
UC Berkeley
UC Berkeley Previously Published Works

Title
Interactive Extraction of Examples from Existing Code

Permalink
https://escholarship.org/uc/item/1rw74222

Authors
Head, Andrew
Glassman, Elena L
Hartmann, Björn
et al.

Publication Date
2018-04-19

DOI
10.1145/3173574.3173659

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rw74222
https://escholarship.org/uc/item/1rw74222#author
https://escholarship.org
http://www.cdlib.org/

Composing Flexibly-Organized Step-by-Step Tutorials from
Linked Source Code, Snippets, and Outputs

Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, Björn Hartmann
UC Berkeley

Berkeley, CA, USA
{andrewhead,jasonjiang,james.smith,hearst,bjoern}@berkeley.edu

ABSTRACT
Programming tutorials are a pervasive, versatile medium for
teaching programming. In this paper, we report on the con-
tent and structure of programming tutorials, the pain points
authors experience in writing them, and a design for a tool to
help improve this process. An interview study with 12 expe-
rienced tutorial authors found that they construct documents
by interleaving code snippets with text and illustrative outputs.
It also revealed that authors must often keep the related ar-
tifacts of source programs, snippets, and outputs consistent
as a program evolves. A content analysis of 200 frequently-
referenced tutorials on the web also found that most tutorials
contain related artifacts—duplicate code and outputs generated
from snippets—that an author would need to keep consistent
with each other. To address these needs, we designed a tool
called Torii with novel authoring capabilities. An in-lab study
showed that tutorial authors can successfully use the tool for
the unique affordances identified, and provides guidance for
designing future tools for tutorial authoring.

Author Keywords
Programming tutorials; literate programming; authoring; code
evolution; consistency; code editors.

CCS Concepts
•Human-centered computing → Interactive systems and
tools; •Software and its engineering → Development frame-
works and environments;

INTRODUCTION
In 1984, Donald Knuth proposed literate programming as
a new approach to writing code. In this vision, instead of
programs, authors write about computational ideas and the
implementation of those ideas. Instead of simply commenting
their source code, a programmer splits their program into brief
code snippets, and interleaves these snippets with explanations
about what the snippets do, and how they fit together into a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-6708-0/20/04.
http://dx.doi.org/10.1145/3313831.3376798

presented
linearly

1

2

3

4

presented 
flexibly

3a

3b

1

2

4

executed
linearly

reference
implementation

init	game

add	sprite

position	sprite

add	background

listen	to	keys
move	sprite

listen	to	keys
move	sprite

add	background

init	game

add	sprite
position	sprite

init	game

add	background

add	sprite

position	sprite

listen	to	keys
move	sprite

Figure 1. Interactive tools for creating tutorials typically support the lin-
ear presentation of code, though authors often present code with repeti-
tions and fragments. We propose a tool called Torii that enables the creation
of tutorials with flexible presentation of code snippets while keeping code
and outputs consistent. The tool (shown within dotted lines above), preserves
links from snippets to a reference implementation to preserve consistency,
and to determine how outputs should be generated from snippets.

complete program. The output of literate programming is a
document that describes an algorithm, studded with code that
shows how each piece of the algorithm is implemented [16].

Today, the vision of literate programming has become man-
ifest in the form of tutorials that programmers write for one
another. Bloggers [25], open source developers [5], and tech-
nical writers all create and share tutorials on the web. Sites
like Ray Wenderlich [27] host thousands of tutorials written
by hundreds of authors. Companies like Apple produce hun-
dreds of tutorials to help programmers use their development
tools [36]. These tutorials go beyond textual presentation to
include visuals (screenshots, videos), and interactive compo-
nents (running programs, embedded demos that update with
new output as a reader edits a code snippet).

While literate programming has become the pervasive
paradigm for tutorials about programming, the tools that au-
thors use to produce these documents have not seen a similar
renaissance. Instead, tutorial authors typically use text edi-
tors for the prose and code portions, and standalone tools for
running code and producing images and videos. One notable
exception is the interactive computational notebook, which
has become popular for many programming tasks, including
authoring tutorials in domains like data analysis.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 1

http://dx.doi.org/10.1145/3313831.3376798
mailto:andrewhead,jasonjiang,james.smith,hearst,bjoern}@berkeley.edu

However, there are many programming tasks for which the
notebook paradigm is insufficient. These include user interface
development, web server implementation, game development,
and visualization creation. For this kind of programming, code
may not be readily presented in an order that can be interpreted
or compiled. Rather, it is best explained as an incremental
refinement to a base program. For this kind of program, tuto-
rial authors continue to depend on general purpose text editors
rather than computational notebooks.

To advance the state of the art in tutorial authoring tools, this
paper first describes the special challenges of the programming
tutorial authoring process and then presents and assesses a
prototype tool with novel features for enabling flexible presen-
tation of code, and keeping snippets consistent with outputs.

To understand the key needs for tutorial authoring, we con-
ducted two different qualitative studies. One was an in-depth
interview study with 12 accomplished tutorial authors, which
found that, compared to other online content creators, tutorial
authors faced a unique challenge of keeping collections of
related programming artifacts consistent with each other as
they wrote and revised a tutorial. In essence, writing a tutorial
often entailed creating several artifacts in parallel—a source
program, the snippets derived from that source program, prose
explanations of the snippets, and outputs generated from the
source program. Authors were sometimes dissatisfied with
their tools and processes for keeping these artifacts consistent.
A secondary issue was the desire for more support for pro-
ducing “assets”: outputs generated by running code snippets,
diagrams, screenshots, and demos.

To verify that the problems identified were representative
of popular tutorials, we report on a content analysis of 200
widely-referenced web-based programming tutorials. A ma-
jority included code fragments that showed only a portion of a
source file (83%). Many included assets such as screenshots,
diagrams, videos, and embedded demos of running the code
(80%). Most tutorials also included resources that would need
to be kept consistent with each other should the tutorial be
further changed, such as duplicated code (59%) and outputs
generated from running the source program (67%).

To understand how tools can help authors write tutorials, we
designed, implemented, and assessed a prototype tool called
Torii.1 This tool helps authors keep their source programs,
snippets, and generated outputs consistent with one another,
and allows the author to organize and present code in the order
they see fit (Figure 1). This includes showing the same code
in multiple locations, from different points of view, explain-
ing code snippets out of their original source code order, and
showing code snippets that are syntactically invalid in isola-
tion, but valid when combined with other code in the tutorial.
We assessed this tool in an in-lab study with 12 participants,
finding positive usability outcomes for many of the proposed
features, and directions for improvement for others.

1Torii (tOR-ee-ee) n. 1 A gate marking passage from the mundane
to the spiritual. 2 An abbreviation of the word “tutorial”. 3 A tool,
described in this paper, that propagates changes between source
programs, snippets, and outputs in a tutorial workspace.

BACKGROUND AND RELATED WORK

Programming Tutorials
Programmers often read tutorials [10] in order to learn about
unfamiliar programming concepts [2] and APIs [28].

While tutorials vary in length and polish, a good tutorial can
take considerable effort to write. Professionally-developed
tutorials contain thousands of words, thousands of characters
of code, and images [36]. Long blog entries can take weeks
to edit, with much of that time dedicated to producing high-
quality code samples [25]. The process of producing sample
code can be time-consuming, even if authors start from exist-
ing programs [11, 25]. As an author edits a tutorial’s code,
they must also update embedded resources like slides and
videos that describe parts of the code [22].

Researchers have identified pitfalls and best practices in tuto-
rial design by analyzing the contents of tutorials. Kim and Ko
found that introductory tutorials often omit important back-
ground knowledge for some readers, and lack feedback for
potential learner errors [15]. Informed by an analysis of highly-
rated Stack Overflow answers, Nasehi et al. found that good
programming answers include concise code, split into multiple
steps, with inline comments and highlights [23].

Building on past content analyses [15, 23, 36] and qualitative
studies of the authoring process [11, 22, 25], we conduct two
studies to expand our understanding of tutorial authoring. In an
interview study with accomplished authors of web tutorials, we
consider the challenges authors face when producing code and
outputs for their tutorials, uniquely focusing on how authors
keep source programs, snippets, and outputs consistent. In
a content analysis of popular tutorials,2 we provide context
for tool design, revealing the prevalence of “flexible” code
organization and generated outputs in tutorials.

In characterizing how textual programming tutorials get writ-
ten, our studies complement research into how tutorials are
produced in other media such as screencasts [18], mixed me-
dia [22], live streams [1], and live demos [4].

Computational Notebooks
In the last decade, the computational notebook has become
a popular interface for literate programming with estimated
millions of users [14]. Notebooks support construction of
literate programming documents by letting programmers inter-
leave rich text, “cells” containing code snippets, and program
outputs. To produce outputs, users submit code cells to an
interpreter one at a time; the interpreter embeds the results
next to the executed code. While code can be written in any
order, published notebooks usually list code in a linear order
that can be executed top to bottom to reproduce the outputs.

Like notebooks, Torii is designed to support WYSIWYG cre-
ation of literate programming documents containing repro-
ducible, easy-to-update outputs. Torii’s unique affordance is
preserving code executability as authors split and order code as

2Compared to an automated analysis, a content analysis let us de-
tect the presence of code fragments, duplicated code, and generated
outputs, which are tricky to identify without human inspection.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 2

they see fit—letting them split it into syntactically-incomplete
blocks, list it out of order, or repeat code.

Torii draws inspiration from recent innovations in notebook
interfaces. It builds on the vision of Codestrates [26] by ex-
tending the notebook model with new ways of embedding
source code and outputs in a literate programming document.
Like Tempe [7], Torii keeps program outputs consistent with
code by design, by updating outputs live.

Tools for Authoring Tutorials
In essence, authoring a tutorial consists of writing instruc-
tions as text, diagrams, and code, and providing feedback
in the form of expected outputs and exercises. One way to
help authors create tutorials is to transform their programming
history into such instructions. Several tools provide this sup-
port, recording programming history through user interface
instrumentation [19, 22], or by having users tag checkpoints
in their code as they write it it [4, 8]. Such histories can be
transformed into screencasts of code construction [19], mixed-
media tutorials [22], live demos [4], and web tutorials [8], and
even let authors make retroactive edits to their histories [8].

Assuming a source program already exists, tools can help au-
thors turn the program into code samples and tutorials. Both
automated [3, 21, 30] and mixed initiative [11] techniques have
been developed for extracting examples from existing code.
Furthermore, existing code can be “multi-staged”, allowing
implementation details to be revealed by incrementally unfold-
ing code [29]. Like the tools just above, Torii assumes that a
source program already exists. Torii specifically supports the
task of documenting the construction of a source program with
a series of snippets, generating outputs from those snippets
and keeping source programs and snippets consistent.

Tool designers have envisioned how to help authors create
tutorials not as documents in their own right, but as annotated
source programs. In Knuth’s vision of literate programming,
authors writes explanations next to their code, and a post-
processor generates documentation from the code. This model
of documentation generation is implemented by many modern
documentation tools (e.g., Javadoc [13]). Other tools help
programmers create tutorials by selecting and annotating lines
of code in existing programs [9, 33] and across development
history [24]. In the future, such affordances could complement
Torii’s functionality by letting authors annotate snippets and
include links to source locations in their tutorials.

Interactive Maintenance of Duplicated Code
The practice of copying code—or “cloning”—is common dur-
ing routine software development. To help programmers keep
instances of code clones consistent, the software engineering
research community has introduced systems for linked edit-
ing of clones. Drawing inspiration from this line of research,
Torii enables linked editing [37] across source programs and
snippets. Like CloneBoard [6], Torii offers specialized copy-
and-paste semantics, implicitly linking clones upon a copy
operation. In the future, we envision Torii incorporating novel
visualizations like those in CnP [12] to help readers compare
near duplicates of code within the authoring workspace.

INTERVIEWS WITH TUTORIAL AUTHORS
To develop a rich, qualitative understanding of how program-
ming tutorials are constructed, we interviewed 12 authors.

Methods
Participants: We contacted recently active authors from a
sample of online programming blogs. Of the approximately 50
authors we emailed, 12 opted to participate (referred to as A1−
12 below). Recruited authors had considerable experience.
Each had written from a few to over one-hundred tutorials.
Authors lived in at least four different countries, and consisted
of both amateurs and paid professional technical writers.

Interviews: Interviews were semi-structured and lasted be-
tween 30 minutes and an hour long, with one interview sched-
uled for an additional one-hour follow-up. Authors were asked
to describe how they wrote tutorials, the challenges they faced,
and how they thought tools to could help them write tutorials
better. Audio was recorded for all interviews, and anonymized
transcripts were made for each interview.

Analysis: One author of this paper analyzed the interview data,
following a qualitative approach described in Weiss’ seminal
guide to conducting interview studies [39]. Throughout the
analysis process, themes were refined, hypotheses developed,
and relevant passages excerpted.

Results
Overview
Authoring a tutorial is an effort-intensive process that involves
picking ideas to write about, building prototypes, testing out
the code, writing excellent prose, and disseminating the work.
Interviewees described, in each of these stages, the challenges
they faced: finding topics that are sufficiently unique to write
about (A3, A6), finding high-quality copy-editors (A5, A8),
and producing content on a regular cadence (A8, A10). In
reporting these results, we highlight only the authoring chal-
lenges unique to programming tutorials, with an emphasis on
the production and presentation of code.

Keeping source code, snippets, and outputs consistent
As an author writes a tutorial, they are in essence developing
and maintaining four types of resources in parallel:

A source program or a set of source programs that they are
trying to describe to a reader, or teach a reader to build.

Snippets of code taken from these programs from a specific
point of time in the development of those programs. The
snippets are embedded in the tutorial as focused and often
short views of the source programs.

Prose explanations of snippets and how they fit together into a
program, and of algorithms, concepts, and anecdotes germane
to the tutorial’s narrative. Diagrams may augment the prose.

Outputs produced by running selections of code from the
source program. These include console logs, user interface
screenshots, and embedded, running demos (e.g., web pages
embedded in iframes, interactive visualizations).

While these resources are distinct artifacts in the author’s
workspace, many of them are different views of the exact same

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 3

tutorialsource program
languages
and APIs

snippet

output

snippet

A

B
C

D

Figure 2. When writing a tutorial, authors clone and transform code in
ways that are not tracked by conventional development tools. Source pro-
grams depend on languages and APIs, and may need to be updated when these
change (A). Snippets are copied from the source program into snippets (B),
and the same code may appear in multiple snippets (C). Outputs are generated
by assembling and executing the snippets (D).

code (Figure 2). Snippets often represent a partial view of a
source program at one point in its development. Outputs are
generated from running a version of the source program, some
of the code for which may appear in the snippets. Meanwhile,
snippets themselves may appear more than once in a tutorial,
or part of the code of one snippet may appear in another.

These relationships are not recorded by the tools authors used
to make tutorials. One of the most common annoyances au-
thors described was simply keeping all of these resources in
sync. Because the contents of these resources are so closely
related to each other, interviewees reported needing to perform
several tedious and error-prone tasks to keep their programs,
snippets, and outputs consistent with each other:

Starting with a reference implementation. Some interviewees
built a complete reference implementation before adding code
to a tutorial. Three professional authors for the same online tu-
torial portal (A9, A11, A12) were required to produce a “starter
project” and a “final project”, and have this code checked off
before they began to write a tutorial. Another tutorial author
started writing complete implementations after an experience
where they found they had painted themselves into a corner
and needed to change their approach mid-tutorial (A8).

Propagating code changes. When an author changes a snippet
or a source program, they must make sure that the change is
reflected in all other versions of the source program and all
other snippets. Interviewees reported needing to propagate
changes like these for both larger tutorials and for books (A2,
A5, A9, A11). These code changes could be triggered by forces
outside of the author’s control, like changes to the APIs and
frameworks used by the tutorial’s code (A5).

Play-testing the tutorial. If an author plans to publish a com-
pleted source program for a reader’s reference, they need to
make sure that the reader, after assembling all of the snippets
in the tutorial, will end up with the same code as the published
source program. One author followed along with their own
tutorials, checking to see that they finished with the same code
as the reference program they wanted to post (A12).

Regenerating program outputs. When an author changes the
code in a snippet, they must change the outputs that depend

on that snippet, which may be numerous. In one author’s case,
these outputs were screenshots of a running interface (A6).

Authors adopted strategies to overcome this brittleness in the
tutorial authoring workspace. They architected code to min-
imize dependencies (A4), backed the source program with
a version repository so changes could be readily propagated
across versions of the source program (A1, A5, A9, A11, A12),
and embedded version-controlled snippets in the tutorial (A1).
No interviewees had workarounds to easily update snippets or
outputs when changes were made to the source program.

Presenting code and outputs
Authors wanted their tutorials to be engaging, easy-to-read,
and informative. All authors were deeply concerned with
readers’ expectations and the experience they would have
reading the tutorial. They designed, and revised, tutorials to
ensure they could hold a reader’s attention, and that the target
reader could successfully follow the tutorial. This concern for
the reader’s experience manifested in common design choices
for presenting code, outputs, and other visuals.

Keeping code minimal. Authors were aware that the code
snippets in a tutorial could be one of the most cognitively
demanding parts of the tutorial for readers to engage with.
Most authors were minimalists when it came to code, showing
no more code than was necessary (A2, A3), simplifying code
until it became easy to explain (A11), and keeping snippets
short. Authors scoped snippets to small, self-contained units
of functionality (e.g., individual functions) (A4, A11) and, if
code was sufficiently complex, introduced code just one line
at a time (A1). Authors highlighted important spans of code
by styling the code (A2, A10), or adding numeric labels to the
comments that they referred to from the prose (A11).

“Breaking up the text”. Authors sought to keep text brief and
clear. “Walls of text” were to be avoided and split up. One
interviewee, for instance, told us he tried not to write tutorials
longer than 500 words (A1). Code, quotes, and screenshots
served dual purposes of both conveying important information,
and breaking up the text (A1, A2, A6).

Integration of videos, diagrams, and memes. With only text
and code, a tutorial might be dry, or inefficient at explaining
key concepts. Authors incorporated several types of “assets”
into tutorials to make them more engaging and to more effec-
tively convey key concepts. They injected humor and encour-
agement into their tutorials by adding topical memes and icons
(A2, A4). Authors sometimes felt it was more appropriate or
effective to convey ideas with videos (A5, A12) or diagrams
(A8, A11) than with text and code alone. Screenshots could be
introduced to help readers check their work (A11). However,
assets like videos and diagrams could take quite a bit of effort
to design and produce (A8, A11).

A desire for interactive outputs. Only one author included
interactive affordances in her tutorials, wherein readers could
tinker with code in interactive editors and see program outputs
change live (A6). Several authors wanted to include interac-
tivity in their tutorials (A8, A11, A12), believing it could help
readers better understand the code.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 4

Fix a problem

Learn concepts

Improve a system

Manage environment

Implement behavior

Learn language, library, tool

0 20 40 60 80 100
snippets

Purpose of tutorial

Figure 3. The typical tutorial contains 11 snippets—though this number
varies depending on the tutorial’s purpose. Tutorials about learning a
language, tool, or library had far more snippets than those about implementing
a behavior. The box plots above show the distributions of snippets counts for
each type of tutorial; blue dots are outliers.

CONTENT ANALYSIS OF TWO-HUNDRED TUTORIALS
To verify that the pain points identified in the interviews were
representative, we performed a content analysis on a represen-
tative set of web-based programming tutorials.

Methods
Selection: To identify a diverse sample of popular (and there-
fore presumably high-quality) tutorials, we searched Stack
Overflow answers for external links with the anchor text “this
tutorial”. This yielded over 20k candidate links to tutorials.
We filtered these links to those that appeared in an answer
with one or more up-votes, and with two-hundred or more
referring domains, as determined using a backlink service. We
randomly sampled the remaining tutorials until we had a set of
200 tutorials, omitting those which on inspection lacked prose
or contained fewer than two related code snippets.

Analysis: Two authors independently analyzed and labeled
the tutorials with 23 variables, including the number of code
snippets, presence of fragmented code snippets, and presence
of generated outputs.3 This analysis resulted in substantial
agreement for all variables on the first pass (Krippendorff [17]
α = 0.75− 0.98). The authors reviewed their labels for errors
with reference to each other’s labels (attaining α = 0.93−1.0),
and settled all remaining disagreements together.

Results
Overview. Tutorials ranged from extremely brief—four tutori-
als with only two snippets—to extremely long—five tutorials
with more than 100 snippets. The median tutorial contained
11 snippets, though tutorials varied widely in their number
of snippets (σ = 18.9), with a long right tail (Figure 3). A
summary of the analysis results is shown in Table 1.

Each tutorial was assigned one of six primary learning goals.
The most common goals were to learn about a language, li-
brary, or tool (43%), and to implement a behavior (40%).
Far less common were tutorials focusing on helping readers
manage their development environment (11%), improve an
existing system (4%), learn abstract programming concepts
(2%), or fix a programming problem (2%).

3A complete listing appears in the auxiliary material.

Purpose of tutorial All tutorials
Learn language,

library, tool
Implement
behavior

Tutorials 200 85 79

Fragments 83% 84% 91%

Duplicated Code 59% 64% 62%

Rewritten Code 48% 56% 44%

Any Generated Output 67% 61% 77%

Console Output 33% 38% 20%

Images of Output 32% 24% 46%

Videos of Output 6% 2% 11%

Text File Output 4% 2% 4%

Linked Demo 15% 16% 19%

Editable Demo Code 5% 8% 3%

Other Visuals 55% 49% 62%

Table 1. Programming tutorials often contain code fragments, dupli-
cated code, and generated outputs. Shown are percentages of tutorials with
code fragments, duplicated code, and eight other characteristics. Percentages
are shown for two major categories of tutorials—learning a language, library,
or tool; and implementing a behavior—and for the dataset as a whole.

Fragmented code snippets. 83% of tutorials included at least
one fragment, which we defined as a piece of code the reader
should place in a file, but which was not intended to stand on
its own. Often, fragments would not be able to be compiled
or interpreted until a reader integrated it with additional code.
Sometimes fragments were the result of authors hiding code
that was shown in an earlier snippet.

Code duplication. In most tutorials (59%), code from one
snippet was reused in another snippet. In many cases, the
repeated code served as context to show where new code was
being added, or other code was being updated. Other times, a
fragment of code was pulled from an earlier snippet to show
on its own. In 48% of tutorials, code from one snippet was
changed, partially or wholesale, in a later snippet.

Generated outputs. Most tutorials contained outputs generated
by running some of the tutorial’s code (67%). The two most
common types of generated outputs were console logs (33%)
and images (e.g., screenshots of running applications, 32%).
Tutorials occasionally contained live demos of running code
within the page itself, or at an easily accessible link (15%).
In rare cases, code for these demos could even be edited and
re-run (5%). Other types of generated outputs included videos
(e.g., screencasts of running the code, 6%) and text files gener-
ated by running the source program (4%).

Other assets. Most (55%) of tutorials contained non-output
visuals, like diagrams (24%), user interface screenshots (21%),
or some other image (e.g., logos, ads, 33%).

Style. 10% of tutorials applied special styling to notable code
in at least one snippet, and 7% applied special styling to in-
dicate what changed in a snippet versus an earlier snippet.
44% added placeholders [3] to snippets to show where readers
should supply their own code or fill in code in a later step.
13% contained snippets with “cuts”, or explicit markers (e.g.,
“...”) to indicate that code from an earlier snippet was hid-
den. 5% included numerical or textual labels in the code (e.g.,
“// 1”, “// 2”) referenced from the tutorial’s prose.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 5

Edits to code automatically
propagate across all snippets and
the source program.

Embedded rich text editors
for writing prose.

Outputs update live by assembling
the tutorial's snippets in source
order and executing them.

Figure 4. Writing tutorials with Torii. Torii helps authors write tutorials by keeping source programs, snippets, and outputs consistent with each other, while
still letting authors organize the code in the tutorial flexibly. An edit to code anywhere in the tutorial workspace automatically triggers an update to clones of that
code in the source program and snippets, and to all outputs generated from that code.

TOOL DESIGN: Torii
Informed by our formative research, we designed Torii as a
prototype tool to help authors create programming tutorials.
The design was motivated by two primary goals:

1. Consistency: Help authors keep source programs, snippets,
and generated outputs consistent with each other.

2. Flexibility: Provide authors freedom to present code—that
is, to split, order, and repeat it—as they see fit.

To provide a consistent and flexible authoring workspace, at
the beginning of tutorial creation, Torii takes as input a refer-
ence implementation of the source program. Authors create
code snippets as partial, editable views of the reference imple-
mentation. Outputs are generated by assembling snippets in
the order they appear in the reference implementation. Our
interviews found that many authors have such a reference
implementation available when they start writing a tutorial.

To demonstrate the experience of authoring tutorials with Torii,
we describe how a hypothetical author, Rhia, writes a tutorial
about the basics of object-oriented programming in Python.4,5

Rhia wishes to present code with a level of flexibility she
cannot achieve with other literate programming interfaces like
notebooks. For example, Rhia wants to split classes into short
snippets that can be explained in isolation, but which would
not compile if executed separately. In the scenario below,
descriptions of Torii’s key affordances are interspersed with
screenshots and implementation details for each affordance.

Propagating edits from snippets to source programs
Rhia invokes a command to launch Torii in her integrated
development environment. This brings up a pane containing a
WYSIWYG tutorial editor (Figure 4). To add the first snippet

to her blank tutorial, Rhia selects a few lines of code in the
source program’s code editor, and then clicks the “Add Snippet”
button in the tutorial editor. Torii wraps the selected code in
an embedded code editor and places it as a “snippet” in the
tutorial editor. The snippet is directly editable and linked to
the source program: any change to the snippet propagates
immediately to the source program, and vice versa.

90 90

Implementation: Torii maintains a map between each snippet
and the location (i.e. line numbers) it was copied from in
the source program. When an author edits code, Torii detects
where the edited code appears in other snippets and the source
program, and translates the edit action into edit commands to
be dispatched to each snippet and source program editor.

Propagating edits from code to outputs
Once Rhia inserts several snippets and descriptions of those
snippets, she adds an output to demonstrate what the program
is doing. Rhia inserts a snippet containing a print statement,
and clicks the “Add Console Output” button that appears di-
rectly below the snippet. Torii generates an output by running
the snippets above it, and inserts it into the tutorial.

4See also this paper’s video figure.
The output is linked to the code in the workspace. As Rhia 5The code for the tutorial in this scenario is adapted from the “Classes”

chapter of “A Beginner’s Python Tutorial” [40], published under the tinkers with the source program or the snippets in the tuto-
Creative Commons Attribution-ShareAlike 3.0 license. rial above it—e.g., to change the initialization parameters of

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 6

https://creativecommons.org/licenses/by-sa/3.0/us/

an object, or to change a method body—the output updates
automatically to reflect the changed code.

Splitting, reordering, and copying code
Rhia splits and organizes the source program into snippets in
just the way she wants. Torii lets her split it into syntactically-
incomplete snippets if she pleases. It also lets her hide snippets
that contain boilerplate (e.g., import statements) necessary
for generating an output, but which might be distracting to
a reader. As long as all necessary code appears in a snippet
above an output, Torii figures out how to assemble the snippets
to generate and update the outputs.

In this case, Rhia takes advantage of the flexibility Torii pro-
vides to show the usage of a class before its declaration, and
to show individual methods and properties of a class outside
of the class declaration. Rhia also repeats the same code twice
in two snippets, showing the same line once in the context
of a method definition, and then again on its own with a de-
tailed explanation. Torii correctly infers that the duplicated
line should only be run once when generating the outputs.

· · ·

· · ·

out-of-order declarations split structures

Implementation: Because Torii remembers snippets’ locations
in a source program, it can infer how to “stack” snippets cor-
rectly into executable programs. For each output in a tutorial,
Torii assembles a program snapshot: an executable program
comprised of all snippets—in order and deduplicated—that
appeared above the output element in the tutorial.

To build a snapshot, Torii takes all snippets that appear above
the output (including hidden snippets), orders them by their
location in the source program, and removes duplicated lines.
To generate an output from the snapshot, the snapshot is writ-
ten to temporary files, and executed using a configurable code
runtime—in this case, the Python 3 command. The output of
the runtime is piped into the output element in the tutorial:

generated output

tutorial ordersource order

snippet 1

snippet 2
snippet 3

snapshot

snippet 2

snippet 1

snippet 3

execute

snippet 1

snippet 2

snippet 3

Reviewing a simulated reader’s code
Rhia can click on the “Program Snapshot” tab in any snippet
to see what Torii would execute to produce an output at that
point in the tutorial. Most practically, this snapshot provides
Rhia a view of the code the reader will have at this point in
the tutorial, if they assemble the snippets in the order they
appeared in Rhia’s reference implementation.

str(rectangle.w))

Making localized changes to the code
Rhia adds a step to the tutorial that requires readers to change
a method signature from an earlier snippet. Torii helps her
do this by letting her make an edited copy of the snippet. All
snippets below the copy will have the changes, and all snippets
and outputs above will be left untouched. To make this edited
copy, Rhia adds a snippet containing the method a second time.
She then turns off synchronization between this snippet and
prior snippets by clicking on the “Sync edits” toggle button,
which can be found in the snapshot preview for the snippet.

before edits

after edits

Implementation: When Rhia disables edit synchronization for
a snippet, Torii creates a fork of the snippet with the same code
and breaks the fork’s link to prior snippets. When generating
outputs, Torii builds a program snapshot to include only the
last version of the snippet that appears above the output. The
current design of localized changes was chosen to resemble the
linked editing interaction technique [37], which was designed
to support simultaneous edits of partial code clones.

Distributing augmented tutorials
Once Rhia finishes the tutorial, she uses Torii to save it as
an augmented Markdown document. The document includes
all richly-formatted text, snippets, and outputs she created in
Torii. In addition, Torii exports snapshots after each snippet,
placing them behind expandable headers, which readers can
toggle open to check their work.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 7

IN-LAB USABILITY STUDY
We designed an in-lab usability study to provide an initial
assessment of Torii as a tutorial authoring tool. Can authors
use a tool like Torii to create and update programming tuto-
rials? Do they leverage its unique execution model to create
tutorials that wouldn’t be possible in existing tools like note-
books? This study yielded insight to guide the design of future
versions of this tool and other authoring tools.

Method
Recruiting: We invited local tutorial authors to participate in
a 1.5-hour lab study. To reach these authors, we sent invita-
tions to one Facebook page, one Slack channel, and one email
list, each reaching a different group of local computer sci-
ence and programming educators. Candidates were screened
for experience writing at least one programming tutorial, and
for comfort with the Python programming language. Au-
thors were recruited from among local educators with tutorial-
authoring experience, rather than remote experts, to allow for
a controlled study appropriate for assessing a prototype.

Participants: 12 authors were recruited. We refer to these par-
ticipants as P1 − P12 below. All participants had previously
written a programming tutorial, and all had experience creat-
ing other instructional materials (e.g., programming lectures,
lab guides). Several participants had considerable experience—
one wrote a textbook (P12), one wrote tutorials for open
source libraries they maintained (P4), and another created
on-boarding materials in industry (P8). Among participants
were six undergraduate students, three graduate students, one
professor, one software developer, and one data scientist. All
participants had at least 1 year of Python programming experi-
ence, and the median participant had 3–5 years of experience.

Procedure: The study consisted of training, two tutorial main-
tenance tasks (with three subtasks each), and an open-ended
tutorial authoring task. At the study’s conclusion, participants
were compensated with $30 gift cards.

Training: To learn how to use Torii, participants followed
along with a guided tool walkthrough. The walkthrough
guided participants in embellishing and editing an existing
tutorial. By following along, a participant used all of Torii’s
features, except for features for saving the tutorial. The tutorial
that participants edited was based on the Tic-Tac-Toe tutorial
from Automate the Boring Stuff with Python [34].

Because code execution in Torii worked differently than in
most programming environments, participants were encour-
aged to ask questions and check their understanding with the
experimenters. This phase of the study took 15–40 minutes,
depending on each participant’s pace, and how long they be-
lieved they needed to understand the tool.

Maintenance Tasks: Then, participants completed two tutorial
maintenance tasks. One task was completed with Torii. The
other was completed with a comparison tool: VSCode [38],
augmented with a plugin for editing and rendering Markdown
files [20]. In the comparison condition, participants had ac-
cess to Markdown syntax highlighting, live rendering of the
Markdown tutorial, and a built-in terminal for running code.

Each maintenance task comprised three subtasks:

(a) Linked edit: Change a literal value, and update the text
and outputs to reflect the new value.

(b) Localized edit: Make a change to a function argument
that is localized to one part of the tutorial.

(c) Revert edit: Revert the localized edit made in subtask b
in another snippet, later in the tutorial.

Subtask a represented routine edits authors make to keep tuto-
rials consistent, a need uncovered in the interviews. Subtasks
b and c were designed to measure performance with Torii’s
specific features for localized changes.

Before a task, participants were given up to five minutes to
review the tutorial and the source program it was based on. For
the next ten minutes, they completed as many subtasks as they
could, in order. For each task, they were assigned one of two
different tutorials. Both tutorials were based on chapters in
DigitalOcean’s “How to Code in Python 3” guide [35]. They
contained about the same number of lines of code, with ap-
proximately the same code complexity. The order of tutorials
and tasks was counterbalanced between participants.

Authoring Task: In the remaining time (15–30 minutes, de-
pending on participant), participants completed an open-ended
authoring task. This task let us observe how authors would
use Torii’s affordances for flexible code organization when
creating a tutorial from scratch with a source program. Partici-
pants were asked to create a tutorial explaining the basics of
object-oriented programming in Python. They were given a
source program demonstrating basic object-oriented program-
ming operations, derived from the “Classes” chapter of the “A
Beginner’s Python Tutorial” Wikibook [40]. Participants were
encouraged to keep the tutorial’s prose simple so they could
spend more time with the tool’s affordances for organizing
code. Modifications to the source program were permitted.

Questionnaires: Participants filled out four questionnaires:
one following each maintenance task (both conditions), one
more after the last maintenance task, and one after the open-
ended authoring task.6 Study sessions concluded with brief
oral question and answer periods in which we asked partici-
pants to reflect on their experience using Torii.

Results

Maintenance and creation of tutorials
Maintenance tasks: With Torii, participants completed most
tasks—10 of 10 finished subtask a, 9 finished subtask b, and 3
finished subtask c. Participants achieved similar completion
rates with the control interface: 10 of 10 finished subtask a, 5
finished subtask b, and 7 finished subtask c.

Low completion rates for subtask c can be interpreted as an
opportunity to improve Torii’s design. Most (6 of 7) partici-
pants who failed to complete subtask c shared a misconception:
that to revert a localized change, they only needed to copy a
snippet once more from the source program with the original
6Due to technical difficulties, a handful of questionnaires and timing
data are missing. The first three questionnaires and maintenance task
times for two participants (P1, P2) and the final questionnaire for
one participant (P11) are omitted from analysis.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 8

code. The prototype of Torii required an additional step of
“unsyncing” the copied code, though in retrospect we believe
this design is neither intuitive nor ideal.

Participants reported completing subtask a and subtask c more
quickly with Torii, and subtask b more quickly with the com-
parison interface. With Torii, subtask a was finished in a me-
dian of 45 seconds (σ = 32s) rather than 88 seconds (σ = 86s),
and subtask c in a median of 57 seconds (σ = 33s) rather than
67 seconds (σ = 46s).

Subtask b appeared to take quite a bit more time with Torii than
the comparison tool. Using Torii, participants reported com-
pletion in a median of 3 minutes and 47 seconds (σ = 2m 2s)
rather than 2 minutes and 20 seconds (σ = 54s). This timing
difference would suggest that the localized edit functionality
is perhaps unintuitive, and that this affordance of the system
could benefit from further design.

These differences in task times between conditions are, we
note, not statistically significant with a Wilcoxon two-tailed
signed-rank test. This is likely due to small sample size (n = 10
after omission of missing data). The trends above are offered
as signals of which tasks may be easy for authors to perform
when first using Torii, and as preliminary indicators of relative
task difficulty that merit further investigation.

Participants’ tool preference aligned with trends in task times.
Authors felt they would be more effective using a tool like
Torii for tasks like subtask a (9 of 10) and subtask c (8 of 10).
Fewer believed they would be more effective using the tool
for tasks like subtask b (5 of 10), This suggests the value of
further design iterations to improve the localized edits feature.

Authoring task: All participants (11 of 11) created tutorials
with Torii within 15–30 minutes. Tutorials contained a median
of six snippets (σ = 1.6) and three outputs (σ = 1.3). 10 of
11 produced the outputs authors expected; only 1 contained
exceptions, which the author noticed but did not care to fix.

Usage of Torii’s authoring affordances
Authors created tutorials leveraging Torii’s affordances for
flexible code organization. Several tutorials contained snippets
that would be syntactically incomplete within a conventional
notebook, but could be included without issue in Torii (3 of 11:
P5, P9, P12). In all cases, incomplete snippets were class or
method declarations without their bodies. Authors presented
the declarations in isolation, later adding snippets with method
or class bodies before generating any outputs.

A majority of authors leveraged Torii’s ability to include the
same code in multiple snippets. Using this feature, authors
scaffolded the presentation of a class declaration, showing it
multiple times, each time adding new properties or methods
(6 of 11: P1, P2, P5, P9, P11, P12). A handful of authors
implemented an even more intricate version of scaffolding,
interleaving code that built up the class declaration with driver
code that constructed and tested progressively more complex
instances of the class (4 of 11: P1, P2, P9, P11).

One author presented code in reverse order from how the in-
terpreter would need to execute it, showing a usage of a class

B CA
Figure 5. Authors created tutorials using Torii’s affordances for flexible
code organization. Readers are encouraged to zoom in on the tutorials
above, each of which was produced by a different study participant. These
tutorials show how authors included syntactically invalid snippets (A, excerpt);
scaffolded the declaration of a class while repeating code across snippets (B);
and interleaved code for declaring and testing a class (C).

before its declaration (P11). A sample of tutorials demonstrat-
ing these usage patterns is shown in Figure 5.

Desired affordances for future tools
Participants reported which of Torii’s features were useful for
the authoring task on a three-point scale: “very useful”, “some-
what useful”, “not useful”, or “not applicable” (Figure 6).

Linked edits between the source program and snippets were
described as “delightful” (P8). All but one participant found
linked edits at least somewhat useful. During the maintenance
tasks, all authors (10 of 10) strongly agreed that they found it
easy to plan out and make linked edits.

All participants (11 of 11) found the generation of embed-
ded outputs to be very useful, and nearly all (9 of 11) found
the companion feature of live updates to outputs very useful.
According to one author, live updates provided them with
confidence that the code above the output was correct (P7).

Snapshots and localized edits were the least useful features.
One reason they were not useful is that some participants
felt they did not entirely understand how snapshots—that is,
the ordered assemblies of snippets used to generate outputs—
were created, even after successfully authoring a tutorial with
Torii (P2). Localized edits were used only once for their
intended purpose of evolving code shown in earlier snippets,
perhaps due to the simplicity of the tutorial authoring task
or length of the study. That said, many authors (6 of 11)
appropriated localized edits to disable print statements from
previous snippets to make outputs cleaner. Some of these
authors wanted a more lightweight version of localized edits
that would let them add print statements for just one snippet,
and automatically remove them from later snippets.

Authors envisioned several ways that future tools could im-
prove the authoring experience. Tools could help participants
overlay prose explanations on top of a selection of code in
a snippet (P4, also requested by A1 in the interview study).

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 9

Linked edits
Embedded outputs

Live updates to outputs
Snapshot preview

Localized edits
Rich text editors

0 3 6 9 12

1
1
2

1

1
2

1

1
4
5

2

2

8
4

3
9

11
8

participants

Very useful Somewhat useful Not useful N/A

Figure 6. Authors found Torii’s affordances for linked editing, generat-
ing embedded outputs, and updating outputs very useful when creating
tutorials. Snapshots and localized edits were less useful, and may require
additional design effort in order to provide value to authors.

Authors wanted stronger visual scent to indicate when snip-
pets were unsynced from the source program (P3, P8). One
author wondered if tools like Torii could help them propa-
gate edits from code to the prose explaining it (P7). Another
author wished to embed visualizations of an object from the
program’s state at a specific step of program execution (P4).

DISCUSSION AND FUTURE WORK

Summary of results
From our formative interviews, we found that authors face a
unique authoring challenge of keeping source programs, snip-
pets, and outputs consistent as they write tutorials. Our content
analysis of tutorials showed that a majority of tutorials contain
repeated code and generated outputs, which the tutorial’s au-
thor would need to keep consistent as they write and maintain
the tutorial. Many tutorials also contained code fragments
and rewritten code, indicating that tools for authoring tutorials
should provide authors with considerable flexibility in how
they organize a tutorial’s code as snippets.

Our in-lab usability study showed that authors can readily
adopt tools like Torii to write simple tutorials with a flexibility
not present in other tools. Linked edits, output generation, and
live updates to outputs were valued features for the authoring
task. Authors preferred Torii to a comparison tool for tasks
such as making linked edits to code. Other features, like mak-
ing localized edits, could benefit from further design iteration
to better support authors’ use cases and mental models.

Limitations
The external validity of the formative studies is limited by
our sample choice. The interviewed authors had considerable
experience and wrote tutorials of ambitious scope. The content
analysis focused on tutorials that were widely-referenced. It is
not clear the extent to which the authoring challenges observed
generalize to all authors, and all tutorials. Further research
with a broader sample of authors and tutorials may surface
additional authoring challenges that this paper has overlooked.

One limitation of the in-lab usability study, common to lab
studies, is that authors were not allowed to use Torii to write
their own tutorials, with their own source material. We sought
to mitigate this risk by asking participants to edit and repro-
duce real existing tutorials. Still, a holistic understanding of

the tool’s usability will depend on studies with longer tasks,
and source programs of myriad types and languages.

Future Work
Designing better tools for tutorial authoring
In the formative and in-lab studies, authors recommended af-
fordances they would like to see in future tutorial authoring
tools. These include anchoring prose explanations to selec-
tions in code snippets, linking prose to code, and allowing
readers to edit and execute snippets within the tutorial.

One challenge problem for tools with Torii’s execution model
is providing intuitive functionality for making localized edits.
We see two promising directions for future designs. First,
authors may find it easier to select snippets from versioned
source programs, rather than versioning individual snippets.
This model of version control has been applied successfully in
recent related tools [4]. Second, Torii’s current implementation
could be improved by making affordances for syncing edits
more visible, and providing suitable defaults for how snippets
and source programs are initially synced.

Interaction design beyond programming tutorials
Ideas from Torii’s design may transfer to adjacent domains:

Torii-like tools could help software developers link code to
documentation in new ways. One participant in the lab study
wanted tools like Torii in their continuous integration pipeline
to check that their examples in their project’s documenta-
tion still functioned after the code or external dependencies
changed (P4). By leveraging novel techniques for mining and
generating documentation (e.g., [31, 32]), tools like Torii may
also be able to support linked editing of code and prose.

Authors of tutorials in other domains might benefit from tools
like Torii. One feature that could be particularly useful is
Torii’s automatic updates to a tutorial’s visuals. Authors of
tutorials about image manipulation, 3D modeling, and operat-
ing system configuration all create tutorials as user interface
instructions interleaved with “outputs” (e.g., images, models,
screenshots). Future tools could update such outputs auto-
matically as authors edit instructions by selectively replaying
interaction logs aligned to tutorial instructions.

CONCLUSION
Our formative studies showed that a common challenge for
tutorial authors is keeping source programs, snippets, and
outputs consistent. We designed and assessed a prototype tool,
Torii, that, given an existing reference implementation, helps
authors keep these artifacts consistent with each other, while
letting them organize their code more flexibly than typical
computational notebooks. Authors found Torii’s affordances
for linked edits and generating and updating outputs useful
in an open-ended authoring task. We hope that tools like
Torii will make it easy for authors to create and maintain
high-quality, output-rich programming tutorials.

ACKNOWLEDGMENTS
We thank Nate Weinman and Katie Stasaski for discussions
that helped us frame this paper, and Jocelyn Sun for her con-
tributions to Torii’s code. The authors were supported by an
NDSEG Fellowship and a UC LEADS Fellowship.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 10

REFERENCES
[1] Abdulaziz Alaboudi and Thomas D. LaToza. An

Exploratory Study of Live-Streamed Programming. In
VL/HCC ’19. 5–13.

[2] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. Two Studies of
Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In CHI ’09. 1589–1598.

[3] Raymond P.L. Buse and Westley Weimer. Synthesizing
API Usage Examples. In ICSE ’12. 782–792.

[4] Charles Chen and Philip J. Guo. Improv: Teaching
Programming at Scale via Live Coding. In
Learning@Scale ’19. 1–10.

[5] Barthélémy Dagenais and Martin P. Robillard. Creating
and Evolving Developer Documentation: Understanding
the Decisions of Open Source Contributors. In FSE ’10.
127–136.

[6] Michiel de Wit, Andy Zaidman, and Arie Van Deursen.
Managing Code Clones Using Dynamic Change
Tracking and Resolution. In ICSM ’09. 169–178.

[7] Robert DeLine, Danyel Fisher, Badrish Chandramouli,
Jonathan Goldstein, Michael Barnett, James Terwilliger,
and John Wernsing. Tempe: Live Scripting for Live
Data. In VL/HCC ’15. 137–141.

[8] Shiry Ginosar, Luis Fernando De Pombo, Maneesh
Agrawala, and Björn Hartmann. Authoring Multi-Stage
Code Examples with Editable Code Histories. In
UIST ’13. 485–494.

[9] Mitchell Gordon and Philip J. Guo. Codepourri:
Creating Visual Coding Tutorials Using a Volunteer
Crowd of Learners. In VL/HCC ’15. 13–21.

[10] Hacker Rank Developer Skills Survey 2018.
https://research.hackerrank.com/developer-skills/2018

[11] Andrew Head, Elena L. Glassman, Björn Hartmann, and
Marti A. Hearst. Interactive Extraction of Examples
from Existing Code. In CHI ’18. Article 85.

[12] Daqing Hou, Patricia Jablonski, and Ferosh Jacob. CnP:
Towards an Environment for the Proactive Management
of Copy-and-Paste Programming. In ICPC ’09.
238–242.

[13] Javadoc Tool. https://www.oracle.com/technetwork/java/
javase/documentation/index-jsp-135444.html

[14] Kyle Kelley and Brian Granger. 2017. Jupyter
Frontends: From the Classic Jupyter Notebook to
JupyterLab, nteract, and Beyond. Video. In JupyterCon.
https://www.youtube.com/watch?v=YKmJvHjTGAM

[15] Ada S. Kim and Amy J. Ko. A Pedagogical Analysis of
Online Coding Tutorials. In SIGCSE ’17. 321–326.

[16] Donald E. Knuth. 1984. Literate Programming. The
Computer Journal 27, 2 (1984), 97–111.

[17] Klaus Krippendorff. 2012. Content Analysis: An
Introduction to Its Methodology (third ed.). SAGE
Publications, Inc.

[18] Laura MacLeod, Andreas Bergen, and Margaret-Anne
Storey. 2017. Documenting and sharing software
knowledge using screencasts. Empirical Software
Engineering 22, 3 (2017), 1478–1507.

[19] Mark Mahoney. 2018. Storyteller: a tool for creating
worked examples. Journal of Computing Sciences in
Colleges 34, 1 (2018), 137–144.

[20] Markdown Preview Enhanced. https://github.com/
shd101wyy/markdown-preview-enhanced

[21] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, and Andrian Marcus. How Can I Use
This Method?. In ICSE ’15. 880–890.

[22] Alok Mysore and Philip J. Guo. Torta: Generating
Mixed-Media GUI and Command-Line App Tutorials
Using Operating-System-Wide Activity Tracing. In
UIST ’17. 703–714.

[23] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer,
and Chris Burns. What Makes a Good Code Example?:
A Study of Programming Q&A in StackOverflow. In
ICSM ’12. 25–34.

[24] Steve Oney, Christopher Brooks, and Paul Resnick.
2018. Creating Guided Code Explanations with
chat.codes. Proceedings of the ACM on
Human-Computer Interaction 2, CSCW, Article 131
(2018).

[25] Chris Parnin, Christoph Treude, and Margaret-Anne
Storey. Blogging Developer Knowledge: Motivations,
Challenges, and Future Directions. In ICPC ’13.
211–214.

[26] Roman Rädle, Midas Nouwens, Kristian Antonsen,
James R. Eagan, and Clemens N. Klokmose.
Codestrates: Literate Computing with Webstrates. In
UIST ’17. 715–725.

[27] Ray Wenderlich. https://www.raywenderlich.com

[28] Martin P. Robillard and Robert DeLine. 2011. A field
study of API learning obstacles. Empirical Software
Engineering 16, 6 (2011), 703–732.

[29] Huascar Sanchez, Jim Whitehead, and Martin Schäf.
Multistaging to Understand: Distilling the Essence of
Java Code Examples. In ICPC ’16. 1–10.

[30] S M Sohan, Craig Anslow, and Frank Maurer.
SpyREST: Automated RESTful API Documentation
using an HTTP Proxy Server. In ASE ’15. 271–276.

[31] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori
Pollock, and K. Vijay-Shanker. Towards Automatically
Generating Summary Comments for Java Methods. In
ASE ’10. 43–52.

[32] Siddharth Subramanian, Laura Inozemtseva, and Reid
Holmes. Live API Documentation. In ICSE ’14.
643–652.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 11

https://research.hackerrank.com/developer-skills/2018
https://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
https://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
https://www.youtube.com/watch?v=YKmJvHjTGAM
https://github.com/shd101wyy/markdown-preview-enhanced
https://github.com/shd101wyy/markdown-preview-enhanced
https://www.raywenderlich.com

[33] Ryo Suzuki. Interactive and Collaborative Source Code
Annotation. In ICSE ’15, Vol. 2. 799–800.

[34] Al Sweigart. Automate the Boring Stuff with Python:
Practical Programming for Total Beginners.
https://automatetheboringstuff.com/

[35] Lisa Tagliaferri. How to Code in Python 3.
https://www.digitalocean.com/community/
tutorial_series/how-to-code-in-python-3

[36] Rebecca Tiarks and Walid Maalej. How Does a Typical
Tutorial for Mobile Development Look Like?. In
MSR ’14. 272–281.

[37] Michael Toomim, Andrew Begel, and Susan L. Graham.
Managing Duplicated Code with Linked Editing. In
VL/HCC ’04. 173–180.

[38] VSCode. https://code.visualstudio.com/

[39] Robert S. Weiss. 1995. Learning from Strangers: The
Art and Method of Qualitative Interview Studies. Free
Press.

[40] Wikibooks. A Beginner’s Python Tutorial/Classes —
Wikibooks, The Free Textbook Project.
https://en.wikibooks.org/w/index.php?title=
A_Beginner%27s_Python_Tutorial/Classes

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 669 Page 12

https://automatetheboringstuff.com/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-python-3
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-python-3
https://code.visualstudio.com/
https://en.wikibooks.org/w/index.php?title=A_Beginner%27s_Python_Tutorial/Classes
https://en.wikibooks.org/w/index.php?title=A_Beginner%27s_Python_Tutorial/Classes

	Introduction
	Background and Related Work
	Programming Tutorials
	Computational Notebooks
	Tools for Authoring Tutorials
	Interactive Maintenance of Duplicated Code

	Interviews with Tutorial Authors
	Methods
	Results
	Overview
	Keeping source code, snippets, and outputs consistent
	Presenting code and outputs

	Content Analysis of Two-Hundred Tutorials
	Methods
	Results

	Tool Design: Torii
	Propagating edits from snippets to source programs
	Propagating edits from code to outputs
	Splitting, reordering, and copying code
	Reviewing a simulated reader's code
	Making localized changes to the code
	Distributing augmented tutorials

	In-Lab Usability Study
	Method
	Results
	Maintenance and creation of tutorials
	Usage of Torii's authoring affordances
	Desired affordances for future tools

	Discussion and future work
	Summary of results
	Limitations
	Future Work
	Designing better tools for tutorial authoring
	Interaction design beyond programming tutorials

	Conclusion
	Acknowledgments
	References

