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Abstract 
This paper exploits the concept of optimizing the interpreted execution of Java 

programs with SuperOperators (SOs). SOs are groups of bytecode operations used to 
produce interpreter engines with specialized instructions. The present work makes 3 
distinguished contributions to this topic. 

Firstly, we show that less than 20 SOs formed by basic blocks cover more than 50% 
of all bytecodes executed by an application and are enough to yield the bulk of perfor
mance improvement when optimizing interpreters with SOs. We analyze SOs formed 
by the most frequently executed program basic blocks and SOs formed by special sub
patterns of Java bytecode operations that compose the basic blocks. Such sub-patterns 
are extensions of PicoJava's stack operation folding (OF) patterns. Unlike SOs formed 
by basic blocks, we find OF patterns repeat across a wide range of applications. 

Secondly, we compare techniques for optimizing interpreters with SOs. We show 
that the number of stack accesses and stack pointer updates, implicit in the bytecode 
semantics, is more limiting to the interpreter performance than the bytecode dispatch 
overhead. Our findings suggest that an interpreter that fully optimizes the top SOs 
formed by basic blocks, reducing both sources of overhead, yields up to fourfold per
formance improvement compared to previous techniques. 

Finally we assess the efficiency of a software implementation of the stack operation 
folding mechanism. We design statically customized interpreter versions that use a 
limited number of non-patented Java bytecode opcodes to represent SOs formed by OF 
patterns valuable across applications. We also propose a dynamic scheme that is more 
flexible in customizing the interpreter for a particular application. Both approaches 
use annotation attributes in the class files marking occurrences of the most valuable 
SOs, dispensing with the expensive pattern search and classification at runtime. Our 
statically customized interpreter versions, deploying a limited subset of SOs, and our 
dynamically customized version improve the performance of SPEC JVM98 and Java 
Grande Forum benchmarks by 7% to 39%. 
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1 Introduction 

Program interpretation is the process of emulating in software the basic tasks of fetching 
and decoding instructions of a normal program execution, which are usually done by a 
microprocessor hardware. Therefore interpretation bears inferior performance compared to 
direct program execution. 

An interpreter is essentially structured as an infinite loop that reads in a new instruction 
from an array of instructions pointed by a software program counter, decodes the instruction, 
transfers control to code parts that handle the instruction just decoded, updates the program 
counter to point to the next instruction in the stream and eventually returns to the same 
fetch-decode-execute cycle to translate the next instruction. The implementation of an 
interpreter loop in a high level language like C is shown in the upper side of Figure 1, and 
is referred to as a switch-based or bytecoded interpreter. 

There are two main sources of overhead in the interpreted execution of Java bytecode 
programs. We discuss the overheads by analyzing Figure 2, which shows part of LaTTe's 
interpreter engine [14] directly written in SPARC assembly code. LaTTe is the open-source, 
high performance JVM used as the underlying framework in all the experiments reported in 
this paper. 

Each Java bytecode implementation is declared as a section of assembly code at posi
tion _interpret_start + opcode * DISP, where _interpret_start label marks the base 
address of the loop; opcode is the byte representing the bytecode opcode; and DISP is the 
maximum number of bytes (256) reserved for the native code that implements the bytecode 
semantics. Notice that in LaTTe's interpreter engine, the most important loop variables, as 
the top of the stack (TOP) and the logical program counter (PC), are kept in SPARC machine 
registers for improved performance. 

Figure 2 also details the execution of an ILOAD operation, which requires 6 machine in
structions. The tasks of fetching, decoding and jumping to the next bytecode to be executed 
define the bytecode dispatch cost. The dispatch cost requires 4 more instructions of expen
sive type (load and branch instructions) to be executed: a ldub to load the next bytecode; 
a sll to calculate the next bytecode address; a jmp to transfer control to that new address; 
and an add to update the program counter. In this example we can also notice that the 
dispatch cost is more than half of the typical size of the native code implementation of the 
most commonly executed Java bytecode (load from local variables on the average account 
for 35.5% of SPEC JVM98 total executed bytecodes [18]). 

Another source of overhead exists in the execution of the bytecode semantics in which a 
stack machine is being emulated in software. This forces the copy of operands and results 
to and from the other Java memory areas (e.g., the heap and the local variables array) to 
the Java stack. 

Any technique that reduces the cost of dispatching a new bytecode, reduces the data 
transfer to /from the Java stack or reutilizes the translation work of previously executed 
bytecodes can improve the overall performance of Java programs. 

JIT compilers [3, 12, 14] eliminate the above issues altogether at the cost of more space 
to store the compiled methods and the compilation framework itself. A JIT compiler is not 
a viable solution in domains where space constraints limit the available memory. 
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void bytecoded_lnterpreter_Engine{ 

char programO = {ICONST_2, ICONST_2, ICONST_1, IADD, ... } 
char *pc= program; I* bytecode pointer*/ 

I* dispatch loop implementation*/ 
while (true){ 

switch(*pc++){ /* Fetch, Decode, Update pointer*/ 
case ICONST _ 1: *++sp = 1; break; /*Execute bytecode */ 
case ICONST _2: *++sp = 2; break; 
case IADD: sp[-1] += *sp; --sp; break; 

} 
} 
} 

I* Other cases*/ 

void threaded_lnterpreter_Engine{ 

void* programo = {&&ICONST_2, &&ICONST_2, &&ICONST_1, &&IADD, ... } 
void **pc= program; /*pointer to the address of bytecode implementation*/ 

/* bytecode implementations*/ 
goto **(pc++); 
ICONST _ 1: *++sp = 1; goto **(pc++); 
ICONST _2: *++sp = 2; goto **(pc++); 
IADD: sp[-1] += *sp; --sp; goto **(pc++); 
... /*Other cases*/ 
} 

/*Fetch*/ 
/*Execute bytecode, Fetch, update pointer*/ 

Figure 1: Interpretation schemes. 

Threaded code interpreter [2, 8] is known to be the most efficient technique for reducing 
the bytecode dispatch cost. The instructions in the program to be interpreted are replaced by 
by the address of the routine that implements them. The interpretation process consists of 
fetching this address and branching to the routine. An example of a threaded code interpreter 
is illustrated in the right portion of Figure 1. Another advantage of threaded code is that it 
allows interpreters to be written in a very portable way using high level languages that offer 
a way to produce indirect jumps. 

JIT compilers produce at least 2 to 10-fold performance speedup compared to a switch
based interpreter while the threaded code technique leads to 10% speedup. 

In this paper we evaluate existing techniques and propose new methods for optimizing 
the performance of Java interpreters with patterns of Java bytecode operations or Super
Operators. Techniques based on SOs are orthogonal to implementing threading and should 
further boost the efficiency of a threaded code interpreter. 

The examples in Figure 3 illustrate how combining bytecode operations into patterns 
can lead to optimized interpreted execution. The upper side of Figure 3 shows the execution 
trace of an ILOAD operation immediately followed by an !STORE operation. A total of 20 
instructions are executed. The trace in the bottom of Figure 3 shows the situation in 
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DISP .EQU 256 
SDISP .EQU 8 
METHOD .REG (%i0) 
ORIGIN .REG (%i1) 
PC .REG (%i2) 
TOP .REG (%i3) 
LOCALS .REG (%i4) 
TARGET .REG (%i5) 
FP .REG (%10) 
POOL .REG (%11) 
FAKEI .REG (%12) 

! Maximum size of each opcode implementation 
! log_2 DISP 
1 Method structure 

Beginning of opcode implementations 
Address containing the current bytecode 
Operand stack top 
Local variables 
Next opcode to execute 

. Java stack frame pointer 
! Resolved pool 
! Instruction which trampolines start with 

.macro DECLARE opcode 
\(\(.org)) _interpret_start +\opcode* DISP 
.endm 

! void interpret (Method *m, void *args, void* bcode) 
! m is the method to be interpreted 
! args is the memory containing arguments; the return value also goes in here. 
! bcode is Bytecode address to execute 

interpret: 

! Initialize registers, e.g., %i1 
sethi %hiUnterpret_start), ORIGIN 
or ORIGIN, %1o(_interpret_start), ORIGIN 

_interpreter_ start: 

DECLARE 0 !NOP 

DECLARE1 !ACONST_NULL 

! Load word from local variable and push onto operand stack 
DECLARE 21 !ILOAD 
! Read next bytecode to be executed 
ldub [PC+ 2], TARGET 
! Execute the current bytecode semantics 
ldub [PC +1], %02 ! Read index operand 
sll %02, 2, %02 
neg %02 
Id [LOCALS+ %02], %13 ! Read local variable at index %02 
st %13 [ TOP - 4 ] ! Save local variable on the stack 
add TOP, -4, TOP ! Update stack pointer 
!Transfer control to the next bytecode 
sll TARGET, SDISP, TARGET ! Calculating address of next bytecode 
jmp ORIGIN +TARGET 
add PC, 2, PC ! Updating PC, delay slot 

DECLARE 201 ! JSR_W 

_interpreter_ end: 

Figure 2: Bytecoded interpreter loop example. 
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(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 

Separate Translation: ILOAD followed by ISTORE 

ldub [ PC + 2], TARGET 
ldub [PC +1], %02 
sll %02, 2, %02 
neg %02 
Id [LOCALS+ %02], %13 
st %13 [ TOP - 4 ] 
add TOP, -4, TOP 
sll TARGET, SDISP, TARGET 
jmp ORIGIN+ TARGET 
add PC, 2, PC 
ldub [ PC + 2], TARGET 
ldub [PC +1], %02 
sll %02, 2, %02 
neg %02 
Id [ TOP], %13 
st %13, [LOCALS + %02] 
add TOP, 4, TOP 
sll TARGET, SDISP, TARGET 
jmp ORIGIN+ TARGET 
add PC, 2, PC 

! Read next bytecode to be executed 
! Read ILOAD index operand 

! Read local variable at index %02 
! Save local variable on the stack 
! Update stack pointer 
! Calculating address of next bytecode 

! Update PC, delay slot 
! Read next bytecode to be executed 
! Read ISTORE index operand 

! Load value from the stack 
! Store value in local variable at index %02 
! Update stack pointer 
! Calculating address of next bytecode 

! Updating PC, delay slot 

Combined Translation: ILOAD followed by !STORE 

ldub [PC+ 4], TARGET 
ldub [PC +1], %02 
sll %02, 2, %02 
neg %02 
Id [LOCALS+ %02], %13 
ldub [PC + 3], %02 
sll %02, 2, %02 
neg %02 
st %13, [LOCALS + %02] 
sll TARGET, SDISP, TARGET 
jmp ORIGIN+ TARGET 
add PC, 4, PC 

! Read next bytecode to be executed 
! Read ILOAD index operand 

! Read local variable at index %02 
! Read ISTORE index operand 

! Store value in local variable at index %02 
! Calculating address of next bytecode 

! Updating PC, delay slot 

Figure 3: Traces of the translations of an ILDAD followed by an ISTORE operation. 

which at the moment of translating the ILDAD operation it was known that such instruction 
was followed by an ISTDRE operation. In this new trace, the dispatch cost for the !STORE 
operation is eliminated (instructions 8, 9, 10 and 11 from the upper trace). Besides, the 
stack accesses and stack pointer updates in the translation of both operations are completely 
eliminated (instructions 6, 7 and 15 in the upper trace). The result produced by the ILDAD 
operation is kept in the machine register 13 and reused by the subsequent ISTDRE bytecode, 
with no need to access the stack. The combined translation of the two bytecodes executes 
12 instructions, a 40% improvement over the separate translation. 

This paper is organized as follows. Section 2 discusses related solutions to cope with 
program interpretation issues. In Section 3, we evaluate the importance of different types 
of SOs formed by basic blocks and simpler operation folding patterns. In Section 4 we 
carry out a comparative study of techniques for optimizing interpreters with SOs. Our SO
aware customization techniques for the direct interpretation of Java bytecode programs are 
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discussed in Sections 5 and 6. In Secion 7 we list the SOs implemented in different interpreter 
versions. Finally, our main conclusions and future work direction are summarized in Section 
8. 

The current report summarizes our main findings in this area. A more detailed description 
of this work can be found in the main author's Ph.D. dissertation [1]. 

2 Related Work 

The breakthrough in the efficient implementation of virtual machine interpreters is the 
threaded code technique [2, 7, 8]. The threaded interpreter still pays the cost of an instruc
tion dispatch for each bytecode executed. If simple bytecodes are combined into bytecode 
sequences, the dispatch overhead is reduced. 

Optimizing interpreters with bytecode sequences has been tried in previous research. 
Proebsting's work on SuperOperators [16] introduces SOs as specialized instructions auto
matically inferred from repeated patterns in the tree-like intermediate representation pro
duced by lee compiler. His bytecoded interpreter extended with SOs runs 2 to 3 times faster 
with the tested benchmarks. 

Ertl, Gregg et al [11, 9] have combined the advantages of threaded code interpreter with 
the merging of single instructions into Superinstruetions. By inspecting traces of a program 
execution, patterns of instructions of length 2, 3 and up to 4 are detected. In a later phase, 
the behavior of the original virtual machine operations and the patterns of instructions 
are defined using a special syntax in C. An automatic interpreter generator takes in this 
specification and outputs an interpreter in C that implements the described behaviors. Their 
work relies on a smart C compiler to remove redundant stack accesses, unnecessary stack 
pointer updates and bytecode dispatch instructions within patterns. Hundreds of patterns 
are incorporated to the interpreter code, substantially increasing the size of the interpreter. 
Up to 2 fold-speedups have been reported for the indirect interpretation of Java bytecodes. 

Piumarta et al propose a technique that eliminates the dispatch overhead within a basic 
block using selective inlining [15]. The code to be interpreted is first translated to threaded 
code and basic blocks are identified. A second pass dynamically generates macro opcodes 
representing the basic blocks and replaces threaded code opcodes with the macro opcodes. 
The implementation of each macro is a simple concatenation of the C-code implementations 
of the bytecodes that it replaces. The technique was applied to the Objective Caml bytecode 
interpreter and resulted in 50% average speedup, reaching twice as fast in some cases. 

Thibault et al. [22] proposes interpreter Specialization as a more generic solution for 
optimizing interpreters than Piumarta's. An interpreter specialized for a particular program 
is essentially a concatenation of the implementations of all the bytecodes in the program. 
This technique fully eliminates the bytecode dispatch cost resulting in 4-fold speedups. 

Sun designed a stack operation folding mechanism for PicoJava I [20] and PicoJava II [21] 
architectures that converts many cycles of stack oriented instructions into an one-cycle regis
ter based instruction, which can be implemented with a few registers. This technique groups 
or folds contiguous operations that have true data dependency. For example, the bytecode 
sequence iload_1 iload-2 iadd istore_3 (two stack copy operations, an ALU operation 
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and a local variable store operation) can be transformed into a single add R1, R2, R3 op
eration. Sun's folding technique is based on pattern matching with a very limited set of 
patterns. A special decode unit in the PicoJava processor converts the bytecode instructions 
into micro-operations and looks for folding patterns up to 4 consecutive instructions long. If 
a pattern is identified, the decoder replaces the instructions belonging to the pattern with a 
simple micro-operation. Other stack operation folding techniques that enhance PicoJava's 
simple grouping rules have been proposed in literature [4, 23, 5]. 

Kim [17] has proposed a software approach to stack operation folding in which he creates 
a Smart Loader, a custom class loader that finds folding patterns at load-time by applying 
PicoJava-like grouping rules. With this approach, the JVM hardware can be simplified yet 
benefit from folding. 

Our work differs from previous research mainly in the concern of finding out the maximum 
number of SOs required to guarantee the bulk of the performance improvement, while limiting 
the number of SOs that need to be implemented in the interpreter. This is not done in [9]. We 
also propose profiling and an annotation scheme as solutions that free the runtime system 
from identifying the patterns of bytecodes that should be optimized and that allow the 
interpreter to be customized for a particular application. In [15], all program basic blocks 
are subject to inlining with no prioritizing. Although the work in [9] resorts to profiling to 
find patterns of instructions, the patterns are not custom-designed for a specific application. 
Another goal of ours is to assess the value of operation folding patterns in customizing 
software interpreters. To our knowledge this has not been attempted before. 

3 Evaluating SO Types 

The most intuitive way of looking for valuable patterns of bytecodes is to identify basic 
blocks (BBs) in Java bytecode programs, profile them, calculate their dynamic execution 
frequencies, prioritize them and form SOs with the top most important basic blocks. 

We do not study patterns of instructions that include control transfer instructions, 
except when it is the last instruction in the pattern. Therefore, when identifying basic 
blocks, method invocations, conditional jump bytecodes (e.g., if _icmpeq), unconditional 
branch bytecodes (e.g., goto), compound conditional branch bytecodes (e.g., tableswi tch, 
lookupswi tch) and the bytecodes associated with the implementation of the finally key
word (j sr and ret) all terminate the basic blocks. 

For the experiments we describe in this paper we analyze several programs from SPEC 
JVM98 [19] and Java Grande Forum (JGF) [6] benchmark suites. The latter suite is orga
nized in 3 different sections. Of interest to us are Section 2 (labeled JGF S2), a collection of 
scientific and numerical application kernels, and Section 3 (labeled JGF S3), which is made 
up of full-scale science and engineering applications. 

The second column in Table 1 lists the total number of SOs formed by basic blocks that 
are executed in each benchmark. To find out the priority among the high number of SOs 
in Table 1 we have to resort to heuristics. We decided to prioritize SOs by their averaged 
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Benchmarks SO formed by BB SO formed by OF pattern SO formed by BB SO formed by OF pattern 
dynamicF > 1 % dynamicF > 1 % 

compress 179 331 25 45 
db 170 200 15 19 
jess 792 963 21 28 
mt rt 510 604 15 16 
Crypt 68 107 44 25 
FFT 72 130 20 49 
HeapSort 43 55 6 11 
LUFact 92 155 2 2 
Series 50 67 7 8 
SOR 38 53 2 4 
SparseMatmul 42 51 2 4 

Table 1: SOs m SPEC JVM98 and JGF S2 benchmarks. 

~ 
25+.r-------------------l 

h 

~WT-t-------------------l 

l 
c15+--1------------------l 
0 

~ 

--compress 

--db 

--jess 

-x-mtrt 

60 

;:: 50 

h 

i 40 

~ 
u. 
~ 30 

~ 

.._ 
--Crypt 

--FFT 
_,..._ HeapSort 

--LUFact 

--series 

--soR 
~ 10+--+->;,-----------------l 
u 

~ 20 
u -+-SparseMatmul 

·~ 
~ 5 i---"~---lo=or--------------1 

sos formed by basic blocks 

·e 
~10 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

sos formed by basic blocks 

Figure 4: Dynamic frequencies for SOs formed by BBs in SPEC JVM98 and JGF S2 suites. 
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Figure 6: Bytecodes covered by top SOs formed by BBs in SPEC JVM98 and JGF S2 suites. 

dynamic execution frequency dynamicFi, which is is calculate as 

:z=n l00>1<DFik 

dynamicFi = 1 :z=; DFik 

n 

where DFik is the number of times SO i is executed during the execution of program k; t 
is the total number of SOs in the static code of program k; and n is the total number of 
programs averaged over or the total program runs for different datasets. 

The graphs in Figure 4 plot all the SOs with dynamic frequencies higher than 1 % for 
programs from SPECJVM98 and JGF S2 suites. The total number of SOs with dynamicFi 
higher than 1 % is listed in the fourth column of Table 1. From Figure 4 we can notice that, 
for most of the benchmarks, the first 2 SOs bear the highest execution frequencies. The 
dynamic frequencies of the following SOs drop abruptly to lower than 5% when reaching 
SOs higher than the sixth. 

The dynamic frequency value by itself only gives an initial hint for the most valuable 
SOs. Further insight can be obtained by calculating the percentage of the total number of 
bytecodes executed by an application that are covered by SOs. The total number of executed 
bytecodes also factors in bytecodes executed from standard library methods. However, in 
the next study we only account for SOs that appear in methods defined in an application 
program. For SPEC JVM98 suite, application code accounts for 83 to 99% of the total 
bytecodes executed, except db's methods that account for 30%. For JGF suite, 94 to 99% 
of the total bytecodes executed are from methods defined in the benchmarks. We do not 
evaluate the contribution of SOs that exist in method bytecodes from the Java library. In 
some platforms, standard library methods are available in native code and do not need to 
be translated. 

Figure 5 depict graphs with the accumulative percentage of the total executed bytecodes 
covered as the bytecodes corresponding to each SO are counted in. In this figure, we account 
for all SOs listed in the second column of Table 1. The percentage values do not reach 100% 
because we only formed SOs with basic blocks longer than one bytecode operation and SOs 
that appear in methods defined in the application programs. 

The graphs in Figure 6 plot the percentage of total executed bytecodes covered by only 
the SOs with dynamic frequencies higher than 1 %. These graphs should be read referring 
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back to the graphs in Figure 5. For example, the top 21 SOs in jess account for 41 % of 
the total bytecodes executed by the application. If all SOs in jess are counted in, Figure 5 
reveals that they account for a maximum of 77% of the total bytecodes executed. Therefore, 
the top 21 SOs in jess cover 53% ( 41/77) of that maximum. 

When calculating this last percentage value for all the programs, we find values varying 
from 53 to 96% for SPEC JVM98 benchmarks and 96 to 100% for JGF S2 suite. This result 
indicates that if we optimize an interpreter with only the top 20 SOs, we are improving the 
execution of 53 to 100% of the bytecodes executed in the program basic blocks. It is also a 
relevant piece of information for restricting the interpreter size. 

Our experience has shown that the interpreter size can significantly affect program per
formance. For example, changing the size of the bytecode implementation from 256 to 512 
bytes in LaTTe's interpreter causes performance slowdown of up to 11 % due to cache con
flict misses. This behavior was observed on a 500MHz UltraSPARC Ile processor with a 16 
Kb Ll instruction and data caches and 256 Kb L2 unified cache. Therefore, adding a high 
number of SOs to the interpreter loop can actually degrade performance when the savings 
the SOs produce are overweighed by the performance degradation caused by cache misses. 

If we can find SOs that are valuable across several benchmarks we can further reduce 
the number of SOs that need to be implemented and yet optimize the interpreter for a large 
range of applications. When searching for SOs that match across all the studied benchmarks 
in SPEC JVM98 suite and across all programs in JGF S2 suite we found very few exact 
matches. A more detailed look into the sub-patterns that form the basic blocks revealed 
that basic blocks are formed by simpler patterns that can be detected by stack operation 
folding techniques, usually implemented in hardware JVMs. Our experiments showed that 
such sub-patterns repeat across benchmarks more frequently than the larger, basic-block 
based SOs. Therefore we decided to investigate the importance of such patterns. 

Figure 7 shows the main loop in the kernel of JGF S2 SOR benchmark with some examples 
of OF patterns. It also lists part of the disassembled bytecodes 79 to 123 that correspond to 
the array operations in the innermost loop. These bytecodes form the SO with the second 
highest execution frequency in SOR. The 5 occurrences of PicoJava-like operation folding 
patterns are highlighted in boldface. 

The third column of Table l lists the large number of OF patterns that were detected in 
each benchmark while the last column shows the total number of OF patterns with dynamic 
frequency higher than 1 %. 

We further investigated the value of SOs formed by OF patterns by analyzing the percent
age of executed bytecodes they cover. Figure 8 shows the percentage of executed bytecodes 
when accumulatively accounting for the bytecodes corresponding to the SOs formed by OF 
patterns for both benchmark suites. In SPEC JVM98 suite, all SOs formed by OF patterns 
cover 13 to 50% of the total executed bytecodes. In J GF S2 suite, the percentage value 
varies from 19 to 57%. These results are roughly half of the percentage values when using 
SOs formed by basic blocks, shown in Figure 5. 

In Figure 9 we plot the percentage of executed bytecodes covered by SOs formed by OF 
patterns that are found as sub-patterns in the earlier examined basic blocks with dynamic 
frequencies higher than 1 %. For SPEC JVM98 benchmarks, from Figure 9 we can calculate 
that up to 45 SOs account for 62 to 92% of the maximum total executed bytecodes covered 
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Java Code Java bytecode 103:dadd 
void SORrun(double, doubleOO. int) public static final 79: aload 14 104: aload 14 
... 81: iload 17 106: iload 17 503 
for (int p=O; p<num_iterations; p++) { 83: dload 6 108: iconst_ 1 

for (int i=1; i<Mm 1; i++ ){ 85: aload 15 501 109: iadd 
double O Gi = G[i]; 87: iload 17 110: daload 
double O Gim1 = G[i-1]; 89: daload 111:dadd 
double O Gip1 = G[i+1]; 90: aload 16 501 112: dmul 
for (intj=1; j<Nm1; j++){ 92: iload 17 113: dload 8 
GiU] = omega_over_four * (Gim1U] + Gip1U] + GiU-1] 94: daload 115: aload 14 501 

+ GiU+1]) + one_minus_omega * GiU]; 95:dadd 117: iload 17 
} 96: aload 14 119: daload 

} 98: iload 17 502 120: dmul 
} 100: iconst_1 121:dadd 
... 101: isub 122: dastore 

102: daload 123: iinc vindex: 17 by: 1 

Figure 7: Example of top SO in SOR benchmark highlighting OF patterns. 
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Figure 8: Bytecodes covered by all SOs formed by OF patterns in SPEC JVM98 and JGF 
S2 suites. 

by all OF patterns shown in Figure 8. For JGF 82 benchmarks, the graph reveals that 
almost 100% of the maximum total executed bytecodes shown in Figure 8 are covered by 
less than 10 SOs, except for Crypt and FFT. 

The results reported in this section demonstrate that an interpreter optimized with the 
top 20 SOs formed by basic blocks per application will improve the translation of 50% to 
almost all executed bytecodes. If we are interested in SOs that are valuable across appli
cations, looking for operation folding patterns that form the basic blocks is an alternative 
that produces more matches. However, the total executed bytecodes such SOs cover is up to 
57% of the total bytecodes the applications execute. Although an interpreter optimized with 
SOs formed by OF patterns can improve the performance of a broader range of applications, 
the speedups it will produce will be lower compared to techniques that deploy sets of SOs 
formed by basic blocks. 
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Figure 9: Bytecodes covered by top SOs formed by OF patterns in SPEC JVM98 and JGF 
82 suites. 

4 Comparing SO-based Techniques 

Previously proposed techniques for optimizing interpreters with patterns of instructions have 
been implemented in either different virtual machines other than JVMs or use different 
intermediate languages other than Java bytecode. In order to compare the techniques under 
the same virtual machine engine we designed three Java SO annotation-aware interpreter 
versions, building on top of LaTTe's interpreter. The description of the optimizing techniques 
implemented by each interpreter version is given below. 

1. Version BBOpt: Optimizing top SOs formed by basic blocks 
In this interpreter version, which we label BBOpt, the most valuable SOs are fully 
optimized, i.e., the bytecodes are concatenated eliminating the dispatch cost. Addi
tionally, we implement common sub-expression elimination and copy propagation at 
basic block level to eliminate unnecessary stack accesses and stack pointer updates. 

2. Version BB: Concatenating top SOs formed by basic blocks 
The interpreter version labeled BB simply combines the translation of the individual 
bytecodes that compose the most important SOs. It eliminates unnecessary operations 
that implement bytecode dispatch. 

3. Version OF: Optimizing top SOs formed by Operation Folding patterns 
Finally, the interpreter version labeled OF fully optimizes SOs as in the BBOpt version, 
but SOs are formed by operation folding sub-patterns that appear in the most executed 
basic blocks. 

The techniques we designed can be seen as counterparts of Piumarta's and Ertl's that 
enable direct interpretation of programs in Java bytecode. Piumarta's technique is equiva
lent to what we implement in the BB version while Ertl's technique falls between what is 
implemented in the BB and BBOpt versions. 

In each interpreter version we deploy only the top 3 SOs for some of the benchmarks 
studied in Section 3. The SOs are added to the interpreter loop using the non-patented 
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Figure 10: Comparing Techniques for optimizing interpreters with SOs. 

Java bytecode opcodes. The graphs in Figure 10 show how faster the SO-aware interpreter 
versions are compared to the performance of LaTTe's original interpreter. The speedups are 
shown when running the largest datasets (slOO for SPEC JVM98 suite and C for JGF suite). 

The 3 SOs formed by basic blocks in compress, mtrt, HeapSort and SOR cover 13, 36, 37 
and 97.5% of the total executed bytecodes in each program respectively. The 3 SOs formed 
by OF patterns for the same benchmarks account for 5, 22, 18 and 26% of the total executed 
bytecodes. 

As expected, interpreter version BBOpt bears the best performance. The interpreter 
version BB also outperforms OF. Benchmark SOR yields the best speedups in all versions, 
running 330% faster on BBOpt. It produces such good results because the top 3 SOs in 
this benchmark cover 97.5% of the total executed bytecodes. The other benchmarks, which 
deploy SOs that cover much less of the total executed bytecodes, we do not notice markedly 
distinct performance levels among the interpreter versions. The performance level observed 
with the more complex BBOpt and BB versions is almost all achieved with the simpler OF 
interpreter version. For example, executing mtrt on BBOpt, BB and OF produces close 
speedups of 27.5%, 24% and 21.5%. 

The main difference between BBOpt version and BB is the fact that we removed the 
redundant stack accesses that the semantics of Java bytecode operations require to copy 
values onto the stack and to store values to local variables and on the heap. As can be noticed 
in Figure 10 these operations compromise performance much more than the interpreter trips 
the BB version is able to eliminate. The OF version corresponds to a software implementation 
of well known stack operation folding techniques. Though bearing the lowest speedups it 
can produce performance improvement comparable to the other more expensive techniques 
when SOs are customized per application, as implemented in this experiment. 

We conclude that a highly efficient technique for optimizing interpreters with patterns 
of bytecodes should also optimize stack accesses and stack pointer updates. As the BBOpt 
version implies more work, specially if patterns are translated at runtime, applying it to up 
20 of the most valuable SOs should guarantee performance superior to that of current art 
with lower overhead. 
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5 Statically Customizing an Interpreter 

In an interpreter that directly translates Java bytecode programs we are limited in the 
number of new operations we can add to the interpreter loop. A total of 202 opcodes are 
taken by Sun's bytecodes opcodes, and 3 more are reserved for special use. The rest non
patented bytecode opcodes are free for the interpreter internal use. Some of these opcodes 
are already used to implement quick variants [13] of normal JVM operations. In LaTTe's 
interpreter design, we are left with 21 free opcodes that we use to represent our SOs. 

Our technique for statically customizing an interpreter adds a limited number of SOs 
to the interpreter loop as new pseudo-instructions which are only visible from within the 
interpreter code. We built interpreter versions with a SO set that is valuable across both 
SPEC JVM98 and J GF benchmark suites, with a SO set customized per benchmark suite 
and a third kind that implements a SO set customized per application. 

We chose to implement sets of SOs formed by the top most executed OF patterns in 
the applications. Such patterns compose program basic blocks and repeat across bench
mark suites more often than whole basic blocks. We extended the folding pattern classes 
supported in PicoJava architecture to include floating-point operations and other complex 
operations (e.g. loads from the Constant Pool [13]) that have been excluded in hardware 
implementations. 

Although we know interpreters optimized with SOs based on OF patterns offer limited 
performance improvement, this kind of implementation has not been tried before and no 
bound on speedups have been published, except for hardware JVMs. 

We designed an annotation scheme that uses an extra code attribute to carry the infor
mation on SO occurrences in the bytecode stream. In this attribute we store an annotation 
table that associates the pc addresses of a method, represented as short values, with their 
corresponding byte-long SO identification number. The annotations do not hinder the porta
bility of Java class files as it can be safely ignored by JVM engines that do not understand 
the attribute. Such annotations encoding leads to 5.5, 6.8 and 10.5 code size increase for 
SPEC JVM98, JGF S2 and S3 suites. 

We built 4 interpreter versions with SOs customized for different sets of application 
programs. In Section 7 we list the sets of SOs implemented in each version. LaTTe's original 
interpreter code is used as the baseline when calculating speedups. 

Version SOOFDF implements the top 21 SOs across all benchmark suites. Its perfor
mance is depicted in Figure 11. Average speedups of 7.2, 7.7 and 6.2% are noticed for SPEC 
JVM98, JGF S2 and JGF S3 suites. The maximum speedups are 15, 20.3 and 13.5% re
spectively for each suite. Slowdown situations occur for db, LUFact and Series. Except for 
LUFact, these are the benchmarks with largest data cache miss rates, which indicates that 
our 16 Kb Ll data cache and 256 Kb L2 unified caches do not handle well these applications 
demands. 

Versions SOOFDFJVM98 and SOOFDFJGFS2 are customized per benchmark suite and 
implement the top 21 SOs in SPEC JVM98 and J GF S2 suites respectively. Figure 12 shows 
the performance results. SOOFDF JVM98 interpreter version produces average speedup of 
5.2%, and a maximum speedup of 17%. SOOFDFJGFS2 version leads to average speedup of 
7.6% and a maximum of 29%. These average speedups are comparable to that of SOOFDF 
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Figure 11: SOOFDF performance running SPEC JVM98 and JGF suites. 

version. Nevertheless, the fact that customizing the set of SOs per suite does help individual 
applications significantly, it should be preferred in the design of SOs. For example, instead of 
finding the most frequent SOs across all applications concomitantly, as we did when building 
the SOs in SOOFDF version, a better heuristic would first find the top most frequent SOs 
for each suite, and then use the selected ones per suite to generate a combined set of SOs. 

Versions SOOFDFSOR and SOOFDFSeries are customized with the top 21 SOs in SOR 
and Series from JGF S2 benchmark suite. SOR is among the benchmarks that produced the 
highest speedups when running on SOOFDFJGFS2 version, while Series led to insignif
icant performance improvement running on that same version. In Figure 13 we compare 
the performance of the SOOFDFSOR and SOOFDFSeries versions against the speedups 
obtained with the interpreter version customized across all applications (SOOFDF) and the 
version specialized for the execution of JGF S2 benchmark suite (SOOFDF JGFS2). SOR's 
maximum speedup is 39.6%, almost doubling the performance we first obtained when run
ning it on SOOFDF version. Despite the highly customized interpreter built for Series, the 
program still performs poorly, producing marginal speedup of 3%. We attribute the lack of 
performance to limitations of the hardware we execute the application on. 

In this section we showed the performance speedups one can expect from optimizing an 
interpreter with a limited number of SOs formed by operation folding patterns. Such SOs 
yield speedups varying from 5% to 39%, depending on the customization level. 
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6 Dynamically Customizing an Interpreter 

In Section 5, the best interpreter version optimized with SOs formed by OF patterns is the 
one customized per application. To statically customize an interpreter to the level of an 
individual application is very restrictive and makes sense for some specialized embedded sys
tems. To try to combine the per-application customization advantages with the convenience 
of a SO-aware interpreter that is efficient across several classes of applications, we created 
the dynamically customized interpreter. With this technique SOs are generated for each ap
plication individually and are annotated ahead of time. Another added advantage over the 
statically customized versions is the fact that the SOOFDYN interpreter can be specialized 
independently of the non-patented opcodes available in the interpretation engine. 

The annotation scheme in SOOFDYN version is similar to that of the static case, with an 
added byte that represents the type of each SO. This extra field results in a slightly higher 
code size increase than that reported in Section 5. The type information guides the SO 
translation at runtime. We wrote special functions for translating the 9 OF pattern classes 
defined for PicoJ ava architecture. These functions fully optimize stack accesses and stack 
pointer updates, and eliminate unnecessary bytecode dispatches. 

The interpreter loop in the dynamic case, depicted in Figure 14, is kept essentially the 
same as in the original LaTTe's code (except for some extra operations to control the dynamic 
scheme). We only need one non-patented opcode to represent all possible SOs (opcode 203 
in Figure 14). At runtime, as a SO is identified in the bytecode stream, a call to a software 
translation function produces the machine instructions that implement the SO semantics. 
The translated code is stored in a native code table, pointed by SONCODE, which is also 
indexed by the SO identification number. This table is shared by all the methods in a 
program. Each bytecode in a method that corresponds to a SO occurrence is associated 
with a pointer to an entry in the native code table. Future executions of instances of a 
previously translated SO can skip the translation process and jump straight to this pointer to 
execute the SO implementation. The mechanism described above is represented in Figure 15. 
Figure 14 illustrates how a dynamically customized interpreter invokes a SO after it has been 
translated. 

The graphs in Figure 16 plot the performance of the SOOFDYN interpreter version. In 
this experiment the annotations mark all SO occurrences. Average speedups of 5, 11 and 
8% were measured for SPEC JVM 98, JGF S2 and S3 suites. Maximum speedups are 16, 
19 and 24% for each suite respectively. Slowdown situations occur when executing mtrt, 

Series and Euler. 
For SPEC JVM98, the average speedups with the dynamic approach are comparable 

to the performance levels obtained when running on SOOFDF and SOOFDF JVM98 stat
ically customized interpreter versions. JGF S2 and S3 benchmarks perform slightly better 
when running on the dynamically customized interpreter version than on either SOOFDF 
or SOOFDFJGFS2 interpreters. The performance results can be further explained by un
derstanding the 2 sources of overhead in the dynamic case. 

There is a time overhead associated with translating SOs at runtime. In this experiment 
we show the worst case scenario in which SOOFDYN version translates all the annotated 
SOs in the methods that are loaded. Not all translated SOs are executed, but the percentage 

19 



DISP .EQU 512 
SDISP .EQU 9 
METHOD .REG (%i0) 
ORIGIN .REG (%i1) 
PC .REG (%i2) 
TOP .REG (%i3) 
LOCALS .REG (%i4) 
TARGET .REG (%i5) 
FP .REG (%10) 
POOL .REG (%11) 
FAKEI .REG (%12) 
BCBASE .REG (%15) 
SONCODE .REG (%16) 

.macro DECLARE opcode 

Maximum size of each opcode implementation 
log_2 DISP 
Method structure 
Beginning of opcode implementations 
Address containing the current bytecode 
Operand stack top 

. Local variables 
Next opcode to execute 
Java stack frame pointer 
Resolved pool 
Instruction which trampolines start with 
base of bytecode stream 
SO native code table 

\(\(.org)) _interpret_start +\opcode* DISP 
.endm 

! void interpret (Method *m, void *args, void* bcode) 
! m is the method to be interpreted 
! args is the memory containing arguments; the return value also goes in here. 
! bcode is Bytecode address to execute 

interpret: 

! Initialize registers, e.g., %i1 
sethi o/ohi(_interpret_start), ORIGIN 
or ORIGIN, %1o(_interpret_start), ORIGIN 

_interpreter_ start: 

DECLARE 0 !NOP 

DECLARE1 !ACONST_NULL 

DECLARE 201 ! JSR_W 

DECLARE 203 
sub PC, BCBASE, %13 
sll %13, 2, %14 
add SONCODE, %14, %14 
Id [%14], %14 
jmp %14 
nop 

_interpreter_ end: 

! opcode identifying a SO occurrence 
! displacement from bytecode begin 

! calculating index into native code table 
! address of the translated code 
! jump to the SO translated code 

Figure 14: Dynamically customized interpreter. 
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Method void foo1 r ......................................................................................................................................................................................................................................... i 
! Annotated Bytecode SO Natitve Code Pointer ! 
i Method void foo1 (intO, int) Method void foo1 (into, int) ! 
! 0 iconst_O SO 1 0 &SO [1] ! 
i 1 istore 2 1 
I 2goto12 2 
! 5 aload O SO 3 5 &SO [3] 
l 6 iload 2 6 
I 7 iload:=1 7 
i 8 iastore 8 
! 9 iinc 2 1 9 
! 12 iload_2 SO 4 12 &S0[4] 
l 13 aload_O 13 
I 14 arraylength 14 
I 15 if_icmplt 5 15 
i 18 return 18 
11.....-~~~~~~~~~~~~--'~~~~~~~~~~~-' 

l .............................................................................................................................................................................................................................................. J 

Method void foo2 

&SO[O] 

&50[1] 

&50[2] 

&S0[3] 

&S0[4] 

; 7 iload_2 SO 5 7 &S0[5] L-----~v &SO[S] 

I

I 8 aload_O 8 i 
9 iload_3 9 .. ····'·'I • 10 iaload 10 I 11 iload_ 1 11 

I ~; ::~~ ~; .1 

I 14 istore_2 14 

!

I m~~~;~gth so 9 

22

Ji
1 

&SO[ 9]1---.

1

&50[9] 

21 if_icmplt 7 
I 24 return 24 ! 
L ............................................................................................................................................................................................................................ J 

SO Native Code Table 

ldub [%i2 +2], %i5 
st %g0, [%i4 -8] 
... 
ldub [%i2 +2], %i5 
st %g0, [%i4-12] 
... 
ldub [%i2 +3], %i5 
Id [%i4], %00 
... 
Id [%i4 -8], %01 
Id [%i4], %00 
... 
ldub [%i2 +8], %i5 
Id [%i4 -8], %01 
... 

... 

Id [%i4 -12], %01 
Id [%i4], %00 
... 

Figure 15: Data structures used in the dynamic approach. 
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Figure 16: SOOFDYN performance running SPEC JVM98 and JGF suites. 

of total translated SOs that are indeed executed is very high: 78% for SPEC JVM98, 100% 
for JGF S2 and 92% for JGF S3 benchmarks. We measured time overhead of 1 % due to the 
translation of SOs at runtime. With this result we can rule the translation of SOs out as a 
justification for the slowdown situations and marginal performance improvement we observe 
in the dynamic case. 

The other source of overhead is related with the way SOs are invoked at runtime. In 
the dynamically customized interpreter there is a double indirection to reach the machine 
code of a SO. First, the interpreter jumps to the common location where the addresses of 
all translated SOs are calculated. This action involves 4 instructions and has the cost of a 
normal bytecode dispatch (discussed when we explained Figure 2). Once at this point, 5 
extra operations, shown in Figure 14, which include another load and a jump, are executed 
to compute the address of the machine code that implements the SO semantics. The cost 
of executing this group of operations is basically similar to the cost of dispatching a new 
bytecode. Therefore invoking SOs causes twice the cost of dispatching a new bytecode. 
For certain types of SOs, deployed by the dynamically customized interpreter, we won't see 
the benefit of folding their instructions together because any saving the folding produces is 
outweighed by the cost of invoking the SOs. 

In this section we combined the innovation of optimizing interpreters with SOs formed by 
OF patterns with the benefits of full customization per application offered by the dynamic 
approach. Unfortunately OF patterns tend to be short and the savings they produce are 
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overcome by the overhead implicit to the dynamic method. The dynamically customized 
interpreter will be more useful for longer and more complex SOs, e.g., SOs formed by BBs. 

7 Implemented Sets of SOs 

7.1 OF Patterns Across Application Suites 

Table 2 lists the 21 SOs created from the topmost frequent OF patterns sorted by dynamic 
frequency. The most frequent pattern is aload_O getfield, as we would expect. Its dy
namic frequency is 10 times higher than any other SO listed in Table 2. Java object fields 
are accessed and updated via getfield, putfield, getstatic and putstatic bytecodes. 
Bytecode aload_O refers to the first entry in the local variable array. The very first 4 entries 
in the local variable array are accessed using fast bytecode implementations. Therefore such 
local variable slots are oftenly used by efficient J ava-to-bytecode compilers. 

Many of the patterns listed in the tables throughout Section 7 are semantically equiv
alent, but with slight variations in the bytecode syntax. Some exmaples are patterns like 
aload_O iload_i putfield and aload_O aload_i putfield, translate into the same ma
chine instructions in our interpreter techniques, and therefore they can be considered as 
the same pattern instance. Others, like iconst_O istore_i and iconst_Q istore_3, lead 
to different machine code and have to be considered as different SOs. To cope with such 
peculiarity, after finding patterns, we further templatize patterns [10] according to the way 
our interpreter techniques translate bytecodes. The templatizing phase creates pattern tem
plates that abstract syntactic differences in bytecode opcodes when they are not relevant 
for our code generation. Templatized patterns are marked with a superscript asterisk in all 
tables. 

7.2 Application Suite-Specific OF Patterns 

The types of benchmarks included in SPEC JVM98, JGF S2 and S3 suites differ greatly. 
While SPEC JVM98 suite consists mostly of integer programs, JGF S2 and S3 applications 
are all numeric. 

Tables 3 and 4 show the chosen SOs for SPEC JVM98 and JGF S2 suites respectively, 
sorted by their dynamic frequencies. A total of 8 SPEC JVM98 SOs from Table 3 (SOs with 
i equal to 1, 3, 9, 10, 15, 17, 19 and 20) match with the selected SOs from Table 2, which 
was built with SOs across all benchmark suites. For JGF S2 benchmarks, 7 of the SOs in 
Table 4 (SOs with i equal to 2, 6, 10, 12, 13, 15 and 16) match with the chosen SOs from 
Table 2. A total of 5 JGF S2 SOs (SOs with i equal to 2, 5, 6, 11 and 13) from Table 4 
match with the SOs formed specifically for SPEC JVM98 benchmarks. For SPEC JVM98 
suite, the highest dynamic frequencies (greater than 1 % ) are among the top 5 SOs, while for 
JGF S2 suite, the highest dynamic frequencies are among the top 8 SOs. 

In conclusion, for SPEC JVM98 suite, 40% of its SOs with dynamic frequency higher 
than 1 % are included in Table 2. The SOs listed in the latter table were chosen across all 
benchmark suites. For JGF S2 suite, only 25% of its SOs with dynamic frequency higher 
than 1 % are listed in that same table. These numbers indicate that the selection of SOs 
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11 soi OF Patterns sorted by dynamicFi dynamicFi II 
1 aload_O getfield 27.90200741 
2 iload iload if_icmplt 2. 760971763 
3 iload iconst...1 iadd 2.339918247 
4 aload_O dup 1.448157631 
5 aload..3 iload iaload, aload..3 iload aaload * 1.397158820, 0.182245572 
6 iload iconst...1 isub 1.157216182 
7 iload istore 0.373250193 

fload fstore *, aload astore * 0.055836714, 0.001813772 
8 iconst_O istore 0.332743505 

aconst...null astore *, fconst_O fstore * 0.034397696, 0.023069119 
9 iload iload-2 iLicmpl t 0.307536720 

10 iload bipush if_icmplt 0.279811193 
11 iload ifne, aload ifnonnull * 0.272936085, 0.169210105 
12 aload_O fload--1. putfield 0.208235797 

aload_O aload--1. putfield *, aload_O iload...1 putfield * 0.191103944, 0.169708139 
13 iconst_O istore..3, aconst...null astore..3 * 0.186566640, 0.029063834 
14 iload ireturn,aload areturn * 0.178853214, 0.051126559 
15 iconst_O istore.-2, aconst...null astore.-2 * 0.174500460, 0.000639742 
16 iload..3 bipush if_icmplt 0.165644754 
17 aload...1 arraylength 0.155113970 
18 iload iload..3 iLicmpl t 0.142285042 
19 aload_O iconst..0 putfield 0.091160099 

aload_O fconst..0 putfield *, aload_O aconst...null putfield * 0.074135478, 0.033382744 
20 aload...1 iload aaload 0.089603873 

aload...1 iload iaload *, aload...1 iload faload * 0.045459931, 0.024474994 
21 aload_O iconst--1. putfield 0.056663363 

Superscript * md1cates templat1zed patterns 

Table 2: Top OF patterns across all benchmark suites sorted by dynamic frequency. 

from Table 2 is more suited for the efficient execution of SPEC JVM98 suite than JGF S2 
kernel applications. 

7.3 Application-Specific OF Patterns 

We chose two JGF S2 benchmarks, SOR and Series, to investigate SOs formed by OF 
patterns that are application-specific. Table 5 lists the selected SOs for SOR, while Table 6 
prints the top 21 most executed SOs in Series. There is no match among the patterns 
in Tables 5 and 6. Execution is dominated by the top 4 SOs in SOR and the top 5 SOs in 
Series. 

A total of 7 SOs in SOR, which include the 3 SOs with highest dynamic frequencies, match 
with JGF S2 SOs listed in Table 4. SOs in Series match with 4 of the SOs selected for the 
whole JGF S2 suite, listed in Table 4. The matches include 2 of the SOs most executed in 
Series. 

Summarizing, 75% of the most executed SOs in SOR and 40% of the most executed SOs 
in Series are listed in Table 4, which was built with SOs across all benchmarks in JGF 
S2 suite. A comparison with the SOs selected across all benchmark suites, listed in Table 
2, reveals 7 matches with SOR-specific SOs and 3 matches with Series-specific SOs. This 
result indicates that the selection of SOs in Tables 2 and 4 are more suited for the efficient 
execution of SOR than that of Series. 
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11 soi JVM98 OF Patterns sorted by dynamicFi dynamicFi II 
1 aload_O getf ield 41. 76075343 
2 aload getf ield 2.442815981 
3 aload_O dup 2.344630619 
4 aload--1 getfield 1.398526947 
5 aload-2 getfield 1.110679955 
6 iconst_O ireturn, aconst..null areturn * 0.884937435, 0.157574936 
7 iconst--1 ireturn 0.797745458 
8 iload--1 ireturn, aload...1 areturn * 0.589914774, 0.248066929 
9 iconst_O istore 0.533820683 

aconst..null astore *, fconst_O fstore * 0.066653803, 0.045283826 
10 iload bipush if_icmplt 0.522853458 
11 iload iload if_icmplt 0.516936826 
12 aload....3 getfield 0.493484034 
13 dup istore 0.394418272 

dup astore *, dup fstore * 0.010087341, 0.036620439 
14 dup istore-2, dup astore-2 * 0.381705418, 0.005161115 
15 aload_O fload...1 putfield 0.408759158 

aload_O aload--1 putfield *, aload_O iload...1 putfield * 0.373800682, 0.331903814 
16 iconst_O istore....3, aconst..null astore....3 * 0.366151564, 0.057051231 
17 iload iconst--1 iadd 0.361902973 
18 aload-2 iload....3 aaload 0.360841184 
19 iload ireturn,aload areturn * 0.336541321, 0.096930398 
20 iconst_O istore-2 0.333840232 
21 aload ifnonnull 0.332153169 

iload ifne * 0.113867424 

Superscript * indicates templatized patterns 

Table 3: Top OF patterns across all SPEC JVM98 benchmarks sorted by dynamic frequency. 

II SO i JGF S2 OF Patterns sorted by dynamicFi dynamicFi 

1 iload iload iadd 8. 78084 7162 
2 aload_O getf ield 7.655223119 
3 aload iload daload 7.128188147 
4 iload iload--1 iLicmpl t 6.838776512 
5 iload iload if_icmplt 5.987345440 
6 iload iconst--1 iadd 5.056918127 
7 dadd dstore 3.435724084 
8 iload if gt 2.909574139 
9 iadd istore 0.644465695 

10 iload istore 0.517273260 
11 iload ifne 0.517127932 
12 iload...1 ifeq 0.316979018 
13 iconst...0 istore 0.131113291 
14 dload dstore 0.114162137 
15 iload iload..3 iLicmpl t 0.087056854 
16 aload--1 arraylength 0.064641093 
17 iload....3 iload_O if_icmplt 0.060543507 
18 iload i2d 0.041630205 
19 iload dload dastore 0.037658401 
20 iload iconst--1 iLicmpeq 0.012127224 
21 iload iconst..1 iLicmpne 0.009226863 

Superscript * indicates templatized patterns 

Table 4: Top OF patterns across all JGF 82 benchmarks sorted by dynamic frequency. 
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11 soi SOR OF Patterns sorted by dynamicFi dynamicFi II 
1 aload iload daload 49.6323632 
2 iload iload if_icmplt 16.7337441 
3 iload iconst-1 iadd 16.5560875 
4 iload iconst-1 isub 16.5560875 
5 aload.-2 iload aaload 0.17740773 
6 iload iload-1 iLicmplt 0.16616004 
7 aload-3 iload aaload 0.16592024 
8 iconst-1 istore 0.01209565 
9 iconst_O istore 0.00012004 

10 iload iload-3 if_icmplt 9.47E-06 
11 aload_O getfield 1.5E-06 
12 aload_O dup 2.81E-07 
13 aload_O iconst_O putfield l.87E-07 

aload_O dconst_O putfield *, aload_O lconst...0 putfield * 1.87E-07, 9.37E-08 
14 iload iconst-1 isub istore 1.87E-07 
15 aload_O aload.-2 putfield 9.37E-08 
16 aload_O iconst-1 putfield 9.37E-08 
17 aload_O iload-1 putfield, aload_O aload-1 putfield * 9.37E-08, 9.37E-08 
18 ldc astore.-2 9.37E-08 
19 ldc astore-3 9.37E-08 
20 aload.-2 arraylength 9.37E-08 
21 iconst.-2 ldc2_ff dastore 9.37E-08 

Superscript * md1cates templatized patterns 

Table 5: Top OF patterns in SOR benchmark sorted by dynamic frequency. 

8 Conclusions 

This piece of work thoroughly studies patterns of Java bytecode operations. Using several 
benchmarks we were able to show that the top 20 SOs formed by basic blocks are enough to 
cover more than 50% of the total bytecodes executed. Therefore optimizations that target 
only the top SOs can substantially improve the interpreted execution performance. 

We have shown the high efficiency of an interpreter customized with the top SOs formed 
by basic blocks which are translated optimizing both stack operations and the number of 
interpreter trips. Such an interpreter yields speedups comparable to and up to fourfold 
higher (observed in a particular benchmark) than those of earlier techniques. 

Existing Java bytecode interpreters can be further optimized by statically adding to 
the interpreter a limited number of SOs formed by OF patterns that are valuable across 
a wide range of applications. Our results showed that it is possible to find such patterns 
and that they produce average performance improvement of 7%. Much higher speedup 
of up to 39% was measured when customizing SOs at the level of individual applications. 
This last result motivated the design of a dynamically customized interpreter. However, 
the type of the SOs we implemented and the overhead associated with the new scheme 
led to average performance improvement only slightly higher than that of the statically 
customized interpreter. Throughout the experiments we suggested that the most valuable 
SOs be identified ahead of time via profiling and information on SOs be conveyed to the 
runtime system via annotations. 

Finally, we make the case for an interpretation technique that is SO annotation-aware, 
dynamically customizable and that spends effort in generating optimized code for only the 
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/I SO i Series OF Patterns sorted by dynamicFi dynamicFi II 
1 dload-1 dconst-1 dadd 19.97809141 
2 dload..3 dload-1 dmul 19.97772179 
3 iload ifgt 19.95811331 
4 dadd dstore 19.93813522 
5 dload dload dadd dstore 19.93813522 
6 ddiv dstore 0.039956183 
7 aload_O get£ield 0.029975453 
8 iload iconst-1 iLicmpeq 0.019978091 
9 iload i2d 0.019978091 

10 dmul dstore 0.019978091 
11 dload dreturn 0.019978091 
12 dload-1 dstore 0.019978091 
13 dload..3 dload-1 dsub 0.019978091 
14 iload..3 i2d 0.019977722 
15 iload..3 iconst-2 iLicmpl t 4.44E-06 
16 aload-1 iload-2 aaload 2.96E-06 
17 dload ldc2_ff dcmpl 2.96E-06 
18 iload-2 iconst-4 if_icmplt 1.85E-06 
19 iconst_O istore..3 l.48E-06 
20 iconst_O ldc2_ff dastore 1.48E-06 
21 aload_O dup 1.llE-06 

Superscript * indicates templatized patterns 

Table 6: Top OF patterns in Series benchmark sorted by dynamic frequency. 

top most valuable program basic blocks. Implementation of such engine is our future work. 
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