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Statistical learning in Wasserstein space

Amirhossein Karimi, Luigia Ripani, and Tryphon T. Georgiou

Abstract

We seek a generalization of regression and principle component analysis (PCA) in a metric space where data points
are distributions metrized by the Wasserstein metric. We recast these analyses as multimarginal optimal transport
problems. The particular formulation allows efficient computation, ensures existence of optimal solutions, and admits
a probabilistic interpretation over the space of paths (line segments). Application of the theory to the interpolation of
empirical distributions, images, power spectra, as well as assessing uncertainty in experimental designs, is envisioned.

I. INTRODUCTION

The purpose of statistical learning is to identify structures in data, typically cast as relations between explanatory
variables. Prime example is the case of principal components where affine manifolds are sought to approximate the
distribution of data points in a Euclidean space. The data is then seen as a point-cloud clustering about the manifolds
which, in turn, can be used to coordinatize the dataset. Such problems are central to system identification [1], [2].

Accounting for measurement noise and uncertainty has been an enduring problem from the dawn of statistics to the
present [1]. In this work we view distributions as our principle objects which, besides representing point clouds, may
also represent the uncertainty in localizing individual elements in a point set. Our aim is to develop a mathematical
framework to allow for an analogue of principle components in the space of distributions. That is, we view distributions
as points themselves in a suitable metric space (Wasserstein space) and seek structural features in collections of
distributions.

From an applications point of view, these distributions may delineate density of particles, concentration of pollutants,
fluctuation of stock prices, or the uncertainty in the glucose level in the blood of diabetic persons, indexed by a time-
stamp, with the goal to capture the principal modes of underlying dynamics (flow). Another paradigm may involve
intensity images in which case we seek suitable manifolds of distributions that images cluster about. Such manifolds
would constitute the analogue of principal components and can be used to parametrize our image-dataset and capture
directions with the highest variability. Such a setting could be applied in e.g., in longitudinal image study [3] where
the brain development or tumor growth patterns need to be studied, power spectral tracking [4], traffic control [5] and
so on.

There is a very recent and fast growing literature in the direction that we are envisioning, namely, to develop a
theory of manifold learning in Wasserstein space. Most studies so far explore the tangent space of the Wasserstein
manifold at a suitably selected reference point (e.g., the barycenter of the dataset [6]) so as to take advantage of the
Hilbert structure of the tangent space and identify the dominant modes of variation. Such an approach typically leads
to non-smooth and non-convex optimization [7].

Herein, we follow a different route in which we place a probability measure on the sought structures (manifolds,
modes, interpolating paths that we wish to learn). To illustrate the effect of a probability law on paths, Figure 1
highlights the flow of Gaussian one-time marginals along linear paths that differ in the joint distribution between
the corresponding end-point variables. Our approach has several advantages. First, it enjoys a multi-marginal optimal
transport [8] formulation and the consequent computational benefits (solvable via linear programming). Second, it
provides varying likelihood in the space of admissible paths/curves. When all the target distributions (observations)
are Dirac measures, the problem reduces to interpolation in Euclidean space.

The first attempt to developing principal component analysis (PCA) for probability measures in) [9] utilized the
pseudo-Riemannian structure of (P2(Rd),W2) space [10], labeled geodesic PCA (GPCA). Unfortunately, implementa-
tion can be challenging even in the simplest case of probability measures supported on a bounded subset of the real
line due to non-differentiable and non-convex cost and constraints. Other studies introduce suitable relaxation which
however prevents solutions from relating to geodesics in Wasserstein space [7], [11], [12]. Part of the ensuing problems

Amirhossein Karimi and Tryphon T. Georgiou are with the Department of Mechanical and Aerospace Engineering, University of California,
Irvine, CA, USA amirhosk@uci.edu, tryphon@uci.edu
Luigia Ripani is with the University of Cergy-Pontoise, France luigia.ripani@u-cergy.fr
Supported in part by the NSF under grants 1807664, 1839441, and the AFOSR under FA9550-17-1-0435.

1

ar
X

iv
:2

00
4.

07
87

5v
1 

 [
m

at
h.

O
C

] 
 1

6 
A

pr
 2

02
0



(a) Positive correlation (b) Negative correlation

Fig. 1. Marginals along linear paths (lines) with identical end-point distributions and different probability laws (positive and negative
correlation between end-point marginals); the intensity of color is proportional to the likelihood of the path.

in developing PCA in (P2(Rd),W2) are due to the fact that this is a positively curved space [13]. Earlier relevant
papers on regression in Wasserstein space include [4], [14].

The model of geodesics in (P2(Rd),W2) as the learning hypothesis comes with an important caveat. At times, it
may lead to underfitting in that the hypothesis class, W2-geodesics, i.e., (P2(Rd),W2)-line segments, as opposed to
higher order (P2(Rd),W2)-curves [15], [16]) is too restrictive. This may result in temporally distant points to be more
strongly correlated than adjacent ones.

In this paper the emphasis is placed on the path space of linear segments from [0, 1] to Rd (L([0, 1],Rd)), and the
problem of interpolating time-indexed target distributions which is cast as seeking a suitable probability law on line
segments; it is seen as linear regression lifted to the space of probability distributions. We will discuss how the setting
extends to the case where data/distributions are provided with no time-stamp. Interpolation with higher-order curves in
(P2(Rd),W2) that employs multi-marginal formulation is a possible future direction, as well as entropic regularization
for computational purposes; these last topics will be noted in [17].

II. Background and notation

A. Notation

We denote by (P2(Rd),W2) the Wasserstein space where P2(Rd) is the set of Borel probability measures with
finite second moments, and W2 is the Wasserstein distance (whose definition will be recalled later on). If a measure
µ ∈ P2(Rd) is absolutely continuous with respect to the Lebesgue measure on Rd, we will represent by µ both the
measure itself and its density. The push-forward of a measure µ by the measurable map T : Rd → Rd is denoted by
T#µ = ν ∈ P(Rd), meaning ν(B) = µ(T−1(B)) for every Borel set B in Rd. The Dirac measure at point x is represented
by δx. We denote the set of linear paths from the time interval [0, 1] to the state space Rd by Ω = L([0, 1],Rd). There
is a bijective correspondence (X0,1) between Ω and Rd×Rd using the values of each line at t = 0 and t = 1 such that
any ω = (ωt)t∈[0,1] ∈ Ω corresponds to X0,1(ω) := (x0,x1) for the endpoints x0 = ω0,x1 = ω1 ∈ Rd. We equip Ω with
the canonical σ-algebra generated by the projection map X0,1. We often write R2d := Rd ×Rd as a shorthand. For
any π(x0,x1) ∈ P2(R2d), the one-time marginals are µt := ((1− t)x0 + tx1)#π, t ∈ [0, 1].

B. Background on Optimal Transport Theory

We now provide a concise overview of optimal mass transportation theory based on [18], [19].

Let µ0 and µ1 be two probability measures in P2(Rd). In the Monge formulation of optimal mass transportation,
the cost ∫

Rd

||T (x)− x||22 µ0(dx)

is minimized over the space of maps

T : Rd → Rd

x 7→ T (x)
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which “transport” mass µ0(dx) at x so as to match the final distribution, namely, T#µ0 = µ1. If µ0 and µ1 are
absolutely continuous, it is known that the optimal transport problem has a unique solution which is the gradient of
a convex function φ, i.e., T ∗ = ∇φ(x).

This problem is highly nonlinear and, moreover, a transport map may not exist as is the case when µ0 is a discrete
probability measure and µ1 is absolutely continuous. To alleviate these issues, Kantorovich introduced a relaxation in
which one seeks a joint distribution (coupling) π on Rd×Rd, with the marginals µ0 and µ1 along the two coordinates,
namely,

W 2
2 (µ0, µ1) := inf

π∈Π(µ0,µ1)

∫
Rd×Rd

||x− y||2π(dxdy)

where Π(µ0, µ1) is the space of couplings with marginals µ0 and µ1. In case the optimal transport map exists, we have
π = (Id× T ∗)#µ0, where Id denotes the identity map.

The square root of the optimal cost, namely W2(µ0, µ1), defines a metric on P2(Rd) referred to as the Wasserstein
metric [10], [20]. Further, assuming that T ∗ exists, the constant-speed geodesic between µ0 and µ1 is given by

µt = {(1− t)x + tT ∗(x)}#µ0, 0 ≤ t ≤ 1,

and is known as displacement or McCann geodesic.

We now discuss two cases of transport problems that are of interest in this paper.

1) Transport between Gaussian distributions: In case µ0 ∼ N (m0,Σ0) and µ1 ∼ N (m1,Σ1), i.e., both Gaussian,
the transport problem has a closed-form solution [21]. Specifically,

T ∗ : x→ Σ−1/2
0 (Σ1/2

0 Σ1Σ1/2
0 )1/2Σ−1/2

0 x,

W2(µ0,µ1)=
√
||m0−m1||2+tr(Σ0+Σ1−2S) (1)

where tr(.) stands for trace and
S=(Σ0Σ1)1/2=Σ1/2

0 (Σ1/2
0 Σ1Σ1/2

0 )1/2Σ−1/2
0 . (2)

The McCann geodesic µt corresponds to Gaussian distributions with mean mt = (1− t)m0 + tm1 and covariance

Σt = (1−t)2Σ0+t2Σ1+t(1−t)(Σ0Σ1)1/2 (3)
+t(1−t)(Σ1Σ0)1/2.

2) Multi-marginal optimal transportation: The multi-marginal problem is a generalization of optimal transport in
which, for a set of given marginals, a correlating law is sought to minimize a cost function. This problem and its
applications are surveyed in [8], [22]. The Kantorovich-version of this problem for marginals {µi}Ni=1 is to minimize the
cost ∫

RNd

C(x1, ...,xN )dγ(x1, ...,xN )

where γ(x1, ...,xN ) ∈ P2(RNd) such that xi#γ = µi. It is a linear optimization problem over a weakly compact and
convex set for which the numerical methods to solve it efficiently are well studied [22], [23].

III. Least-squares in W2

We start by highlighting the analogy with least squares in Euclidean setting. Here, given a dataset {(ti,xi)}Ni=1,
we seek a linear model x = x0 + tv + ε, where x0 ∈ Rd and v ∈ Rd serve as the initial point and tangent vector,
respectively, and ε represents Rd-valued measurement error. Least squares estimation provides a choice for x0 and v
with the least variance among all linear unbiased estimators, assuming that errors are uncorrelated having zero mean
and finite variance.

In our setting, the data points lie in the probability space P2(Rd), and this entails a probabilistic representation of
lines that generalizes linear regression to (P2(Rd),W2) as discussed below.
Problem 1. Given {µti}Ni=1 ∈ P2(Rd) a family of probability measures indexed by timestamps {ti}Ni=1, determine

inf
(gt)t∈[0,1]∈GR

N∑
i=1

1
N
W 2

2 (gti , µti) (4)

where GR = {gt=((1−t)x0+tx1)#π|π(x0,x1)∈P2(R2d)}.

3



Naturally, gt, for t ∈ [0, 1], represent one-time marginals. Also, GR includes as a subset the set of all geodesics on
P2(Rd). Indeed, any π(x0,x1) which is an optimal coupling between two arbitrary distributions on P2(Rd), matches
a geodesic on P2(Rd). Therefore, (4) seeks the least sum of squared distances over a set that contains constant-speed
geodesics.

The search space, GR, is the building block of this study which comes with noteworthy properties. First, it leads
to a multi-marginal transport problem (Section IV). Computationally, this is highly efficient as it amounts to a linear
programming problem. Besides, entropic regularization can be used to considerable advantage (owing to the application
of Sinkhorn’s algorithm).

The problem amounts to finding a probability measure over the space of lines which defines a flux over linear paths
for t ∈ [0, 1]. It should be noted that t is taken to lie within [0, 1] for simplicity, however, we can extend the range of
t to any arbitrary interval. The obtained curve in P2(Rd) can be used for prediction as one can extrapolate to values
of t beyond the range in the observed data-set.

We first address the absolute continuity of the elements in GR, a property of “smooth” curves in (P2(Rd),W2)
recalled below.
Definition 2 ( [13]). Let µt : (0, 1)→ P2(Rd) be a one-parameter family in P2(Rd); we say that (µt)t∈[0,1] belongs to
AC(0, 1;P2(Rd)), if there exists m ∈ L1(0, 1) such that

W2(µs, µt) ≤
∫ t

s

m(r)dr, ∀ 0 < s ≤ t < 1.

Absolutely continuous curves are important due to the boundedness of their metric derivative, namely µ′t, bym(t) [13],
i.e.,

µ′t := lim
s→t

W2(µs, µt)
|s− t|

≤ m(t).

The next theorem establishes absolute continuity of elements in GR.
Theorem 3. For any (gt)t∈[0,1] ∈ GR where gt = ((1− t)x0 + tx1)#π, t ∈ [0, 1], we have (gt)t∈[0,1] ∈ AC(0, 1;P2(Rd)).

Proof. For 0 < s ≤ t < 1 , W 2
2 (gs, gt) is bounded by (t− s)2c where c is the bound derived from the finiteness of the

second moments of π. Therefore, W2(gs, gt) ≤ (t− s)
√
c =

∫ t
s

√
cdr.

A natural question arises as to whether

F (π) :=
N∑
i=1

1
N
W 2

2 (((1− ti)x0 + tix1)#π, µti),

originating in (4), is strictly displacement convex with respect to π; a functional on P2(Rd) is said to be (strictly)
displacement convex if it is (strictly) convex along geodesics on P2(Rd) in the classical sense [18], [24]. This notion
of convexity inherits properties of classical convex analysis, in particular, strict displacement convexity guarantees
uniqueness of the minimizer.

Unfortunately, the following counter-example reveals that F (π) may not be displacement convex, in general. Consider
π0 := 1

2δ(0,1) + 1
2δ(3,2) and π1 := 1

2δ(0,0) + 1
2δ(−3,2), and a single data point µ{t=1} = 1

2δ1 + 1
2δ2 at t = 1. The unique

optimal map which pushes forward π0 to π1, maps (0, 1) into (−3, 2) and (3, 2) into (0, 0), and thus the displacement
interpolation πs between these two measures is πs = 1

2δ(−3s,s+1) + 1
2δ(3−3s,2−2s), s ∈ [0, 1]. Computing F (πs) along

(πs)0≤s≤1 gives

F (πs) =W 2
2 (x1#πs, µ{ti=1})

= min(5
2s

2,
5
2s

2 − 3s+ 1),

which fails to be convex in s.

Thus, in the next section, we provide a multi-marginal optimal transport formulation for (4) which helps circumvent
issues with the inherent non-linearity and provides a handle on solutions.
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IV. Multi-marginal reformulation

The following gives a multi-marginal formulation of (4) and establishes properties of the minimizer.
Theorem 4. Problem (4) assumes the following multimarginal formulation

infπ F (π)=infγ
∫ ∑N

i=1
1
N ||(1−ti)x0+tix1−yi||2dγ

subject to yi#γ=µti (yi),∀i=1,...,N. (5)

where γ(x0,x1,y1, ...,yN ) ∈ P2(R(N+2)d) and π(x0,x1) ∈ P2(R2d). Moreover, the minimizer for F (·) exists and is
π∗ = (x0,x1)#γ

∗ where γ∗ is the minimizers of the right-hand side in (5).

Proof. We sketch the main steps of the proof and we refer to [17] for details. First, suppose π(x0,x1) ∈ P2(R2d) and
µ(y) ∈ P2(Rd) are given such that gt = {(1− t)x0 + tx1}#π, t ∈ [0, 1] and η(x0,x1,y) ∈ Π(π, µ), namely, a coupling
between π and µ. We define

Wη(gt, µ) :=
∫

R3d
||(1− t)x0 + tx1 − y||2dη.

It is easy to check that W 2
2 (gt, µ) ≤ W 2

η (gt, µ), ∀t ∈ [0, 1]. We can show the tightness of this inequality for some
η, namely, W 2

2 (gt, µ) = minη(x0,x1,y)∈Π(π,µ)W
2
η (gt, µ). This can be shown by the application of Gluing Lemma (see

Proposition 7.3.1 in [13]). Using the Disintegration Theorem [13], we can extend this result to a family of measures
{µti(yi)}i=1,...,N ∈ P2(Rd) to show that∑N

i=1
W 2

2 (gti ,µti )=min
γ∈P2(R(N+2)d)

∑N

i=1
W 2
γ (gti ,µti )

subject to yi#γ=µti (yi),(x0,x1)#γ=π.

Let γ∗ be any minimizer of the right-hand side term in (5) which exists due to the existence of solution to the multi-
marginal problem with quadratic cost [15]. It follows that π∗ = (x0,x1)#γ∗ minimizes left-hand side of (5).

Remark 5. In Lagrangian particle tracking, one can track the Lagranigian particles resident in a fluid to measure the
desired properties of them at several time steps. This tracking technique results in not only distributions of particles but
also correlation between different points in time. In the proposed approach, the correlation of data can be incorporated
by adding the linear constraints (yi,yj)#γ = πtitj , where πtitj represents the joint at time steps ti and tj .
Remark 6. The linear problem in multi-marginal formulation (5) is computationally burdensome. A well-known
strategy to alleviate this is to regularize the cost by entropy which makes the problem strictly convex. Then, we can
employ iterative Bergman projections [25] to solve the regularized problem.

The following proposition accounts for consistency of the proposed method with linear regression in a Euclidean
space when the target distributions are Dirac measures.
Proposition 7. If all data points are Dirac measures, i.e., µti(yi) = δvi(yi), i = 1, ..., N where vi ∈ Rd, the multi-
marginal formulation in (5) reduces to Euclidean regression.

Proof. Any γ that satisfies the marginal constraints in (5) can be written as γ = π(x0,x1)⊗ δv1(y1)⊗ ...⊗ δvN (yN ),
where π(x0,x1) ∈ P2(R2d) and ⊗ represents the product of two measures. Using this fact, we can show that

infγ
∫

R(N+2)d

∑N

i=1
1
N ||(1−ti)x0+tix1−yi||2dγ

=infw0,w1∈Rd

∑N

i=1
1
N ||(1−ti)w0+tiw1−vi||2.

A. Measure-valued PCA

Classical PCA produces subspaces of a given dimension that approximate a data point cloud. Their projection onto
these subspaces can serve as approximate coordinates for the data points. Our aim is to extend the concept so as to
approximate and parametrize families of probability measures {µi}Ni=1. In this context, the first principal component
corresponds to a line segment in P2(Rd) that is at a minimal distance from the data points which are now probability
distributions. To this end, it is natural to consider the following problem

inf
π∈P2(R2d)

N∑
i=1

1
N

min
t∈R

W 2
2 (((1− t)x0 + tx)#π, µi).

5



An equivalent multi-marginal formulation is

inf
γ

N∑
i=1

1
N

min
t∈R

∫
R(N+2)d

||(1− t)x0 + tx1 − yi||2dγ

subject to yi#γ = µi(yi),∀i = 1, ..., N (6)

where γ(x0,x1,y1, ...,yN ) ∈ P2(R(N+2)d). However, in the present setting of P2(Rd), the problem is non-convex. We
employ coordinate descent method [26] in seeking a minimizer, although global optimality is not guaranteed.

The key idea is to successively minimize for t and γ(x0,x1,y1, ...,yN ) to find the minimum of (6). To do so, at each
iteration, we fix either γ or the parameters t, and optimize in the other direction. With respect to t the problem is
quadratic assuming the closed-form solution

t∗i =
∫
R3d < yi − x0,x1 − x0 > dηi(x0,x1,yi)∫

R2d ||x1 − x0||2dπi(x0,x1)
(7)

where ηi(x0,x1,yi) = (x0,x1,yi)#γ and < ., . > denotes a corresponding inner product. Minimization over γ is a
linear programming problem.

V. Results for Gaussian measures

In this section, we consider Gaussian target distributions, i.e., µti(yi) ∼ N(myi ,Cyi). By applying the proposed
method to this problem, we will show that the optimal interpolating curve remains Gaussian at each time step.
Regarding (1), we observe that in regression analysis for Gaussian measures, the means can be treated separately by
linear regression in Euclidean space. Thereby, the means for the optimal curve in (P2(Rd),W2) can be readily found.
Therefore, without loss of generality, we assume the means of µti ’s to be zero. The following proposition recast the
problem as an SDP.
Proposition 8. Consider Gaussian-points µi ∼ N(0,Cyi). The minimizing γ∗(x0,x1,y1, ...yN ) in (6) is a Gaussian
distribution with mean zero and covariance that solves

minCγ�0tr((1−2t+t2)Cx0 +t2Cx1 +2(t−t2)Sx0x1 )

− 2
N

∑N

i=1
tr((1−ti)Sx0yi+tiSx1yi )

(8)

where t = 1/N
∑N
i=1 ti, t2 = 1/N

∑N
i=1 t

2
i and

Cγ =


Cx0 Sx0x1 Sx0y1 ... Sx0yN

STx0x1 Cx1 Sx1y1 ... Sx1yN

STx0y1 STx1y1 Cy1 ... Sy1yN

...
...

...
...

STx0yN
STx1yN

Sy1yN ... CyN

 . (9)

Proof. When the marginals ({µti}
N
i=1) of the joint measure γ in (5) are Gaussian, we can conclude that γ∗ in (5) is

also Gaussian since the marginal constraints act only on the second moments of γ, namely, no constraint is imposed
onto higher-order moments, and the cost function is quadratic in x0,x1,y1, ...,yN . Simple calculation shows the cost
function in (5) for any Gaussian γ with covariance matrix given in (9) reads∫

R(N+2)d

∑N

i=1
1
N ||(1−ti)x0+tix1−yi||2dγ=

(1−2t+t2)tr(Cx0 )+t2tr(Cx1 )+2(t−t2)tr(Sx0x1 )

− 2
N

∑N

i=1
tr((1−ti)Sx0yi+tiSx1yi ).

From this, we can readily conclude that the multi-marginal formulation in (5) is equivalent to the semi-definite
programming in (8).

Noticing that (x0,x1)#γ = π, one can write the interpolating curve as

µt∼N(0,(1−t)2C∗x0 +t2C∗x1 +t(1−t)(S∗x0x+S∗x0x
T )) (10)

where asterisk in the equation above denotes the optimal values obtained in (8). One can compare the result above
to (3) by noticing that in (10) the term S∗x0x1

is not equal to (C∗x0
C∗x1

)1/2. Therefore, the interpolating curve (µt) in
(10) doesn’t characterize a geodesic in (P2(Rd),W2), which may underfit the dataset as discussed earlier.

6



(a) Measure-valued regression (b) Geodesic regression

Fig. 2. Interpolation of one-dimensional Gaussian marginals. Blue curves are the given distributions and red ones are the interpolation. The
intensity of color in lines is proportional to the likelihood of each path.

We conclude with numerical examples of density curves that interpolate a set of given Gaussian marginals. To do
so, first we consider 30 different marginals to be one-dimensional Gaussian distributions with zero mean (blue curves
in Fig. 2), where the focus is on interpolation of the respective variances. Then, the SDP in (8) is solved to obtain the
optimal joint distributions γ and π(x0,x1) = (x0,x1)#γ. Figure 2(a) depicts the density curve for different values of
t along with the dataset. Furthermore, to compare the result to geodesic regression, in Fig. 2(b) the optimal geodesic
in (P2(Rd),W2), which interpolates the dataset, is represented. One can notice that the measure-valued regression
captures the variation in the dataset better than geodesic one. This ensues from the fact that in geodesic regression
an interpolating curve in (P2(Rd),W2) with highest correlated end-points is sought. However, in the framework of this
paper, this constraint is relaxed which can also moderate underfitting.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we introduce an approach for statistical learning in the space of distributions, metrized by the
Wasserstein metric, which can be regarded as a generalization of regression analysis and PCA to the space of probability
measures. To alleviate the issues with non-linearity of this formulation, we capitalize on a link between this problem
and multi-marginal transport. In addition to computational benefits and consistency with Euclidean regression, our
model can readily incorporate correlations between distributions (i.e., available higher-dimensionality marginals) in
the dataset. The potential of the theory is envisaged in aggregate data inference with application to metapopulation
dynamics [27] where the identity of individuals is not available, particle & power spectra tracking [4], system identifica-
tion [2], and measurement noise and uncertainty treatment in dynamical systems. A natural future research direction is
towards utilizing higher-order curves in (P2(Rd),W2) along a dynamic formulation analogous to the proposed method.
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