundaries τMIN

h and τMAX
h : Set mh ← 1 ∀h;

τh1 ← τMIN
h ∀h; and τh2 ← τMAX

h ∀h.

3. Main Loop.

Repeat {
- Solve the master problem (PSQEM2 ). Store the optimal value as zM , and the optimal solution

as Θ.

- Solve the subproblem (PΘ
S ). Store the optimal value as zS , and the optimal solution as Ψ.

- If zS < LB, then update the best solution found thus far: bestSol← Ψ.

- Update the upper bound: UB ← min(UB, zM ).

- Update the lower bound: LB ← max(LB, zS).

- Update the optimality gap: gap← (UB − LB)/UB.

- If gap < tol, then terminate, returning bestSol with value LB. Otherwise, for each heliport

h call the subroutine ShiftEnvelopes to update the quadratic envelopes. Increment the

iteration counter Iter ← Iter + 1, and repeat this main loop.

}
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F.2 Subroutine: ShiftEnvelopes

Description: Re-defines the quadratic envelope boundaries for a single heliport h. We keep at most ψA boundaries

above and ψB boundaries below the point (λh, rh). Note that τMIN
h and τMAX

h always remain the lowest and

highest-indexed boundaries, respectively.

1. Required Parameters.

ψA = maximum number of boundaries to keep above the current solution (λh, rh)

ψB= maximum number of boundaries to keep below the current solution (λh, rh)

Note: From experience, we have chosen ψA = 1 and ψB = 3.

2. Algorithm.

- Compute the actual mean service time τACTUALh for the solution (λh, rh): If λh = 0, then

set τACTUALh ← 0. Otherwise, set τACTUALh ← rh/λh.

- Store the index n∗ of the slice that the solution (λh, rh) is in: n∗ ← {n | xhn = 1}.
- Create a new slice boundary τNEWh midway between the current lower bound for the mean

service time τh,n∗ and the actual mean service time τACTUALh used at point (λh, rh):

τNEWh ←
(
τh,n∗ + τACTUALh

)
/2.

- Compute the index n′ ← min(n∗+1, ψB), which will become the index for the newly-derived

boundary τNEWh .

- Compute the index n′′ ← min(n′+ψA,mh+ 1), which will become the index for the highest

boundary τMAX
h .

- Update the slice boundaries: τh,1 ← τMIN
h ;

τh,n ← τh,n∗−n′+n+1 ∀n = 2..n′− 1; τh,n′ ← τNEWh ; τh,n ← τh,n∗−n′+n ∀n = n′+ 1..n′′− 1;

and τh,n′′ ← τMAX
h .

- Update the slice count: mh ← n′′ − 1.

G. Derivations for the GBD-Based Algorithm

In this appendix, we complete some derivations for the GBD-based algorithm. In particular, we (1) derive the

subproblem dual (DΘ
S ) and prove Lemma 1; and (2) describe how the max(λh, γ

t
h)xh expressions in the Bender’s

cut z ≤ Bt(Θ) are implemented using binary variables.
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G.1 Derivation of the GBD-based Algorithm

The subproblem primal (PΘ
S ) is:

u∗(Θ) = min
∑
h

λhrh Dual Variables

s.t.−
∑
h,i

shij ≥ −aj ∀j ∈ J . . .αj ≥ 0

−
∑
h,j

shij ≥ −bi ∀i ∈ I . . .βi ≥ 0

−
∑
i,j

shij = −λh ∀h ∈ H . . .∆h free

−
∑
i,j

τhijshij + rh = 0 ∀h ∈ H . . .γh free

− rh ≥ −xh ∀h ∈ H . . .ηh ≥ 0

shij ≥ 0 ∀(h, i, j) ∈ F.

Its dual (DΘ
S ) is:

d∗(Θ) = max−
∑
j∈J

ajαj −
∑
i∈I

biβi −
∑
h∈H

λh∆h −
∑
h∈H

xhηh

s.t.− αj − βi −∆h − τhijγh ≤ 0 ∀(h, i, j) ∈ F

γh − ηh = λh ∀h ∈ H

αj ≥ 0 ∀j ∈ J βi ≥ 0 ∀i ∈ I ηh ≥ 0 ∀h ∈ H.

By eliminating {ηh} and substituting ηh = γh − λh into the objective, we get:

d∗(Θ) = max−
∑
j∈J

ajαj −
∑
i∈I

biβi −
∑
h∈H

λh∆h −
∑
h∈H

xhγh +
∑
h∈H

xhλh

s.t. αj + βi + ∆h + τhijγh ≥ 0 ∀(h, i, j) ∈ F

λh ≤ γh ∀h ∈ H

αj ≥ 0 ∀j ∈ J βi ≥ 0 ∀i ∈ I.

Finally, we note that since xh ∈ {0, 1} and xh = 0 =⇒ λh = 0 in the master problem (PGBDM ), we can replace

the objective term
∑
h xhλh with

∑
h λh. The result is the following dual problem, which optimizes over the

variables {{αj}, {βi}, {∆h}, {γh}}:

d∗(Θ) =
∑
h∈H

λh + max−
∑
j∈J

ajαj −
∑
i∈I

biβi −
∑
h∈H

λh∆h −
∑
h∈H

xhγh (31)

s.t. αj + βi + ∆h + τhijγh ≥ 0 ∀(h, i, j) ∈ F (32)

λh ≤ γh ∀h ∈ H (33)

αj ≥ 0 ∀j ∈ J βi ≥ 0 ∀i ∈ I. (34)

Since the subproblem is a linear program, by strong duality, we have d∗(Θ) = u∗(Θ), where u∗(Θ) is the

optimal value of (PΘ
S ). Therefore, a lower bound v∗(Θ) for full problem (P ) using the fixed master problem
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solution Θ is:

v∗(Θ) = λG +
∑
h∈H

λh − u∗(Θ) = λG +
∑
h∈H

λh − d∗(Θ) = λG +
∑
j∈J

ajαj +
∑
i∈I

biβi +
∑
h∈H

λh∆h +
∑
h∈H

xhγh.

It is worth pointing out that all quantities in the above expression depend on the master problem solution Θ.

This includes the master problem variables
{
λG, {λh}, {xh}

}
, the derived values {{aj}, {bi}}, and the optimal

dual solution {{αj}, {βi}, {∆h}, {γh}}.
At each iteration t, given master problem solution Θt, we generate a Benders cut of the form z ≤ Bt(Θ)

that holds for all feasible master problem solutions Θ. To generate this cut, we use the optimal solution SDt ={
{αtj}, {β

t
i}, {∆t

h}, {γth}
}

from the subproblem dual (DΘt

S ). As required for a Benders optimality cut, each cut

t satisfies Bt(Θ) ≥ v∗(Θ) for all feasible master problem solutions Θ, and this inequality holds at equality when

evaluated at Θt; i.e., Bt(Θt) = v∗(Θt).

To construct Bt(Θ), we first need a (preferably near-optimal) feasible solution to (DΘ
S ) that we can express

as a closed-form expression of the master problem variables Θ and the optimal subproblem dual solution SDt.

Let αj(Θ, SDt) := αtj ∀j, βi(Θ, SDt) := βti ∀i, ∆h(Θ, SDt) := ∆t
h ∀h, and γh(Θ, SDt) := max(λh, γ

t
h) ∀h.

Lemma 5 The vector {{αj(Θ, SDt)}, {βi(Θ, SDt)}, {∆h(Θ, SDt)}, {γh(Θ, SDt)}} as defined above is feasible in

(DΘ
S ).

Proof. Checking constraint (32) for each tuple (h, i, j), we find that:

αj(Θ, SDt) + βi(Θ, SDt) + ∆h(Θ, SDt) + τhijγh(Θ, SDt)

= αtj + βti + ∆t
h + τhij max(λh, γ

t
h) ≥ αtj + βti + ∆t

h + τhijγ
t
h ≥ 0,

where the first inequality follows since τhij > 0 ∀(h, i, j) ∈ F , and the second inequality follows since
{
{αtj}, {β

t
i}, {∆t

h}, {γth}
}

was optimal (and hence feasible) in (DΘt

S ). Furthermore, checking constraint (33) for each heliport h, we find

that λh ≤ γh(Θ, SDt) = max(λh, γ
t
h) holds trivially by definition. �

Evaluating {{αj(Θ, SDt)}, {βi(Θ, SDt)}, {∆h(Θ, SDt)}, {γh(Θ, SDt)}} in the objective function of (DΘ
S ) gives

us:

d(Θ, SDt) =
∑
h

λh −
∑
j

ajαj(Θ, SDt)−
∑
i

biβi(Θ, SDt)−
∑
h

λh∆h(Θ, SDt)−
∑
h

xhγh(Θ, SDt)

=
∑
h

λh −
∑
j

αtjaj −
∑
i

βtibi −
∑
h

∆t
hλh −

∑
h

max(λh, γ
t
h)xh.

Finally, we re-state Lemma 1 given in the main body, and provide its proof.

Lemma 1. The function Bt(Θ) as defined in (21) satisfies Bt(Θ) ≥ v∗(Θ) for all feasible master problem solutions

Θ, and furthermore Bt(Θt) = v∗(Θt) holds at equality for the particular master problem solution Θt. In other

words, z ≤ Bt(Θ) is a Bender’s optimality cut.

Proof. Since (DΘ
S ) is a maximization problem with optimal value d∗(Θ), by definition of optimality we have

d(Θ, SDt) ≤ d∗(Θ). Therefore:

v∗(Θ) = λG +
∑
h

λh − d∗(Θ) ≤ λG +
∑
h

λh − d(Θ, SDt) = Bt(Θ).

Furthermore, since d(Θt, SDt) = d∗(Θt), the above inequality becomes an equality for the master problem solution

Θt.�
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G.2 Implementing max(λh, γ
t
h)xh

To implement the max(λh, γ
t
h)xh expressions in the Benders cut z ≤ Bt(Θ) as defined in (21), we introduce binary

variables {uth} that keep track of which term in the maximum is the largest; i.e., uth = 1 if λh ≥ γth, and uth = 0

otherwise. Because xh is binary and xh = 0 =⇒ λh = 0, we have λhxh = λh. Therefore, max(λh, γ
t
h)xh = λh

when uth = 1, and max(λh, γ
t
h)xh = γthxh otherwise. As well, for each cut t and each heliport h, we introduce a

continuous variable λHIGHth and a binary variable xLOWth . The variable λHIGHth is forced to be equal to λh when

uth = 1, and is set to zero otherwise. The variable xLOWth is forced to be equal to xh when uth = 0, and is set to

zero otherwise. The Benders cut we implement is z ≤ Bt(Θ), where

Bt(Θ) = λG +
∑
j∈J

αtjaj +
∑
i∈I

βtibi +
∑
h∈H

∆t
hλh +

∑
h∈H

λHIGHth +
∑
h∈H

γthx
LOW
th .

To model the required logic and link together the {λh}, {λHIGHth }, {xh}, {xLOWth }, and {uth} variables, we use

the following constraints, which we add to the master problem (PGBDM2 ):

γthuth ≤ λh ≤ γth + (λMAX
h − γth)uth ∀h ∈ H,∀t = 1..nCuts

0 ≤ λh − λHIGHth ≤ λMAX
h (1− uth) ∀h ∈ H,∀t = 1..nCuts

0 ≤ λHIGHth ≤ λMAX
h uth ∀h ∈ H,∀t = 1..nCuts

0 ≤ xh − xLOWth ≤ uth ∀h ∈ H,∀t = 1..nCuts

0 ≤ xLOWh ≤ (1− uth) ∀h ∈ H,∀t = 1..nCuts.

H. Decoupled Heuristic

In this appendix, we describe the decoupled heurisitic in detail. Recall that the decoupled heuristic has two

stages. In the first stage, we solve for the trauma center locations, and in the second stage, we solve for the

heliport locations. In addition to the sets that we defined earlier in §3, we make use of the following sets:

• FHi = {j ∈ J |dij > dground and dhi + dij ≤ dair for fixed i and for some h ∈ H}: the set of trauma centers that

patients in demand region i can reach by helicopter within 60 minutes.

• FHj = {i ∈ I|dij > dground and dhi + dij ≤ dair for fixed j and for some h ∈ H}: the set of demand regions that

are covered by trauma center j using helicopter transportation.

• Hij = ∅ if dij ≤ dground, or Hij = {h ∈ H|dhi + dij ≤ dair for fixed (i, j)} if dij > dground: the set of heliports

that can be used to fly patients from demand region i to trauma center j within 60 minutes.

The decoupled heuristic’s first stage is formulated as a variant of the capacitated maximal covering location

problem (cMCLP) (Pirkul and Schilling 1991). This problem has three decision variables: sGij , yj , and sHij . The

first two variables, defined earlier in §4.1, represent respectively the number of patients per unit time transported

by ambulance from demand region i to trauma center j, and an indicator for whether trauma center j is opened.

The third variable, sHij , is new to the decoupled heuristic, and represents the number of patients per unit time

transported by helicopter from demand region i to trauma center j. The problem is formulated as a Mixed-Integer
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Linear Program (MILP) as follows:

max
∑
i∈I

∑
j∈FG

i

sGij +
∑
i∈I

∑
j∈FH

i

sHij (35)

s.t.
∑
j∈J

yj ≤ k (36)

∑
j∈FG

i

sGij +
∑
j∈FH

i

sHij ≤ λi ∀i ∈ I (37)

∑
i∈FG

j

sGij +
∑
i∈FH

j

sHij ≤ cjyj ∀j ∈ J (38)

∑
i∈I

∑
j∈FH

i

τ ijs
H
ij ≤ m (39)

sGij ≥ 0; ∀i ∈ I, j ∈ FGi ; sHij ≥ 0 ∀i ∈ I, j ∈ FHi (40)

yj ∈ {0, 1} ∀j ∈ J, (41)

where (35), (36), (37), (38), (39), (40) and (41) can be interpreted similarly to (5), (7), (9), (10), (6), (12) and

(13), respectively, in the integrated model presented in §4.1. It is worth noting the following differences between

the above formulation and the integrated model. First, program (35)-(41) does not determine the locations of

helicopters modeled as xh in the integrated model. Instead, it assumes that a helicopter is stationed at every

heliport; i.e., xh = 1 ∀h. Second, since the locations of the helicopters are not determined at this stage, program

(35)-(41) solves for sHij , i.e., the total volume of patients that should be flown between demand region i and

trauma center j, instead of the more detailed allocations shij that, in the integrated model, determine the volume

of patients transported from demand region i to trauma center j using each specific helicopter (heliport) h. Third,

in the integrated model, constraint (6) (
∑

(i,j)∈Fh
τhijshij ≤ xh ∀h) ensures that the busy fraction (or utilization)

of heliport h is at most 1. Since shij is not present in program (35)-(41), we introduce the analogous constraint

(39), where τ ij is the average service time for a helicopter in the set Hij to fly the circuit h→ i→ j → h.

Once we have solved for the trauma center locations (yj) and the demands for helicopters (sHij ) in the

first stage, we run the decoupled heuristic’s second stage to determine the helicopter locations. We formulate the

decoupled heuristic’s second stage as a variant of the Maximum Expected Covering Location Problem (MEXCLP)

(Daskin 1983). The two primary decision variables are xh, as defined in §4.1, and sHijl, which we set equal to sHij

when l (∈ {1, 2, ...,m}) helicopters serve the demand sHij , or zero otherwise. Binary variables uHijl are used to link
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sHij to sHijl. The problem is formulated as the following MILP:

max
∑
i∈I

∑
j∈FH

i

m∑
l=1

(1− ρl)sHijl (42)

s.t.
∑
h∈H

xh ≤ m

xj ≤ yj ∀j ∈ J

sHijl ≤ sHijuHijl ∀i ∈ I, j ∈ FHi , ∀l = 1..m

m∑
l=1

uHijl ≤ 1 ∀i ∈ I, j ∈ FHi

m∑
l=1

l uHijl ≤
∑
h∈Hij

xh ∀i ∈ I, j ∈ FHi (43)

sHijl ≥ 0; uHijl ∈ {0, 1} ∀i ∈ I, j ∈ FHi , ∀l = 1..m

xh ∈ {0, 1} ∀h ∈ H

In (42), ρ is a global busy fraction for helicopters, and is computed from stage one’s sHij values using the formula

ρ =
∑
i∈I

∑
j∈FH

i

τ ijs
H
ij/m, where

∑
i∈I

∑
j∈FH

i

τ ijs
H
ij is the total workload assigned to helicopters in the first stage; see

(39). Thus, (1− ρl) represents the probability that at least one helicopter is available to transport a patient from

demand region i to trauma center j within 60 minutes. This objective, which differs slightly from the original

model of Daskin (1983), has been used in the literature (e.g., Sorensen and Church 2010). Constraint (43) specifies

that if (i, j) is covered by l heliports, then at least l heliports should be in the set Hij that can serve (i, j). The

other constraints are straightforward.

We note that there are different ways that one might model busy fractions in such a two-stage heuristic.

For example, we could modify ReVelle and Hogan’s (1989) area-specific busy fraction concept to estimate (i, j)-

specific busy fractions iteratively, using the locations of trauma centers and helicopters from the current iteration

to update the busy fractions for the subsequent iteration.23 However, such variations of busy fraction estimation

schemes have their own weaknesses. Convergence can be an issue, for example, or more stable definitions for

ρij may rely on somewhat arbitrary assumptions for the estimated workload at each heliport. We find that, in

general, the integrated approach outperforms these variations as well, and comes with the added advantage of

establishing a theoretical optimality gap.

Note that, in the decoupled heuristic’s second stage math program, it is not possible to use heliport-specific

busy fractions like the rh values in our integrated model from §4.1. This is because the first stage only determines

the total demand for helicopters, sHij , for each (i, j) pair, and does not specify the demands for specific helicopter

routes shij as in our integrated model. That is, the workload at a particular heliport h can, at best, only be

coarsely approximated after the first stage.

23Details of this approach can be found in: Lee, T., H. Jang, S-H. Cho, and J.G. Turner. 2012. A Simulation-Based

Iterative Method for a Trauma Center - Air Ambulance Location Problem. Proceedings of the 2012 Winter Simulation

Conference, Berlin, Germany.
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I. Out-of-Sample Results

As described in §5.1, we tested our methods both in-sample (e.g., by optimizing the trauma center and heli-

port locations using January-June data and then evaluating the performance of this solution with a simulation

using January-June data) and out-of-sample (e.g., optimizing with January-June data and evaluating with July-

December data). We reported the in-sample results in the main body of the paper. The out-of-sample results,

which serve to show that our methods are robust even in the face of aggregate-level data uncertainty, are reported

here. Note that the out-of-sample results are qualitatively similar to the in-sample results, which further validates

our approach.
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Figure 12: The proportion of successful patients when: (a) k = 10, (b) k = 12, and (c) k = 14.
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Figure 13: The total number of successful and unsuccessful helicopter transports under the solutions

determined by: (a) integrated approach, (b) no-congestion heuristic, and (c) decoupled heuristic.

J. Simulation Details

In this appendix, we describe our simulation model in further detail. In particular, decision points A, B, C, and

D in Figure 5 deserve further comment.
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Figure 14: The proportion of helicopter transports that were delayed under the location solutions

determined by: (a) integrated approach, (b) no-congestion heuristic, and (c) decoupled heuristic.

As depicted by decision point A, we first determine whether the patient is within the coverage area defined by

our location solution. A patient is deemed to be out of the coverage area if no trauma center can ever be reached in

under 60 minutes from the patient’s location by either ambulance or helicopter. We label out-of-coverage patients

as unsuccessful, since these patients are handled by regional hospitals outside of the trauma care system.24

At decision point B, if the patient is within the coverage area, we check if there is an available (i.e., under-

capacity) trauma center. If all trauma centers are over-capacity, which happened very rarely in our simulation

runs, then we send the patient to the nearest trauma center. Otherwise, we send the patient to the nearest

available (i.e., under-capacity) trauma center. Each patient is either ER type, ICU type, or IW type (upon

arrival, we randomly assign these types according to the respective proportions mentioned in Appendix C). For

an ER-type or IW-type patient, if a trauma center has an available bed in its ER, then it is under-capacity. For

an ICU-type patient, if a trauma center has an available bed in its ER or in its ICU, then it is under-capacity.

If no trauma centers within the coverage area are under-capacity, then the patient is sent to the nearest trauma

center and waits until a bed becomes available. Once the patient is admitted to a trauma center, s/he follows

one of the paths shown in Figure 10 according to his/her type as follows. An ER-type patient occupies an ER

bed, and then leaves the trauma center upon the completion of receiving treatment. An IW-type patient receives

initial care from the ER and then gets transferred to the IW before being discharged. This type of patient may

have to wait in the ER if there is no bed in the IW that is immediately available (such patients are often called

boarding patients). An ICU-type patient is admitted directly to the ICU if an ICU bed is available, or otherwise

s/he is admitted to the ER, and then stays in the ER until an ICU bed becomes available. Service times in the

ER, the ICU, and the IW are sampled from exponential distributions with their means equal to the corresponding

LOS values shown in Figure 10 in Appendix C.

Decision point C limits the use of helicopters to trips under 120km in length (i.e., transports within the

helicopter coverage area). In other words, if the nearest available trauma center is so far from the patient that

even a helicopter cannot fly there within 60 minutes, then we do not dispatch a helicopter. Instead, we transport

24In practice, it is possible that some of these patients may get transferred from a regional hospital to one of the trauma

centers. However, since they do not receive proper care from a trauma center within 60 min, it seems reasonable to count

these patients as unsuccessful for our purpose.
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this patient by ambulance, which prevents a helicopter from being used for an excessively long time only to

complete an unsuccessful transport.25

Finally, when the destination trauma center is outside the ground coverage area but within the helicopter

coverage area, we use either an ambulance or a helicopter, depending on which mode will get the patient to the

trauma center faster (decision points D). When a nearby helicopter is available, using a helicopter is always faster

(because being outside the ground coverage area means that it will take longer than an hour for an ambulance

to transport this patient to the nearest trauma center; see §3). On the other hand, when all nearby helicopters

are busy, it is sometimes faster to use an ambulance rather than waiting for a helicopter to become available. To

make this decision, the model computes the lead time (wait time + transportation time) of using a helicopter

from each heliport within the patient’s helicopter coverage area based on (i) the location of the patient requiring

service, (ii) the location of the patient currently in transit (if any), and (iii) the number and locations of the

patients waiting in that heliport’s queue.

25Our results do not change substantially when we allow helicopters to fly outside of the defined 120km range. This

is because only a small number of patients are affected by this rule. Specifically, among all test cases for the integrated

method, no more than 0.3% of patients that are within the location solution’s coverage area find all nearby trauma centers

unavailable and need to be transported farther than 120km.
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