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Higher-Order Global Regularity of an
Inviscid Voigt-Regularization of the
Three-Dimensional Inviscid Resistive
Magnetohydrodynamic Equations

Adam Larios and Edriss S. Titi

Abstract. We prove existence, uniqueness, and higher-order global regu-
larity of strong solutions to a particular Voigt-regularization of the three-
dimensional inviscid resistive Magnetohydrodynamic (MHD) equations.
Specifically, the coupling of a resistive magnetic field to the Euler-Voigt
model is introduced to form an inviscid regularization of the inviscid
resistive MHD system. The results hold in both the whole space R3

and in the context of periodic boundary conditions. Weak solutions for
this regularized model are also considered, and proven to exist globally
in time, but the question of uniqueness for weak solutions is still open.
Furthermore, we show that the solutions of the Voigt regularized system
converge, as the regularization parameter α→ 0, to strong solutions of
the original inviscid resistive MHD, on the corresponding time interval
of existence of the latter. Moreover, we also establish a new criterion for
blow-up of solutions to the original MHD system inspired by this Voigt
regularization.

Mathematics Subject Classification (2010). Primary: 76W05, 76B03,
76D03, 35B44; Secondary: 76A10, 76A05.

Keywords. Magnetohydrodynamics, MHD Equations, MHD-Voigt,
Navier-Stokes-Voigt, Euler-Voigt, Inviscid Regularization, Turbulence
Models, α−Models, Blow-Up Criterion for MHD.

The authors are thankful for the warm hospitality of the Institute for Mathematics and its

Applications (IMA), University of Minnesota, where part of this work was completed. This
work was supported in part by the NSF grants no. DMS-0708832, DMS-1009950. E.S.T.

also acknowledges the kind hospitality of the Freie Universität - Berlin, and the support
of the Minerva Stiftung/Foundation.



2 Adam Larios and Edriss S. Titi

1. The Inviscid Resistive MHD-Voigt Model

The magnetohydrodynamic equations (MHD) are given by

∂tu + (u · ∇)u +∇(p+
1

2
|B|2) = (B · ∇)B + ν4u, (1.1a)

∂tB + (u · ∇)B − (B · ∇)u +∇q = µ4B, (1.1b)

∇ · B = ∇ · u = 0, (1.1c)

with appropriate boundary and initial conditions, discussed below. Here,
ν ≥ 0 is the fluid viscosity, µ ≥ 0 is the magnetic resistivity, and the un-
knowns are the fluid velocity field u(x, t) = (u1, u2, u3), the fluid pressure
p(x, t), the magnetic field B(x, t) = (B1,B2,B3), and the magnetic pressure
q(x, t), where x = (x1, x2, x3), and t ≥ 0. Note that, a posteriori, one can
derive that ∇q ≡ 0. Due to the fact that these equations contain the three-
dimensional Navier-Stokes equations for incompressible flows as a special case
(namely, when B ≡ 0), the mathematical theory is far from complete. For a
derivation and physical discussion of the MHD equations, see, e.g., [11]. For
an overview of the classical and recent mathematical results pertaining to
the MHD equations, see, e.g., [19, 17]. In this paper we study the inviscid
(ν = 0) case, with the following inviscid regularization of (1.1),

−α2∂t4u + ∂tu + (u · ∇)u +∇(p+
1

2
|B|2) = (B · ∇)B, (1.2a)

∂tB + (u · ∇)B − (B · ∇)u +∇q = µ4B, (1.2b)

∇ · B = ∇ · u = 0, (1.2c)

(u,B)|t=0 = (u0,B0), (1.2d)

where α > 0 is a regularization parameter having units of length, and µ > 0.
Note that when α = 0, we formally retrieve the inviscid (ν = 0) resistive
system (1.1). Furthermore, adding a forcing term to (1.1a) or (1.1b), or rein-
troducing a viscous term ν4u to the right-hand side of (1.2a) (with ν > 0),
does not pose any additional mathematical difficulties to the results or the
analysis of the present work, so it will not be discussed further.

In [34], we studied inviscid, irresistive (ν = 0, µ = 0) magnetohydro-
dynamic equations with an additional inviscid regularization on both the
velocity and the magnetic terms. Following the ideas of treating the Voigt-
regularization of the 3D Euler equations, i.e., the inviscid simplified Bardina
model, presented in [7], we proved in [34] that if u0,B0 ∈ H1(Ω) and are
divergence free, then the inviscid, irresistive MHD system with Voigt reg-
ularization on both the magnetic and momentum equations has a unique
solution (u,B) lying in C1((−∞,∞), H1(Ω)). For a discussion of the history,
development, and recent result for the Voigt model in the context of the Euler
and Navier-Stokes equations, we refer to [34, 33].

System (1.2) was introduced and studied in the two-dimensional case
in [42], where global well-posedness was proven under the assumption that
u0 ∈ V , B0 ∈ H. The three-dimensional case was studied in [10], where global
regularity was proven, assuming the initial data u0 ∈ H2(Ω), B0 ∈ H1(Ω)
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and are divergence free. Here, we relax the hypotheses of the theorems given
in [10] by requiring only that u0 ∈ H1(Ω), B0 ∈ L2(Ω) and are divergence
free for the existence of weak solutions, and u0,B0 ∈ H1(Ω) for the existence
of strong solutions. Furthermore, we prove the uniqueness of strong solutions
to (1.2), a result which is stated, but not proven, in [10]. We remark that
the uniqueness proof does not follow directly from standard methods, as the
Lions-Magenes Lemma does not apply directly, and we must use Lemma 3.4
instead. We also prove the higher-order regularity of (1.2). Since the main
purpose of this line of research is to introduce a reliable and stable inviscid
numerical regularization of the underlying model we, in particular, show that
the solutions of the Voigt regularized system converge, as the regularization
parameter α→ 0, to strong solutions of the original inviscid resistive MHD,
on the corresponding time interval of existence of the latter. Moreover, we
also establish a new criterion for blow-up of solutions to the original MHD
system inspired by this Voigt regularization.

2. Preliminaries

In this section, we introduce some preliminary material and notations which
are commonly used in the mathematical study of fluids, in particular in the
study of the Navier-Stokes equations (NSE). For a more detailed discussion
of these topics, we refer to [16, 56, 57, 24].

In this paper, we consider only periodic boundary conditions. Our space
of test functions is defined to be

V :=

{
ϕ ∈ F

∣∣∣∣∇ · ϕ = 0 and

∫
Ω

ϕ(x) dx = 0

}
,

where F is the set of all three-dimensional vector-valued trigonometric poly-
nomials with periodic domain Ω = T3 := [0, 1]3. We denote by Lp and Hm

the usual Lebesgue and Sobolev spaces over Ω, and define H and V to be
the closures of V in L2 and H1, respectively. We define inner products on H
and V respectively by

(u,v) =

3∑
i=1

∫
Ω

uivi dx and ((u,v)) =

3∑
i,j=1

∫
Ω

∂ui
∂xj

∂vi
∂xj

dx,

and the associated norms |u| = (u,u)1/2, ‖u‖ = ((u,u))1/2. We denote by
V ′ the dual space of V . The action of V ′ on V is denoted by 〈·, ·〉 ≡ 〈·, ·〉V ′ .

We denote by Pσ : L2 → H the Leray-Helmholtz projection operator
and define the Stokes operator A := −Pσ4 with domain D(A) := H2 ∩
V . A can be extended as a bounded linear operator A : V → V ′, such
that ‖Av‖V ′ = ‖v‖ for all v ∈ V . It is known that A−1 : H → D(A)
is a positive-definite, self-adjoint, compact operator, and that there is an
orthonormal basis {wi}∞i=1 of H consisting of eigenvectors of A corresponding
to eigenvalues {λi}∞i=1 such that Awj = λjwj and 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·
(see, e.g., [16, 56, 57]) repeated according to their multiplicity. Let Hm :=
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span {w1, . . . ,wm}, and let Pm : H → Hm be the L2 orthogonal projection
ontoHm with respect to {wi}∞i=1. Notice that in the case of periodic boundary
conditions, i.e., in the torus T3, we have A = −4, and λ1 = (2π)−2 (see, e.g.,
[16, 56]). We have the continuous embeddings

D(A) ↪→ V ↪→ H ≡ H ′ ↪→ V ′. (2.1)

Moreover, by the Rellich-Kondrachov Compactness Theorem (see, e.g., [21,
1]), these embeddings are compact, due to the boundedness of T3.

It will be convenient to suppress the pressure term by applying the
Leray-Helmholtz projection Pσ and use the standard notation for the non-
linearity,

B(u,v) := Pσ((u · ∇)v) (2.2)

for u,v ∈ V. The operator B defined in (2.2) is a bilinear form which can
be extended as a continuous map B : V × V → V ′. Furthermore, for u, v,
w ∈ V ,

〈B(u,v),w〉V ′ = −〈B(u,w),v〉V ′ , and 〈B(u,v),v〉V ′ = 0. (2.3)

We also define the trilinear form b : V × V × V → R by

b(u,v,w) := 〈B(u,v),w〉V ′ . (2.4)

We will often use standard estimates on the trilinear form b, along with
Agmon’s inequality, the Sobolev and Ladyzhenskaya inequalities, and the
Poincaré inequality. For these estimates, we refer to, e.g., [24, 16, 56, 57] and
the references therein.

3. Existence and Uniqueness of Solutions

This section is devoted to stating and proving our main result. As mentioned
in the introduction, we relax the conditions of the results of [10], where it was
assumed that u0 ∈ D(A), B0 ∈ V to derive the existence of a strong solution.
Here we define the notion of a weak solution to (1.2), for which we only need
to assume that u0 ∈ V , B0 ∈ H to show global existence without uniqueness.
As for a strong solution, we only need to assume u0,B0 ∈ V to prove global
existence, uniqueness, and continuous dependence on initial data. We note
that, although the major features of this model that allow for a proof of
well-posedness were exploited formally in [10], the a priori estimates can be
sharpened. This allows us to define the notion of weak solutions and to prove
their global existence, a result which is not present in [10]. We also prove
the uniqueness of strong solutions, which was stated without proof in [10].
Furthermore, there are subtleties in passing to the limit due to the addition
of the Voigt term −α2∂t4u in the momentum equation (1.2a) that one has
to address in the rigorous proof. Here, we give a fully rigorous derivation and
justification of these estimates, as well as the passage to the limit.



Voigt-Regularized Inviscid Resistive MHD 5

3.1. Existence of Weak Solutions

Before we begin, we rewrite (1.2) in functional form. Applying Pσ to (1.2) and
using the notation introduced in Section 2, we obtain the following system,
which is equivalent to (3.1) (see, e.g., [57] for showing the equivalence in the
context of the Navier-Stokes equations)

d

dt

(
α2Au + u

)
= B(B,B)−B(u,u), (3.1a)

d

dt
B + µAB = B(B,u)−B(u,B), (3.1b)

B(0) = B0, u(0) = u0, (3.1c)

where (3.1a) is satisfied in the sense of L4/3((0, T ), V ′), (3.1b) is satisfied in
the sense of L2((0, T ), V ′), and (3.1c) is satisfied in the sense of Definition
3.1 below. Systems (1.2) and (3.1) are equivalent, and one can recover the
pressure terms p and q (q ≡ 0) by using deRham’s Theorem (see, e.g., [58,
57]), as it is done for the case of the Navier-Stokes equations (see, e.g., [19,
57]).

Definition 3.1. Let u0 ∈ V , B0 ∈ H. We say that (u,B) is a weak solution to
(3.1), on the time interval [0, T ], if u ∈ C([0, T ], V ), B ∈ L2((0, T ), V ) ∩
Cw([0, T ], H), du

dt ∈ L4((0, T ), H), dB
dt ∈ L2((0, T ), V ′), and furthermore,

(u,B) satisfies (3.1a) in the sense of L4/3([0, T ], V ′) and (3.1b) in the sense of
L2([0, T ], V ′). Furthermore, if u0,B0 ∈ V , we say that (u,B) is a strong solu-
tion to (3.1) if it is a weak solution, and additionally, B ∈ L2((0, T ),D(A))∩
C([0, T ], V ), du

dt ∈ C([0, T ], V ), and dB
dt ∈ L

2((0, T ), H).

With this definition, we are now ready to state and prove the following
theorem.

Theorem 3.2. Let u0 ∈ V , B0 ∈ H. Then (3.1) has a weak solution (u,B)
for arbitrary T > 0.

Proof. Let T > 0 be fixed. Consider the finite dimensional Galerkin approx-
imation of (3.1), based on the eigenfunctions of the operator A (see Section
2), given by the following system of ODEs in Hm ×Hm.

d

dt

(
um + α2Aum

)
+ PmB(um,um) = PmB(Bm,Bm), (3.2a)

d

dt
Bm + µABm + PmB(um,Bm) = PmB(Bm,um), (3.2b)

Bm(0) = PmB0, um(0) = Pmu0. (3.2c)

We look for um,Bm ∈ C1([0, Tm), Hm) solving (3.2). Applying the operator
(I +α2A)−1 to (3.2a), we see that (3.2) is equivalent to a system of the form
ẏ = F(y), where F : Hm ×Hm → Hm ×Hm is a quadratic polynomial. By
classical ODE theory, this system has a unique solution on [0, Tm) for some
Tm > 0. Let [0, Tmax

m ) be the maximal interval of existence and uniqueness
for the solution of (3.2).



6 Adam Larios and Edriss S. Titi

Next, we show that Tmax
m = ∞. Indeed, taking the inner product of

(3.2a) with um(t) and (3.2b) with Bm(t), for t ∈ [0, Tmax
m ), and integrating

by parts with respect to the spatial variable and using (2.3), we have,

1

2

d

dt

(
α2‖um‖2 + |um|2

)
= (B(Bm,Bm),um), (3.3a)

1

2

d

dt
|Bm|2 + µ‖Bm‖2 = (B(Bm,um),Bm) = −(B(Bm,Bm),um). (3.3b)

Adding (3.3a) and (3.3b) gives

1

2

d

dt

(
α2‖um‖2 + |um|2 + |Bm|2

)
= −µ‖Bm‖2 ≤ 0. (3.4)

Integrating the equality in (3.4) in time, we obtain for t ∈ [0, Tmax
m )

α2‖um(t)‖2 + |um(t)|2 + |Bm(t)|2 + 2µ

∫ t

0

‖Bm(s)‖2 ds

= α2‖um(0)‖2 + |um(0)|2 + |Bm(0)|2

≤ (K1
α)2 := α2‖u0‖2 + |u0|2 + |B0|2. (3.5)

This bound, together with the fact that the vector field F(y) in (3.2) is a
quadratic polynomial, imply that Tmax

m =∞. Furthermore, we see from (3.5)
that for fixed but arbitrary T > 0, we have

um is bounded in L∞([0, T ], V ), (3.6a)

Bm is bounded in L∞([0, T ], H) ∩ L2([0, T ], V ), (3.6b)

uniformly with respect to m.

As mentioned at the beginning of this section, our goal is to extract
subsequences of {um} and {Bm} which converge in L2((0, T ), H) by using the
Aubin Compactness Theorem (see, e.g., [16],p. 68-71 or [46, 57]). To satisfy
the hypotheses of Aubin’s theorem, we show that dum

dt is uniformly bounded

in L4((0, T ), H) ↪→ L2((0, T ), V ′), and that dBm
dt is uniformly bounded in

L2((0, T ), V ′), with respect to m. Using equation (3.1a), we have

∥∥∥∥(I + α2A)
dum
dt

∥∥∥∥
D(A)′

≤ ‖PmB(Bm,Bm)‖D(A)′ + ‖PmB(um,um)‖D(A)′

≤ C|Bm|3/2‖Bm‖1/2 + C|um|3/2‖um‖1/2

≤ C(K1
α)3/2‖Bm‖1/2 + (K1

α)2α−1/2, (3.7)

where we have used (3.5). Estimating differently, we have
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∥∥∥∥(I + α2A)
dum
dt

∥∥∥∥
V ′

≤ ‖PmB(Bm,Bm)‖V ′ + ‖PmB(um,um)‖V ′
= sup
‖w‖=1

(B(Bm,Bm), Pmw) + sup
‖w‖=1

(B(um,um), Pmw)

≤ C sup
‖w‖=1

|Bm|1/2‖Bm‖3/2‖w‖+ C sup
‖w‖=1

|um|1/2‖um‖3/2‖w‖

≤ C(K1
α)1/2‖Bm‖3/2 + (K1

α)2α−3/2, (3.8)

Therefore, due to (3.5), the right-hand side of (3.7) is uniformly bounded in
L4(0, T ), and right-hand side of (3.8) is uniformly bounded in L4/3(0, T ), and
thus (I+α2A)dumdt is uniformly bounded in L4([0, T ],D(A)′)∩L4/3([0, T ], V ′)

with respect to m. By inverting the operator (I + α2A), we have

dum
dt

is bounded in L4([0, T ], H) and L4/3([0, T ], V ), (3.9)

uniformly with respect to m.

Next, we estimate dBm
dt . From equation (3.1b) we have, thanks to stan-

dard estimates on the trilinear term∥∥∥∥dBmdt
∥∥∥∥
V ′
≤ ‖PmB(Bm,um)‖V ′ + ‖PmB(um,Bm)‖V ′ + µ‖ABm‖V ′

≤ C|Bm|1/2‖Bm‖1/2‖um‖+ µ‖Bm‖

≤ C(K1
α)3/2α−1‖Bm‖1/2 + µ‖Bm‖, (3.10)

where the last estimate is due to (3.5). Thus, it follows that

dBm
dt

is bounded in L2([0, T ], V ′), (3.11)

uniformly with respect to m.

By (3.6a), um is uniformly bounded in L∞([0, T ], V ) ↪→ L2([0, T ], V ),
dum
dt is uniformly bounded in L4([0, T ], H) ↪→ L2([0, T ], V ′), Bm is uniformly

bounded in L∞([0, T ], H) ∩ L2([0, T ], V ), and dBm
dt is uniformly bounded in

L2([0, T ], V ′). Thus, by the Aubin Compactness Theorem (see, e.g., [16],p.
68-71 or [46, 57]), there exists a subsequence of (Bm,um) (which we relabel
as (Bm,um), if necessary) and elements B,u ∈ L2([0, T ], H) such that

Bm → B strongly in L2([0, T ], H), (3.12a)

um → u strongly in L2([0, T ], H). (3.12b)

Furthermore, using (3.6a), (3.6b), (3.9), (3.11) and the Banach-Alaoglu Theo-
rem, we can pass to additional subsequences if necessary (which we again rela-
bel as (Bm,um)), to show that, in fact, u ∈ L∞([0, T ], V ), B ∈ L∞([0, T ], H)∩
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L2([0, T ], V ), d
dtu ∈ L

4([0, T ], V ) ∩ L4/3([0, T ], H), d
dtB ∈ L

2([0, T ], V ′), and

Bm ⇀ B and um ⇀ u weakly in L2([0, T ], V ), (3.13a)

Bm ⇀ B and um ⇀ u weak-∗ in L∞([0, T ], H), (3.13b)

um ⇀ u weak-∗ in L∞([0, T ], V ), (3.13c)

d

dt
um ⇀

d

dt
u weak-∗ in L4([0, T ], H) and L4/3([0, T ], V ),

(3.13d)

d

dt
Bm ⇀

d

dt
B weak-∗ in L2([0, T ], V ′). (3.13e)

as m→∞.
Let k be fixed, and take m ≥ k. Let w ∈ C1([0, T ], Hk) with w(T ) = 0

be arbitrarily given. By taking the inner product of (3.2) with w, integrating
on [0, T ], and using integration by parts, we have

− (um(0),w(0))− α2((um(0),w(0))) (3.14a)

−
∫ T

0

(um(t),w′(t)) dt+ α2

∫ T

0

((um(t),w′(t))) dt

=

∫ T

0

(B(Bm(t),Bm(t), Pmw(t)) dt−
∫ T

0

(B(um(t),um(t)), Pmw(t)) dt,

− (Bm(0),w(0))−
∫ T

0

(B′m(t),w(t)) dt+ µ

∫ T

0

((Bm(t),w(t))) dt (3.14b)

=

∫ T

0

(B(Bm(t),um(t)), Pmw(t)) dt−
∫ T

0

(B(um(t),Bm(t)), Pmw(t)) dt.

We show each of the terms in (3.14) converges to the appropriate limit,
namely, we will find that equations (3.14) hold with {Bm,um, Pm} replaced
by {B,u, I}, where I is the identity operator. First, thanks to (3.13a), we
have

µ

∫ T

0

((Bm(t),w(t))) dt→ µ

∫ T

0

((B(t),w(t))) dt,∫ T

0

(um(t),w′(t)) dt→
∫ T

0

(u(t),w′(t)) dt,

α2

∫ T

0

((um(t),w′(t))) dt→ α2

∫ T

0

((u(t),w′(t))) dt,∫ T

0

(Bm(t),w′(t)) dt→
∫ T

0

(B(t),w′(t)) dt.

Next, we must show the convergence of the trilinear terms. We will only
show the convergence in one case, as the rest are similar (see, e.g., [16, 57]
for similar arguments in the case of the Navier-Stokes equations). Namely,
we will show that

I(m) :=

∫ T

0

(B(um(t),um(t)), Pmw(t)) dt−
∫ T

0

〈B(u(t),u(t)),w(t))〉V ′ dt.
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approaches 0 as m→∞. To this end, let

I1(m) :=

∫ T

0

〈B(um(t)− u(t), Pmw(t)),um(t)〉V ′ dt,

I2(m) :=

∫ T

0

〈B(u(t), Pmw(t)),um(t)− u(t)〉V ′ dt,

and note that I(m) = I1(m) + I2(m), where we have used (2.3). Since
w ∈ C1([0, T ], Hk) and k ≥ m, we have Pmw = w. Thus, thanks to stan-
dard estimates on the trilinear term, as well as (3.6a), a simple application
of Hölder’s inequality and (3.12b) shows that I1(m) → 0 and I2(m) → 0,
and thus I(m) → 0 for w ∈ C1([0, T ], Hk). As mentioned above, similar ar-
guments hold for the other tri-linear terms. Note that um(0) := Pmu0 → u0

in V and Bm(0) := PmB0 → B0 in H. Thus, passing to the limit as m→∞
in (3.14), we have for all w ∈ C1([0, T ], Hk) with w(T ) = 0,

− (u0,w(0))− α2((u0,w(0))) (3.15a)

−
∫ T

0

(u(t),w′(t)) dt+ α2

∫ T

0

((u(t),w′(t))) dt

=

∫ T

0

(B(B(t),B(t),w(t)) dt−
∫ T

0

(B(u(t),u(t)),w(t)) dt,

− (B0,w(0))−
∫ T

0

(B(t),w′(t)) dt+ µ

∫ T

0

((B(t),w(t))) dt (3.15b)

=

∫ T

0

(B(B(t),u(t)),w(t)) dt−
∫ T

0

(B(u(t),B(t)),w(t)) dt.

Since C1([0, T ], Hk) is dense in C1([0, T ], V ), we use a standard estimate
on the trilinear term, along with the facts that u ∈ L∞((0, T ), V ) and
B ∈ L∞((0, T ), H) ∩ L2((0, T ), V ) to show that (3.15) holds for all w ∈
C1([0, T ], V ) with w(T ) = 0. In particular, (3.1a) and (3.1b) are satisfied by
(u,B) in the sense of V ′, where the time derivatives are taken in the sense of
distributions on (0, T ). Allowing (3.1a) and (3.1b) to act on w and comparing
with (3.15), one finds that u(0) + α2Au(0) = u0 + α2Au0 and B(0) = B0

(see, e.g., [57, p. 195]). By inverting I + α2A, we then have u(0) = u0.
We must now show that u and B satisfy the requirements for continuity

in time in Definition (3.1). Taking the action of (3.15b) with an arbitrary
v ∈ V and integrating in time, we obtain, for a.e. t0, t1 ∈ [0, T ],

(B(t1)−B(t0),v) + µ

∫ t1

t0

((B(t),v)) dt (3.16)

=

∫ t1

t0

〈B(B(t),u(t)),v〉V ′ dt−
∫ t1

t0

〈B(u(t),B(t)),v〉V ′ dt.

Since the integrands are in L1((0, T )), (3.16) implies that B ∈ Cw([0, T ],V) by
sending t1 → t0. By the density of V inH and the fact that B ∈ L∞([0, T ], H),
a simple application of the triangle inequality shows that B ∈ Cw([0, T ], H).
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Next, by (3.9), we have d
dtu ∈ L

4([0, T ], H) ↪→ L2([0, T ], V ′). Since we also

have u ∈ L2([0, T ], V ), it follows that u ∈ C([0, T ], H) (see, e.g., [46, Corol-
lary 7.3]). We have now shown that u and B satisfy all the requisite conditions
of Definition 3.1, and therefore we have proven the global existence of weak
solutions. �

3.2. Existence of Strong Solutions

Theorem 3.3. Let u0,B0 ∈ V . Then for every T > 0, (3.1) has a strong
solution (u,B) on [0, T ].

Proof. Taking the inner product of (3.2b) with ABm, and using standard
estimates on the trilinear term, we obtain,

1

2

d

dt
‖Bm‖2 + µ|ABm|2

= −(B(Bm,um), ABm) + (B(um,Bm), ABm)

≤ C‖Bm‖1/2|ABm|1/2‖um‖|ABm|+ C‖um‖‖Bm‖1/2|ABm|1/2|ABm|

≤ K1
αα
−1‖Bm‖1/2|ABm|3/2, (3.17)

since ‖um‖ is uniformly bounded by (3.5). Due to Young’s inequality, we
have

α−1K1
α‖Bm‖1/2|ABm|3/2 ≤ K2

α,µ‖Bm‖2 +
µ

2
|ABm|2, (3.18)

where K2
α,µ := C(α−1K1

α)4µ−3. Therefore, combining (3.17) and (3.18), we
have

1

2

d

dt
‖Bm‖2 +

1

2
µ|ABm|2 ≤ K2

α,µ‖Bm‖2. (3.19)

Integrating (3.19) on [0, t] gives

‖Bm(t)‖2 + µ

∫ t

0

|ABm(s)|2 ds ≤ ‖Bm(0)‖2 + 2K2
α,µ

∫ t

0

‖Bm(s)‖2 ds

≤ ‖B0‖2 +K2
α,µ

K1
α

µ
:= K3

α,µ (3.20)

due to (3.5). Since we are now assuming B0 ∈ V , (3.20) implies

Bm is bounded in L∞([0, T ], V ) ∩ L2([0, T ],D(A)). (3.21)

uniformly with respect to m. Furthermore, recalling (3.7), the improved
bound (3.21) now yields

dum
dt

is bounded in L∞([0, T ], V ). (3.22)

uniformly with respect to m.
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Next, we estimate dBm
dt . From standard estimates on the trilinear term,

along with (3.1b) and (3.5), we have,∣∣∣∣dBmdt
∣∣∣∣ (3.23)

≤ |B(Bm,um)|+ |B(um,Bm)|+ µ|ABm|
= sup
|w|=1

(B(Bm,um),w) + sup
|w|=1

(B(um,Bm),w) + µ|ABm|

≤ sup
|w|=1

‖Bm‖L∞ |∇um||w|+ sup
|w|=1

|um|1/2‖um‖1/2|ABm||w|+ µ|ABm|

≤ C‖Bm‖1/2|ABm|1/2‖um‖+ µ|ABm|
≤ CK1

α(α−1 + µ)|ABm|.

Thanks to this and (3.6b)

dBm
dt

is bounded in L2([0, T ], H), (3.24)

uniformly with respect to m. Now, from the proof of Theorem 3.2, we already
know that there exists a weak solution (u,B) of (3.1) such that Bm′ → B
in L∞([0, T ], H) and L2([0, T ], V ) for some subsequence {Bm′}. Thanks to
(3.21) and (3.24), we may apply the Aubin Compactness Theorem (see, e.g.,
[16],p. 68-71 or [46, 57]) to extract a subsequence (relabeled as (um, Bm))
such that

Bm → B strongly in L2([0, T ], V ). (3.25)

Using (3.21), the Banach-Alaoglu Theorem, and the uniqueness of lim-
its, we may pass to additional subsequences if necessary to show that B ∈
L∞((0, T ), V ) ∩ L2((0, T ),D(A)). It is easy to see from (3.24) that dB

dt ∈
L2((0, T ), H). Thus, we must have B ∈ C([0, T ], V ) (see, e.g., [46, Corol-
lary 7.3]). Finally, since u,B ∈ C([0, T ], V ), it follows easily that the right-
hand side of (3.1a) is in C([0, T ], V ′). Inverting (I + α2A) shows that du

dt ∈
C([0, T ], V ). Therefore, we have shown the existence of a strong solution to
(3.1). �

3.3. Uniqueness of Strong Solutions and Their Continuous Dependence On
Initial Data

In this section, we prove the uniqueness of strong solutions among the class of
weak solutions. As mentioned in the introduction, the uniqueness of (strong)
solutions is stated in [10], but no proof is given. We begin with a lemma,
which is reminiscent of the Lions-Magenes Lemma (see, e.g., [38, 57]). We
believe this lemma to be novel, and may it find use in other applications
outside the present work as well.

Lemma 3.4. Let v ∈ C((0, T ), H) and d
dtv ∈ Lp((0, T ), H) for some p ∈

[1,∞]. Then the following inequality holds in the in distribution sense on
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(0, T ).

d

dt
|v|2 = 2

(
d

dt
v,v

)
. (3.26)

Moreover, |v|2 is absolutely continuous.

Proof. First, we note that (3.26) makes sense, due to the fact that t 7→
|v(t)|2 and t 7→ ( ddtv(t),v(t)) are both elements of L1([0, T ]). Let us write
ṽ for the function which is equal to v on [0, T ] and equal to 0 on R \ [0, T ].
By a standard mollification process, we can find a sequence of functions
{vk}k∈N in C∞([0, T ]) such that vk → v in L∞loc((0, T ), H) and d

dtvk →
d
dtv

in Lploc((0, T ), H). Clearly, equality (3.26) holds for vk, and also |vk|2 → |v|2
in L1

loc((0, T )). We also have for 0 < t1 < t2 < T ,∫ t2

t1

∣∣(dvk
dt ,vk

)
−
(
dv
dt ,v

)∣∣ dt ≤ ∫ t2

t1

∣∣(dvk
dt −

dv
dt ,vk

)∣∣+
∣∣(dv
dt ,vk − v

)∣∣ dt
≤ C‖dvkdt −

dv
dt ‖Lp((t1,t2))‖vk‖L∞((t1,t2)) + ‖dvdt ‖Lp((t1,t2))‖vk − v‖L∞((t1,t2)).

Thus,
(
d
dtvk,vk

)
→
(
d
dtv,v

)
in L1

loc((0, T )) as well, and so (3.26) holds in the
scalar distribution sense. Furthermore, since the right-hand side of (3.26) is
integrable, we have |v|2 ∈ W 1,1((0, T )), and so |v|2 is absolutely continuous
in time. �

Theorem 3.5 (Uniqueness and Continuous Dependence On Initial Data). Let
(u1,B1) be a strong solution to (1.2) with initial data u1

0, B1
0 ∈ V and let

(u2,B2) be a weak solution with initial data u2
0, B2

0 ∈ V . Let us write δv :=
v1 − v2 for two arbitrary, consecutively labeled vectors v1 and v2. We have,

|δu(t)|2 + α2‖δu(t)‖2 + |δB(t)|2 + µ

∫ t

0

‖δB(s)‖2eK
4
α,µ(t−s) ds (3.27)

≤
(
|δu0|2 + α2‖δu0‖2 + |δB0|2

)
eK

4
α,µt

K4
α,µ = K4

α,µ(K1
α,µ,K

3
α,µ, α, µ) is a positive constant. In particular, if u1

0 ≡
u2

0 and B1
0 ≡ B2

0 in the sense of H, then u1 ≡ u2 and B1 ≡ B2 in the sense
of L1([0, T ], H).

Proof. Let us denote δu := u1−u2 and δB := B1−B2. Subtracting, we find,

(I + α2A)
dδu

dt
= (δB · ∇)B1 + (B2 · ∇)δB − (δu · ∇)u1 − (u2 · ∇)δu. (3.28)

Applying (I + α2A)−1/2 to both sides of (3.28) we obtain

(I + α2A)1/2 dδu

dt
(3.29)

= (I + α2A)−1/2
(
(δB · ∇)B1 + (B2 · ∇)δB − (δu · ∇)u1 − (u2 · ∇)δu

)
.

Since δu ∈ C([0, T ], V ) and dδu
dt ∈ L

4/3([0, T ], V ) imply (I + α2A)1/2 dδu
dt ∈

L4/3([0, T ], H), we may take the inner product of (3.29) with (I+α2A)1/2δu ∈
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C([0, T ], H). Thanks to Lemma 3.4, we have(
(I + α2A)1/2 d

dt
δu, (I + α2A)1/2δu

)
=

1

2

d

dt

∣∣∣(I + α2A)1/2δu
∣∣∣2 . (3.30)

After using (2.3), we arrive at

1

2

d

dt

∣∣∣(I + α2A)1/2δu
∣∣∣2 = b(δB,B1, δu)+b(B2, δB, δu)−b(δu,u1, δu). (3.31)

Arguing in a similar way to the standard Navier-Stokes theory (in particular,
using the Lions-Magenes Lemma [38, 57] rather than Lemma 3.4, see, e.g.,
[16, 57, 46]), we derive the following equation for δB.

1

2

d

dt
|δB|2 + µ‖δB‖2 = b(δB,u1, δB) + b(B2, δu, δB)− b(δu,B1, δB). (3.32)

Since b(B2, δu, δB) = −b(B2, δB, δu) by (2.3), we add (3.31) and (3.32) to
obtain

1

2

d

dt

(∣∣∣(I + α2A)1/2δu
∣∣∣2 + |δB|2

)
+ µ‖δB‖2

= b(δB,B1, δu)− b(δu,u1, δu) + b(δB,u1, δB)− b(δu, B1, δB)

≤ C‖δB‖‖B1‖‖δu‖+ C|δu|1/2‖δu‖3/2‖u1‖

+ C|δB|1/2‖δB‖3/2‖u1‖+ C‖δu‖‖B1‖|δB|1/2‖δB‖1/2

≤ K3
α,µ‖δB‖‖δu‖+K1

α,µ|δu|1/2‖δu‖3/2

+K1
α,µ|δB|1/2‖δB‖3/2 +K3

α,µ‖δu‖|δB|1/2‖δB‖1/2

≤ 1

2
K4
α,µ

(
|δu|2 + α2‖δu‖2 + |δB|2

)
+
µ

2
‖δB‖2,

where K4
α,µ = K4

α,µ(K1
α,µ,K

3
α,µ, α, µ) is a positive constant. Here, we used

standard estimates on the trilinear term, Young’s inequality, (3.5), and (3.20)
(the latter hold in the limit as m → ∞ for Bi,ui by properties of weak
convergence). Therefore,

d

dt

(∣∣∣(I + α2A)1/2δu
∣∣∣2 + |δB|2

)
+ µ‖δB‖2 ≤ K4

α,µ(|δu|2 + α2‖δu‖2 + |δB|2).

Using Grönwall’s inequality together with the identity
∣∣(I + α2A)1/2δu

∣∣2 =

|δu|2 + α2‖δu‖2 now implies (3.27). �

4. Higher-Order Regularity

We now prove that the solutions to (3.1) (equivalently (1.2)) enjoy Hs reg-
ularity whenever u0,B0 ∈ Hs ∩ V for s ≥ 1. We note that the calculations
in this section are done formally, but can be made rigorous by proving the
results at the Galerkin approximation level, and then passing to the limit in
a similar manner to the procedure carried out above (see, e.g., [34]). By the
uniqueness of strong solutions, all strong solutions are regular.
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Theorem 4.1. Consider (3.1) under periodic boundary conditions Ω = T3.
Suppose for s ≥ 1 that u0 ∈ Hs ∩ V , B0 ∈ Hs ∩ V . Then (1.2) (equivalently
(3.1)) has a unique strong solution (u,B) with u ∈ L∞([0, T ], Hs ∩ V ), B ∈
L∞([0, T ], Hs ∩ V ) ∩ L2([0, T ], Hs+1 ∩ V ). If we furthermore assume that
u0 ∈ Hs+1 ∩ V , then we also have u ∈ L∞([0, T ], Hs+1 ∩ V ).

Remark 4.2. It is possible to extend Theorem 4.1 to include the case of a
specific type of Gevrey regularity, which is analytic in space, as was done for
the Euler-Voigt equations in [34]. For the sake of brevity, we do not pursue
such matters here. For more on Gevrey regularity, see, e.g., [22, 24, 25, 37,
47, 31, 41, 28, 5, 6, 22, 43] and the references therein.

Proof. As indicated above, we only give a formal proof, but the details can
be made rigorous by using the Galerkin approximation procedure (see, e.g.,
[34] for a complete discussion of this method applied to proving higher-order
regularity in the context of the Euler-Voigt equations). Furthermore, we only
prove the result in the cases s = 1, 2, as the cases s > 2 are more complicated
notationally, but not conceptually (see, e.g., [34]). In the case s = 1, the first
statement has already been settled by Theorems 3.3 and 3.5. To prove the
second statement, assume that u0 ∈ D(A) and B0 ∈ V . Let β be a multi-
index with |β| = 1. Applying ∂β to (1.2a), integrating the result against ∂βu,
and integrating by parts, we have

1

2

d

dt

(
α2‖∂βu‖2 + |∂βu|2

)
= (∂βB · ∇B, ∂βu) + (B · ∇∂βB, ∂βu)

− ((∂βu · ∇)u), ∂βu)− (B(u · ∇)∂βu), ∂βu)

= (∂βB · ∇B, ∂βu) + (B · ∇∂βB, ∂βu) (4.1)

− ((∂βu · ∇)u), ∂βu).

Where we have used (2.3). Next, we apply ∂β to (1.2b), integrate the result
against ∂βB, and integrate by parts to find

1

2

d

dt
|∂βB|2 + µ‖∂βB‖2 = (∂βB · ∇u, ∂βB) + ((B · ∇)∂βu, ∂βB)

− ((∂βu · ∇),B), ∂βB)− ((u · ∇)∂βB), ∂βB)

= (∂βB · ∇u, ∂βB) + ((B · ∇)∂βu), ∂βB) (4.2)

− ((∂βu · ∇)B), ∂βB).

Since ((B · ∇)∂βu, ∂βB) = −((B · ∇)∂βB, ∂βu) by (2.3), we may add (4.1)
and (4.2):

1

2

d

dt

(
|∂βB|2 + α2‖∂βu‖2 + |∂βu|2

)
+ µ‖∂βB‖2

= ((∂βB · ∇)B, ∂βu)− ((∂β · ∇)u, u, ∂βu)

+ ((∂βB · ∇)u, ∂βB)− ((∂β · ∇)u,B, ∂βB)

≤ C‖B‖‖B‖H3/2 |4u|+ C‖u‖‖u‖H3/2 |4u|
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≤ C‖B‖3/2|4B|1/2|4u|+ C‖u‖3/2|4u|1/2|4u|

≤ C‖B‖3/2|4B|1/2|4u|+K1
α|4u|3/2

≤ µ

2
|4B|2 + C‖B‖2|4u|4/3 +K1

α|4u|3/2,

since ‖u‖ is uniformly bounded on [0, T ]. Summing over all β with |β| = 1,
we have

d

dt

(
‖B‖2 + α2|4u|2 + ‖u‖2

)
+ µ|4B|2 ≤ C‖B‖2|4u|4/3 +K1

α|4u|3/2.
(4.3)

Letting y = 1 + ‖B‖2 + α2|4u|2 + ‖u‖2 and dropping the term µ|4B|2 for a
moment, we have an equation of the form

ẏ ≤ K(t)y3/4,

where K(t) = C ·K1
α(1 + ‖B(t)‖2). Grönwall’s inequality gives

‖B(t)‖2 + α2|4u(t)|2 + ‖u(t)‖2

≤ K5
α := ‖B0‖2 + α2‖4u0‖2 + ‖u0‖2 +K1

α

(∫ T

0

(1 + ‖B(s)‖2) ds

)4

.

(4.4)

Since
∫ T

0
‖B(s)‖2 ds <∞ by Theorem (3.3), we see that u ∈ L∞([0, T ],D(A)),

thanks to (4.4) and standard elliptic regularity results. This in turn implies
that the right-hand side of (4.3) is finite on [0, T ]. Integrating (4.3) on [0, T ],
we find that B ∈ L2([0, T ],D(A)). This formally establishes the theorem in
the case s = 1.

Let us now take s = 2. To begin, we formally take the inner product of
(1.2a) with 42u (recalling that, in the periodic case, A = −4) and integrate
by parts several times to obtain

1

2

d

dt

(
α2‖4u‖2 + |4u|2

)
= (4B · ∇B,4u) + 2(∇B · ∇∇B,4u) + (B · ∇4B,4u)

− (4u · ∇u,4u)− 2(∇u · ∇∇u,4u)− (u · ∇4u,4u)

= (4B · ∇B,4u) + 2(∇B · ∇∇B,4u) + (B · ∇4B,4u) (4.5)

− (4u · ∇u,4u)− 2(∇u · ∇∇u,4u).

where we have used (2.3). Next, we take the inner product of (1.2a) with
42B and integrate by parts several times and use (2.3) to obtain

1

2

d

dt
|4B|2 + µ‖4B‖2

= (4B · ∇u,4B) + 2(∇B · ∇∇u,4B) + (B · ∇4u,4B)

− (4u · ∇B,4B)− 2(∇u · ∇∇B,4B)− (u · ∇4B,4B)

= (4B · ∇u,4B) + 2(∇B · ∇∇u,4B)− (B · ∇4B,4u) (4.6)

− (4u · ∇B,4B)− 2(∇u · ∇∇B,4B).
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To prove the first statement of the theorem with s = 2, we take u0,B0 ∈
D(A). We already have u ∈ L∞([0, T ],D(A)) by the case s = 1, so it remains
to show B ∈ L∞([0, T ],D(A))∩L2([0, T ], H3∩V ). Estimating the right-hand
side of (4.6), we find

1

2

d

dt
|4B|2 + µ‖4B‖2 ≤ C(|4B|‖4B‖|4u|+ 6|4u||4B|3/2‖4B‖1/2) (4.7)

≤ (K5
α)1/2(|4B|‖4B‖+ |4B|3/2‖4B‖1/2)

≤ K6
α,µ|4B|2 +

µ

2
‖4B‖2,

where K6
α,µ = K6

α,µ(K5
α, µ). Here, we have used standard estimates on the tri-

linear term in the first inequality, (4.4) for the second inequality, and Young’s
inequality for the last inequality. Rearranging and using Grönwall’s inequal-
ity, we find,

|4B(t)|2 +

∫ t

0

‖4B(s)‖2e2K6
α,µ(t−s) ds ≤ |4B0|2e2K6

α,µt. (4.8)

Thus, by elliptic regularity, we have B ∈ L∞([0, T ],D(A))∩L2([0, T ], H3∩V ).

We now prove the second statement of the theorem with s = 2. This
statement can be proven independently of the first statement, so we do not
rely on (4.8) in the calculations below. Let u0 ∈ H3 ∩ V and B0 ∈ D(A).
Adding (4.5) and (4.6) and again noting the important cancellation of higher-
order derivatives, we obtain,

1

2

d

dt

(
|4B|2 + α2‖4u‖2 + |4u|2

)
+ µ‖4B‖2

= (4B · ∇u,4B) + 2(∇B · ∇∇u,4B)− (4u · ∇B,4B)

− 2(∇u · ∇∇B,4B) + (4B · ∇B,4u) + 2(∇B · ∇∇B,4u)

− (4u · ∇u,4u)− 2(∇u · ∇∇u,4u)

≤ C(3|4B|3/2‖4B‖1/2|4u|+ 3|4u|5/2‖4u‖1/2

+ 6‖B‖|4u|1/2‖4u‖1/2‖4B‖)

≤ C · (1 +K5
α)2(|4B|3/2‖4B‖1/2 + ‖4u‖1/2 + ‖4u‖1/2‖4B‖)

≤ C · (1 +K5
α)2(|4B|3/2‖4B‖1/2 + ‖4u‖1/2 + ‖4u‖1/2‖4B‖)

≤ Cµ · (1 +K5
α)2(|4B|2 + ‖4u‖1/2 + ‖4u‖) +

µ

2
‖4B‖2.

This leads to

d

dt

(
|4B|2 + α2‖4u‖2 + |4u|2

)
+ µ‖4B‖2

≤ K7
α,µ(1 + |4B|2 + α2‖4u‖2 + |4u|2),
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where K7
α,µ = Cα,µ · (1 +K3

α)2. Employing Grönwall’s inequality, we have

|4B(t)|2 + α2‖4u(t)‖2 + |4u(t)|2 + µ

∫ t

0

‖4B‖2eK
7
α,µ(t−s) ds

≤ (1 + |4B0|2 + α2‖4u0‖2 + |4u0|2)eK
7
α,µt

We see from the above inequality that B ∈ L∞((0, T ),D(A))∩L2((0, T ), H3∩
V ) (which was obtained independently in (4.8)), and u ∈ L∞((0, T ), H3∩V ).
Thus, we have formally proven the theorem in the case s = 2. A similar
argument can be carried out inductively for the cases s > 2. See, e.g., [34]
for a rigorous, detailed discussion of this type of argument. �

Remark 4.3. Note that one may add a diffusion term ν4u to the right-hand
side of (1.2a) or a suitable smooth forcing term to one or both equations
(1.2a) and (1.2b) and recover the same existence, uniqueness, and regularity
results obtained above using only slightly modified techniques. Furthermore,
doing so allows one to study the attractor of such a system, as in the case of
the Navier-Stokes-Voigt equations in [29, 28]. We will study these ideas in a
forthcoming paper.

5. Convergence and a Criterion for Blow-up

In this section, we prove that solutions of the regularized system (1.2) con-
verge to solutions of the non-regularized system (that is, the equations ob-
tained by formally setting α = 0 in (1.2)). We first state a short-time existence
and uniqueness theorem which was proven in a slightly more general context
in [3] (see also [48, 50]).

Theorem 5.1. Given initial data u0,B0 ∈ H3 ∩ V , there exists a time T > 0
and a unique solution (u,B) to the system (1.1), with ν = 0, µ > 0, such
that u,B ∈ C([0, T ], H3 ∩ V ).

Theorem 5.1 can be proven similarly to the case of the 3D Euler equa-
tions (see, e.g., [40, 39]). For example the existence of solutions can be proven
by considering the finite-dimensional Galerkin approximations to (1.1) based
on the eigenfunctions of the stokes operator, and showing that the sequence
of solutions as the dimension increases is a Cauchy sequence, and that it
converges to a solution of (1.1) in an appropriate sense. Theorem 5.1 allows
us to prove the following convergence result.

Theorem 5.2 (Convergence as α → 0). Let u0,B0,u
α
0 ,Bα0 ∈ H3 ∩ V . Let

(u,B) be the solution to (1.1) with ν = 0, µ > 0, and with initial data
(u0,B0). Let (uα,Bα) be the solution to (1.2) with initial data (u0,B0) .
Choose an arbitrary T ∈ (0, Tmax), where Tmax ∈ (0,∞] is the maximal time
for which a solution (u,B) exists and is unique. Suppose that uα0 → u0 in
V and Bα0 → B0 in H. Then uα → u in L∞([0, T ], V ) and Bα → B in
L∞([0, T ], H) ∩ L2([0, T ], V ), as α→ 0.
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Proof. Under the hypotheses on the initial conditions, Theorem 5.1 holds,
and thus there exists a time T > 0 and a unique (u,B) ∈ C([0, T ], H3(T2) ∩
V )×C([0, T ], H3(T2)∩V ) solving (1.1) (with ν = 0, µ > 0, (in particular, it
holds that Tmax > 0). Thanks to Theorem 3.3, we know that there also exists
a unique solution to the problem (1.2), namely (uα,Bα) ∈ C([0, T ], V ) ×
(L2((0, T ),D(A))∩C([0, T ], V )). Subtracting the equations corresponding to
(u,B) and (uα,Bα), and recalling the fact that A = −4 due to the periodic
boundary conditions, we find

− α2 d

dt
4uα +

d

dt
(uα − u) (5.1a)

= B(Bα − B,B) +B(Bα,Bα − B)−B(uα − u,u)−B(uα,uα − u),

d

dt
(Bα − B)− µ4(Bα − B) (5.1b)

= B(Bα − B,u) +B(Bα,uα − u)−B(uα − u,B)−B(uα,Bα − B),

We now take the inner product of (5.1a) with uα − u and of (5.1b) with
Bα − B, and add the results. Using (2.3) and rearranging the terms, we find

1

2

d

dt

(
α2‖u− uα‖2 + |u− uα|2 + |B − Bα|2

)
+ µ‖Bα − B‖2 (5.2)

= −(B(uα − u,u),uα − u)− (B(Bα − B,B),uα − u)

− (B(uα − u,B),Bα − B)− (B(Bα − B,u),Bα − B) + α2 (4ut,u
α − u)

≤ |u− uα|2‖∇u‖L∞ + 2|B − Bα|‖∇B‖L∞ |uα − u|+ |B − Bα|2‖∇u‖L∞

+ α2 (4ut,u
α − u)

≤ K1(|u− uα|2 + |B − Bα|2) + α2 (4ut,u
α − u) ,

where K1 := C sup[0,T ] max {‖∇u‖L∞ , ‖∇B‖L∞} < ∞, and where we have
used Young’s inequality. It remains to estimate the last term on the right-
hand side. Using the fact that u satisfies (1.1) (with ν = 0), we have

α2 (4ut,u
α − u) (5.3)

= α2 (4[B · ∇B − u · ∇u],uα − u)

= α2 (4B · ∇B + 2(∇B · ∇)∇B + B · ∇4B,uα − u)

− α2 (4u · ∇u + 2(∇u · ∇)∇u + u · ∇4u,uα − u)

≤ Cα2‖B‖1/2‖B‖3/2H2 ‖u− uα‖+ Cα2‖B‖2H2‖u− uα‖

+ Cα2‖u‖1/2‖u‖3/2H2 ‖u− uα‖+ Cα2‖u‖2H2‖u− uα‖
≤ K2α

2 + α2‖u− uα‖2

where

K2 := C sup
[0,T ]

max
{
‖B‖1/2‖B‖3/2H2 , α

2‖B‖2H2 , ‖u‖1/2‖u‖3/2H2 , ‖u‖2H2

}
<∞.
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Combining (5.2) with (5.3) yields

d

dt

(
α2‖u− uα‖2 + |u− uα|2 + |B − Bα|2

)
+ 2µ‖Bα − B‖2

≤ K3(α2‖u− uα‖2 + |u− uα|2 + |B − Bα|2) + α2K2,

where K3 = C max {1,K2}. Using Grönwall’s inequality, we have

α2‖u(t)− uα(t)‖2 + |u(t)− uα(t)|2 + |B(t)− Bα(t)|2

+ 2µ

∫ t

0

‖Bα(s)− B(s)‖2eK3(t−s) ds

≤ C
(
α2‖u0 − uα0 ‖2 + |u0 − uα0 |2 + |B0 − Bα0 |2

)
+ α2K2

K3
(1− eK3t).

Thus, if uα0 → u0 in V and Bα0 → B0 in H as α→ 0 (in particular, if uα0 = u0

and Bα0 = B0 for all α > 0), then uα → u in L∞([0, T ], V ) and Bα → B in
L∞([0, T ], H) ∩ L2([0, T ], V ) as α→ 0. �

Theorem 5.3 (Blow-up criterion). With the same notation and assumptions
of Theorem 5.2, and taking uα0 = u0 and Bα0 = B0 for all α > 0, suppose that
for some T∗ <∞, we have

sup
t∈[0,T∗)

lim sup
α→0

α2‖uα(t)‖2 > 0. (5.4)

Then the solutions to (1.1) with ν = 0, µ ≥ 0 become singular in the time
interval [0, T∗).

Proof. To obtain a contradiction, suppose that u,B ∈ L∞([0, T ], H3(T2)∩V ),
but that (5.4) holds. Taking the inner product of (1.2a) with uα and the inner
product of (1.2b) with Bα and adding the results, we find after using (2.3),

α2‖uα(t)‖2 + |uα(t)|2 + |Bα(t)|2 + µ

∫ t

0

‖Bα(s)‖2 ds (5.5)

= α2‖u0‖2 + |u0|2 + |B0|2.

Taking the lim sup as α→ 0+ gives

lim sup
α→0+

α2‖u(t)‖2 + |u(t)|2 + |B(t)|2 + µ

∫ t

0

‖B(s)‖2 ds = |u0|2 + |B0|2.

(5.6)

However, thanks to Theorem 5.1, we have u,B ∈ C([0, T ], H3 ∩ V ).
Using Lions’ Lemma (see, e.g., [57, p. 176] or [46, Corollary 7.3]) and (2.3) it
is straight-forward to prove from (1.1) (with ν = 0, µ > 0), that on [0, T ],

|u(t)|2 + |B(t)|2 + µ

∫ t

0

‖B(s)‖2 ds = |u0|2 + |B0|2.

so that (5.6) contradicts (5.4). �
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Remark 5.4. We note that that in the case µ, ν > 0, theorems similar to
Theorems 5.1, 5.2, and 5.3 can be proven with weaker assumptions on the
initial data. In the case of Theorem 5.1, one can use, for example, Galerkin
methods, and ideas similar to those of in the theory of the Navier-Stokes
equations (see, e.g., [16, 57]). The analogous of Theorems 5.2 and 5.3 can be
proven using nearly identical methods to those employed above.
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tion of viscous fluids, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov
(LOMI) 52 (1975), 128–157, 219, Boundary value problems of mathematical



Voigt-Regularized Inviscid Resistive MHD 23

physics, and related questions in the theory of functions, 8. MR 0464884 (57
#4805)

[43] M. Paicu and V. Vicol, Analyticity and Gevrey-class regularity for the second-
grade fluid equations, J. Math. Fluid Mech., 13 (2011), no. 4, 533–555. MR
2847280 (2012h:76011)
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