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ABSTRACT 

 
We report herein a platform technology called ‘microencapsulated sensors’ that is able to selectively 

detect bacteria in unprocessed whole blood at single-cell sensitivity in a one-step, homogenous, and 
culture- and amplification-free reaction. Our system integrates real-time DNAzyme sensor technology 
and droplet microfluidics.  
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INTRODUCTION 

Blood stream infections (BSIs) are a major cause of morbidity and mortality. Sepsis resulting from a 
BSI annually affects over 18 million people worldwide and 700,000 in the U.S., with a mortality rate of 
30-40% [1, 2]. Sepsis and other aggressive bacterial infections associated with BSIs are often times 
managed within intensive care units with associated high costs, which impose significant healthcare, 
economic and social burdens. For instance, each septic patient in the US incurs costs of approximately $ 
25,000 during hospitalization, corresponding to $17 billion annually [1, 2]. The extremely high mortality 
of blood infections is due, in part, to the inability to rapidly detect, identify and thus treat bacteria with 
appropriate antibiotics in the early stages of infection. The initial treatment with empirical broad-spectrum 
antibiotics not only is inadequate but also encourages antibiotic resistance [4, 5]. It is widely recognized 
that effective detection and monitoring of patients to diagnose a BSI at an early-stage have a profound 
effect on survival rates [1-3]. However, the present gold standard to detect a BSI is  blood culture, which 
unfortunately can take days to get a definitive result. Recent amplification-based molecular diagnosis 
methods including polymerase chain reaction (PCR) can reduce the assay time to hours but are often not 
sensitive enough to detect bacteria that occur at low concentrations in blood (<1 to 100 colony-forming 
unit (CFU)/mL) as is commonly found in adult BSIs and therefore often still require a culture-enrichment 
step. Moreover, these conventional methods typically suffer from poor specificity and high background 
because a target bacteria is surrounded by billions of non-target species (e.g., red blood cells) in blood 
sample. More recent nano- and micro-systems including droplet microfluidics (e.g., digital PCR) can 
improve detection sensitivity and selectivity but typically are limited to small sample volume (µLs), 
which can not handle the required clinical sample volume (mLs blood) and throughput. Inevitably, the 
existing methods typically require expensive equipment and lengthy, complex sample processing (e.g., 
cell lysis, nucleic acid extraction, centrifugation, magnetic separation, washing and signal amplification) 
for target purification and enrichment, which not only results in significant loss of rare target organisms, 
and therefore contributes to a high false-negative rate, but also limit their widespread use especially in a 
point-of-care setting [6]. We present herein a platform technology called microencapsulated sensors that 
is able to selectively detect bacteria in mLs of unprocessed whole blood at single-cell sensitivity in a one-
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Figure 1: E.coli detecting DNAzyme sensor. (a) Mechanism 
of how the DNAzyme sensor generates fluorescence signal 
upon interaction with the target molecules secreted from 
bacteria (F is Fluorescein-dT; Q is Quencher-dT). (b) Activi-
ty of DNAzyme sensor with  target E.coli. (c) DNAzyme sen-
sor selectively detects E. coli. (d) Clinical isolated E.coli is 
specifically identified with DNAzyme sensor among other 
clinical isolates. 

step, homogenous, and culture- and amplification-free reaction within 1-3 hours. Our system integrates 
real-time DNAzyme sensor technology and droplet microfluidics.  

 
EXPERIMENTAL 

DNAzyme sensors used here are short catalytic oligonucleotides that are identified by in vitro 
evolution to selectively  react with target bacteria, leading to a rapid, real-time fluorescence signal (Figure 
1a). Specifically, blood samples are mixed with the DNAzyme sensor solution including bacteria lysis 
buffer within a microfluidic channel, which is then immediately encapsulated into 100s of millions of 
individual picoliter droplets. The confinement of bacteria in droplets that serve as “microreactors” 
significantly increases 1) the concentration of released target molecules such that single bacterium can be 
detected by the DNAzyme sensors in a rapid, real-time fashion, and 2) target/background ratio to 
minimize interference from nonspecific binding and noise. Droplets will be analyzed using a high 
throughput & highly sensitivity confocal microscopy containing avalanche photodiode (APD) (Figure 
2a).  

 RESULTS AND DISCUSSION 
In this study, we have developed a system that is able to detect bacteria in patient blood with  single-

cell sensitivity within a few hours. Our system integrates bacterium-detecting DNAzyme sensors (Figure 
1a), which are obtained by in vitro selection, with droplet microfluidics (Figure 2a). Our central 
hypothesis was that the confinement of bacteria in droplets significantly increases the concentration of 
released target molecules that can be detected by the DNAzyme sensors in a rapid, real-time fashion. 
Specifically, infected patient blood was mixed with DNAzyme sensor solution, including bacteria lysis 
buffer, within the microfluidic channel, which was encapsulated in millions of individual picoliter 
droplets (Figure 3). Because bacteria exist at low numbers in blood, we anticipated each droplet will 
contain one or no bacteria. DNAzyme sensors fluoresced instantaneously in the droplets that contain 
bacterium. The droplets were monitored by Avalanche Photodiode (APD). 

 

Figure 2: Blood samples and DNAzyme sensors 
are encapsulated by droplet-based microfluidic 
device. (a) Layout of droplet-based microfluidic 
device and cleavage reaction of DNAzyme in 
droplets. (b) Microencapsulation of blood with 
DNAzyme sensor using droplet-based microflu-
idic device. (c) Uniform microdroplets (30 µm) 
containing blood components and sensor solu-
tion are being formed (20% final blood con-
tent).  
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CONCLUSION 

Our novel approach of integrating real-time DNAzyme sensors with droplet microfluidics bypasses 
many challenges faced by current techniques (e.g., blood culture). This rapid detection and early inter-
vention will therefore significantly improve the chances of treating blood stream infections and reduce 
mortality. 
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Figure 3: Work flow of bacteria detection in blood. 
Blood samples and DNAzyme sensors are introduced 
into the device through each inlets and microencapsu-
lated by flow-focusing structure. Droplets are then 
mixed and collected into the vial to identify bacteria  

Figure 4: SYTO 17 (red color) stained control Bacillus 
(a) or target E. coli (b) were spiked in blood which was 
encapsulated in a single cell manner in droplets with 
DNAzyme sensor (green color) (final blood content is 
10% in this data). After reaction, droplets are counted 
on-chip using our confocal detection system. Red spikes 
represent droplets that contain SYTO 17 stained cells 
which are observed on both control (a) and target (b) 
cells. However, only the target E. coli (b) produced a 
green color DNAzyme signal that is above the back-
ground (i.e., droplets that do not contain cells).  
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