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The reduction of 176Lu background in Lu-based PET scanners 
using optimized classification

Qian Wang1, Ekaterina Mikhaylova1, Reheman Baikejiang1, Simon R Cherry1,2

1Department of Biomedical Engineering, University of California, Davis, CA, United States

2Department of Radiology, University of California, Davis, CA, United States

Abstract

Positron emission tomography (PET) using scanners incorporating lutetium-based (Lu-based) 

scintillators are widely used in nuclear medicine. However their application in imaging very low 

(< 100 kBq) activity distributions is quite limited due to the intrinsic 176Lu radiation emitted 

from the scintillators. To visualize very low activities, 176Lu background needs to be reduced or 

removed. This study proposes a classification method to select background coincidences from 

true coincidences arising from the source by supervised learning using the optimal classifier as 

determined by investigating 5 different classifiers: logistic regression, support vector machine, 

random forest, extreme gradient boosting (XGBoost) and deep neural network. Five energy 

and time-of-flight (TOF) related features from each coincidence event are extracted to form 

the training and test set in the classification. The proposed method was verified on a pair of 

TOF-PET detector modules. Since the measured source coincidences cannot be differentiated 

from the background events experimentally, simulated source coincidences are used to train 

the classification model. The simulated feature spectra are therefore compared with those 

obtained from measurement to verify the feasibility of classifying measured coincidences using 

a model learned by simulation. XGBoost classifier performed most effectively in classifying the 

coincidences and provided impressively high classification accuracy (> 99%). It was subsequently 

tested by imaging point-like source, planar Derenzo and bar phantoms with the pair of TOF-

PET detectors. An 89.4% image contrast enhancement for the Derenzo phantom at an activity 

concentration of 100 Bq/mm2, and a 52.4% peak-to-valley ratio improvement across the area of 

bar phantom at a concentration of 25 Bq/mm2, were observed on the reconstructed images with 

XGBoost classification applied. The proposed method could extend the usage of Lu-based PET 

scanners to very low activity detection and imaging and has the potential to be used in a variety of 

molecular imaging tasks to detect low-level signals.

Keywords

intrinsic background reduction; Lu-based PET scanner; classification method

1. Introduction

Positron emission tomography (PET), a powerful molecular imaging modality, has 

experienced continuous performance improvements in recent years and is being applied 

in an increasing number of areas (Du et al., 2018). Due to the inherent sensitivity in 
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detecting radiotracers, PET has great potential to also be used for low-activity and very 

low-activity multimodal biomedical imaging applications, including pediatric and obstetric 

imaging (Gjelsteen et al., 2008; Schäfer et al., 2014), gene expression imaging (Gambhir 

et al., 1999), in-beam imaging (Pawelke et al., 1997), cell trafficking (Thunemann et al., 

2017), 90Y PET imaging (Carlier et al., 2015; Strydhorst et al., 2016) and even single 

photon emission computed tomography imaging using detectors/systems primarily designed 

for PET (Yao et al., 2008). However, due to the intrinsic radiation emitted from the small 

fraction of radioactive 176lutetium (176Lu) residing in widely used Lu-based scintillators, 

such as lutetium oxyorthosilicate (LSO) and lutetium yttrium orthosilicate (LYSO), the 

visualization and quantification of stationary or moving very low-activity sources in PET 

scanners using these materials becomes quite challenging (Conti et al., 2017). Scanners 

made from scintillators without Lu, like bismuth germanate (BGO), seem to be more 

suitable for very low activity imaging (Ouyang et al., 2016). However Lu-based PET 

scanners are commonly used and available, and offer higher overall performance especially 

in terms of timing resolution, which enables time-of-flight (TOF) measurement (Cherry et 

al., 2017). Therefore, efforts to develop methods for very low activity imaging on Lu-based 

PET scanners are important.

In order to use Lu-based PET scanners for imaging the spatiotemporal distribution of 

radiotracers administered at very low (< 100 kBq) activities, the intrinsic radiation must be 

reduced before image reconstruction. Most reported methods for reducing 176Lu background 

adjust the energy window (Yoshida et al., 2014). 176Lu decays into 176Hf by emitting an 

electron whose end point energy is 596 keV with a branching ratio of 99.6% or an electron 

whose end point energy is 195 keV with a branching ratio of 0.4%, with a cascade of 

gamma photons with energies of 401 keV (0.4% branching ratio, only occurs when the 

195-keV end-point electron is emitted), 307 keV (94%), 202 keV (78%) and 88 keV (15%) 

(Conti et al., 2017; Alva-Sánchez et al., 2018). The three common gamma photons have 

different probabilities of escaping the original crystal and the probability also depends 

on the crystal-size. As small crystals are typically used in PET detectors, the 307-keV 

and 202-keV gamma photons are energetic enough that they have a high probability to 

escape the original crystal in which they were produced. For instance, the probabilities 

of 307-keV and 202-keV gamma photons escaping 1×1×1 cm3 LYSO crystals are 0.618 

and 0.346, respectively (Alva-Sánchez et al., 2018), and these can then be detected by 

another crystal within the timing window opened by the original electron, forming true 

background coincidences. The intrinsic (background) coincidences consist of intrinsic true 

coincidences that mostly arise from the pairing of an electron emitted during 176Lu decay 

in a crystal with a prompt gamma photon from the same decay that interacts in another 

crystal, as well as intrinsic random coincidences that involve two 176Lu gamma photons, 

two electrons, an electron and a (176Lu or 511 keV) gamma photon, or an 176Lu and a 

511 keV gamma photon from different decays. The intrinsic true background coincidences 

can be effectively eliminated by narrowing the energy window. However, for intrinsic 

random coincidences, the deposited energy of the particles from 176Lu decay can vary 

from 88 keV to higher than 1 MeV due to the joint detection of conversion electrons 

and gamma photons that do not escape the original crystal and the multiple scattering 

of 511 keV gamma photons in crystals induces further results in a spread of energies 
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(Alva-Sánchez et al., 2018). Therefore, the intrinsic random coincidences cannot be fully 

removed by narrowing the energy window. The number of coincidences that remain can still 

be comparable, or even greater in number, than true coincidences from a very low-activity 

source. For instance, it is reported that ~1200 intrinsic random coincidences are obtained 

per second compared to only 0.174 counts/s/MBq from an 90Y source (true unscattered 

coincidences) for 90Y PET imaging on the Biograph mCT scanner (Siemens Healthineers, 

Knoxville, TN) using a narrow energy window 435-650 keV applied (Strydhorst et al., 

2016). Simultaneously, true coincidences are also reduced by narrowing the energy window, 

hindering the detection of a very low activity source. Moreover, the conventional “singles 

rate” and “delayed window” random correction approaches are based on substracting the 

statistically estimated random coincidences from measured coincidences for a given detector 

pair (Cherry and Dahlbom, 2006). In a very low-activity situation, the estimated random 

coincidences fluctuate spatiotemporally, and these statistical fluctuations make it difficult to 

robustly extract the small number of true coincidence events.

Similarly, statistics-based methods are employed for background reduction, for instance, 

subtracting a time-averaged background of a long blank scan from the measured 

coincidences or sinograms. However, this does not account for attenuation and scatter of 

the intrinsic background signal by the object. This approach is insufficient for intrinsic 

background removal in the presence of a very low-activity source.

For some scanners that are able to provide time-of-flight (TOF) information, this also can 

be used in combination with the energy window to more effectively reduce the 176Lu 

background (Yoshida et al., 2014). The TOF information works best for localized sources 

such as in in-beam imaging, and will be less effective when the source activity is distributed 

across the whole field of view (FOV) (Budinger, 1983; Conti and Bendriem, 2019).

Focusing on the specific application of very low activity imaging, this study proposes a 

classification methodology which exploits a classification model established by training the 

energy- and TOF-related features which are present within detected coincidence events to 

distinguish events according to their origin, source or background, while leaving the energy 

window intact. Different classification methods/classifiers and parameters are examined to 

determine which of them results in the highest classification accuracy (i.e. background 

reduction efficiency). The proposed approach is experimentally validated by imaging 

different phantoms. Reconstructed images preprocessed with and without classification are 

compared to demonstrate the effect of the approach.

2. Methods

2.1. Classification methods

In order to reduce the intrinsic background, we established a platform embedded with five 

effective and commonly-used classifiers, including logistic regression (LR), support vector 

machine (SVM), random forest (RF), extreme gradient boosting (XGBoost) and deep neural 

network (DNN). In this study coincidences are classified into two classes: background 

coincidences and coincidences induced by the source, i.e. source coincidences. Five features 

of each individual coincidence event are extracted from the list mode data recorded: the 
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energy deposited in each of the two detectors, the average and the difference of the energies, 

and the difference of the time stamps of the two photons detected in the coincidence event. 

The input data for training each classification model is composed of coincidence features 

and corresponding class labels that are already known and are randomly split into training 

and validation data/coincidences. 80% of the input data is the training data used to fit the 

classification model, and 20% of the input data is the validation data used to provide an 

evaluation of the model fit on the training data while tuning the model hyperparameters. 

Unlike background coincidences, source coincidences cannot be measured independently as 

the background is always involved in the measurement. Therefore, the source coincidences 

used in the training set come from Monte Carlo simulation. Monte Carlo simulation of the 

acquisition of coincidence events with Lu-based PET detectors is explained in Section 2.3. 

The background coincidence component can come from either measurement or simulation 

and measured background coincidences are chosen for this study. The test data is prepared 

for evaluating the established classification model and contains the features of coincidences 

to be classified, however the class labels of the coincidences may be known or unknown. 

The test datasets with known class labels are used for estimating the classification accuracy. 

The class labels of measured coincidences are unknown in the test dataset and are the target 

of the classification. All targeted coincidences are identified with the classifier to filter out 

background coincidences before image reconstruction.

All classification algorithms, learning and prediction are implemented in Python. Scikit-

learn (http://scikit-learn.org/stable/index.html) (Pedregosa et al., 2011), an efficient machine 

learning tool in Python, is used for LR (class: sklearn.linear_model.LogisticRegression), 

RF (class: sklearn.ensemble.RandomForestClassifier) and SVM (class: sklearn.svm.SVC) 

classifications. XGBoost classification uses a Python XGBoost package (https://

xgboost.readthedocs.io/en/latest//) (Chen and Guestrin, 2016; Friedman, 2001). A Python 

deep learning library Keras is employed for deep neural network (https://keras.io/) (Chollet, 

2015). Keras is a high-level neural network application programming interface, written in 

Python and capable of running on top of TensorFlow, CNTK, or Theano.

In advance of learning the classification model, features are processed with principle 

component analysis (PCA) for each classification method to search for the optimal 

combination of features and discard redundant features in order to improve the performance 

of classification. A grid search is carried out to find the optimal combination of classification 

parameters.

In LR, the most basic linear classifier, parameters to be optimized with the grid search 

include (1) inverse of regularization strength, (2) solver for the optimization problem 

(all solvers provided by class: LogisticRegression are evaluated: ‘saga’, ‘sag’, ‘liblinear’, 

‘newton-cg’, ‘lbfgs’) and (3) when fitting an estimator repeatedly on the same dataset, 

whether to use attributes of the existing model to initialize the new model.

In SVM, an effective and memory-efficient classifier in high dimensional spaces, a Gaussian 

radial basis function (RBF) is chosen and variables considered in the grid search are (1) RBF 

kernel parameter gamma, and (2) penalty parameter of the error term.
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RF is a meta estimator that fits a number of decision tree classifiers on various sub-samples 

of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. 

Parameters of RF classifier interrogated during the grid search account for: (1) number of 

trees in the forest, (2) max depth of the tree, (3) number of features to consider when looking 

for the best split, (4) minimum number of samples required to be at a leaf node, and (5) 

whether bootstrap samples are used when building trees.

XGBoost is a scalable end-to-end tree boosting system, implements gradient boosting 

decision tree algorithm and is characterized by the excellent execution speed and model 

performance (Chen and Guestrin, 2016). The tree booster is used and parameters in the 

grid search encompass: (1) maximum depth of a tree, (2) minimum loss reduction required 

to make a further partition on a leaf node of the tree, (3) subsample ratio of the training 

instance, (4) step size shrinkage used in update to prevent overfitting, (5) subsample ratio 

of columns when constructing each tree, (6) L1 regularization term on weights, and (7) L2 

regularization term on weights.

In DNN, the initializer (Glorot uniform, normal and uniform initializers), optimizer 

(RMSprop, Adam and Adagrad optimizers), and number of hidden layers were optimized, in 

addition to the following parameters: (1) number of epochs to train the model, (2) dropout 

rate, and (3) batch size. Rectified linear unit (ReLu) activation is chosen for input and 

hidden layers while sigmoid activation is used in the output layer. Because of the two-class 

classification, a binary cross-entropy loss function is used.

These classifiers and their parameters are optimized to achieve the highest accuracy of 

classifying coincidences in the validation set. Selected classifier and parameters are further 

validated by experimental imaging studies.

2.2. Detectors and measurements

In this study, the PET detectors used for measurement are TOF-PET EVA-KIT1 modules 

(Hamamatsu Photonics) composed of two opposing modules. Each module contains a 

12×12 array of lutetium fine silicate (LFS) crystals with individual crystal dimensions 

of 4.14×4.14×20 mm3 [cross-sectional×length], coupled to a multi-pixel photon counter 

(MPPC, dimension: 4×4 mm2, 12×12 array, micropixel size: 75 μm), as shown in figure 

1(a). The module has 12.9% energy resolution and 284 ps timing resolution based on our 

measurements (Mikhaylova et al., 2019). For these studies, the two modules were placed 10 

cm apart and the source was positioned at the center of the FOV.

Three acrylic phantoms filled with very low-activity [18F]FDG solution and positioned 

at the center of the FOV between the two TOF PET modules were used to validate the 

proposed background reduction method: (1) a disk (1 cm in diameter and 1.5 mm thick) 

with a 1.5-mm-diameter hole at the center filled with 40 Bq [18F]FDG to mimic a point 

source; (2) a planar Derenzo phantom (2.6 mm thick) drilled with holes arranged in 

equilateral-triangular arrays with varying hole diameters: 1.5, 2, 2.5, 3, 3.5, 4 mm with 

the the center-to-center distance between holes being double the hole diameter, and filled 

with a solution of [18F]FDG leading to an activity concentration of 100 Bq/mm2 (hole 

activity / area) in each of the holes. The total activity in the phantom was 20 kBq; (3) a 
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planar bar phantom (2.6 mm thick) drilled with two arrays of parallel bars with widths of 2 

and 4 mm with the center-to-center distance between bars being double the bar width. The 

activity of the [18F]FDG solution in the bars was 25 Bq/mm2. The total estimated activity 

in this phantom was 20 kBq. Concentrations are quoted in activity per unit area since the 

phantoms are planar and only a single projection image was acquired. The acquisition time 

for each phantom was 10 minutes. ~5.0×104, 2.1×105 and 2.0×105 coincidence events were 

acquired for the point source, planar Derenzo and bar phantom, respectively. Blank scans 

were repeated 5 times with each scan being 10 minutes to estimate the intrinsic background 

level of the TOF-PET modules and 3.1×104 background coincidence events were measured 

for a 10-minute scan on average. Therefore, the ratio between the source and background 

coincidences for the point source, planar Derenzo and bar phantom are ~1:1.6, 5.8:1 and 

5.8:1, respectively. After classification, all images were reconstructed using 3D list mode 

expectation maximization (LMEM) with 20 iterations and each reconstructed image had 

25×50×50 voxels with a voxel size of 1 mm (25 slices of 50×50-pixel images parallel to the 

detector module surfaces). No random, scatter, attenuation correction, data normalization, or 

point-spread-function modeling were applied.

The data was saved in list mode, and the interaction positions, energy deposition and 

time stamps stored. As the energy deposited in crystals was recorded in analog to digital 

conversion (ADC) units, it was first converted to actual energy by calibration. 4 different 

radionuclides providing 6 energy peaks (22Na for 511 and 1274 keV, 57Co for 122 keV, 
137Cs for 662 keV, 176Lu for 202 and 307 keV) were imaged for the energy calibration. The 

peak positions in ADC units were found by separately fitting a Gaussian model to the ADC 

histogram around each peak with known energy values (figure 2a) and therefore 6 energy-

ADC points were obtained. A relationship between ADCs and energies was established 

by cubic spline extrapolation for every crystal, one of which is shown in figure 2b. With 

the established relationship between ADCs and energies, energies were calibrated. The 

distribution of calibrated energies measured using a weak 22Na point source are shown in 

figure 2c. The peaks produced by 176Lu and 22Na, after energy calibration, are fit with a 

Gaussian and match the known emission at 307 and 511 keV.

2.3. Monte-Carlo simulation

The measurement setup with the TOF-PET modules was emulated by Monte-Carlo 

simulation using GATE (Version 8.0) (Jan et al., 2004). All simulation parameters were set 

to be consistent with actual module specifications and measurements. A 176Lu source was 

added and distributed evenly in all crystals with an activity of 277 Bq/cm3 (McIntosh et al., 

2011). The energy spectrum of simulated 176Lu background coincidences was investigated 

and three energy peaks were found at 88, 202 and 307 keV, which are consistent with the 

energies of the three main prompt gamma photons emitted during 176Lu decay. The timing 

and energy resolutions were set to be consistent with our measurements, which are 284 ps 

and 12.9%, respectively (Mikhaylova et al., 2019). For both measurement and simulation, 

the energy window was 250-750 keV and the timing window was 3 ns. For broad use 

of the classification model, the source used for generating simulated training coincidence 

events was 100-kBq 18F evenly distributed within a 5×5×8-cm3-cuboid covering the FOV 

of the PET modules, so that the classification model established fits for identifying sources 
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at different locations. Subsequently, an 18F point source, with an activity varying from 10 

Bq to 2000 Bq was simulated and used to estimate the reconstructed spatial resolution 

and investigate how much the classification method can improve the spatial resolution at 

different source activities. Each acquisition was simulated to last 20 hours to acquire enough 

counts for the spatial resolution estimation as at least 105 prompt counts are required by the 

NEMA NU4-2008 standard.

2.4. Classification performance evaluation

Classification performance was evaluated by accuracy, sensitivity and specificity. If the 

source coincidence was positive and the background coincidence was negative, true positive 

(TP) and true negative (TN) means that the source and background coincidences were 

correctly classified. False positive (FP) and false negative (FN) indicates source and 

background coincidences are misclassified. With the classifer parameters optimized, the 

classification accuracies [(TP+TN) / (TP+TN+FP+FN)] of each classifier were estimated 

using six types of test datasets that are composed of

1. additional 105 simulated source events and measured background events mixed 

with a ratio of ~5.6:1 obtained under the same setting as the training events;

2. 105 measured background coincidence events;

3. 105 simulated source events using a 10 kBq 18F point source positioned at the 

center;

4. 105 simulated source events using a 10 kBq 18F point source positioned 2 cm 

off-center axially (parallel to detector faces);

5. 105 simulated source events using a 10 kBq 18F point source positioned 2 cm 

off-center transaxially (perpendicular to detector faces);

6. 105 simulated background coincidence events.

The datasets were chosen to evaluate the established classification models for the 

coincidence identification under different conditions, i.e. coincidences from background and 

sources located differently and obtained from simulation or measurement. The classification 

was repeated five times for each type of test dataset. Independent test datasets were used for 

each repetition of the classification.

In order to estimate the influence of background on the spatial resolution and to demonstrate 

whether the proposed methods can improve it, the spatial resolution was measured as the 

mean of the full width at half maximums (FWHM) and the full width at tenth maximum 

(FWTM) averaged over two orthogonal directions (vertical and horizontal) of the image of 

the point source in the center reconstructed plane (parallel to detector module surface) using 

the methods in the NEMA NU 4-2008 standard ((NEMA), 2008). For spatial resolution 

estimation, 50 iterations and reconstructed image dimensions of 50×100×100 voxels with 

a voxel size of 0.5 mm were used. The Weber image contrast of the reconstructed images 

of the low-activity Derenzo phantom with and without the background reduction using 

classification were compared. The image used for analysis is the sum of the reconstructed 

planes that are parallel to the detector module surface. The Weber image contrast is defined 
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as (I-Ib)/Ib, where I and Ib represent the mean pixel intensity within the activity-filled 

holes in the phantom and the remaining background area within a round area concentric 

with and containing the hole array area in the phantom (encompassed by the green circle 

in figure 6b). The holes were segmented by registering a mask of the actual hole-array 

onto the reconstructed image. The peak-to-valley ratio, defined as the ratio between mean 

peak amplitudes and mean valley amplitudes in regions of interest (ROIs) was evaluated to 

characterize the contrast of the reconstructed image (the sum of reconstructed planes) of the 

low-activity bar phantom.

3. Results

3.1. Feature comparison

The spectra for each feature derived from coincidence events used for training are compared 

to the corresponding spectra from measured coincidences using a ~1.5 kBq 18F point source 

positioned at the center of the FOV and 10-minute acquisition in order to make sure that the 

classification model learned can be applied to identify the classes of measured coincidences, 

as shown in figure 3. The coincidences for training which produce the feature spectra 

shown in figure 3 encompass simulated coincidences from a 18F source and measured 

coincidences from the 176Lu background mixed at activities consistent with the realistic 

activities in the measurement. Figures 3a–3d compare the spectra of the deposited energies 

(in both detectors), average of energies deposited, difference of energies deposited in the 

pair of detectors, and difference of time stamps, respectively, between training and measured 

datasets. The training feature spectra are in agreement with the measured spectra, indicating 

the classification model learned using partially simulated training data can classify measured 

coincidence events.

The whole training set consists of 1.6×105 measured background coincidences (50-minute 

acquisition) and 8.6×105 simulated source coincidences that were obtained using the 100-

kBq 18F 5×5×8-cm3-cuboid source. The feature spectra for simulated source and measured 

background coincidences are compared in figure 4. The source and background spectra are 

significantly different, which supports the hypothesis that the two classes are differentiable.

3.2 Classifier optimization and classification accuracy

A grid search was implemented on each classifier to find the optimal classifier and 

parameter combination. After the grid search, five features remained based on PCA analysis 

and classifiers were set as follows (parameters not described here use default values):

1. LR uses inverse of regularization strength of 1.0, stochastic average gradient 

(sag) descent solver, and reuses the solution of the previous call to fit as 

initialization.

2. SVM uses penalty parameter of the error term of 2,550,000 and RBF kernel 

coefficient gamma of 0.2.

3. RF uses 90 trees in the forest, maximum depth of the tree of 40, minimum 

number of samples 4 required to be at a leaf node, (0.12 × number of features) 
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features are considered when looking for the best split, and bootstrap samples are 

used when building trees.

4. XGBoost uses tree booster, maximum depth of a tree of 17, minimum loss 

reduction of 1.2 required to make a further partition on a leaf node of the tree, 84 

boosted trees to fit, boosting learning rate of 0.87, subsample ratio of columns of 

0.02 when constructing each tree, L2 regularization term on weights of 0.31 and 

L1 regularization term on weights of 0.49.

5. DNN uses Keras sequential model with RMSProp optimizer, normal initializer, 

binary cross-entropy loss function, 10 hidden layers, 100 epochs, dropout rate of 

0.1, and a batch size of 2000.

The classification accuracies of each classifier were estimated using six types of test 

datasets explained in Section 2.4, and are given in Table 1. Table 1 shows that XGBoost 

performs the best of the classifiers investigated. It is able to select background coincidences 

at an accuracy of more than 99%. As test datasets II to VI do not include both 

positive coincidences (i.e. source coincidences) and negative coincidences (i.e. background 

coincidences), the sensitivity [TP/(TP+FN)] or the specificity [TN/(TN+FP)] cannot be 

determined, therefore only the classification accuracies of these five datasets are shown 

in the table. The percentage and the accuracy trend of different classifiers for measured 

test datasets are similar to simulated test datasets, indicating again the classification model 

works for both the measurement and the simulation. The difference in accuracy of simulated 

and measured test datasets (e.g. datasets II vs VI) results from the small discrepancies 

between the simulated and measured feature spectra. The accuracies for the point source 

positioned at different locations in the FOV are very similar, demonstrating that the 

classification models are independent of the source position.

3.3. Image quality improvement

In this section, the best classifier, XGBoost, with its optimal parameters are applied to 

imaging an 18F point-like source, 2-D Derenzo phantom, and a planar axial hot bar phantom. 

Measured coincidences are classified in order to remove the background and enhance the 

reconstructed image.

Figure 5 compares the reconstructed images (the sum of reconstructed planes) of a 

measured 40 Bq 18F point-like source without (figure 5a) and with (figure 5c) background 

reduction using the XGBoost classifier. As a comparison, the reconstructed images of a 

simulated 40 Bq 18F ideal point source preprocessed without (figure 5b) and with (figure 

5d) classification are also presented. For both simulated and measured point sources, the 

background is significantly reduced by classification. Then, reconstructed spatial resolution 

in terms of FWHM and FWTM were evaluated at different 18F point source activities 

(10-2000 Bq) using simulation, as shown in figure 5e (FWHM) and 5f (FWTM). The spatial 

resolution is degraded because of the relatively high background at lowest source activities. 

The spatial resolution loss due to background events can be removed using classification 

leading to spatial resolution that is independent of activity.
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The reconstructed images of the low-activity Derenzo phantom with and without the 

background reduction using classification are compared in figures 6a and 6b, and the 

corresponding Weber image contrasts for the area encompassed by green circle in figure 

6b, respectively were estimated. Classification enhanced the image contrast of the Derenzo 

phantom by 89.4% (image contrast of 1.25 for XGBoost, compared to 0.66 for no 

classification applied).

Figure 7 shows the reconstructed image of a low-activity planar bar phantom with (figure 

7a) and without (figure 7b) background reduction using classification. The pixel intensities 

averaged over columns of the bars with 4-mm center-to-center distance in the area enclosed 

by the green box and the bars with 2-mm center-to-center distance in the area enclosed by 

the blue box in figure 7b are plotted in figures 7c and 7d respectively. The valleys in the 

image to which classification was applied (figure 7a) are deeper than valleys in the image 

without classification (figure 7b), demonstrating the higher contrast achieved by removing 

background events for low-activity scans. The peak-to-valley ratio (ratio between mean peak 

height and mean valley height) was increased by 52.4% for the 4-mm bars and 14.6% for 

the 2-mm bars using the XGBoost classifier. The comparison of the effect of five different 

classifiers on the intrinsic background reduction for planar bar phantom imaging is shown in 

section S1 of the supplementary data.

4. Discussion

With the goal of reducing the intrinsic background of Lu-based PET scanners and ultimately 

improving the image quality in low-activity applications, a preprocessing approach based on 

classification algorithms was proposed. Each measured coincidence was classified as either 

a source or background event using a classification model trained using a combination of 

measured background coincidences and simulated source coincidences. Several commonly-

used classifiers were compared to determine the best choice for this application. We found 

that XGBoost performed most effectively in classifying events and reducing the intrinsic 

background. This classifier was further validated using measurements on several phantoms 

where clear improvements in image resolution and contrast were observed. This strategy is 

particularly important for very low activity imaging, for example in tracking small numbers 

of radiolabeled cells, where the background cannot be reduced by simply subtracting an 

averaged background counts from the very limited number of counts recorded.

The proposed method should work not only for the pair of TOF-PET module detectors 

studied here, but also for complete PET scanners. To use this method, a classification model 

needs to be trained and validated for each scanner. Ideally, accurate simulations for the 

scanner also are available to aid in generating training data in which source and background 

events are known. Once the classification model is established, the coincidence identification 

process is fast, so the proposed method can be implemented either online or offline.

As each classifier has a number of tunable parameters, we cannot optimize them 

exhaustively considering the computation time that would be required. Only principal 

parameters were therefore optimized and default values are used for other parameters. 

The optimal classifier is not necessarily the same for different scanners and a classifier 
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optimization process is suggested for each individual scanner. Based on this work, XGBoost 

and DNN would be the top two classifiers recommended for first evaluation. XGBoost 

delivers high performance and accuracy as compared to other algorithms as it has in-

built L1 (Lasso Regression) and L2 (Ridge Regression) regularization which prevents the 

classification model from overfitting, capability to handle missing values and effective tree 

pruning method to prevent the node splitting stop when a negative loss is encountered in 

the gradient boosting algorithm. DNN is well-known for outperforming nearly every other 

machine learning algorithm when the data volume grows. These are the potential reasons 

that XGBoost and DNN classifiers perform better in the task of this study.

This study investigated five commonly used classifiers with the purpose of validating the 

concept of using the features of coincidence events to differentiate source from background 

coincidences, and demonstrated that XGBoost and DNN classifiers worked well for the 

coincidence differentiation for the TOF-PET modules. Although there exist a variety of 

other powerful and well-established classifiers, it is hard to test all of them in this proof-of-

concept study. For other PET scanners and detectors, the two classifiers performing best in 

this study are recommended for study along with trials of other classifiers.

Coincidences are divided into just two classes (source and background) in this study. In 

principle, further classifications are possible, for example classifying events in to true, 

random, scattered and background coincidences. In this case, the proposed method could 

also contribute to random and scatter corrections, where current correction methods may 

not be trivial to implement at very low activity levels. However, in this case, the features 

need to be selected carefully to allow the differentiation of random and scatter coincidences 

and avoid high rates of misclassification as they have smaller feature differences compared 

to the differences between true and background coincidences. Five features, both energies 

deposited in the paired detectors, which were taken as two individual features, average 

and differential of the two energies, and time difference of the coincidence events are 

extracted in this study, however a different set of features could be explored for different 

scanners, especially for scanners that incorporate additional information, for example depth 

of interaction (DOI).

The proposed method not only is suitable for very-low activity applications (e.g. in pediatric 

and possibly fetal imaging), but can also extend the imaging time span in kinetic studies, 

facilitating longer tracking of biological and metabolic processes. Also, in cell trafficking 

studies which are of interest in a variety of research and clinical fields, such as immune 

therapy, single or small numbers of cells may be loaded into the circulatory system with 

very low activities (<10 Bq/cell) and their spatio-temporal variation cannot currently be 

captured in the presence of background using Lu-based PET scanners. The proposed method 

can potentially facilitate the use of Lu-based PET scanners in such extreme low activity 

biological applications.

However, individual training procedures will likely be needed for each different PET scanner 

and different phantom/object in the FOV to guarantee the classification accuracy. For best 

results, and to extend the range for imaging extremely low activity sources, these methods 

should be combined with other methods to minimize the background relative to source 
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events, measure and model the background, and incorporate as much known information as 

possible into the reconstruction algorithm.

5. Conclusion

A classification methodology is proposed to identify and remove intrinsic background events 

in Lu-based PET detectors and scanners in order to facilitate ultra-low activity imaging 

that has a range of potential applications. By interrogating individual coincidence events, 

the origin (source or background) of each measured coincidence event is predicted using 

the classification model established by supervised learning of the training set composed 

of measured background coincidences and simulated source coincidences. A platform 

integrating five commonly-used classifiers was constructed, which allowed the selection of 

the optimal classifier and parameter combination to reach the highest classification accuracy. 

Based on this platform, XGBoost was demonstrated to be the most effective classifier in 

background reduction. The proposed methodology is not limited to the TOF-PET modules 

used in this study but can be generalized for any PET detectors and scanners using materials 

with intrinsic background radiation. This method has the potential to reduce the lower signal 

detection limits for PET scanners and drive the development of ultra-low activity imaging 

techniques for a range of interesting applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) TOF-PET modules and planar bar phantom; (b) GATE simulation of 18F point source 

detection with TOF-PET modules; (c) GATE simulation of 176Lu intrinsic radiation 

detection with TOF-PET modules.
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Figure 2. 
Energy calibration procedures. (a) Energy peak localization by Gaussian fitting to 6 

individual peaks generated by 22Na, 57Co, 137Cs and 176Lu sources in the ADC histogram; 

(b) Establishing an energy-ADC relationship for energy calibration. The blue curve is the 

cubic spline extrapolation of the energy-ADC points obtained in figure (a); (c) Validation of 

calibrated energies by checking the position of peaks produced by 176Lu and 22Na sources. 

Gaussian fits (GF) are applied to the calibrated peaks produced by 176Lu (green curve) and 
22Na (red curve) sources.
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Figure 3. 
Comparison between the spectra of features used for training the classification model 

and measured features. Figures (a) to (d) are the spectra of deposited energies, average 

of energies deposited, difference of energies deposited in the pair of detectors, and time 

difference of all coincidences, respectively
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Figure 4. 
Comparison of feature spectra between background and source coincidences. Figures a-d 

represent the spectra of deposited energies, average of energies, difference of energies 

deposited in the pair of detectors, and difference of time stamps, respectively.
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Figure 5. 
(a) & (c) Reconstructed images of a measured 40 Bq 18F point-like source preprocessed 

without and with XGBoost classifier, respectively. (b) & (d) Reconstructed images of 

a simulated 40 Bq 18F point source preprocessed without and with XGBoost classifier, 

respectively. (e) & (f) FWHM and FWTM as a function of 18F point source activity 

(10-2000 Bq) with classification applied (blue stars) and not applied (red circles).

Wang et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2023 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Reconstructed images of the low-activity planar Derenzo phantom with (a) and without (b) 

classification applied. The green circle in (b) encloses the hole-array area.
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Figure 7. 
Reconstructed images of a low-activity planar bar phantom with (a) and without (b) 

classification applied. (c) Pixel value plot averaged over the columns of the bars with 4-mm 

center-to-center distance in the green box in (b) with and without XGBoost classification 

applied. (d) Pixel value plot averaged over the columns of the bars with 2-mm center-to-

center distance in the blue box in (b) with and without XGBoost classification applied.
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Table 1.

Accuracies of different classification methods for different test datasets

Classifier Accuracy (%)
(test dataset I)

Sensitivity (%)
(test dataset I)

Specificity (%)
(test dataset I)

Accuracy (%)
(test dataset II)

LR 87.93±0.021 95.54±0.038 45.74±0.054 45.45±0.50

SVM 91.85±0.014 95.66±0.053 70.68±0.25 70.65±0.84

RF 92.94±0.035 96.09±0.048 75.46±0.30 81.91±0.60

XGBoost 99.67±0.11 99.76±0.069 99.38±0.17 99.66±0.034

DNN 91.70±0.51 93.57±1.62 81.32±6.46 81.61±0.76

Classifier Accuracy (%)
(test dataset III)

Accuracy (%)
(test dataset IV)

Accuracy (%)
(test dataset V)

Accuracy (%)
(test dataset VI)

LR 86.76±0.069 88.24±0.048 88.78±0.015 52.87±0.13

SVM 88.08±0.086 79.88±0.13 89.31±0.021 76.26±0.035

RF 92.13±0.080 91.32±0.065 94.15±0.060 73.05±0.11

XGBoost 97.66±0.049 97.51±0.017 98.89±0.23 86.48±0.035

DNN 94.73±0.083 95.11±0.053 95.70±0.057 72.41±0.19
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