
UC Davis
UC Davis Previously Published Works

Title
Coupled catastrophes: sudden shifts cascade and hop among interdependent systems

Permalink
https://escholarship.org/uc/item/1rw749mw

Journal
Journal of The Royal Society Interface, 12(112)

ISSN
1742-5689

Authors
Brummitt, Charles D
Barnett, George
D'Souza, Raissa M

Publication Date
2015-11-01

DOI
10.1098/rsif.2015.0712
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rw749mw
https://escholarship.org
http://www.cdlib.org/


rsif.royalsocietypublishing.org
Research
Cite this article: Brummitt CD, Barnett G,

D’Souza RM. 2015 Coupled catastrophes:

sudden shifts cascade and hop among

interdependent systems. J. R. Soc. Interface 12:

20150712.

http://dx.doi.org/10.1098/rsif.2015.0712
Received: 9 August 2015

Accepted: 20 October 2015
Subject Areas:
mathematical physics, biocomplexity

Keywords:
tipping point, regime shift, fold catastrophe,

coupled systems, cascades, the Arab Spring
Author for correspondence:
Charles D. Brummitt

e-mail: c.brummitt@columbia.edu
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2015.0712 or

via http://rsif.royalsocietypublishing.org.

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Coupled catastrophes: sudden shifts
cascade and hop among interdependent
systems

Charles D. Brummitt1,2,6, George Barnett3 and Raissa M. D’Souza2,4,5,7

1Department of Mathematics, 2Complexity Sciences Center, 3Department of Communication, 4Department of
Computer Science, and 5Department of Mechanical Engineering, University of California, Davis, CA 95616, USA
6Center for the Management of Systemic Risk, Columbia University, New York, NY 10027, USA
7Santa Fe Institute, Santa Fe, NM 87501, USA

CDB, 0000-0003-2553-8862

An important challenge in several disciplines is to understand how sudden

changes can propagate among coupled systems. Examples include the synchro-

nization of business cycles, population collapse in patchy ecosystems, markets

shifting to a new technology platform, collapses in prices and in confidence in

financial markets, and protests erupting in multiple countries. A number of

mathematical models of these phenomena have multiple equilibria separated

by saddle-node bifurcations. We study this behaviour in its normal form as

fast–slow ordinary differential equations. In our model, a system consists of

multiple subsystems, such as countries in the global economy or patches

of an ecosystem. Each subsystem is described by a scalar quantity, such as

economic output or population, that undergoes sudden changes via saddle-

node bifurcations. The subsystems are coupled via their scalar quantity

(e.g. trade couples economic output; diffusion couples populations); that coup-

ling moves the locations of their bifurcations. The model demonstrates two

ways in which sudden changes can propagate: they can cascade (one causing

the next), or they can hop over subsystems. The latter is absent from classic

models of cascades. For an application, we study the Arab Spring protests.

After connecting the model to sociological theories that have bistability, we

use socioeconomic data to estimate relative proximities to tipping points and

Facebook data to estimate couplings among countries. We find that although

protests tend to spread locally, they also seem to ‘hop’ over countries, like

in the stylized model; this result highlights a new class of temporal motifs in

longitudinal network datasets.
1. Introduction
Sudden changes propagating among coupled systems pose a significant scientific

challenge in many disciplines, yet we lack an adequate mathematical understand-

ing of how local sudden changes spread [1]. The Earth’s biosphere, for example,

appears to be approaching several planetary-scale sudden changes triggered by

human activity, including species extinction, desertification and lake eutrophica-

tion, which spread from one spatial patch to another [1]. That spatial spread not

only poses dangers but also opportunities for detecting early warning signs

[2–4]. Socioeconomic systems have examples, too: booms and busts in business

cycles in different economies appear to be synchronizing because of trade, finan-

cial and other linkages [5–8]. Poverty traps at multiple scales seem to be coupled

[9]. Abrupt declines in an asset price can trigger sharp declines in confidence and

fire sales of other assets, as occurred in the 2007–2008 global financial crisis [10].

Protests and social uprisings appear to spread contagiously among countries,

with one protest seeming to inspire others via news and social media [11,12].

The equilibrium supply and demand of a new technology that replaces an old
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Table 1. Examples of coupled subsystems in which each subsystem undergoes sudden changes in the form of saddle-node bifurcations, in models cited in the
column ‘regime shift’. The column ‘scalar quantity’ describes the state of the subsystem, and it corresponds to x(t), y(t) or z(t) in the model in §2. Citations in
the fourth column include empirical studies and mathematical models.

discipline regime shift scalar quantity examples of couplings among subsystems

ecology extinction due to over-harvesting

[15,16]

population diffusion among patches of an ecosystem [2,4]

economics boom and bust in the Kaldor model of

business cycles [17]

output (gross domestic

product)

investment between sectors [18], trade [13] and capital

flows [19] between countries can synchronize

business cycles

economics currency crisis (devaluation or, for a

peg, loss of reserves) [20]

currency value changes in macroeconomic fundamentals, sentiment,

perceived riskiness, risk aversion [20] and trade [21]

economics poverty trap [22,23] well-being (capital,

capabilities)

fractal poverty traps [9]

finance asset price declines [24,25] asset price asset-to-asset contagion (a bank with a declining asset

sells other assets) [26]

finance probability of bank failure [27] probability of bank failure worry about institutions’ creditworthiness spreads

contagiously [28]

technology

adoption

sudden change to new platform [13,29] difference between supply

and demand of the new

platform

movement of people among distinct markets [14]

political uprisings, revolts [30,31] number of protestors communication spreads inspiration, successful strategies

across borders [11,12,32,33]; raising importance of

identity [31] that span borders [34]
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one (such as compact discs replacing cassettes or electric cars

replacing fuel cars) can change abruptly [13], and movement

of people between distinct markets can facilitate adoption of

the new technology [14]. In each of these examples, a system

consists of distinct subsystems that (i) change suddenly

between equilibria and (ii) are coupled. A mathematical under-

standing of these phenomena could pave the way to predicting

and to steering these sudden changes.

In this paper, we take a step toward the goal of mathemat-

ically understanding how sudden changes can spread among

coupled systems [1]. Our model consists of one system, such

as the global economy or a large ecosystem, that consists of

multiple subsystems coupled to one another; for example, econ-

omies of multiple countries are coupled by trade, while patches

of an ecosystem are coupled by movement of organisms. To

choose dynamics, we note that many models of the aforemen-

tioned phenomena (cited in the second column of table 1) have

one or three equilibria and an S-shaped bifurcation diagram

(which is equivalent to a slice of the cusp catastrophe [35]).

Thus, we let each subsystem evolve according to the normal

form of this catastrophe. The state of each subsystem can

change suddenly when it passes a saddle-node bifurcation,

one of the simplest types of ‘regime shifts’ (which are sudden

changes in a system’s state) [36]. Next, we introduce linear

couplings between these subsystems, meaning that a change

in one subsystem affects other subsystems coupled to it in pro-

portion to that change. These couplings move the locations of

the latter subsystems’ bifurcations.

This model allows us to explore how regime shifts can

synchronize and spread. Suppose one subsystem X ‘drives’

(i.e. affects) another subsystem Y, which we denote by XQY:
Then a regime shift in X can trigger one in Y, meaning that

their regime shifts synchronize. If the driven subsystem Y
drives a third subsystem Z (i.e. if XQYQZ ), then one possible

behaviour is a cascade of regime shifts, one triggering another

like falling dominoes. Another possibility is that the ‘intermedi-

ate’ subsystem Y is far from its tipping point but that the others

(X and Z) are close to their tipping points; then a regime shift

in the driver subsystem X can nudge the intermediate sub-

system Y enough to push Z past its tipping point but not so

much that Y passes its tipping point. That is, a sequence of

regime shifts can ‘hop’ over intermediate subsystems. This

phenomenon is not observed in classic models of cascades

(e.g. percolation, epidemic spreading and sandpile models).

This ‘model of many models’ abstracts from many

domain-specific details. It suggests what might happen in

more realistic settings. To give an example, we consider

protests erupting nearly simultaneously in many countries.

We first show how two sociological theories of revolutions

give rise to the same S-shaped bifurcation diagram used

to model the individual subsystems of our mathematical

model. We also indicate how our model can generalize

these sociological theories to multiple, coupled countries in

a stylized way. Then we consider data on the Arab Spring,

the revolts and uprisings that seemingly cascaded among

countries in the Middle East and Northern Africa starting

in December 2010 [12]. We explore whether protests spread

locally in two networks that capture possible influence to

protest, Facebook and shared borders, but we also find

evidence of protests seeming to hop over countries.

Our approach differs from the many recent studies of cas-

cades in interdependent networks [37–39], all of which model
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Figure 1. In isolation, each system has two saddle-node bifurcations. (a) The
flow _x in equation (2.1a) has one or three equilibria, depending on the value
of the parameter a. Filled (respectively, open) circles denote stable (unstable)
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‘interdependence’ and ‘coupling’ as occurring between pairs

of nodes (individual ‘agents’) belonging to different subsys-

tems. Instead, we consider subsystems coupled via some

aggregate quantity, such as investment between sectors [18]

or the fraction of people protesting in a country [30].

Much attention is paid to regime shifts in large, central

nodes, such as recessions in central economies or insolvency

of large banks. Our findings suggest that small changes in

these central nodes (potentially triggered by a large change

in a small node adjacent to it) can suffice to trigger a

regime shift in a peripheral node close to its tipping point.
equilibria. (b) The bifurcation diagram (the equilibria x* of (2.1a) as a function
of a) is a slice of the cusp catastrophe, with two saddle-node bifurcations at
values of a denoted by abreak and by asustain. The solid (respectively, dashed)
curves are stable (unstable) fixed points x*. Triple arrows denote the fast flow
(a); single arrows denote a slow flow da/dt described in the text.

J.R.Soc.Interface
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2. Normal-form model of coupled subsystems
with one or two stable states

We begin by considering two subsystems X and Y, each

described by a single real number, x(t) and y(t), that changes

over time t. (Interpretations of x(t), y(t) for various contexts are

given in the third column of table 1.) The subsystems evolve

according to the autonomous ordinary differential equations

dx
dt
¼ �x3 þ cxþ aþ CXðy, xÞ ð2:1aÞ

and

dy
dt
¼ �y3 þ dyþ bþ CYðx, yÞ, ð2:1bÞ

where C�ð�, �Þ are some coupling functions (specified later),

and where a, b, c, d [ R are parameters that change slowly

compared with x(t), y(t), so System (1) is a fast–slow system [40].

Variants of System (1) have been studied in many contexts,

including the double cusp catastrophe [41–43], cuspoidal nets

[44,45] and coupled van der Pol oscillators [46–53] (for more

information, see appendix B). Coordination games and global

games in economics are similar to System (1) in that they also

permit multiple equilibria, but they lack dynamics. Global

games have been applied to currency crises [54], debt crises

[55,56], bank runs [57,58], and riots and political change

[59,60]; moreover, contagion has been studied in generaliz-

ations of these models, such as currency crises triggering

more currency crises [20], bank crises triggering more bank

crises [57] and currency crises triggering bank crises [61].

Here we take a catastrophe-theoretic approach [35] and empha-

size the role of multiple equilibria rather than eliminate multiple

equilibria, as in single-period global games.

To isolate the effect of coupling, here we focus on conta-

gion of regime shifts in a simple setting, the singular limit

in which x(t) and y(t) change arbitrarily more quickly than

the ‘slow parameters’ a, b, c, d. Thus, we focus on the critical

manifold, i.e. the solutions (x*, y*) to System (1) with

dx/dt ¼ dy/dt ¼ 0.

Next, we briefly review the familiar result that, in the

absence of coupling, the subsystems evolving according to

equation (2.1a) and equation (2.1b) each have two saddle-

node bifurcations, and then we show how coupling functions

C�ð�, �Þ move those ‘tipping points’.

2.1. Uncoupled systems each undergo a cusp
catastrophe

If the coupling functions C�ð�, �Þ are identically zero, then sub-

systems X and Y are uncoupled, and equations (2.1a) and (2.1b)
are the normal forms of the cusp catastrophe (in the special

case of a minus sign on the cubic term [62, theorem (8.1)]).

We chose this form to study the general effects of couplings

rather than domain-specific versions of the cusp, which are

topologically equivalent to the normal form in equation

(2.1a). Hereafter, we take c ¼ d ¼ 1 for simplicity.

If the subsystems evolving according to equation (2.1a) and

equation (2.1b) are uncoupled, then both subsystems have three

equilibria for certain intervals of the slow parameters a and b, as

depicted in figure 1. In this case, the set of fixed points of

equation (2.1a) undergoes two saddle-node bifurcations at

values of a that we denote by abreak and by asustain (the same ter-

minology used in [13]). Each subsystem is a classic example of

hysteresis. For instance, if the equilibrium x* of equation (2.1a)

is on the ‘lower stable branch’ (the blue curve in figure 1b),

then as a increases past the ‘breaking point’ abreak, the solution

x(t) jumps to the ‘upper stable branch’ depicted by the red

curve. (In other words, the subsystem passes a tipping point

(undergoes a regime shift).) As the parameter a is slowly

decreased, the large equilibrium is sustained (i.e. x(t) lies

on the red curve) until a passes asustain, at which point the

subsystem x(t) jumps to the lower branch.
2.2. Master – slave with linear coupling
Next, we consider the analytically solvable case of a master–

slave system with linear coupling. Specifically, subsystem X
drives subsystem Y (denoted XQY) according to the coup-

ling function CYðx, yÞ :¼ sx, where the constant s [ R is

the coupling strength. (For instance, consider unidirectional

investment between sectors in the Kaldor business cycle

model, as in [18], or movement of organisms from one

patch of an ecosystem to another, as in [2,4].) Then equation

(2.1) becomes

dx
dt
¼ �x3 þ xþ a ð2:2aÞ

and

dy
dt
¼ �y3 þ yþ bþ sx: ð2:2bÞ

The equilibria of equation (2.2) can be obtained analyti-

cally by first solving for the equilibria x* of the master

subsystem (equation (2.2a)), and then by using the solution(s)

to calculate the equilibria y* of the slave subsystem

(equation (2.2b)). The saddle-node bifurcations of the slave



(b)(a) y*

–sx*

bsustain(sx*)

bsustain(sx*)

sync.
window

x* on its lower middle upper branch

asustainbbreak(sx*)
b

b

a
abreak

bbreak(sx*)

Figure 2. Coupling a slave subsystem to a master subsystem moves the slave subsystem’s tipping points and can change them suddenly. (a) The bifurcation diagram
of the slave subsystem shows the equilibrium of the slave subsystem y*(b; sx*) as a function of its slow parameter b. (The slave subsystem’s equilibrium y* also
depends on the coupling term sx* due to the influence of the master subsystem.) In this example, the master subsystem has just passed its break point a . abreak,
so the master subsystem has quickly moved to its upper stable branch of equilibria (x* . 0). Because the coupling strength s . 0, the sudden shift in the master
subsystem makes it easier for the slave subsystem to pass its break point [bbreak(sx*) , bbreak(0)]. (b) The locations of the saddle-node bifurcations of the slave
subsystem (equation (2.2b)), denoted by bbreak(sx*) and by bsustain (sx*), are one- or three-valued functions of a, the parameter of the master subsystem. The
colours match those in figure 1: if the master subsystem’s equilibrium x* lies on its lower (respectively, upper) stable branch depicted in figure 1b, then the
bifurcation points of the slave subsystem are the blue (respectively, red) curves in (b). There exist three equilibria y* in the shaded blue (respectively, red) regions.
Here, s . 0, so the master subsystem acts to prevent the slave subsystem from crossing its break point bbreak(sx*) when x* , 0 and facilitates it when x* . 0. If
(a,b) crosses the green line segment marked ‘sync. window’, then the regime shifts synchronize: the master subsystem (equation (2.2a)) crosses its break point abreak,
causing x* to jump from a negative number to a positive number, which causes the slave subsystem (equation (2.2b)) to cross its break point bbreak(sx*).
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subsystem (equation (2.2b)) now depend on the equilibrium

value(s) x* of the master subsystem (equation (2.2a)) and on

the coupling strength s; we denote the slave subsystem’s bifur-

cations (with respect to b) by bbreak(sx*) and by bsustain(sx*).

Because x* has three possible values whenever the master par-

ameter a [ ðasustain, abreakÞ, the slave subsystem has three

possible values for each of its bifurcation points bbreak(sx*)

and bsustain(sx*) whenever a [ ðasustain, abreakÞ:
Figure 2 shows the resulting bifurcation diagrams of the

slave subsystem for s ¼ 0.1. The saddle-node bifurcations are

now functions of the coupling term: b†(sx*)¼ b†(0)2sx*,

where † is either ‘break’ or ‘sustain’, and b†(0) is the bifurca-

tion when the subsystems are uncoupled (s ¼ 0). To

understand the consequences of this displacement of the bifur-

cations, suppose that the coupling strength s is positive and

that the master subsystem is initially on its lower stable

branch (the blue curve in figure 1b). Thus, x(0) ¼ x* , 0 and

sx* , 0, so the master subsystem suppresses a regime shift in

the slave subsystem, meaning that the parameter b must

increase further to pass bbreak(sx*) compared with the case of

no coupling (s ¼ 0). However, if the master subsystem passes

its break point (i.e. if a increases past abreak), then the master sub-

system x(t) jumps to its upper stable branch (the red curve

in figure 1b), where x(t) ¼ x* . 0. That sudden change facilita-

tes a regime shift in the slave subsystem, meaning that the

parameter b does not need to increase as much (in order to

pass bbreak(sx*)¼ bbreak(0) 2 sx*) as it would if there were

no coupling.

This simple system illuminates how regime shifts might

synchronize. When the slow parameter a of the master

subsystem (equation (2.2a)) increases past its saddle-node

bifurcation at abreak, the master subsystem jumps to its

upper stable branch of equilibria (recall figure 1b), so the

relevant saddle-node bifurcation for the slave subsystem

(equation (2.2b)) suddenly changes from the blue curve to

the red curve in figure 2b. Thus, at the moment when a
passes abreak, if the value of b lies above the red curve in

figure 2b (and below the blue curve, meaning that the slave

subsystem has not already jumped to its upper branch of

equilibria), then the regime shift in the slave subsystem

occurs simultaneously with the regime shift in the master

subsystem. The green line segment in figure 2 marks the ‘syn-

chronizing window’ S, the interval of values of (a,b) leading

to synchronized regime shifts.1

For an interpretation of the synchronizing window, con-

sider two economies X and Y that are both stuck in

recession in the Kaldor business cycle model [13,18]. If X
undergoes a boom, does the rise in the demand of X for

imports from Y push Y out of its recession? The synchroniz-

ing window S specifies how close to its tipping point Y must

be for the economic booms to synchronize, which provides an

answer to Krugman’s conjecture in [13].

In summary, there are three ways in which the two subsys-

tems in equation (2.2) could both pass their breaking points,

abreak and bbreak(sx*). First, the slave subsystem could undergo

a regime shift on its own, meaning that b increases past the

blue curve in figure 2b while a remains below abreak, and sub-

sequently a passes abreak. Second, the two subsystems could

simultaneously pass their breaking points, meaning that (a,b)

crosses the synchronizing window in figure 2b. Third, the

master subsystem could pass its breaking point abreak, but

the slave subsystem remains too far from its tipping point

(despite becoming abruptly closer), so there is a delay in time

between the regime shifts.

As the subsystems become more strongly coupled (larger

coupling strength s), it becomes easier for the regime shifts

to synchronize: the S-shaped curves in figure 2b stretch verti-

cally (but the intersections of the dashed curves and the a ¼ 0

axis remain fixed), so the synchronizing window S enlarges

with s. (For an illustration, see the electronic supplementary

material, figure SM-1.) The results of other simple coupling

functions, such as +sjxj, are simple transformations of
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figure 2b (see electronic supplementary material, figure SM-2);

we chose the coupling sx for simplicity. The results of this

subsection also apply to couplings that form a directed star

graph.2 (A glossary of terminology for graphs and networks

is provided in appendix A.)

If the coupling were bidirectional, then the equilibria

(x*, y*) would no longer be solvable in closed form. Although syn-

chronized regime shifts could still occur, characterizing the

equilibria becomes more complicated, as illustrated by Abraham’s

numerical studies [45]. (For more details on the related mathe-

matical literature, see appendix B.) Next, we generalize in a way

such that the equilibria remain analytically solvable.
Figure 3. Catastrophes can cascade, or they can hop over intermediate systems.
The two backward-S-shaped curves are plots of the break point cbreak(sy*) of the
downstream system Z (equation (2.3)) as a function of the slow parameter b of
the intermediate system (2.2b) for coupling strength s ¼ 0.2. The two curves
show the effect of the master parameter a increasing past its break point abreak, at
which time we change focus from the blue, right-hand curve to the red, left-hand
curve. Thick curves (respectively, thin curves, dashed curves) correspond to the
intermediate system y* on its upper stable branch (respectively, lower stable
branch, middle unstable branch). As in figure 2b, the green line segment
marks the synchronizing window S for X and Y (the values of b such that,
when a crosses abreak, the intermediate system Y passes its break point
bbreak(s x *)). The cyan line segment marks the analogous interval for Y and
Z ( for a ¼ abreak). The orange and yellow regions are values of (b,c) leading
to sequences of regime shifts that cascade or that jump over Y, respectively.

.Soc.Interface
12:20150712
2.3. Master – slave – slave system XQYQZ
Now we introduce a third subsystem Z, and we assume that

Y drives Z in the same way in which the master subsystem X
drives Y (and with the same coupling strength s, for simpli-

city). Thus, we augment equations (2.2a) and (2.2b) with

the equation

z0 ¼ �z3 þ zþ cþ sy, ð2:3Þ

with a new slow parameter c [ R that, like a and b, changes

much more slowly than x, y and z do.

Regime shifts can spread in two ways in this system

XQYQZ: First, if all three systems are sufficiently close to

their tipping points, then a cascade of regime shifts can

occur, one causing the next. The second way is more novel:

if the intermediate system Y is relatively far from its tipping

point whereas X and Z are close to their tipping points,

then the sequence of regime shifts can ‘hop’ over the inter-

mediate system Y. That is, a regime shift in the master

subsystem (equation (2.2a)) can nudge the intermediate

system Y (equation (2.2b)) enough to trigger a regime shift

in the third system Z (equation (2.3)) but not so much that

Y undergoes a regime shift.

We illustrate these two phenomena in figure 3, a plot of

the ‘downstream subsystem’ Z’s break point cbreak(sy*) at

the moment when the master subsystem’s parameter a
increases past its break point abreak. At this moment, the

master subsystem jumps from its lower branch of equilibria

to its upper branch, so we change focus from the red curve

to the blue curve in figure 3. If the slow parameters (b,c) lie

in the orange region labelled ‘cascade’ in figure 3, then a cas-

cade of regime shifts occurs, one regime shift causing the

next. To see why, note that b lies in its synchronizing

window S (the green line segment in figures 2b and 3), so Y
passes its break point bbreak(sx*); and note that c lies

above the thick, red line cbreak(sy*), so Z passes its break

point cbreak(sy*). If, on the other hand, the parameters (b,c)

lie in the yellow region labelled ‘hop’ in figure 3, then the

sequence of regime shifts hops over the intermediate subsys-

tem Y. To see why, note that b is below its synchronizing

window S, so b does not pass its break point bbreak(sx*)

when a crosses abreak, but note that c lies above the red thin

line, so Z passes its break point cbreak(sy*) despite receiving

only a small nudge from Y.

Note that such ‘cascade hopping’ cannot occur in many

classic models of cascades, including the Ising model [63],

sandpile models [63] and threshold models [64,65]. For cas-

cade hopping to occur, some vertices of the graph must

be able to affect their neighbours in at least three ways

(e.g. with a small, medium or large amount of force).
A phenomenon that is qualitatively similar to cascade hop-

ping occurs in epidemiology: some diseases are contagious

yet asymptomatic, so the sequence of contractions of the dis-

ease can appear to hop over individuals. Different people

remain in the asymptomatic state for different amounts of

time, which resembles coupled subsystems with different

proximities to tipping points.3 Next, we show circumstantial

evidence that cascade hopping may occur in other kinds of

contagion in human populations.
3. Communication-coupled outbreaks of protest
We have presented a ‘model of many models’ that captures a

commonality among systems in table 1 but that ignores many

domain-specific details. If the models in table 1 are one step

removed from reality, then the stylized model in §2 is two

steps removed from reality. The virtue of studying such a

simple model is to elucidate what phenomena might

happen in more realistic settings.

To give one example, in this section we consider protests

and revolutions occurring in many countries. In §3.1, we

summarize Kuran’s model [30] of protests and revolutions

based on preference falsification and Slee’s model [31] of

identity-driven cascades. Our model is a stylized generaliz-

ation of these models to multiple countries, with finance

and cross-border identity being two possible mechanisms

for coupling protests across borders. Next, we study data

on countries involved in the Arab Spring, the uprisings in

Northern Africa and in the Middle East during 2010–2011.

Using the theoretical model of §2 as a guide for asking ques-

tions, we explore the role of contagion and common cause in

the Arab Spring (§3.2), whether protests seem to spread

locally (§3.3) or in non-local jumps (§3.4).



rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150712

6
3.1. Models of revolutions based on preference
falsification and identity

To begin, we summarize two models of protests and revolu-

tions that emerge suddenly via saddle-node bifurcations.

Then we explain how the conceptual framework in §2 can

capture a generalization of these models to multiple countries

with couplings between them. (Not all models of protests

have saddle-node bifurcations. For some recent examples,

see [67–70].)

One way in which protests and revolutions can emerge

suddenly is because people had been publicly declaring a pre-

ference different from their private preference [30]. This idea,

called preference falsification, has been used in several appli-

cations [71]. In Kuran’s model of revolutions [30], the unit

interval [0, 1] denotes a political spectrum, with 0 representing

the current government and 1 representing the opposition. He

assumes that people derive ‘reputational utility’ from publicly

declaring a certain preference in [0, 1], plus an ‘integrity utility’

from declaring a preference close to their private preference.

Slow changes in these utility functions or in the distribution

of preferences can cause a large, sudden change in collective

sentiment (in a saddle-node bifurcation).

Kuran’s model is more rich than the model in §2, as it has

utility functions, distributions of preferences and weights of

different people, but the manifold of equilibria in Kuran’s

model is equivalent (in a catastrophe-theoretic sense [35])

to that of the isolated subsystem in equation (2.2a). The state

variable in Kuran’s model is the (weighted) share of people

who publicly declare that they prefer the opposition. The

equilibrium [30, eqn 8] has one or three equilibria; in the

latter case, two equilibria are stable and the other unstable,

as illustrated in [30, figs 3–7]. The difference between the

thick and thin curves in figs 3–7 of [30] is the analogue of

figure 1a.

Kuran explains two ways in which a saddle-node

bifurcation can occur, leaving only one equilibrium corre-

sponding to a large public support of the opposition [30,

§4.1, pp. 51–53]:

(1) a shift in the distribution of private preferences toward

the opposition [30, fig. 3] due to, for example, an

economic downturn [72];

(2) a change in the reputational utility terms (for example,

because the opposition becomes better able to give repu-

tational utility), causing a shift in the threshold function

that marks whether someone supports the opposition

or the government.

These two shifts correspond to changes in a ‘slow variable’

(such as the variable a in equation (2.2a)).

To suggest that our model might capture a generalization

of Kuran’s model to multiple countries, we must motivate the

assumption that the state variables in different countries are

coupled somehow. Kuran mentions one possible mechanism:

a shift in the reputational utility (item 2 in the list above)

could be ‘made possible by funds provided by a foreign

source’ [30, p. 53]. That is, a coupling to a foreign country

(here, a financial type), could change the equations of

motion such that two equilibria vanish, leaving only the equi-

librium that corresponds to large support for the opposition.

To continue Kuran’s story, suppose that those foreign funds

were sent from the opposition in a country that has just
undergone massive protests, say, because that country

passed a saddle-node bifurcation. This example corresponds

to the master subsystem crossing its break point (a passes

abreak), and the coupling sx qualitatively captures the increase

in the ability of the opposition in the second country to give

reputational utility to supporters because of financial funds

from abroad.

Identity provides another possible coupling across borders.

Gause [32] argues that pan-Arab identity is an important

reason why the Arab Spring protests emerged nearly simul-

taneously and why it took Middle East specialists by

surprise. Identity that spans borders could couple decisions

to protest. For example, in Slee’s model of revolutions based

on rational-choice theories of identity [31], people suffer dis-

utility due to cognitive dissonance whenever their actions

differ from the norms associated with their identity. Slee con-

siders two identities associated with the government and with

the opposition. Like in Kuran’s model [30], small changes can

eliminate two equilibria, causing large protests to erupt. To

continue Slee’s reasoning [31], if people protest in one country,

then it becomes more important for others in a nearby country

to act according to their anti-government identity. If x(t)
measures the share of people in one country who are protest-

ing, then the importance of identity in the utility functions of

people in a different country could vary directly with x(t),
such as the simple linear coupling CYðy, xÞ ¼ sxðtÞ studied

in §2.2 and §2.3.

These social-scientific models of revolutions based on

preference falsification and identity illustrate how difficult it

is to validate our coupled-threshold model with real data:

these models are based on cognitive dissonance, preferences

and identity. In principle, these cognitive phenomena

could be studied with surveys, ethnographies and other

labour-intensive methods. These theories [30,31], which are

grounded in social scientific understanding of human behav-

iour, can be seen as the connection between our conceptual

model and real systems. When we describe our model as a

‘model of models’ and hence two steps removed from reality,

we have in mind models like [30,31] that have bistability.

Multiple equilibria can also arise if people have greater

incentives to protest as more people decide to protest (i.e.

strategic complementarities) [73], for example, because of

safety in numbers [74, p. 18]. Multiple equilibria also occur

in repeated coordination games in which people learn

about the number of protestors needed to overthrow the

regime (so-called dynamic global games) [75].

Now that we have connected the stylized model in §2 and

the sociological literature such as [30,31], we next investigate

data from the Arab Spring with questions generated from the

conceptual framework of §2.
3.2. Contagion versus common cause in the Arab Spring
Why did many protests begin nearly simultaneously in the

Arab Spring? One explanation is common cause (called the mon-
soonal effect in the context of contagious currency crises [20]):

an external driver, such as rising global food prices, pushes

all countries past their tipping points (as suggested in [76]).

Another explanation is contagion: couplings among countries

(such as communication) helped to synchronize their protests.

The analogue of common cause in System (1) in §2 is that the

slow parameters a and b both increase and pass their tipping

points simultaneously (or at nearly the same time), with or
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even without coupling. The analogue of contagion is that the

slow parameter a increases past its tipping point, which (via

the coupling) pushes b past its tipping point.

To begin to explore the possible roles of common cause and

contagion, we study data on attributes of countries [12,77,78]

and data on communication between countries via Facebook

and telephone. Communication across borders spread inspi-

ration to protest, freedom memes and strategies for success

[11,12,33]. Therefore, cross-border communication via Face-

book and telephone may have spurred people to publicly

declare their private preferences [30] or to act according to

norms of their government-opposing identities [31]. The Face-

book data available [79] are coarse-grained: for each country,

we have the ranked list of the top five other countries to

which members of the focal country have the most friends (in

2012, the only year available to us).

Figure 4 shows the subgraph of this Facebook graph

induced by countries that protested in the Arab Spring, together

with two countries that did not protest but that may have com-

municated influence to protest and that shared Arab identity,

Qatar and the United Arab Emirates.4 Next, to explore the

possible roles of common cause and contagion, we study

what attributes of countries correlate with when their protests

began. We found that unemployment most significantly cor-

relates with protest start date (see the downward trend in

figure 4). That suggests that high-unemployment countries

were closer to their tipping points.5

Internet penetration, the fraction of the population that

uses the Internet [77], which is plotted as vertex diameter

in figure 4, may indicate the strength of coupling to other

countries via social media such as Facebook, which was

thought to be an important channel for inspiring protests

[11,34]. However, Internet penetration is a weak and
statistically insignificant predictor of when protests started

in various countries.6

Spikes in commodity food prices have been proposed as a

significant cause of the Arab Spring [76]. Here we consider

consumer food prices [78], which did not notably spike in

2010 [81]; we found that these indices in 2010 were not

predictive of when protests began in different countries.7

Many other covariates, from economic indicators to

political freedoms, were similarly weak and statistically

insignificant predictors of when protests began (for the list

of covariates, see the first column of electronic supplementary

material, figures SM-4 and SM-5). Furthermore, using the cri-

terion for forward selection, we could not reject the null

hypothesis that any of these covariates could be considered

together with unemployment.

Because these network data are longitudinal, hazards

models [82] or generalized estimating equations [83] could

be useful. A challenge, however, is the small sample size

(about a dozen countries).
3.3. Did Arab Spring protests spread locally?
The ‘domino hypothesis’—that the Arab Spring protests

spread locally like falling dominoes—has been the subject

of speculation [12,84,85] but, to our knowledge, little analysis.

An alternative hypothesis, motivated by the ‘hopping’

phenomenon in §2.3, is that Arab Spring protests spread

non-locally in some way.

We find circumstantial evidence in support of both

hypotheses. In support of the domino hypothesis, we found

that, among countries that had protests, a majority of those

countries share a border8 with at least one country whose

protests began earlier, and a majority has a Facebook link



Table 2. Ten ‘hop motifs’ in the Facebook data (see definition 3.1). The
notation ‘X �!r Y ’ means that country X is located at position r on the list
of countries ranked in descending order by the number of Facebook friends
with people in country Y. For example, ‘Egypt �!1 Saudi Arabia’ means
that Saudis have more Facebook friends in Egypt than in any other country.

upstream X �!r intermed. Y �!r downstream Z

Egypt �!1 Saudi Arabia �!1 Bahrain

Yemen �!2 Saudi Arabia �!1 Bahrain

Tunisia �!3 Egypt �!1 Jordan

Jordan �!2 Egypt �!4 Oman

Tunisia �!3 Egypt �!4 Oman

Egypt �!3 Kuwait �!4 Bahrain

Jordan �!4 Saudi Arabia �!1 Bahrain

Jordan �!4 Saudi Arabia �!2 Oman

Sudan �!5 Saudi Arabia �!1 Bahrain

Egypt �!5 UAE �!2 Bahrain
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from at least one country whose protest began earlier. These

results are statistically significant compared with a null

model of randomized protest dates.9 In addition to this evi-

dence of local spread, we also find evidence of protests

spreading non-locally, discussed next.

3.4. Cascade hopping in the Arab Spring
Here we show circumstantial evidence that protests may have

spread in a non-local way consistent with the ‘cascade hop-

ping’ phenomenon in §2.3. An empirical signature of the

‘hopping’ phenomenon—though not conclusive evidence of

it—is a small subgraph in which protests appear to hop

over a country. If this small subgraph appears more often

compared with a reasonable null model, then this subgraph

is called a ‘motif’. We call this particular motif a ‘hop

motif’ and define it as follows. (For definitions of network

terminology, see the Glossary in appendix A.)

Definition 3.1. A hop motif in a directed coupling graph is a

triple of countries (X, Y, Z) such that

(1) the subgraph induced by fX, Y, Zg is the directed path

XQYQZ;10

(2) there is no coupling edge pointing to Z from any country

that began to protest before Z did; and

(3) protests began first in X, then in Z, and then in Y (or Y
did not have any protests).

For the Facebook network shown in figure 4, 10 triples of

countries, listed in table 2, satisfy these criteria in definition

3.1. One of them, Egypt! Saudi Arabia! Bahrain, is high-

lighted with red edges and large arrowheads in figure 4.

Compared with a null model with random protest start

times, the network in figure 4 has more hop motifs than

93.3% of randomized versions.

These hop motifs suggest (but do not conclusively show)

that Saudi Arabia and Egypt played the role of an intermedi-

ate subsystem Y in §2.3. Specifically, the motifs suggest that

Saudi Arabia and Egypt may have received influence from

protesting countries that played the role of the upstream sub-

system X (e.g. Tunisia, Jordan) and propagated influence to

other countries that played the role of the downstream sub-

system Z (e.g. Bahrain, Oman), which may have helped to

trigger protests in Z before protests began in Y. Consistent

with relative deprivation theory (which argues that economic

stress puts countries close to a tipping point) [72], we find

that the upstream and downstream countries in table 2

were relatively closer to tipping points than intermediate

countries (see the electronic supplementary material, §SM-4).

Unlike work on temporal motifs in telephone call data

[87,88], here events occur on the nodes rather than on the

edges (i.e. protests occur in countries, whereas phone calls

occur between individuals). Thus, hop motifs were not

studied in work on temporal motifs [87,88].

Note that a hop motif (X, Y, Z) is delicate: a communi-

cation link from X to Z could explain why protests began in

Z before they began in Y. None of the upstream and down-

stream countries X and Z share a border, and only Jordan

and Oman had a significant amount of cross-border telephone

calls in 2010 (8.3 � 106 min), which eliminates two of the

10 hop motifs in the Facebook network (table 2). Data on
other communication between countries, such as cross-

border mentions of hashtags on Twitter [11] and consumption

of news media, could reveal communication from X to Z, but

obtaining such data are difficult and beyond the scope of this

paper. A limitation of the Facebook dataset is that we only

know the top-5 countries to which each country has the

most Facebook friends; considering only the top-R lists with

R [ f1, 2, 3, 4g did not result in any new hop motifs.
4. Discussion
Some of the most pressing global challenges involve the pre-

diction and control of sudden changes propagating among

coupled subsystems, such as avoiding disastrous shifts in

the biosphere [1] and preventing crises in the financial

system [10]. Livelihoods could also improve if sudden adop-

tion of technologies in coupled markets were facilitated

[13,14], or if coupled recessions and booms in economies

were better managed [5–8,13], or if social uprisings spread-

ing among countries were better forecast [11,12,32].

Mathematically understanding tipping points in coupled

subsystems is a step toward meeting these challenges.

In this paper, we have shown in a conceptual model how

regime shifts can propagate among coupled subsystems by cas-

cading or even by jumping over subsystems. Here, we model a

regime shift as a parameter passing a saddle-node bifurcation,

which causes a sudden change to a different equilibrium.

Such behaviour appears in many systems [89,90] but is not

the only kind of regime shift [36,91]. This model combines con-

tinuous and discrete, threshold-like changes. The study of

models with these features is a challenge in several disciplines,

such as in failures spreading in economic input–output models

[92] or in electric power grids (though in a more non-local way)

[93,94]. We also find non-local spread: the next subsystem to

pass a tipping point may lie two or more ‘hops’ away from

those that have passed their tipping points.

This model captures just one aspect of many models

(couplings and saddle-node bifurcations), but it ignores



Table 3. Dates when protests, demonstrations or conflicts began in the
Arab Spring.

country date protests began

Tunisia 18 December 2010

Algeria 29 December 2010

Jordan 14 January 2011

Oman 17 January 2011

Egypt 25 January 2011

Yemen 27 January 2011

Djibouti 28 January 2011

Somalia 28 January 2011

Sudan 30 January 2011

Bahrain 14 February 2011

Libya 17 February 2011

Kuwait 19 February 2011

Morocco 20 February 2011

Mauritania 25 February 2011

Lebanon 27 February 2011

Syria 11 March 2011

Saudi Arabia 5 March 2011

Israel 15 May 2011

Palestinian Territory 4 September 2012

Iraq 23 December 2012
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many domain-specific details that could also be quite impor-

tant. At best, this ‘model of many models’ can suggest what

phenomena might occur in more complicated, domain-

specific models or in real data. As an example, we find 10

‘hop motifs’ (i.e. sequences of sudden changes that appear

to hop over intermediate subsystems) in data on communi-

cation among countries involved in the Arab Spring protests.

Much attention is devoted to regime shifts in large, central

nodes, such as the effect of recessions in large economies or

the question of whether to bail out large banks. Our findings

suggest that small, seemingly innocuous changes in these cen-

tral nodes (perhaps triggered by a large change in a small

node adjacent to it) can suffice to trigger a regime shift in a per-

ipheral node close to its tipping point. Such dynamics may have

occurred in the aftermath of the 2008 financial crisis given that

in the United States hundreds of small banks failed but few

large banks failed [95]. Peripheral players in networks may be

vulnerable to sequences of regime shifts that hop over the

core, an issue that seems to merit further attention.

An open challenge is to estimate tipping points (if they

exist at all) in various complex systems, using data from his-

torical examples. Considering data not only from the Arab

Spring but also from other episodes of nearly synchronous

uprisings (e.g. in Soviet countries in 1989 [74,96,97] and

others [98]) could elucidate how couplings among countries

affect their proximities to tipping points. This understanding

could enable better prediction of the next protest or revolt,

complementing new techniques for mining news for senti-

ment and tone [99,100] and early warning signals applied

to social network activity [101]. Similar advances have been

made in understanding contagion of currency and debt

crises among countries in the 1990s [20].

Another challenge is to extend work on temporal motifs

in telephone call data [87,88] to settings like the one con-

sidered here. In the systems summarized in table 1 and in

the model in §2, events occur on the nodes (rather than on

the edges [87,88]), and nodes can be influenced by multiple

ongoing events (rather than participating in just one event

at a time [87,88]). Hop motifs are just one example in this

new class of temporal motifs.
Data accessibility. The following data used in this article are freely
available online:

— Unemployment in 2010, unemployment of young men (age
15–24) in 2010, GDP per capita in 2010 (based on purchasing
power parity in constant 2011 US dollars) and Internet
penetration in 2010 are from The World Bank [77].

— GDP per capita for Djbouti, Libya, Syria and Somalia were missing
in the World Bank data [77]. To fill these gaps, we used the GDP
per capita (for the year 2011) in the WolframjAlpha knowledge-
base (http://www.wolframalpha.com/).

— Missing data on Internet penetration in 2010 for Somalia in the
World Bank data [77] were filled using data from [102] by linearly
interpolating the Internet use between 2009 (1.16%) and 2011
(1.25%), arriving at the estimate of 1.2%.

— The Gini coefficient of the wealth distribution, level of oil pro-
duction (electronic supplementary material, figure SM-4), fraction
of the population living in urban areas (electronic supplementary
material, figure SM-5), fraction of the population under age 25
(electronic supplementary material, figure SM-5) and success of
the protest in achieving its goals with minimal violence (electronic
supplementary material, figure SM-5), are from ref. [12, table 1].

— Political freedom data (the fourth and fifth rows of electronic sup-
plementary material, figure SM-5) are from Freedom House [103].
— Freedom of the press data (the last row of electronic
supplementary material, figure SM-5) are from [104].

— The Facebook data [79] were scraped from a Facebook blog post.

— The cross-border telephone data [105] are from 2010. For each
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utes. These data were purchased from TeleGeography, and are
available at http://spins.ucdavis.edu/.
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figure SM-3.

— Shared borders were computed using the function CountryData in
the Wolfram Language [106].
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Endnotes
1Specifically, S is the Cartesian product {abreak} � I, where
I ¼ ½bbreakðsx�upperÞ, bbreakðsx�lowerÞ� , R is the closed interval with
the minimum (respectively, maximum) of I equal to the value of
bbreak(sx*) for x* on its upper (respectively, lower) branch of equili-
bria at a ¼ abreak. The ‘break-type’ regime shifts synchronize if and
only if the slow variables (a, b) pass through S.
2A directed star coupling graph, fXQYi : i ¼ 1, 2, . . . , n� 1g, is a
system with one master subsystem that evolves according to equation
(2.2a) and that drives n 2 1 slave subsystems according to equation
(2.2b), with potentially different parameters for the various slave
subsystems Yi.
3HIV is an example of an infection with large variability in asympto-
matic periods, resulting mostly from variability among patients [66]
4Expatriates in other countries may be important, too, but we add
only Qatar and the UAE to our analysis given their geographic and
cultural proximity to the countries with protests.
5Linear regression indicates that each additional 1% in unemploy-
ment in 2010 is associated with protests starting 3.2+1.6 days
earlier (mean+1 s.e.); the p-value is 0.06 and R2 is 0.25, suggesting
statistical significance.
6Each percentage of Internet users delays the protest start date by
0.44+0.37 days; p-value 0.25, R2¼0.099.
7The index [78] is expressed on a scale such that it equals 100 in the
year 2000. Each unit increase in the consumer food price index is
associated with protests occurring 0.09+0.26 days earlier, but with
p-value 0.74 and R2¼0.011.
8We assume that Bahrain borders Saudi Arabia, Qatar and the UAE
given the proximity and the fact that Saudi Arabia and the UAE sent
troops to Bahrain to quell protests there [86], suggesting that protests
Bahrain would likely spread to Saudi Arabia and the UAE.
9Specifically, seven of the 16 countries with protests in figure 4 and
11 of all 20 countries with protests (listed in table 3) shared a border
with at least one country with protests; comparing this outcome to
randomized protest start times gives a p-value of 0.02 in both
cases. For the Facebook graph, 10 of the 16 countries with protests
in figure 4 and 14 of all 20 countries with protests (listed in table 3)
had at least one incoming Facebook link to a country with protests
that started earlier ( p-values 0.06, 0.16, respectively).
10For the Facebook graph [79], this path subgraph means that X is on
Y’s top-5 list (of countries to which people in Y have the most friends)
and that Y is on Z’s top-5 list.
Appendix A. Glossary of network terms
— A network (or graph) is a collection of nodes (or vertices) and

a list of connections (or edges) among them. For example,

in a social network, the nodes are people and the connec-

tions could be friendships. If those connections have a

direction, then the graph is called directed; otherwise the

graph is called undirected. Graphs are typically visualized

by drawing the nodes as circles and the edges among

them as lines; if the edges are directed, then the lines

have arrowheads to indicate their direction.

— A node’s degree is the number of connections it has.

A node in a directed graph has an in-degree and an out-
degree, which are the numbers of incoming and outgoing

connections, respectively.
— A subgraph of a graph is a graph that is entirely contained

in the original graph. A subgraph induced by a certain subset
of nodes is the subgraph consisting of all the edges among

those nodes.

— A motif of a graph is a small subgraph that appears rather

frequently compared with some randomized version of

the graph.

Appendix B. Literature related to System (1)
The case of System (1) with bidirectional, symmetric coupling

CXðy, xÞ ¼ sy, CYðx, yÞ ¼ sx is a special case of the double

cusp catastrophe, which is given by the potential

F ¼ �x4 � y4 þ a22x2y2 þ a12xy2 þ a21x2y

þ cx2 þ dy2 þ sxyþ axþ by:

This singularity has a very rich structure [41–43].

Abraham et al. [45] numerically studied a system similar

to the double catastrophe, namely x0 ¼ �x3 þ �bxþ �ay,

y0 ¼ �y3 þ �dyþ �cx, which is System (1) but with no constant

terms (i.e. a ¼ b ¼ 0) and with coupling functions

CXðy, xÞ ¼ �ay, CYðx, yÞ ¼ �cx providing the only terms indepen-

dent of x and independent of y, respectively. They numerically

study the bifurcation sets by plotting the number of equilibria as

a function of the four parameters ð�a, �b, �c, �dÞ. Abraham [44]

also outlined how one might study this system with n
equations coupled via some graph; our paper can be seen as

an implementation of this idea.

The widely studied van der Pol oscillator €u� mð1� u2Þ
_uþ u ¼ 0, upon a Liénard transformation v ¼ u� u3=3�
_u=m, becomes

_u ¼ mð�x3=3þ x� vÞ ðB 1aÞ

and

_v ¼ u=m: ðB 1bÞ

Note that equation (B 1) has the same form as equation

(2.1a) in the uncoupled case [C�ð�, �Þ ; 0]. Equation (B 1b) is a

differential equation for the parameter that plays the role of

a in equation (2.1a). The van der Pol oscillator has a unique,

stable limit cycle around the origin [46]. Many papers have

studied coupled van der Pol oscillators, with a focus on stab-

ility of oscillations [46–49] and on chaos [50,51], many

inspired by biological applications [46,48,52,53]. A related

limit-cycle oscillator is the Fitzhugh–Nagumo model, a two-

dimensional ODE that, when coupled to another such

system, can produce chaos [107, §6.3.3]. Here, we focus on

the contagion of regime shifts in the singular limit, which

corresponds to the limit m! 1 in equation (B 1b).
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