
UC Irvine
ICS Technical Reports

Title
Improving interpreted execution performance with Java bytecode SuperOperators

Permalink
https://escholarship.org/uc/item/1s07c76x

Authors
Azevedo, Ana
Veidenbaum, Alex
Nicolau, Alex

Publication Date
2002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1s07c76x
https://escholarship.org
http://www.cdlib.org/

Notice: Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Ana Azevedo, Alex Veidenbaum and Alex Nicolau
{ aazevedo, alexv, nicolau }@ics.uci.edu

UCI-ICS Technical Report #02-22
Department of Information and Computer Science

University of California, Irvine, CA 92697

November, 2002

Improving Interpreted Execution Performance
with Java Bytecode SuperOperators

Ana Azevedo, Alex Veidenbaum and Alex Nicolau
{ aazevedo, alexv, nicolau}@ics.uci.edu

Department of Information and Computer Science
University of California, Irvine, CA 92697, USA

Technical Report #02-22
November, 2001

Abstract
This paper exploits the concept of optimizing the interpreted execution of Java

programs with SuperOperators (SOs). SOs are groups of bytecode operations used to
produce interpreter engines with specialized instructions. The present work makes 3
distinguished contributions to this topic.

Firstly, we show that less than 20 SOs formed by basic blocks cover more than 50%
of all bytecodes executed by an application and are enough to yield the bulk of perfor
mance improvement when optimizing interpreters with SOs. We analyze SOs formed
by the most frequently executed program basic blocks and SOs formed by special sub
patterns of Java bytecode operations that compose the basic blocks. Such sub-patterns
are extensions of PicoJava's stack operation folding (OF) patterns. Unlike SOs formed
by basic blocks, we find OF patterns repeat across a wide range of applications.

Secondly, we compare techniques for optimizing interpreters with SOs. We show
that the number of stack accesses and stack pointer updates, implicit in the bytecode
semantics, is more limiting to the interpreter performance than the bytecode dispatch
overhead. Our findings suggest that an interpreter that fully optimizes the top SOs
formed by basic blocks, reducing both sources of overhead, yields up to fourfold per
formance improvement compared to previous techniques.

Finally we assess the efficiency of a software implementation of the stack operation
folding mechanism. We design statically customized interpreter versions that use a
limited number of non-patented Java bytecode opcodes to represent SOs formed by OF
patterns valuable across applications. We also propose a dynamic scheme that is more
flexible in customizing the interpreter for a particular application. Both approaches
use annotation attributes in the class files marking occurrences of the most valuable
SOs, dispensing with the expensive pattern search and classification at runtime. Our
statically customized interpreter versions, deploying a limited subset of SOs, and our
dynamically customized version improve the performance of SPEC JVM98 and Java
Grande Forum benchmarks by 7% to 39%.

1

Contents

1 Introduction 4

2 Related Work 8

3 Evaluating SO Types 9

4 Comparing SO-based Techniques 14

5 Statically Customizing an Interpreter 16

6 Dynamically Customizing an Interpreter 19

7 Implemented Sets of SOs 23
7.1 OF Patterns Across Application Suites 23
7.2 Application Suite-Specific OF Patterns 23
7.3 Application-Specific OF Patterns 24

8 Conclusions 26

2

List of Figures

1 Interpretation schemes. 5
2 Bytecoded interpreter loop example. 6
3 Traces of the translations of an ILDAD followed by an ISTDRE operation. 7
4 Dynamic frequencies for SOs formed by BBs in SPEC JVM98 and JGF S2

suites. 10
5 Bytecodes covered by all SOs formed by BBs in SPEC JVM98 and JGF S2

suites. 10
6 Bytecodes covered by top SOs formed by BBs in SPEC JVM98 and JGF 82

suites. 11
7 Example of top SO in SOR benchmark highlighting OF patterns. 13
8 Bytecodes covered by all SOs formed by OF patterns in SPEC JVM98 and

JGF 82 suites. 13
9 Bytecodes covered by top SOs formed by OF patterns in SPEC JVM98 and

JGF S2 suites. 14
10 Comparing Techniques for optimizing interpreters with SOs. 15
11 SOOFDF performance running SPEC JVM98 and JGF suites. 17
12 SOOFDFJVM98 and SOOFDFJGFS2 performance running SPEC JVM98

and JGF S2 suites. 18
13 SOOFDFSOR and SOOFDFSeries performance running SOR and Series. . . 18
14 Dynamically customized interpreter. 20
15 Data structures used in the dynamic approach. 21
16 SOOFDYN performance running SPEC JVM98 and JGF suites. 22

List of Tables

1
2
3

4
5
6

SOs in SPEC JVM98 and JGF S2 benchmarks.
Top OF patterns across all benchmark suites sorted by dynamic frequency ..
Top OF patterns across all SPEC JVM98 benchmarks sorted by dynamic

10
24

frequency. 25
Top OF patterns across all JGF S2 benchmarks sorted by dynamic frequency. 25
Top OF patterns in SOR benchmark sorted by dynamic frequency. . 26
Top OF patterns in Series benchmark sorted by dynamic frequency. 27

3

1 Introduction

Program interpretation is the process of emulating in software the basic tasks of fetching
and decoding instructions of a normal program execution, which are usually done by a
microprocessor hardware. Therefore interpretation bears inferior performance compared to
direct program execution.

An interpreter is essentially structured as an infinite loop that reads in a new instruction
from an array of instructions pointed by a software program counter, decodes the instruction,
transfers control to code parts that handle the instruction just decoded, updates the program
counter to point to the next instruction in the stream and eventually returns to the same
fetch-decode-execute cycle to translate the next instruction. The implementation of an
interpreter loop in a high level language like C is shown in the upper side of Figure 1, and
is referred to as a switch-based or bytecoded interpreter.

There are two main sources of overhead in the interpreted execution of Java bytecode
programs. We discuss the overheads by analyzing Figure 2, which shows part of LaTTe's
interpreter engine [14] directly written in SPARC assembly code. LaTTe is the open-source,
high performance JVM used as the underlying framework in all the experiments reported in
this paper.

Each Java bytecode implementation is declared as a section of assembly code at posi
tion _interpret_start + opcode * DISP, where _interpret_start label marks the base
address of the loop; opcode is the byte representing the bytecode opcode; and DISP is the
maximum number of bytes (256) reserved for the native code that implements the bytecode
semantics. Notice that in LaTTe's interpreter engine, the most important loop variables, as
the top of the stack (TOP) and the logical program counter (PC), are kept in SPARC machine
registers for improved performance.

Figure 2 also details the execution of an ILOAD operation, which requires 6 machine in
structions. The tasks of fetching, decoding and jumping to the next bytecode to be executed
define the bytecode dispatch cost. The dispatch cost requires 4 more instructions of expen
sive type (load and branch instructions) to be executed: a ldub to load the next bytecode;
a sll to calculate the next bytecode address; a jmp to transfer control to that new address;
and an add to update the program counter. In this example we can also notice that the
dispatch cost is more than half of the typical size of the native code implementation of the
most commonly executed Java bytecode (load from local variables on the average account
for 35.5% of SPEC JVM98 total executed bytecodes [18]).

Another source of overhead exists in the execution of the bytecode semantics in which a
stack machine is being emulated in software. This forces the copy of operands and results
to and from the other Java memory areas (e.g., the heap and the local variables array) to
the Java stack.

Any technique that reduces the cost of dispatching a new bytecode, reduces the data
transfer to /from the Java stack or reutilizes the translation work of previously executed
bytecodes can improve the overall performance of Java programs.

JIT compilers [3, 12, 14] eliminate the above issues altogether at the cost of more space
to store the compiled methods and the compilation framework itself. A JIT compiler is not
a viable solution in domains where space constraints limit the available memory.

4

void bytecoded_lnterpreter_Engine{

char programO = {ICONST_2, ICONST_2, ICONST_1, IADD, ... }
char *pc= program; I* bytecode pointer*/

I* dispatch loop implementation*/
while (true){

switch(*pc++){ /* Fetch, Decode, Update pointer*/
case ICONST _ 1: *++sp = 1; break; /*Execute bytecode */
case ICONST _2: *++sp = 2; break;
case IADD: sp[-1] += *sp; --sp; break;

}
}
}

I* Other cases*/

void threaded_lnterpreter_Engine{

void* programo = {&&ICONST_2, &&ICONST_2, &&ICONST_1, &&IADD, ... }
void **pc= program; /*pointer to the address of bytecode implementation*/

/* bytecode implementations*/
goto **(pc++);
ICONST _ 1: *++sp = 1; goto **(pc++);
ICONST _2: *++sp = 2; goto **(pc++);
IADD: sp[-1] += *sp; --sp; goto **(pc++);
... /*Other cases*/
}

/*Fetch*/
/*Execute bytecode, Fetch, update pointer*/

Figure 1: Interpretation schemes.

Threaded code interpreter [2, 8] is known to be the most efficient technique for reducing
the bytecode dispatch cost. The instructions in the program to be interpreted are replaced by
by the address of the routine that implements them. The interpretation process consists of
fetching this address and branching to the routine. An example of a threaded code interpreter
is illustrated in the right portion of Figure 1. Another advantage of threaded code is that it
allows interpreters to be written in a very portable way using high level languages that offer
a way to produce indirect jumps.

JIT compilers produce at least 2 to 10-fold performance speedup compared to a switch
based interpreter while the threaded code technique leads to 10% speedup.

In this paper we evaluate existing techniques and propose new methods for optimizing
the performance of Java interpreters with patterns of Java bytecode operations or Super
Operators. Techniques based on SOs are orthogonal to implementing threading and should
further boost the efficiency of a threaded code interpreter.

The examples in Figure 3 illustrate how combining bytecode operations into patterns
can lead to optimized interpreted execution. The upper side of Figure 3 shows the execution
trace of an ILOAD operation immediately followed by an !STORE operation. A total of 20
instructions are executed. The trace in the bottom of Figure 3 shows the situation in

5

DISP .EQU 256
SDISP .EQU 8
METHOD .REG (%i0)
ORIGIN .REG (%i1)
PC .REG (%i2)
TOP .REG (%i3)
LOCALS .REG (%i4)
TARGET .REG (%i5)
FP .REG (%10)
POOL .REG (%11)
FAKEI .REG (%12)

! Maximum size of each opcode implementation
! log_2 DISP
1 Method structure

Beginning of opcode implementations
Address containing the current bytecode
Operand stack top
Local variables
Next opcode to execute

. Java stack frame pointer
! Resolved pool
! Instruction which trampolines start with

.macro DECLARE opcode
\(\(.org)) _interpret_start +\opcode* DISP
.endm

! void interpret (Method *m, void *args, void* bcode)
! m is the method to be interpreted
! args is the memory containing arguments; the return value also goes in here.
! bcode is Bytecode address to execute

interpret:

! Initialize registers, e.g., %i1
sethi %hiUnterpret_start), ORIGIN
or ORIGIN, %1o(_interpret_start), ORIGIN

interpreter start:

DECLARE 0 !NOP

DECLARE1 !ACONST_NULL

! Load word from local variable and push onto operand stack
DECLARE 21 !ILOAD
! Read next bytecode to be executed
ldub [PC+ 2], TARGET
! Execute the current bytecode semantics
ldub [PC +1], %02 ! Read index operand
sll %02, 2, %02
neg %02
Id [LOCALS+ %02], %13 ! Read local variable at index %02
st %13 [TOP - 4] ! Save local variable on the stack
add TOP, -4, TOP ! Update stack pointer
!Transfer control to the next bytecode
sll TARGET, SDISP, TARGET ! Calculating address of next bytecode
jmp ORIGIN +TARGET
add PC, 2, PC ! Updating PC, delay slot

DECLARE 201 ! JSR_W

interpreter end:

Figure 2: Bytecoded interpreter loop example.

6

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

Separate Translation: ILOAD followed by ISTORE

ldub [PC + 2], TARGET
ldub [PC +1], %02
sll %02, 2, %02
neg %02
Id [LOCALS+ %02], %13
st %13 [TOP - 4]
add TOP, -4, TOP
sll TARGET, SDISP, TARGET
jmp ORIGIN+ TARGET
add PC, 2, PC
ldub [PC + 2], TARGET
ldub [PC +1], %02
sll %02, 2, %02
neg %02
Id [TOP], %13
st %13, [LOCALS + %02]
add TOP, 4, TOP
sll TARGET, SDISP, TARGET
jmp ORIGIN+ TARGET
add PC, 2, PC

! Read next bytecode to be executed
! Read ILOAD index operand

! Read local variable at index %02
! Save local variable on the stack
! Update stack pointer
! Calculating address of next bytecode

! Update PC, delay slot
! Read next bytecode to be executed
! Read ISTORE index operand

! Load value from the stack
! Store value in local variable at index %02
! Update stack pointer
! Calculating address of next bytecode

! Updating PC, delay slot

Combined Translation: ILOAD followed by !STORE

ldub [PC+ 4], TARGET
ldub [PC +1], %02
sll %02, 2, %02
neg %02
Id [LOCALS+ %02], %13
ldub [PC + 3], %02
sll %02, 2, %02
neg %02
st %13, [LOCALS + %02]
sll TARGET, SDISP, TARGET
jmp ORIGIN+ TARGET
add PC, 4, PC

! Read next bytecode to be executed
! Read ILOAD index operand

! Read local variable at index %02
! Read ISTORE index operand

! Store value in local variable at index %02
! Calculating address of next bytecode

! Updating PC, delay slot

Figure 3: Traces of the translations of an ILDAD followed by an ISTORE operation.

which at the moment of translating the ILDAD operation it was known that such instruction
was followed by an ISTDRE operation. In this new trace, the dispatch cost for the !STORE
operation is eliminated (instructions 8, 9, 10 and 11 from the upper trace). Besides, the
stack accesses and stack pointer updates in the translation of both operations are completely
eliminated (instructions 6, 7 and 15 in the upper trace). The result produced by the ILDAD
operation is kept in the machine register 13 and reused by the subsequent ISTDRE bytecode,
with no need to access the stack. The combined translation of the two bytecodes executes
12 instructions, a 40% improvement over the separate translation.

This paper is organized as follows. Section 2 discusses related solutions to cope with
program interpretation issues. In Section 3, we evaluate the importance of different types
of SOs formed by basic blocks and simpler operation folding patterns. In Section 4 we
carry out a comparative study of techniques for optimizing interpreters with SOs. Our SO
aware customization techniques for the direct interpretation of Java bytecode programs are

7

discussed in Sections 5 and 6. In Secion 7 we list the SOs implemented in different interpreter
versions. Finally, our main conclusions and future work direction are summarized in Section
8.

The current report summarizes our main findings in this area. A more detailed description
of this work can be found in the main author's Ph.D. dissertation [1].

2 Related Work

The breakthrough in the efficient implementation of virtual machine interpreters is the
threaded code technique [2, 7, 8]. The threaded interpreter still pays the cost of an instruc
tion dispatch for each bytecode executed. If simple bytecodes are combined into bytecode
sequences, the dispatch overhead is reduced.

Optimizing interpreters with bytecode sequences has been tried in previous research.
Proebsting's work on SuperOperators [16] introduces SOs as specialized instructions auto
matically inferred from repeated patterns in the tree-like intermediate representation pro
duced by lee compiler. His bytecoded interpreter extended with SOs runs 2 to 3 times faster
with the tested benchmarks.

Ertl, Gregg et al [11, 9] have combined the advantages of threaded code interpreter with
the merging of single instructions into Superinstruetions. By inspecting traces of a program
execution, patterns of instructions of length 2, 3 and up to 4 are detected. In a later phase,
the behavior of the original virtual machine operations and the patterns of instructions
are defined using a special syntax in C. An automatic interpreter generator takes in this
specification and outputs an interpreter in C that implements the described behaviors. Their
work relies on a smart C compiler to remove redundant stack accesses, unnecessary stack
pointer updates and bytecode dispatch instructions within patterns. Hundreds of patterns
are incorporated to the interpreter code, substantially increasing the size of the interpreter.
Up to 2 fold-speedups have been reported for the indirect interpretation of Java bytecodes.

Piumarta et al propose a technique that eliminates the dispatch overhead within a basic
block using selective inlining [15]. The code to be interpreted is first translated to threaded
code and basic blocks are identified. A second pass dynamically generates macro opcodes
representing the basic blocks and replaces threaded code opcodes with the macro opcodes.
The implementation of each macro is a simple concatenation of the C-code implementations
of the bytecodes that it replaces. The technique was applied to the Objective Caml bytecode
interpreter and resulted in 50% average speedup, reaching twice as fast in some cases.

Thibault et al. [22] proposes interpreter Specialization as a more generic solution for
optimizing interpreters than Piumarta's. An interpreter specialized for a particular program
is essentially a concatenation of the implementations of all the bytecodes in the program.
This technique fully eliminates the bytecode dispatch cost resulting in 4-fold speedups.

Sun designed a stack operation folding mechanism for PicoJava I [20] and PicoJava II [21]
architectures that converts many cycles of stack oriented instructions into an one-cycle regis
ter based instruction, which can be implemented with a few registers. This technique groups
or folds contiguous operations that have true data dependency. For example, the bytecode
sequence iload_1 iload-2 iadd istore_3 (two stack copy operations, an ALU operation

8

and a local variable store operation) can be transformed into a single add R1, R2, R3 op
eration. Sun's folding technique is based on pattern matching with a very limited set of
patterns. A special decode unit in the PicoJava processor converts the bytecode instructions
into micro-operations and looks for folding patterns up to 4 consecutive instructions long. If
a pattern is identified, the decoder replaces the instructions belonging to the pattern with a
simple micro-operation. Other stack operation folding techniques that enhance PicoJava's
simple grouping rules have been proposed in literature [4, 23, 5].

Kim [17] has proposed a software approach to stack operation folding in which he creates
a Smart Loader, a custom class loader that finds folding patterns at load-time by applying
PicoJava-like grouping rules. With this approach, the JVM hardware can be simplified yet
benefit from folding.

Our work differs from previous research mainly in the concern of finding out the maximum
number of SOs required to guarantee the bulk of the performance improvement, while limiting
the number of SOs that need to be implemented in the interpreter. This is not done in [9]. We
also propose profiling and an annotation scheme as solutions that free the runtime system
from identifying the patterns of bytecodes that should be optimized and that allow the
interpreter to be customized for a particular application. In [15], all program basic blocks
are subject to inlining with no prioritizing. Although the work in [9] resorts to profiling to
find patterns of instructions, the patterns are not custom-designed for a specific application.
Another goal of ours is to assess the value of operation folding patterns in customizing
software interpreters. To our knowledge this has not been attempted before.

3 Evaluating SO Types

The most intuitive way of looking for valuable patterns of bytecodes is to identify basic
blocks (BBs) in Java bytecode programs, profile them, calculate their dynamic execution
frequencies, prioritize them and form SOs with the top most important basic blocks.

We do not study patterns of instructions that include control transfer instructions,
except when it is the last instruction in the pattern. Therefore, when identifying basic
blocks, method invocations, conditional jump bytecodes (e.g., if _icmpeq), unconditional
branch bytecodes (e.g., goto), compound conditional branch bytecodes (e.g., tableswi tch,
lookupswi tch) and the bytecodes associated with the implementation of the finally key
word (j sr and ret) all terminate the basic blocks.

For the experiments we describe in this paper we analyze several programs from SPEC
JVM98 [19] and Java Grande Forum (JGF) [6] benchmark suites. The latter suite is orga
nized in 3 different sections. Of interest to us are Section 2 (labeled JGF S2), a collection of
scientific and numerical application kernels, and Section 3 (labeled JGF S3), which is made
up of full-scale science and engineering applications.

The second column in Table 1 lists the total number of SOs formed by basic blocks that
are executed in each benchmark. To find out the priority among the high number of SOs
in Table 1 we have to resort to heuristics. We decided to prioritize SOs by their averaged

9

Benchmarks SO formed by BB SO formed by OF pattern SO formed by BB SO formed by OF pattern
dynamicF > 1 % dynamicF > 1 %

compress 179 331 25 45
db 170 200 15 19
jess 792 963 21 28
mt rt 510 604 15 16
Crypt 68 107 44 25
FFT 72 130 20 49
HeapSort 43 55 6 11
LUFact 92 155 2 2
Series 50 67 7 8
SOR 38 53 2 4
SparseMatmul 42 51 2 4

Table 1: SOs m SPEC JVM98 and JGF S2 benchmarks.

~
25+.r-------------------l

h

~WT-t-------------------l

l
c15+--1------------------l
0

~

--compress

--db

--jess

-x-mtrt

60

;:: 50

h

i 40

~
u.
~ 30

~

.._
--Crypt

--FFT
,... HeapSort

--LUFact

--series

--soR
~ 10+--+->;,-----------------l
u

~ 20
u -+-SparseMatmul

·~
~ 5 i---"~---lo=or--------------1

sos formed by basic blocks

·e
~10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

sos formed by basic blocks

Figure 4: Dynamic frequencies for SOs formed by BBs in SPEC JVM98 and JGF S2 suites.

120 120

i 100

compress
mtrt xi 100

l so 80
jess

~ ll :>: ~ 60 J 60 :1 Crypt
w ./ 'O 40 'O !\ .. , ..
f

db j
40 l

20

~ 20
f HeapSort

0..
0..

~ m IO t-- m IO r::: ~ m ~ g *
<Xl ~ ~ ~ §! ~ I:! ~ <')

~ <') ::; '<t to ~ :: ~ c;; ~ c;:; ~ ::; ~ u; lll co ffi ;:::. ie co 18 a;
sos formed by basic blocks SOs formed by basic blocks

Figure 5: Bytecodes covered by all SOs formed by BBs in SPEC JVM98 and JGF S2 suites.

10

~70-i----------=----~

160+-------~__..,-----~
00 50 ...--+--com_p_res-.s 1

]!
il 40 +------;»oes:::.:.:.----1'----..,.--=-~"*---~-db
~ -A-jess

0 30 -M-mtrt f 20-t"--__,.,.._ __________ ~

g10+-A'---P---------~
II.

~ M ~ ~ m ~ ~ ~ ~ ~ N ~ ~

sos formed by basic blocks with dynamlcF > 1%

120~-·---------~

Ii)

~ 100 +---o~---_..,_ _____ __, .-------,1

! -+-Crypt

mM -~
]! -A- HeapSort
il 60 --1+- LUFact

~ --series
'O 40 --soR
E -+-SparseMatmul

e 20

II.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

sos formed by basic blocks with dynamlcF > 1%

Figure 6: Bytecodes covered by top SOs formed by BBs in SPEC JVM98 and JGF S2 suites.

dynamic execution frequency dynamicFi, which is is calculate as

:z=n l00>1<DFik

dynamicFi = 1 :z=; DFik

n

where DFik is the number of times SO i is executed during the execution of program k; t
is the total number of SOs in the static code of program k; and n is the total number of
programs averaged over or the total program runs for different datasets.

The graphs in Figure 4 plot all the SOs with dynamic frequencies higher than 1 % for
programs from SPECJVM98 and JGF S2 suites. The total number of SOs with dynamicFi
higher than 1 % is listed in the fourth column of Table 1. From Figure 4 we can notice that,
for most of the benchmarks, the first 2 SOs bear the highest execution frequencies. The
dynamic frequencies of the following SOs drop abruptly to lower than 5% when reaching
SOs higher than the sixth.

The dynamic frequency value by itself only gives an initial hint for the most valuable
SOs. Further insight can be obtained by calculating the percentage of the total number of
bytecodes executed by an application that are covered by SOs. The total number of executed
bytecodes also factors in bytecodes executed from standard library methods. However, in
the next study we only account for SOs that appear in methods defined in an application
program. For SPEC JVM98 suite, application code accounts for 83 to 99% of the total
bytecodes executed, except db's methods that account for 30%. For JGF suite, 94 to 99%
of the total bytecodes executed are from methods defined in the benchmarks. We do not
evaluate the contribution of SOs that exist in method bytecodes from the Java library. In
some platforms, standard library methods are available in native code and do not need to
be translated.

Figure 5 depict graphs with the accumulative percentage of the total executed bytecodes
covered as the bytecodes corresponding to each SO are counted in. In this figure, we account
for all SOs listed in the second column of Table 1. The percentage values do not reach 100%
because we only formed SOs with basic blocks longer than one bytecode operation and SOs
that appear in methods defined in the application programs.

The graphs in Figure 6 plot the percentage of total executed bytecodes covered by only
the SOs with dynamic frequencies higher than 1 %. These graphs should be read referring

11

back to the graphs in Figure 5. For example, the top 21 SOs in jess account for 41 % of
the total bytecodes executed by the application. If all SOs in jess are counted in, Figure 5
reveals that they account for a maximum of 77% of the total bytecodes executed. Therefore,
the top 21 SOs in jess cover 53% (41/77) of that maximum.

When calculating this last percentage value for all the programs, we find values varying
from 53 to 96% for SPEC JVM98 benchmarks and 96 to 100% for JGF S2 suite. This result
indicates that if we optimize an interpreter with only the top 20 SOs, we are improving the
execution of 53 to 100% of the bytecodes executed in the program basic blocks. It is also a
relevant piece of information for restricting the interpreter size.

Our experience has shown that the interpreter size can significantly affect program per
formance. For example, changing the size of the bytecode implementation from 256 to 512
bytes in LaTTe's interpreter causes performance slowdown of up to 11 % due to cache con
flict misses. This behavior was observed on a 500MHz UltraSPARC Ile processor with a 16
Kb Ll instruction and data caches and 256 Kb L2 unified cache. Therefore, adding a high
number of SOs to the interpreter loop can actually degrade performance when the savings
the SOs produce are overweighed by the performance degradation caused by cache misses.

If we can find SOs that are valuable across several benchmarks we can further reduce
the number of SOs that need to be implemented and yet optimize the interpreter for a large
range of applications. When searching for SOs that match across all the studied benchmarks
in SPEC JVM98 suite and across all programs in JGF S2 suite we found very few exact
matches. A more detailed look into the sub-patterns that form the basic blocks revealed
that basic blocks are formed by simpler patterns that can be detected by stack operation
folding techniques, usually implemented in hardware JVMs. Our experiments showed that
such sub-patterns repeat across benchmarks more frequently than the larger, basic-block
based SOs. Therefore we decided to investigate the importance of such patterns.

Figure 7 shows the main loop in the kernel of JGF S2 SOR benchmark with some examples
of OF patterns. It also lists part of the disassembled bytecodes 79 to 123 that correspond to
the array operations in the innermost loop. These bytecodes form the SO with the second
highest execution frequency in SOR. The 5 occurrences of PicoJava-like operation folding
patterns are highlighted in boldface.

The third column of Table l lists the large number of OF patterns that were detected in
each benchmark while the last column shows the total number of OF patterns with dynamic
frequency higher than 1 %.

We further investigated the value of SOs formed by OF patterns by analyzing the percent
age of executed bytecodes they cover. Figure 8 shows the percentage of executed bytecodes
when accumulatively accounting for the bytecodes corresponding to the SOs formed by OF
patterns for both benchmark suites. In SPEC JVM98 suite, all SOs formed by OF patterns
cover 13 to 50% of the total executed bytecodes. In J GF S2 suite, the percentage value
varies from 19 to 57%. These results are roughly half of the percentage values when using
SOs formed by basic blocks, shown in Figure 5.

In Figure 9 we plot the percentage of executed bytecodes covered by SOs formed by OF
patterns that are found as sub-patterns in the earlier examined basic blocks with dynamic
frequencies higher than 1 %. For SPEC JVM98 benchmarks, from Figure 9 we can calculate
that up to 45 SOs account for 62 to 92% of the maximum total executed bytecodes covered

12

Java Code Java bytecode 103:dadd
void SORrun(double, doubleOO. int) public static final 79: aload 14 104: aload 14
... 81: iload 17 106: iload 17 503
for (int p=O; p<num_iterations; p++) { 83: dload 6 108: iconst_ 1

for (int i=1; i<Mm 1; i++){ 85: aload 15 501 109: iadd
double O Gi = G[i]; 87: iload 17 110: daload
double O Gim1 = G[i-1]; 89: daload 111:dadd
double O Gip1 = G[i+1]; 90: aload 16 501 112: dmul
for (intj=1; j<Nm1; j++){ 92: iload 17 113: dload 8
GiU] = omega_over_four * (Gim1U] + Gip1U] + GiU-1] 94: daload 115: aload 14 501

+ GiU+1]) + one_minus_omega * GiU]; 95:dadd 117: iload 17
} 96: aload 14 119: daload

} 98: iload 17 502 120: dmul
} 100: iconst_1 121:dadd
... 101: isub 122: dastore

102: daload 123: iinc vindex: 17 by: 1

Figure 7: Example of top SO in SOR benchmark highlighting OF patterns.

i 50

compress

Lo mtrt

1 J 30

0 20
~ db

~10 1~--
~

o.,...,_,......,-,.-,-.,..,...,-,-y-.--,-,......,-,~~~~~-,...,.-,.--,-.,-,........-........-.--,-,-,.--.-T

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

sos formed by OF patterns

so~~~~~~~~~~~~~~~~~

-iJ:====~~ Series 11111111111111111111111111!IHllllffll+ SparseMatmul

HeapSort

FFT

LUFact

c pt

~ ~ A ~ ~ ~ ~ ~ ~ ~ ~ ~ M ~ ~ ~ ! fil
SOs formed by OF patterns

Figure 8: Bytecodes covered by all SOs formed by OF patterns in SPEC JVM98 and JGF
S2 suites.

by all OF patterns shown in Figure 8. For JGF 82 benchmarks, the graph reveals that
almost 100% of the maximum total executed bytecodes shown in Figure 8 are covered by
less than 10 SOs, except for Crypt and FFT.

The results reported in this section demonstrate that an interpreter optimized with the
top 20 SOs formed by basic blocks per application will improve the translation of 50% to
almost all executed bytecodes. If we are interested in SOs that are valuable across appli
cations, looking for operation folding patterns that form the basic blocks is an alternative
that produces more matches. However, the total executed bytecodes such SOs cover is up to
57% of the total bytecodes the applications execute. Although an interpreter optimized with
SOs formed by OF patterns can improve the performance of a broader range of applications,
the speedups it will produce will be lower compared to techniques that deploy sets of SOs
formed by basic blocks.

13

40 ··-·····-··-····-·-------·----···----···--··---··-·····-·····-·-----·-····-·-··-·······-·-··-

~35-t-----------,-:;:~~~

l30+------------..."~---~
aJ25 --~I
] -+-compress

i3 20 u~~~~~=-----~z-db
~ --.Ir-jess

0 15 -H-mtrt
m
j10-1--:-;-..-'---:::11P---------~

~ 5+AI>'~=-----------~
0.

~ v ~ ~ ~ ~ ~ ~ ~ ~ M ~ ~ ~ ~

SOs formed by OF patterns with dynamicF > 1%

,,,
m50+-t--------------i l ~---c~-pt---. 1

~ 40 --FFT
] -,i.-HeapSort

W~ 30 --++- LUFact

---ilt-Series
~ 20 tfN=---r/'1-~~--------------j --soR f -+-SparseMatmul

~ 10
0.

SOs formed by OF patterns with dynamlcF > 1%

Figure 9: Bytecodes covered by top SOs formed by OF patterns in SPEC JVM98 and JGF
82 suites.

4 Comparing SO-based Techniques

Previously proposed techniques for optimizing interpreters with patterns of instructions have
been implemented in either different virtual machines other than JVMs or use different
intermediate languages other than Java bytecode. In order to compare the techniques under
the same virtual machine engine we designed three Java SO annotation-aware interpreter
versions, building on top of LaTTe's interpreter. The description of the optimizing techniques
implemented by each interpreter version is given below.

1. Version BBOpt: Optimizing top SOs formed by basic blocks
In this interpreter version, which we label BBOpt, the most valuable SOs are fully
optimized, i.e., the bytecodes are concatenated eliminating the dispatch cost. Addi
tionally, we implement common sub-expression elimination and copy propagation at
basic block level to eliminate unnecessary stack accesses and stack pointer updates.

2. Version BB: Concatenating top SOs formed by basic blocks
The interpreter version labeled BB simply combines the translation of the individual
bytecodes that compose the most important SOs. It eliminates unnecessary operations
that implement bytecode dispatch.

3. Version OF: Optimizing top SOs formed by Operation Folding patterns
Finally, the interpreter version labeled OF fully optimizes SOs as in the BBOpt version,
but SOs are formed by operation folding sub-patterns that appear in the most executed
basic blocks.

The techniques we designed can be seen as counterparts of Piumarta's and Ertl's that
enable direct interpretation of programs in Java bytecode. Piumarta's technique is equiva
lent to what we implement in the BB version while Ertl's technique falls between what is
implemented in the BB and BBOpt versions.

In each interpreter version we deploy only the top 3 SOs for some of the benchmarks
studied in Section 3. The SOs are added to the interpreter loop using the non-patented

14

<U
Cll

25

(ij 20

~
l. 15
a.

i 10
a.

fl) 5

compress mtrt

SPEC JVM98 benchmarks running dataset s100

!ossopt liilBB 11110F I

300

i 250

~ 200

II.
a. 150

t 100
fl)

50

HeapSort SOR

JGF 52 benchmarks running dataset C

!ossopt mss 1110F I

Figure 10: Comparing Techniques for optimizing interpreters with SOs.

Java bytecode opcodes. The graphs in Figure 10 show how faster the SO-aware interpreter
versions are compared to the performance of LaTTe's original interpreter. The speedups are
shown when running the largest datasets (slOO for SPEC JVM98 suite and C for JGF suite).

The 3 SOs formed by basic blocks in compress, mtrt, HeapSort and SOR cover 13, 36, 37
and 97.5% of the total executed bytecodes in each program respectively. The 3 SOs formed
by OF patterns for the same benchmarks account for 5, 22, 18 and 26% of the total executed
bytecodes.

As expected, interpreter version BBOpt bears the best performance. The interpreter
version BB also outperforms OF. Benchmark SOR yields the best speedups in all versions,
running 330% faster on BBOpt. It produces such good results because the top 3 SOs in
this benchmark cover 97.5% of the total executed bytecodes. The other benchmarks, which
deploy SOs that cover much less of the total executed bytecodes, we do not notice markedly
distinct performance levels among the interpreter versions. The performance level observed
with the more complex BBOpt and BB versions is almost all achieved with the simpler OF
interpreter version. For example, executing mtrt on BBOpt, BB and OF produces close
speedups of 27.5%, 24% and 21.5%.

The main difference between BBOpt version and BB is the fact that we removed the
redundant stack accesses that the semantics of Java bytecode operations require to copy
values onto the stack and to store values to local variables and on the heap. As can be noticed
in Figure 10 these operations compromise performance much more than the interpreter trips
the BB version is able to eliminate. The OF version corresponds to a software implementation
of well known stack operation folding techniques. Though bearing the lowest speedups it
can produce performance improvement comparable to the other more expensive techniques
when SOs are customized per application, as implemented in this experiment.

We conclude that a highly efficient technique for optimizing interpreters with patterns
of bytecodes should also optimize stack accesses and stack pointer updates. As the BBOpt
version implies more work, specially if patterns are translated at runtime, applying it to up
20 of the most valuable SOs should guarantee performance superior to that of current art
with lower overhead.

15

5 Statically Customizing an Interpreter

In an interpreter that directly translates Java bytecode programs we are limited in the
number of new operations we can add to the interpreter loop. A total of 202 opcodes are
taken by Sun's bytecodes opcodes, and 3 more are reserved for special use. The rest non
patented bytecode opcodes are free for the interpreter internal use. Some of these opcodes
are already used to implement quick variants [13] of normal JVM operations. In LaTTe's
interpreter design, we are left with 21 free opcodes that we use to represent our SOs.

Our technique for statically customizing an interpreter adds a limited number of SOs
to the interpreter loop as new pseudo-instructions which are only visible from within the
interpreter code. We built interpreter versions with a SO set that is valuable across both
SPEC JVM98 and J GF benchmark suites, with a SO set customized per benchmark suite
and a third kind that implements a SO set customized per application.

We chose to implement sets of SOs formed by the top most executed OF patterns in
the applications. Such patterns compose program basic blocks and repeat across bench
mark suites more often than whole basic blocks. We extended the folding pattern classes
supported in PicoJava architecture to include floating-point operations and other complex
operations (e.g. loads from the Constant Pool [13]) that have been excluded in hardware
implementations.

Although we know interpreters optimized with SOs based on OF patterns offer limited
performance improvement, this kind of implementation has not been tried before and no
bound on speedups have been published, except for hardware JVMs.

We designed an annotation scheme that uses an extra code attribute to carry the infor
mation on SO occurrences in the bytecode stream. In this attribute we store an annotation
table that associates the pc addresses of a method, represented as short values, with their
corresponding byte-long SO identification number. The annotations do not hinder the porta
bility of Java class files as it can be safely ignored by JVM engines that do not understand
the attribute. Such annotations encoding leads to 5.5, 6.8 and 10.5 code size increase for
SPEC JVM98, JGF S2 and S3 suites.

We built 4 interpreter versions with SOs customized for different sets of application
programs. In Section 7 we list the sets of SOs implemented in each version. LaTTe's original
interpreter code is used as the baseline when calculating speedups.

Version SOOFDF implements the top 21 SOs across all benchmark suites. Its perfor
mance is depicted in Figure 11. Average speedups of 7.2, 7.7 and 6.2% are noticed for SPEC
JVM98, JGF S2 and JGF S3 suites. The maximum speedups are 15, 20.3 and 13.5% re
spectively for each suite. Slowdown situations occur for db, LUFact and Series. Except for
LUFact, these are the benchmarks with largest data cache miss rates, which indicates that
our 16 Kb Ll data cache and 256 Kb L2 unified caches do not handle well these applications
demands.

Versions SOOFDFJVM98 and SOOFDFJGFS2 are customized per benchmark suite and
implement the top 21 SOs in SPEC JVM98 and J GF S2 suites respectively. Figure 12 shows
the performance results. SOOFDF JVM98 interpreter version produces average speedup of
5.2%, and a maximum speedup of 17%. SOOFDFJGFS2 version leads to average speedup of
7.6% and a maximum of 29%. These average speedups are comparable to that of SOOFDF

16

25 --·---------------·

20

15

10

-5

-10..___ ____________ ________,

SPB:: JVM9B bonchmarks running dalasol s100 JGF 52 benchmarks running dataset C

16 ·----·-·-·-·---·------------···---·-·----

c 14
~ 1 12

(ij ., 10

lf 8

Ua
IL
c
IL
0
:;:

JGF 53 benchmarks running dataset A

Figure 11: SOOFDF performance running SPEC JVM98 and JGF suites.

version. Nevertheless, the fact that customizing the set of SOs per suite does help individual
applications significantly, it should be preferred in the design of SOs. For example, instead of
finding the most frequent SOs across all applications concomitantly, as we did when building
the SOs in SOOFDF version, a better heuristic would first find the top most frequent SOs
for each suite, and then use the selected ones per suite to generate a combined set of SOs.

Versions SOOFDFSOR and SOOFDFSeries are customized with the top 21 SOs in SOR
and Series from JGF S2 benchmark suite. SOR is among the benchmarks that produced the
highest speedups when running on SOOFDFJGFS2 version, while Series led to insignif
icant performance improvement running on that same version. In Figure 13 we compare
the performance of the SOOFDFSOR and SOOFDFSeries versions against the speedups
obtained with the interpreter version customized across all applications (SOOFDF) and the
version specialized for the execution of JGF S2 benchmark suite (SOOFDF JGFS2). SOR's
maximum speedup is 39.6%, almost doubling the performance we first obtained when run
ning it on SOOFDF version. Despite the highly customized interpreter built for Series, the
program still performs poorly, producing marginal speedup of 3%. We attribute the lack of
performance to limitations of the hardware we execute the application on.

In this section we showed the performance speedups one can expect from optimizing an
interpreter with a limited number of SOs formed by operation folding patterns. Such SOs
yield speedups varying from 5% to 39%, depending on the customization level.

17

16

14

~ 12

~ 10

~
0

Sl

corrpress db Jack javac jess rrvegaudio rrtrt

SPEC JVM98 benchmark• running dataaot a100 JGF 52 benchmarks running dataset C

Figure 12: SOOFDFJVM98 and SOOFDFJGFS2 performance running SPEC JVM98 and
JGF 82 suites.

45.,---~~~~~~~~~~~~~~~~~~~~~--,

40

C!l 35

~ 30

~ 25

c 20

~ 15

i
~ 10

§' 5

l 0 +-------'-"'"---'--"-
ti)

-5

JGF 52 SOR ans Series benchmarks running dataset C

iosOOFDF El!SOOFDFJVl'v'lil8, SOOFDFJGFS2 llllSOOFDFSOR, SOOFDFSeries I

Figure 13: SOOFDFSOR and SOOFDFSeries performance running SOR and Series.

18

6 Dynamically Customizing an Interpreter

In Section 5, the best interpreter version optimized with SOs formed by OF patterns is the
one customized per application. To statically customize an interpreter to the level of an
individual application is very restrictive and makes sense for some specialized embedded sys
tems. To try to combine the per-application customization advantages with the convenience
of a SO-aware interpreter that is efficient across several classes of applications, we created
the dynamically customized interpreter. With this technique SOs are generated for each ap
plication individually and are annotated ahead of time. Another added advantage over the
statically customized versions is the fact that the SOOFDYN interpreter can be specialized
independently of the non-patented opcodes available in the interpretation engine.

The annotation scheme in SOOFDYN version is similar to that of the static case, with an
added byte that represents the type of each SO. This extra field results in a slightly higher
code size increase than that reported in Section 5. The type information guides the SO
translation at runtime. We wrote special functions for translating the 9 OF pattern classes
defined for PicoJ ava architecture. These functions fully optimize stack accesses and stack
pointer updates, and eliminate unnecessary bytecode dispatches.

The interpreter loop in the dynamic case, depicted in Figure 14, is kept essentially the
same as in the original LaTTe's code (except for some extra operations to control the dynamic
scheme). We only need one non-patented opcode to represent all possible SOs (opcode 203
in Figure 14). At runtime, as a SO is identified in the bytecode stream, a call to a software
translation function produces the machine instructions that implement the SO semantics.
The translated code is stored in a native code table, pointed by SONCODE, which is also
indexed by the SO identification number. This table is shared by all the methods in a
program. Each bytecode in a method that corresponds to a SO occurrence is associated
with a pointer to an entry in the native code table. Future executions of instances of a
previously translated SO can skip the translation process and jump straight to this pointer to
execute the SO implementation. The mechanism described above is represented in Figure 15.
Figure 14 illustrates how a dynamically customized interpreter invokes a SO after it has been
translated.

The graphs in Figure 16 plot the performance of the SOOFDYN interpreter version. In
this experiment the annotations mark all SO occurrences. Average speedups of 5, 11 and
8% were measured for SPEC JVM 98, JGF S2 and S3 suites. Maximum speedups are 16,
19 and 24% for each suite respectively. Slowdown situations occur when executing mtrt,

Series and Euler.
For SPEC JVM98, the average speedups with the dynamic approach are comparable

to the performance levels obtained when running on SOOFDF and SOOFDF JVM98 stat
ically customized interpreter versions. JGF S2 and S3 benchmarks perform slightly better
when running on the dynamically customized interpreter version than on either SOOFDF
or SOOFDFJGFS2 interpreters. The performance results can be further explained by un
derstanding the 2 sources of overhead in the dynamic case.

There is a time overhead associated with translating SOs at runtime. In this experiment
we show the worst case scenario in which SOOFDYN version translates all the annotated
SOs in the methods that are loaded. Not all translated SOs are executed, but the percentage

19

DISP .EQU 512
SDISP .EQU 9
METHOD .REG (%i0)
ORIGIN .REG (%i1)
PC .REG (%i2)
TOP .REG (%i3)
LOCALS .REG (%i4)
TARGET .REG (%i5)
FP .REG (%10)
POOL .REG (%11)
FAKEI .REG (%12)
BCBASE .REG (%15)
SONCODE .REG (%16)

.macro DECLARE opcode

Maximum size of each opcode implementation
log_2 DISP
Method structure
Beginning of opcode implementations
Address containing the current bytecode
Operand stack top

. Local variables
Next opcode to execute
Java stack frame pointer
Resolved pool
Instruction which trampolines start with
base of bytecode stream
SO native code table

\(\(.org)) _interpret_start +\opcode* DISP
.endm

! void interpret (Method *m, void *args, void* bcode)
! m is the method to be interpreted
! args is the memory containing arguments; the return value also goes in here.
! bcode is Bytecode address to execute

interpret:

! Initialize registers, e.g., %i1
sethi o/ohi(_interpret_start), ORIGIN
or ORIGIN, %1o(_interpret_start), ORIGIN

interpreter start:

DECLARE 0 !NOP

DECLARE1 !ACONST_NULL

DECLARE 201 ! JSR_W

DECLARE 203
sub PC, BCBASE, %13
sll %13, 2, %14
add SONCODE, %14, %14
Id [%14], %14
jmp %14
nop

interpreter end:

! opcode identifying a SO occurrence
! displacement from bytecode begin

! calculating index into native code table
! address of the translated code
! jump to the SO translated code

Figure 14: Dynamically customized interpreter.

20

Method void foo1 r ... i
! Annotated Bytecode SO Natitve Code Pointer !
i Method void foo1 (intO, int) Method void foo1 (into, int) !
! 0 iconst_O SO 1 0 &SO [1] !
i 1 istore 2 1
I 2goto12 2
! 5 aload O SO 3 5 &SO [3]
l 6 iload 2 6
I 7 iload:=1 7
i 8 iastore 8
! 9 iinc 2 1 9
! 12 iload_2 SO 4 12 &S0[4]
l 13 aload_O 13
I 14 arraylength 14
I 15 if_icmplt 5 15
i 18 return 18
11.....-~~~~~~~~~~~~--'~~~~~~~~~~~-'

l .. J

Method void foo2

&SO[O]

&50[1]

&50[2]

&S0[3]

&S0[4]

; 7 iload_2 SO 5 7 &S0[5] L-----~v &SO[S]

I

I 8 aload_O 8 i
9 iload_3 9 .. ····'·'I • 10 iaload 10 I 11 iload_ 1 11

I ~; ::~~ ~; .1

I 14 istore_2 14

!

I m~~~;~gth so 9

22

Ji
1

&SO[9]1---.

1

&50[9]

21 if_icmplt 7
I 24 return 24 !
L .. J

SO Native Code Table

ldub [%i2 +2], %i5
st %g0, [%i4 -8]
...
ldub [%i2 +2], %i5
st %g0, [%i4-12]
...
ldub [%i2 +3], %i5
Id [%i4], %00
...
Id [%i4 -8], %01
Id [%i4], %00
...
ldub [%i2 +8], %i5
Id [%i4 -8], %01
...

...

Id [%i4 -12], %01
Id [%i4], %00
...

Figure 15: Data structures used in the dynamic approach.

21

25 -··-----------------

20

15

10

corrpress db jack javac Jess rrpegaudio nirl
-2........_ ______________ __,

-5 ---·········-·-· ············-··-············-············-···--·-

SP~ JVM96 benchmarks running dataset s100 JGF 52 benchmark a running dataaet C

25 ·--·········-·--··-·-·---·---·---····----·····-·---··---·---·--··-----·-----·--

-5 -·---------------·----.J
JGF 53 benchmarks running dataset 3A

Figure 16: SOOFDYN performance running SPEC JVM98 and JGF suites.

of total translated SOs that are indeed executed is very high: 78% for SPEC JVM98, 100%
for JGF S2 and 92% for JGF S3 benchmarks. We measured time overhead of 1 % due to the
translation of SOs at runtime. With this result we can rule the translation of SOs out as a
justification for the slowdown situations and marginal performance improvement we observe
in the dynamic case.

The other source of overhead is related with the way SOs are invoked at runtime. In
the dynamically customized interpreter there is a double indirection to reach the machine
code of a SO. First, the interpreter jumps to the common location where the addresses of
all translated SOs are calculated. This action involves 4 instructions and has the cost of a
normal bytecode dispatch (discussed when we explained Figure 2). Once at this point, 5
extra operations, shown in Figure 14, which include another load and a jump, are executed
to compute the address of the machine code that implements the SO semantics. The cost
of executing this group of operations is basically similar to the cost of dispatching a new
bytecode. Therefore invoking SOs causes twice the cost of dispatching a new bytecode.
For certain types of SOs, deployed by the dynamically customized interpreter, we won't see
the benefit of folding their instructions together because any saving the folding produces is
outweighed by the cost of invoking the SOs.

In this section we combined the innovation of optimizing interpreters with SOs formed by
OF patterns with the benefits of full customization per application offered by the dynamic
approach. Unfortunately OF patterns tend to be short and the savings they produce are

22

overcome by the overhead implicit to the dynamic method. The dynamically customized
interpreter will be more useful for longer and more complex SOs, e.g., SOs formed by BBs.

7 Implemented Sets of SOs

7.1 OF Patterns Across Application Suites

Table 2 lists the 21 SOs created from the topmost frequent OF patterns sorted by dynamic
frequency. The most frequent pattern is aload_O getfield, as we would expect. Its dy
namic frequency is 10 times higher than any other SO listed in Table 2. Java object fields
are accessed and updated via getfield, putfield, getstatic and putstatic bytecodes.
Bytecode aload_O refers to the first entry in the local variable array. The very first 4 entries
in the local variable array are accessed using fast bytecode implementations. Therefore such
local variable slots are oftenly used by efficient J ava-to-bytecode compilers.

Many of the patterns listed in the tables throughout Section 7 are semantically equiv
alent, but with slight variations in the bytecode syntax. Some exmaples are patterns like
aload_O iload_i putfield and aload_O aload_i putfield, translate into the same ma
chine instructions in our interpreter techniques, and therefore they can be considered as
the same pattern instance. Others, like iconst_O istore_i and iconst_Q istore_3, lead
to different machine code and have to be considered as different SOs. To cope with such
peculiarity, after finding patterns, we further templatize patterns [10] according to the way
our interpreter techniques translate bytecodes. The templatizing phase creates pattern tem
plates that abstract syntactic differences in bytecode opcodes when they are not relevant
for our code generation. Templatized patterns are marked with a superscript asterisk in all
tables.

7.2 Application Suite-Specific OF Patterns

The types of benchmarks included in SPEC JVM98, JGF S2 and S3 suites differ greatly.
While SPEC JVM98 suite consists mostly of integer programs, JGF S2 and S3 applications
are all numeric.

Tables 3 and 4 show the chosen SOs for SPEC JVM98 and JGF S2 suites respectively,
sorted by their dynamic frequencies. A total of 8 SPEC JVM98 SOs from Table 3 (SOs with
i equal to 1, 3, 9, 10, 15, 17, 19 and 20) match with the selected SOs from Table 2, which
was built with SOs across all benchmark suites. For JGF S2 benchmarks, 7 of the SOs in
Table 4 (SOs with i equal to 2, 6, 10, 12, 13, 15 and 16) match with the chosen SOs from
Table 2. A total of 5 JGF S2 SOs (SOs with i equal to 2, 5, 6, 11 and 13) from Table 4
match with the SOs formed specifically for SPEC JVM98 benchmarks. For SPEC JVM98
suite, the highest dynamic frequencies (greater than 1 %) are among the top 5 SOs, while for
JGF S2 suite, the highest dynamic frequencies are among the top 8 SOs.

In conclusion, for SPEC JVM98 suite, 40% of its SOs with dynamic frequency higher
than 1 % are included in Table 2. The SOs listed in the latter table were chosen across all
benchmark suites. For JGF S2 suite, only 25% of its SOs with dynamic frequency higher
than 1 % are listed in that same table. These numbers indicate that the selection of SOs

23

11 soi OF Patterns sorted by dynamicFi dynamicFi II
1 aload_O getfield 27.90200741
2 iload iload if_icmplt 2. 760971763
3 iload iconst...1 iadd 2.339918247
4 aload_O dup 1.448157631
5 aload..3 iload iaload, aload..3 iload aaload * 1.397158820, 0.182245572
6 iload iconst...1 isub 1.157216182
7 iload istore 0.373250193

fload fstore *, aload astore * 0.055836714, 0.001813772
8 iconst_O istore 0.332743505

aconst...null astore *, fconst_O fstore * 0.034397696, 0.023069119
9 iload iload-2 iLicmpl t 0.307536720

10 iload bipush if_icmplt 0.279811193
11 iload ifne, aload ifnonnull * 0.272936085, 0.169210105
12 aload_O fload--1. putfield 0.208235797

aload_O aload--1. putfield *, aload_O iload...1 putfield * 0.191103944, 0.169708139
13 iconst_O istore..3, aconst...null astore..3 * 0.186566640, 0.029063834
14 iload ireturn,aload areturn * 0.178853214, 0.051126559
15 iconst_O istore.-2, aconst...null astore.-2 * 0.174500460, 0.000639742
16 iload..3 bipush if_icmplt 0.165644754
17 aload...1 arraylength 0.155113970
18 iload iload..3 iLicmpl t 0.142285042
19 aload_O iconst..0 putfield 0.091160099

aload_O fconst..0 putfield *, aload_O aconst...null putfield * 0.074135478, 0.033382744
20 aload...1 iload aaload 0.089603873

aload...1 iload iaload *, aload...1 iload faload * 0.045459931, 0.024474994
21 aload_O iconst--1. putfield 0.056663363

Superscript * md1cates templat1zed patterns

Table 2: Top OF patterns across all benchmark suites sorted by dynamic frequency.

from Table 2 is more suited for the efficient execution of SPEC JVM98 suite than JGF S2
kernel applications.

7.3 Application-Specific OF Patterns

We chose two JGF S2 benchmarks, SOR and Series, to investigate SOs formed by OF
patterns that are application-specific. Table 5 lists the selected SOs for SOR, while Table 6
prints the top 21 most executed SOs in Series. There is no match among the patterns
in Tables 5 and 6. Execution is dominated by the top 4 SOs in SOR and the top 5 SOs in
Series.

A total of 7 SOs in SOR, which include the 3 SOs with highest dynamic frequencies, match
with JGF S2 SOs listed in Table 4. SOs in Series match with 4 of the SOs selected for the
whole JGF S2 suite, listed in Table 4. The matches include 2 of the SOs most executed in
Series.

Summarizing, 75% of the most executed SOs in SOR and 40% of the most executed SOs
in Series are listed in Table 4, which was built with SOs across all benchmarks in JGF
S2 suite. A comparison with the SOs selected across all benchmark suites, listed in Table
2, reveals 7 matches with SOR-specific SOs and 3 matches with Series-specific SOs. This
result indicates that the selection of SOs in Tables 2 and 4 are more suited for the efficient
execution of SOR than that of Series.

24

11 soi JVM98 OF Patterns sorted by dynamicFi dynamicFi II
1 aload_O getf ield 41. 76075343
2 aload getf ield 2.442815981
3 aload_O dup 2.344630619
4 aload--1 getfield 1.398526947
5 aload-2 getfield 1.110679955
6 iconst_O ireturn, aconst..null areturn * 0.884937435, 0.157574936
7 iconst--1 ireturn 0.797745458
8 iload--1 ireturn, aload...1 areturn * 0.589914774, 0.248066929
9 iconst_O istore 0.533820683

aconst..null astore *, fconst_O fstore * 0.066653803, 0.045283826
10 iload bipush if_icmplt 0.522853458
11 iload iload if_icmplt 0.516936826
12 aload....3 getfield 0.493484034
13 dup istore 0.394418272

dup astore *, dup fstore * 0.010087341, 0.036620439
14 dup istore-2, dup astore-2 * 0.381705418, 0.005161115
15 aload_O fload...1 putfield 0.408759158

aload_O aload--1 putfield *, aload_O iload...1 putfield * 0.373800682, 0.331903814
16 iconst_O istore....3, aconst..null astore....3 * 0.366151564, 0.057051231
17 iload iconst--1 iadd 0.361902973
18 aload-2 iload....3 aaload 0.360841184
19 iload ireturn,aload areturn * 0.336541321, 0.096930398
20 iconst_O istore-2 0.333840232
21 aload ifnonnull 0.332153169

iload ifne * 0.113867424

Superscript * indicates templatized patterns

Table 3: Top OF patterns across all SPEC JVM98 benchmarks sorted by dynamic frequency.

II SO i JGF S2 OF Patterns sorted by dynamicFi dynamicFi

1 iload iload iadd 8. 78084 7162
2 aload_O getf ield 7.655223119
3 aload iload daload 7.128188147
4 iload iload--1 iLicmpl t 6.838776512
5 iload iload if_icmplt 5.987345440
6 iload iconst--1 iadd 5.056918127
7 dadd dstore 3.435724084
8 iload if gt 2.909574139
9 iadd istore 0.644465695

10 iload istore 0.517273260
11 iload ifne 0.517127932
12 iload...1 ifeq 0.316979018
13 iconst...0 istore 0.131113291
14 dload dstore 0.114162137
15 iload iload..3 iLicmpl t 0.087056854
16 aload--1 arraylength 0.064641093
17 iload....3 iload_O if_icmplt 0.060543507
18 iload i2d 0.041630205
19 iload dload dastore 0.037658401
20 iload iconst--1 iLicmpeq 0.012127224
21 iload iconst..1 iLicmpne 0.009226863

Superscript * indicates templatized patterns

Table 4: Top OF patterns across all JGF 82 benchmarks sorted by dynamic frequency.

25

11 soi SOR OF Patterns sorted by dynamicFi dynamicFi II
1 aload iload daload 49.6323632
2 iload iload if_icmplt 16.7337441
3 iload iconst-1 iadd 16.5560875
4 iload iconst-1 isub 16.5560875
5 aload.-2 iload aaload 0.17740773
6 iload iload-1 iLicmplt 0.16616004
7 aload-3 iload aaload 0.16592024
8 iconst-1 istore 0.01209565
9 iconst_O istore 0.00012004

10 iload iload-3 if_icmplt 9.47E-06
11 aload_O getfield 1.5E-06
12 aload_O dup 2.81E-07
13 aload_O iconst_O putfield l.87E-07

aload_O dconst_O putfield *, aload_O lconst...0 putfield * 1.87E-07, 9.37E-08
14 iload iconst-1 isub istore 1.87E-07
15 aload_O aload.-2 putfield 9.37E-08
16 aload_O iconst-1 putfield 9.37E-08
17 aload_O iload-1 putfield, aload_O aload-1 putfield * 9.37E-08, 9.37E-08
18 ldc astore.-2 9.37E-08
19 ldc astore-3 9.37E-08
20 aload.-2 arraylength 9.37E-08
21 iconst.-2 ldc2_ff dastore 9.37E-08

Superscript * md1cates templatized patterns

Table 5: Top OF patterns in SOR benchmark sorted by dynamic frequency.

8 Conclusions

This piece of work thoroughly studies patterns of Java bytecode operations. Using several
benchmarks we were able to show that the top 20 SOs formed by basic blocks are enough to
cover more than 50% of the total bytecodes executed. Therefore optimizations that target
only the top SOs can substantially improve the interpreted execution performance.

We have shown the high efficiency of an interpreter customized with the top SOs formed
by basic blocks which are translated optimizing both stack operations and the number of
interpreter trips. Such an interpreter yields speedups comparable to and up to fourfold
higher (observed in a particular benchmark) than those of earlier techniques.

Existing Java bytecode interpreters can be further optimized by statically adding to
the interpreter a limited number of SOs formed by OF patterns that are valuable across
a wide range of applications. Our results showed that it is possible to find such patterns
and that they produce average performance improvement of 7%. Much higher speedup
of up to 39% was measured when customizing SOs at the level of individual applications.
This last result motivated the design of a dynamically customized interpreter. However,
the type of the SOs we implemented and the overhead associated with the new scheme
led to average performance improvement only slightly higher than that of the statically
customized interpreter. Throughout the experiments we suggested that the most valuable
SOs be identified ahead of time via profiling and information on SOs be conveyed to the
runtime system via annotations.

Finally, we make the case for an interpretation technique that is SO annotation-aware,
dynamically customizable and that spends effort in generating optimized code for only the

26

/I SO i Series OF Patterns sorted by dynamicFi dynamicFi II
1 dload-1 dconst-1 dadd 19.97809141
2 dload..3 dload-1 dmul 19.97772179
3 iload ifgt 19.95811331
4 dadd dstore 19.93813522
5 dload dload dadd dstore 19.93813522
6 ddiv dstore 0.039956183
7 aload_O get£ield 0.029975453
8 iload iconst-1 iLicmpeq 0.019978091
9 iload i2d 0.019978091

10 dmul dstore 0.019978091
11 dload dreturn 0.019978091
12 dload-1 dstore 0.019978091
13 dload..3 dload-1 dsub 0.019978091
14 iload..3 i2d 0.019977722
15 iload..3 iconst-2 iLicmpl t 4.44E-06
16 aload-1 iload-2 aaload 2.96E-06
17 dload ldc2_ff dcmpl 2.96E-06
18 iload-2 iconst-4 if_icmplt 1.85E-06
19 iconst_O istore..3 l.48E-06
20 iconst_O ldc2_ff dastore 1.48E-06
21 aload_O dup 1.llE-06

Superscript * indicates templatized patterns

Table 6: Top OF patterns in Series benchmark sorted by dynamic frequency.

top most valuable program basic blocks. Implementation of such engine is our future work.

References
[1] Ana Azevedo. Annotation-aware Dynamic Compilation and Interpretation. PhD thesis, University of

California, Irvine, 2002.

[2] James R. Bell. Threaded Code. Communications of the ACM (CACM), 16(6):370-372, June 1973.

[3] M. G. Burke, J. Choi, S. Fink, D. Grove, and M. Hind. The Jalapeno Dynamic Optimizing Compiler
for Java. ACM Java Grande Conference, pages 129-141, June 1999.

[4] L. C. Chang, L. R. Ton, M. F. Kao, and C. P. Chung. Stack operations folding in Java processors.
IEEE Computers and Digital Techniques, 145(5):333-340, September 1998.

[5] Watheq EL-Kharashi, Fayez ElGuibaly, and Kin F. Li. An operand extraction-based stack folding
algorithm for java processors. 2nd Annual Workshop on Hardware Support for Objects and Microarchi
tectures for Java, September 2000.

[6] EPCC. Java Grande Forum Benchmark Suite. See http://www.epcc.ed.ac.uk/javagrande/javag.html.

[7] M. Anton Ertl. A Portable Forth Engine. The European Forth Conference, 1993.

[8] M. Anton Ertl. Threaded Code Variations. The European Forth Conference, pages 49-55, 2001.

[9] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. Vmgen - a generator of efficient
virtual machine interpreters. Software - Practice and Experience, 32(3):265-294, 2002.

[10] David A. Greene, Charles R. Lefurgy, and Trevor N. Mudge. Compiler-Directed Instruction Stream
Compression. Technical report, Department of Electrical Engineering and Computer Science, University
of Michigan, May 1998.

[11] David Gregg, M. Anton Ertl, and Andreas Krall. Implementing an Efficient Java Interpreter. Lecture
Notes in Computer Science, 2110:613-620, 2001.

27

(12) D. Griswold. The Java HotSpot Virtual Machine Architecture, March 1998. See whitepaper at
http://www.javasoft.com/products/hotspot.

(13) Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison Wesley, 1996.

(14) Soo-Mook Moon and Kemal Ebcioglu. LaTTe: An Open-Source Java Virtual Machine and Just-In-Time
Compiler. See http://latte.snu.ac.kr.

(15) Ian Piumarta and Fabio Riccardi. Optimizing Direct-threaded Code by Selective Inlining. SIGPLAN
Conference on Programming Language Design and Implementation, pages 291-300, 1998.

(16) Todd A. Proebsting. Optimizing an ANSI C Interpreter with SuperOperators. 22nd ACM SIGPLAN
SIGACT Symposium on Principles of Programming Languages, pages 322-332, 1995.

(17] Austin Kim Yang Qian and Morris Chang. Designing a Memory System Using a Static Loader for
Embedded Java Architectures. 2nd International Workshop on Compiler and Architecture Support for
Embedded Systems, pages 565-566, October 1999.

(18) Ramesh Radhakrishnan, Juan Rubio, and Lizy K. John. Characterization of Java Applications at
Bytecode and Ultra-SPARC Machine Code Levels. International Conference on Computer Design,
pages 281-284, October 1999.

(19) SPEC Standard Performance Evaluation Corporation (SPEC). SPEC JVM98 Benchmarks, 1998. See
http://www.specbench.org/osg/jvm98/.

(20) Sun Microsystems Inc. Picojava I microprocessor core architecture, March 1999. See
http://solutions.sun.com/einbedded/databook/pdf/whitepapers/WPR-0014-0l.pdf.

(21] Sun Microsystems Inc. Picojava-11 programmer's reference manual, March 1999.

(22] Scott Thibault, Charles Consel, Julia L. Lawall, Renaud Marlet, and Gilles Mul ler. Static and Dy
namic Program Compilation by Interpreter Specialization. Higher- Order and Symbolic Computation,
13(3):161-178, 2000.

(23] L. R. Ton, L. C. Chang, M. F. Kao, H. Tsenga, S. Shang, R. Ma, D. Wang, and C. P. Chung. Instruction
Folding in Java Processor. International Conference on Parallel and Distributed Systems, pages 138-143,
December 1997.

28

