
Hardware Architectures for Scalable Graph Processing

By

Marjan Fariborz
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

S.J. Ben Yoo, Chair

Venkatesh Akella

Jason Lowe-Power

Committee in Charge

2023

i

© Marjan Fariborz, 2023. All rights reserved.

To My Parents

ii

Contents

Abstract v

Acknowledgments vii

Chapter 1. Introduction 1

Chapter 2. Background and Related Work on Graph Workloads 6

2.1. Background on Graph Workloads 6

2.2. Related Work 7

2.3. Limitations of Previous Work 10

Chapter 3. Scalable Engine for Graph Acceleration 14

3.1. Background on Message-driven Graph Applications 16

3.2. A Model for Scalable Accelerator 17

3.3. SEGA Architecture 21

3.4. Methodology 31

3.5. Evaluation 32

3.6. Applications of Model 39

3.7. Conclusion 42

Chapter 4. Enabling Large Scale Graph Accelerations Using Silicon Photonics 44

4.1. Background on Chiplet-base Systems 46

4.2. SEGA a Chiplet-Based System for Large Graph Acceleration 49

4.3. Packaging 59

4.4. Methodology and Evaluation 61

4.5. Conclusion 63

Chapter 5. Low Latency Memory 65

5.1. Introduction 65

iii

5.2. Motivation 66

5.3. Silicon photonic enabling technologies 68

5.4. Architecture 69

5.5. Methodology 75

5.6. Evaluation 78

5.7. Related Work 84

5.8. Conclusion 85

Chapter 6. Conclusion and Future Works 87

6.1. Opportunities for Disaggregated Memories 88

6.2. Support for Streaming Graphs 90

6.3. State of the art Memory Systems for Graph Workloads 91

6.4. Conclusion 92

Bibliography 95

iv

Abstract

Graph analytics has become a popular method for understanding the relationships between

data collected from various sources, such as social media, sensor feeds, and scientific data. This

allows analysts to identify patterns in the data and answer difficult questions that were previously

unanswerable. A more complete picture of the problem can be understood by understanding the

complex relationships between different data feeds. However, due to the sparse nature of real-

world graphs, these applications tend to show random memory access patterns and low locality.

Current computing and memory systems are optimized for applications that exhibit high locality by

utilizing deep cache hierarchy and large memory access support. Throughout this work, we show the

limitations of running graph workloads on general-purpose systems in terms of both performance

and scalability. This work presents scalable solutions for processing graph applications. This

dissertation presents the following case studies:

First, designing a graph processing system that can scale to graph sizes that are orders of

magnitude larger than what is possible on a single accelerator requires a careful codesign of ac-

celerator memory bandwidth and capacity, the interconnect bandwidth between accelerators, and

the overall system architecture. We present a high-level bottleneck-analysis model for the design

and evaluation of scalable and balanced accelerators for graph processing. We further studied the

scalability limitations of previous graph accelerators and designed an accelerator that overcame

those limitations. We used the analytical model to capture the system-level requirements, such as

the memory systems.

Second, we analyzed the network requirements of graphs as we scaled up the system to larger

nodes and more memory. We demonstrate that the traffic pattern between graph processing nodes

has a uniform random distribution, and while the bandwidth requirements are not significant,

having a low-diameter interconnect can improve the performance.

The third part of this work proposes a new memory system that is optimized for applications

with random memory patterns. Our goal was to create a new memory that reduces the amount

of contention on the data path since contention on the shared resources was the main source of

performance bottleneck. By utilizing 2.5D/3D integration and multi-wavelength (WDM) silicon

photonic (SiPh) technologies, we create a new memory system with low memory access latency and

v

latency variation in addition to 4× higher bandwidth compared to high bandwidth memories such

as HBM2 given the same amount of capacity.

vi

Acknowledgments

I would like to express my heartfelt gratitude to Professor S.J. Ben Yoo for giving me the

opportunity to be part of his diverse research team at UC Davis.

I would like to extend my deepest appreciation to my esteemed committee members, Professor

Venkatesh Akella and Jason Lowe-Power. Their invaluable guidance, expertise, patience, and time

have profoundly influenced my growth as a researcher. The insightful discussions I shared with

them have been instrumental in shaping my academic journey.

I am also indebted to my colleagues at UC Davis, Mahyar Samani, Dr. Pouya Fotouhi, and Dr.

Roberto Proietti for their invaluable contributions. Collaborating with such exceptional scientists

and wonderful individuals has been a pleasure.

Finally, I wish to extend my deepest appreciation to my parents and my brother, Mehri,

Shahriar, and Jamshid. Your unwavering belief in me, your support, and your encouragement

have been pivotal in every success I have achieved. I consider myself incredibly fortunate to have

in my life.

vii

CHAPTER 1

Introduction

Large-scale data analytics is fueling breakthroughs in a broad range of applications such as

logistics and transportation, advertising, security, understanding social behavior, tax policy, drug

discovery, cosmology, etc. The problem sizes in these applications are increasing exponentially in

volume, variety, and complexity. Data for these applications is often sparse and stored in structures

with poor data locality. These applications are represented in terms of sparse matrix dense vector

operations and can be modeled by graph operations. Processing and storing these large-scale

data can no longer be ignored as in many scenarios they account for a significant fraction of the

overall execution time and consume a significant portion of machine resources. Thus, we need to

understand the characteristics of these workloads.

The memory access patterns are very irregular (especially in large-scale graph data analytics)

which results in poor data locality and makes the deep hierarchy of caches used in the current

computing systems ineffective. In addition, moving the data through a multilevel cache hierarchy

consumes a significant amount of energy. Graph analytics applications are often memory-bound

with little data reuse and low spatial and temporal locality with fine-grain random accesses to

memory. Due to these characteristics, the current general-purpose computing systems are not

efficient. These inefficiencies include:

• Graph traversals often require many memory accesses relative to only small amounts of

computation. Ham et al. [40] shows that only 6% of instructions are dedicated to compu-

tation and the rest 94% of instructions are used for traversing the graph and loading the

graph-specific arguments.

• In graph applications data is accessed at a fine granularity which is smaller than the

memory access granularity. This discrepancy between the data access demand and memory

access granularity causes a significant amount of off-chip memory bandwidth waste.

• Ineffective on-chip memory usage caused by lack of temporal and spatial locality in graph

workloads. Figure 1.1 illustrates workloads from both benchmark suits benefit similarly

1

from L1 data caches with average hit rates of 99% for NPB and 95% for GAP. However,

the lower levels of the cache hierarchy are much less useful for these large workloads. The

irregular graph workloads (GAP) show even more ineffective use of cache than the HPC

workloads (NPB) with below a 5% hit ratio at the L2 cache. As the size of the workloads

grows in the future large caches will continue to be wasteful in terms of area and power.

Figure 1.1. Cache hit rates (average values of all workloads) for NPB and GAP
benchmark suites. We used input sets A to D for workloads in NPB, and graphs
with 224 to 229 vertices for GAP kernels.

With advances in 2.5D/3D integration and multi-wavelength (WDM) silicon photonic (SiPh)

technologies over the past decade, it is time to rethink and redesign computing systems and memory

subsystems to make them more amenable to applications with randommemory access. Additionally,

we aim to design new computing systems that can scale to meet the demands of ever-growing data.

One approach to reducing the data movement energy for these sparse applications is to flatten

both the memory hierarchy and the network interconnect. By flattening the memory hierarchy as

far as possible by eliminating the cache hierarchy to realize a memory system that exhibits low and

predictable latency. Photonic networks with devices such as high port count chip-scale AWGRs

can be used to flatten the network topology (basically reduce the hop count) by increasing the

radix of the intermediate switches and/or adding auxiliary direct links (express links) to create a

custom topology that matches the unique dataflow of the application during different phases of

execution. This can unleash new computing architectures that are not only more energy efficient

but also easier to program.

2

Figure 1.2. Target DRAM latency (in nano-seconds) to achieve the same AMAT
in a system with no L2/L3 caches for GAP and NPB workloads. Using workloads
from GAP benchmark suite [17] The results of this analysis for Web [30] with 50.6
M nodes, Twitter [49] with 61.6 M nodes, and Korn [3] with 134.2 M nodes are
presented as single data points (geometric means across different kernels).

To improve the performance of these sparse applications, we need to rethink the architecture of

the memory subsystem. By reducing contention for the memory data access for sparse workloads,

we can reduce the memory access latency. Also, by taking advantage of WDM silicon photonic

interconnects, we can increase the memory access bandwidth and reduce the data movement energy

consumption. The hypothesis is that this low latency and high bandwidth memory sub-system

allows us to ultimately flatten the memory system. Therefore, we codesigned the processor, the

DRAM microarchitecture, and the memory controller by taking advantage of 2.5D/3D integration

with WDM silicon photonic interconnects.

Figure 1.2 presents an initial study of the required memory latency required to remove these

ineffective L2 and L3 caches. As our initial analysis, we determine the desired latency of DRAM

for achieving the exact same performance (average memory access time, AMAT) with no L2 and

L3 caches. We conservatively assume 90ns memory latency (unloaded local DRAM access time), 12

cycles L2 hit, and 34 cycle L3 hit latencies. As Figure 1.2 shows, workloads in NPB require a DRAM

access latency of 30ns (66% improvement goal) for a system with no L2/L3. For GAP kernels using

synthetic graphs, the ineffectiveness of caches translates into a modest required DRAM latency of

77ns (15% goal) for a system with no L2/L3.

To support the fast processing of the growing data structures, we create a large-scale graph

accelerator. Designing a graph processing system that can scale to graph sizes that are orders of

3

magnitude larger than what is possible on a single accelerator. However, this system requires a

careful codesign of accelerator memory bandwidth and capacity, the interconnect bandwidth be-

tween accelerators, and the overall system architecture. We present a high-level bottleneck-analysis

model for the design and evaluation of scalable and balanced accelerators for graph processing. This

model chooses the right mix of different memory types, network topology, network bisection band-

width, and system-level architecture to match the access patterns and capacity requirements of

different data structures for a given graph and a performance target. Designers can use this model

to help them understand the bandwidth, capacity, and microarchitectural needs of their system to

achieve desirable performance. This analytical model can also be used to evaluate the performance

of emerging memory and interconnect technologies in graph accelerators.

While the proposed analytical model helps with understanding the system requirements of

designing scalable graph accelerators, we need the accelerators’ processing elements to be able

to process large graphs with high performance. Previous accelerators improved performance and

reduced memory access costs by designating the data structure with random access patterns (vertex

information) and storing this data structure on-chip. However, given that the amount of on-

chip memory by definition is limited, most of the designs reported in recent literature rely on

partitioning the graph into smaller slices and time-share the on-chip memory between different

graph partitions (temporal partitioning). Although effective for relatively small graphs with a few

million vertices, their performance tends to degrade for larger graphs, making them unscalable and

inefficient for processing large graphs. Due to the limitations of temporal partitioning and the

dependence of previous graph accelerators on temporal partitioning to exploit locality and achieve

high performance, we propose a new graph accelerator node that doesn’t rely on locality to achieve

high performance. Instead, this new accelerator relies on the on-chip memory to hide the off-chip

random memory access latency.

This proposed graph accelerator is composed of multiple processing elements (PEs). Each

processing element processes a subset of vertices and edges that are stored in the off-chip memory

designated for each processing element. Each processing element can process any graph size without

temporal partitioning as long as it fits on its off-chip memory. To scale to significantly large graphs,

we propose scaling out the number of PEs, partitioning the graph, and assigning each partition to

4

a designated PE. With the new graph accelerator’s processing element design, we can utilize the

analytical model to help us understand the system needs of designing a large-scale graph accelerator.

The organization of this dissertation is as follows. Chapter 2 presents background on the

graph application, background on previous studies on accelerating graph workloads, and their

limitations. of graph with previous graph accelerators and their scalability challenges. Chapter 3

presents the overview of our proposed graph accelerator and an analytical model that can be used

to understand the system-level requirement to scale to a specific graph size. Chapter 4 presents

the network requirements of scaling to large graphs and explores the traffic pattern on the system.

Chapter 5 discusses the architecture of a state-of-the-art memory system with low latency and high

throughput customized for applications with random memory access patterns. At last, Chapter 6

presents a summary of the work presented in this dissertation and illustrates future perspectives.

5

CHAPTER 2

Background and Related Work on Graph Workloads

2.1. Background on Graph Workloads

Graph processing frameworks follow the vertex-centric or edge-centric paradigm for se-

quencing their computation. In the edge centric model, edges are streamed into the processor

through vertex indices. The processor needs to read both source and destination addresses. This

programming model suffers from poor spatial locality when reading vertices since there is a little

chance of both source and destination vertices being stored in consecutive memory locations.

The vertex-centric paradigm is more popular than edge-centric due to its implementation sim-

plicity and lower number of redundant vertex reads. The vertex-centric paradigm is designed from

a vertex’s perspective, i.e., a vertex property value is updated by a computation based on the

property of its neighbors [61].

Vertex-centric computation model follows one of two approaches: pull or push. In the pull

approach, each vertex reads the properties of all its incoming neighbors and updates their values.

Thus, it involves random and redundant reads of the neighboring vertices, resulting in poor memory

bandwidth utilization and wasted parallelism due to memory latency. On the other hand, the push

approach each vertex performs a read-modify-write operation for each of its outgoing neighbors.

Vertices can be scheduled using bulk-synchronous or asynchronous model. In the bulk-

synchronous parallel model (BSP) [90] the workload is abstracted into iterations. During each

iteration vertex values get updated and new vertices get activated for the next iteration. The asyn-

chronous programming model [91] there are no definition of iteration which allows asynchronous

processing of vertices and thus substantially increasing available parallelism.

Graph workloads use two main data structures to represent a graph: 1) an array-like data

structure containing vertex specific information, and 2) an array-like data structure containing

edge specific information. We refer to vertex and edge data structures as worklist and edgelist

6

respectively. While the worklist represents the property of each vertex in the graph, the edgelist

represents the structure and connectivity or the relationship of the vertices in the graph.

In addition, graph workloads use a tertiary data structure that contains vertices that need to

be processed. We refer to these vertices as active and this data structure as active set or frontier.

Traditionally, graphs are processed on CPUs and GPUs. Libraries such as Galois [73], Ligra [81],

GAPBS [17], Gunrock [93] are designed to optimize graph applications on CPUs and GPUs. The

goal of these libraries is to improve load-balancing and improving work efficiency by exploiting

locality. Galois [73] provides flexibility in the programming model by using different operator

abstraction which allows them to support topology aware priority scheduling. Similar to Galois,

Ligra [81] uses a load-balancing strategy that is based on CilkPlus [50] to support multicore servers.

Ligra uses hybrid data representation for sparse and dense active sets. Both Galois and Ligra are

the highest performing lightweighted and generalized software framework for shared-memory ma-

chines. Gunrock is a GPU-based library for graph processing. It allows programmers to develop

graph primitives to GPU systems. Gurock improve the performance of graph analytic by improving

the load-balancing and improving memory efficiency. Almost all these platform support the hybrid

push-pull based traversal based on the sparsity of their active sets.

2.2. Related Work

In this chapter, we present previous works that focused on improving the performance of graph

workloads. In the past decade, there has been a plethora of work on graph accelerators [10,14,

40,59,63,64,66,68,75,76]. Studies focusing on enhancing the performance of graph applications

either through software improvements on general-purpose systems or hardware accelerators. The

primary goal of these studies has been to reduce data movement either by moving to compute near

data or optimizing locality.

State-of-the-art graph accelerators such as PolyGraph and GraphPulse [29,75] utilize on-chip

memory to enhance locality. These accelerators use temporal partitioning to scale graphs larger

than their on-chip memory capacity and spatial partitioning for graphs larger than their off-chip

memory capacity.

7

In temporal partitioning, on-chip memory can be shared by different partitions sequentially

over time, while in spatial partitioning, multiple accelerator chips can house all slices while an

interconnection network streams inter-slice events in real-time.

Other graph accelerators use a traditional memory hierarchy with multi-levels of private and

shared caches. However, these architectures suffer from an overwhelming amount of data movement

due to poor data-reuse in graph workloads. As a result, cache thrashing leads to more than 50%

of all memory accesses missing in the last level cache [59].

Accelerators such as PolyGraph [29], GraphPulse [75], and ScalaGraph [99] utilize high-

bandwidth off-chip memory for processing edges while storing partitions of vertices on-chip. This

approach enables these accelerators to achieve high performance by leveraging the benefits of high-

bandwidth memory. However, we demonstrate that larger graphs with more partitions can adversely

impact the performance.

In this chapter, we review the literature related to accelerators, specifically PIM-based acceler-

ators and hardware-based graph accelerators. Then, we focus on the limitations of these previous

works for processing large graphs.

2.2.1. Hardware Accelerators. Previous hardware graph accelerators improve performance

by creating customized pipelining mechanisms [10,14,40,63,64,68,75,76] or by decoupling data

access and computation [59, 66, 100]. All of these studies focus on improving off-chip memory

efficiency for graph processing.

Mukkara et al. [62] reduces random off-chip memory accesses using a hardware-accelerated tra-

versal scheduler that allows the system to improve locality. GraphDyns [98] represents a new

programming model to extract data dependencies in graph processing dynamically. It uses a

load-balanced scheduling mechanism, and a specialized prefetcher for off-chip edge data access.

ScalaGraph [99] proposes the use of high bandwidth memory and a distributed memory assign-

ment to improve the edge throughput while eliminating the atomic memory accesses. Chronos [10]

avoids temporal partitioning and uses an on-chip cache and speculative execution model to avoid

coherency overheads. Ozdal [68] defines a custom cache corresponding to each different data type

(edge indices, edge data, vertex info, vertex data) of each graph object type to reduce the data

access energy. Graphlily [43], ScalaGraph [99], and PolyGraph [29] utilized HBM memory for

higher bandwidth access to the edge memory. However, in all these designs, HBM was used only to

8

improve the edge bandwidth throughput. Dalorex [67] stores the entire data in the on-chip mem-

ory, and they scale their performance significantly as they scale their processing tiles. However, for

them to maintain their performance, they require to have a significant amount of on-chip memory.

PolyGraph [29] proposes a flexible accelerator that supports multiple variants, including non-

slice, sliced, synchronous, and asynchronous modes. In their experiments, the non-slice variant is

observed to be effective only for small graphs or phases of the workload with a low number of active

vertices. For instance, they propose switching to the non-sliced variant at the beginning/ending

iterations of the Breath-First Search algorithm (BFS).

Dalorex [67] eliminated the off-chip memory access by storing the entire graph in on-chip

memory. The on-chip bandwidth dictates their performance, allowing them to achieve much higher

performance compared to PolyGraph. To scale to larger graphs (beyond what is supported by their

on-chip memory), they spatially partition the graph and increase the number of accelerator cores

to support large graphs. They require gigabytes of on-chip memory to store large-scale graphs

without temporal partitioning. Similar to Cerebras WSE-2 Delorax consists of multiple graph

processing nodes and gigabytes of on-chip memory that are uniformly distributed between these

cores. Leaving only kilobytes of capacity for each graph processing nod. Therefore, each node

only processes a small fraction of the graph. In addition to scaling to terabyte or petabyte graphs,

Dalorex is required to perform temporal partitioning on the disk or scale the number of graph

processing boards. The size of these accelerators is quite large (in a 16×16 Dalorex with 67.2MiB

on-chip memory capacity, the area is (305mm2)), which results in an interconnection with long

latency making this off-chip accesses expensive.

It should be mentioned that in all these studies, the goal has been to improve performance by

reducing off-chip memory.

2.2.2. PIM-based Accelerators. A promising solution to remove the memory wall chal-

lenges in the graph workloads is to use processing in the memory (PIM). PIM-based acceleration

is possible due to the recent advancement of the 3D integration technology that facilitates stack-

ing logic and memory dies in a single package. PIM-based architectures provide high levels of

parallelism, low memory access latency, and large aggregate memory bandwidth.

Some studies rely on emerging memory technologies such as ReRAMs [12] to perform comput-

ing in memory in addition to storing data [23, 82, 106]. Other PIM-based architectures use 3D

9

stacked memory technologies, such as Hybrid Memory Cube (HMC) [72] to eliminate the irregular

data movement [11,102,110]. Tesseract [11] is a PIM-based graph processing architecture that

supports vertex programming model with architectural primitives to enable inter-memory cube

communication. Graphq [82] proposed the first multi-node PIM-based graph processing architec-

ture built on the recent work Tesseract [11]. Graphq uses a two-phase programming model enabling

efficient partitioning of graphs between different memory cubes.

These accelerators propose using Hybrid Memory Cube and non-volatile memories such as

ReRAM to store their randomly accessed data structures. Whereas in our proposed scalable graph

accelerator, depending on the capacity, performance, and available resources, the architect can

decide on the vertex or edge memories.

2.3. Limitations of Previous Work

Prior accelerator designs rely on improving spatial and temporal locality. In previous accelera-

tors, the graph is divided into temporal slices that fit into on-chip memory and they time share the

limited on-chip memory for all the temporal slices. Temporal partitioning of the graph ensures all

the vertices that need processing reside in the on-chip memory during the processing of a partition.

Thus, these designs remove random accesses to the off-chip memory and reduce the access time

to vertices. However, temporal partitions come with additional costs in terms of preprocessing,

portability, and overhead of switching between slices, and underutilization of hardware resources.

Next, we will describe these costs in more detail.

2.3.1. Preprocessing Cost and Portability. Ideally, the graph should be partitioned into

slices that are individually highly connected and mostly independent. However, optimal algorithms

for such preprocessing can exceed the computation complexity of basic graph processing algorithms

such as BFS. For example, polynomial time solutions for min-cut have not been found yet, while BFS

has a complexity of O(∥V ∥+∥E∥) [13,15,46]. In recent studies, Balaji et al. show that RABBIT++

requires 1047 iterations of SpMV (Sparse Matrix times Dense Vector) kernels to amortize for pre-

processing costs [15]. Therefore, works such as PolyGraph rely on simpler partitioning heuristics

such as chunking the vertex set based on the id of the vertices [29,109]. Chunking has a complexity

of O(V), but it comes at the cost of reducing the independence of the partitions that are generated.

Moreover, for every vertex that has an edge that crosses partitions, that vertex has to be replicated

10

in the destination partition. The replicated vertices are used to communicate information from

one partition to another. Furthermore, temporal partitioning of graphs is not a portable approach

because the amount of available on-chip memory determines the size of each slice. This means a

graph partitioned for an accelerator with 8 MiB of on-chip memory has to be repartitioned for an

accelerator with a different amount of on-chip memory.

2.3.2. Switching Cost and Resource Utilization. In addition to the preprocessing cost,

there is also the cost of increased processing time due to switching and underutilization of hardware

resources. There are three processing steps when switching between temporal slices: (1) The current

partition’s vertices must be written back to the off-chip memory and the new partition’s vertices

must be read from off-chip memory. (2) Each slice has a set of replicated vertices to facilitate

temporal partitioning, and any vertex updated by the current temporal slice which resides in other

slices must be read and updated in off-chip memory. (3) All replicated vertices of the new partition

must be read to create the inter-slice messages. Finally, each slice must be processed multiple times

because of the inter-slice edges, which adds to work inefficiency.

12
72

 (3
2k

)

63
6 (

64
k)

31
8 (

12
8k

)

15
9 (

25
6k

)

80
 (5

12
k)

40
 (1

m)

20
 (2

m)

10
 (4

m)
5 (

8m
)

3 (
16

m)

2 (
32

m)

1 (
64

m)

#Partitions (Partition Size)

0

25

50

75

100

Sh
ar

e
of

 E
dg

es
 (%

) Intra-Partition Edges Inter-Partition Edges

Figure 2.1. Distribution of edges within and between partitions as the size of a
partition grows for Twitter graph.

11

1272 (32k)

636 (64k)

318 (128k)

159 (256k)

80 (512k)
40 (1m)

20 (2m)
10 (4m)

5 (8m)
3 (16m)

2 (32m)
1 (64m)

#Partitions (Partition Size)

0.0

0.5

1.0

1.5

2.0
Ex

ec
ut

io
n

Ti
m

e
(s

) Processing Time (s)
Inffeciency Overhead (s)
Switching Time (s)

Figure 2.2. Overhead of temporal partitioning as the number of partitions in-
creases using BFS and Twitter graph.

To quantify the overhead of partition switching, we implemented the partitioning technique

used in PolyGraph [29, 109]. For every switch operation, we chose the partition that has the

most updated vertices to process as the next partition. We used the Twitter graph as an input to

the BFS workload and broke the execution time down into two components. (1) Processing time

accounts for time spent processing partitions. (2) Switching time accounts for time spent switching

partitions including writing the current partition, reading the new partition, and reading/writing

inter-partition replicated vertices. (3) Inefficiency overhead accounts for the time spent processing

partitions more than once (i.e., the extra time from the decreased work efficiency1).

Figure 2.1 shows the distribution of edges within and between partitions for various graph

sizes. This figure shows that as the number of partitions grows, the number of intr-partition edges

outgrows the number of edges inside of partitions. With ten partitions, almost 50% of edges are

inter-partition edges. This increase in the number of inter-partition edges results in higher switching

time since more replicated vertices need to be updated.

1Work required by the optimized sequential execution (in terms of edges processed) over the work performed in
parallel execution

12

Figure 2.2 shows the breakdown of execution time between processing time, inefficiency over-

head, and switching time as the number of partitions grows (larger graphs). Inefficiency overhead

and switching time constitute approximately 20% of the execution time when there are less than

three partitions. As the number of partitions grows, the inefficiency overhead increases quickly.

For instance, in the case of 318 partitions, inefficiency overhead makes up more than 75% of the

execution time. Figure 2.2 shows that temporal partitioning of larger graphs with more partitions

can reduce the performance, making the accelerators that use this method unscalable.

When using temporal slicing, there is no way to eliminate inter-tile events, even with an optimal

tiling strategy (e.g., min-cut). Furthermore, as the number of tiles increases either due to using

larger graphs or smaller on-chip memory, the overhead of inter-tile events will increase, and the

work efficiency will decrease.

13

CHAPTER 3

Scalable Engine for Graph Acceleration

Modern data-driven scientific discovery is based on understanding relationships between data

entities that are modeled as graphs—i.e., graph processing. Traditionally, graphs are processed

on CPUs and GPUs using optimized libraries such as Galois [73], Ligra [81], GAPBS [17], Gun-

rock [93], etc., but the performance of software implementations on these large graphs is unaccept-

ably poor in many applications. As a result, there has been strong interest in new hardware accelera-

tors for graph processing. Starting with early work in FPGA-based graph exploration [54,107,108],

numerous architectures for graph processing hardware have been reported in the literature over the

past few years, including accelerators which leverage processing in/near memory and run at the

wafer-scale. At the same time, the size of these graphs is growing quickly as it is becoming increas-

ingly easier to collect large amounts of data. For instance, WDC12 [3] has 3.6 billion vertices and

128.7 billion edges, requiring over a terabyte of working memory.

There is currently a mismatch between graph accelerator designs and the growing graph data

scale, which this paper aims to address. Most graph accelerators leverage vertex-centric program-

mers where processing vertices exhibit low spatial and temporal locality, leading to frequent random

memory accesses.

To address this, many prior studies [29,40,75] have sought to exploit locality and reduce data

movement overheads. These prior works use large on-chip memories, in/near memory process-

ing [11, 83], and the addition of hardware to improve locality for graph processing [10]. Some

prior work [29,40,67,75] optimizes performance by storing vertices in the on-chip memory while

storing the graph structure (i.e., edges) higher capacity off-chip memory like HBM or DDR4. In

these accelerator designs, the data is explicitly moved from off-chip memory to on-chip memory,

and their efficiency hinges on finding locality within the vertex updates. However, as the size of

the graphs processed increases, the vertex set will exceed the on-chip memory capacity. To address

this problem, prior work relies on partitioning the graph into slices that fit in the available on-chip

memory and temporally sharing the on-chip resources. This temporal portioning is akin to memory

14

swapping and time-shared multiplexing of the processor in operating systems. Like these related

techniques, temporal partitioning in graph accelerators imposes significance when switching be-

tween partitions. Furthermore, the generated partitions often exhibit inter-dependencies, requiring

multiple processing of each generated partition. Our analysis (described in Chapter 2) shows that

as the number of partitions grows, the overheads constitute an increased share of the execution

time, up to 90% of the execution time. The overheads from temporal partitioning, which is required

for larger graphs, cause current graph accelerator designs to exhibit poor throughput scaling as the

graph size grows.

Figure 3.1 shows how PolyGraph’s performance varies as the graph size grows, given a fixed-size

on-chip memory. As the graph size increases, the throughput drops, indicating that the locality

improvement depends heavily on the on-chip resources. As discussed in Section 2, temporal par-

titioning is the main limitation preventing PolyGraph and similar systems from scaling to large

graphs efficiently.

This work presents a new graph processing architecture that enables a consistent graph process-

ing throughput independent of graph input size. Instead of focusing on capturing locality, SEGA

uses on-chip resources to enable enough parallelism—abundantly available in large graphs—to hide

the latency of accessing the off-chip memory. The intuition behind our design is that for each reduc-

tion operation (i.e., message to update a vertex property), multiple propagations take place (i.e.,

many neighbors need to be updated). As a result, the throughput of the propagation procedure

is more resilient to the latency of accesses to the memory. In our design, we introduce a run-

time procedure to efficiently orchestrate vertex information between reduction and propagation.

Our design enables leveraging the capacity of both on-chip and off-chip memory to store the active

working set. In turn, we increase our coalescing space to the whole vertex set, resulting in increased

work efficiency. Furthermore, our design is scalable because we leverage the idea of [message-driven

processing] to push updates to the local processing element responsible for each vertex. CF Graph

is a microarchitectural and system-level design for scalable graph processing based on the idea of

active messages. Instead of storing active vertices on the on-chip memory for faster access and

better coalescing, we move the entire active vertices to the off-chip memory. Moving data to the

off-chip memory removes the use of temporal partitioning in our design. Additionally, by enabling

15

all vertices to be active simultaneously, we can coalesce more updates and increase work efficiency

compared to prior work with temporal partitioning.

This chapter focuses on the following:

• An analytical model that helps designers understand the system-level requirements of large

graph analysis. This proposed model can also predict performance based on the network,

memory, reuse distance, and tiling schemes.

• We identify the scalability limitations of prior work because of their reliance on temporal

partitioning to achieve high performance.

• We introduce a new graph processing microarchitecture: SEGA, and we describe multiple

architectural tradeoffs in its design.

• We evaluate our new microarchitecture, at multiple scales, and show 1.3× to 1.84× per-

formance improvement compared to PolyGraph. We observe that for smaller graphs,

PolyGraph outperforms SEGA. However, as the size of the graph increases, PolyGraph’s

performance drops.

RMAT21 RMAT22 RMAT23 RMAT24 RMAT25
Increase Graph Size

0

10

20

30

40

50

GT
EP

S

Number of Nodes
1
2
4

Platform
SEGA
PolyGraph

Figure 3.1. Both systems have 1.5 MiB on-chip memory and 332.8 GB/s for BFS
workload. GTEPS (giga traversed edge per second) represents the system through-
put. Higher GTEPS shows higher throughput.

3.1. Background on Message-driven Graph Applications

Vertex-centric programming is a common paradigm for implementing graph algorithms [10,11,

17,29,40,73,75,76,81,85]. In this computation paradigm, programmers describe graph algorithms

16

as a series of operations from the perspective of a vertex [61]. Some graph processing workloads

can be implemented using the message-driven paradigm, which can be thought of as each vertex

sending messages to its neighbors. Each message, such as < u, δ >, has two main attributes: a

destination vertex (u) and an update (δ). In this message-driven model, an active vertex (such as

u) calculates an update for each of its neighbors and sends the update through the message.

In the message-driven model, every workload is described using two main functions: Reduce,

which determines the new property for a vertex using its current property and a message for

that vertex, and Propagate, which determines the update of a message using the property of the

vertex and the weight of an edge. Algorithm 1 shows an example of a message-driven vertex-centric

algorithm used in SEGA.

3.2. A Model for Scalable Accelerator

The proposed performance model calculates the system-level requirements assuming an asyn-

chronous implementation of the widely used vertex-centric programming paradigm for graph pro-

cessing. We assume a system is constructed by combining a set of accelerator tiles (the basic

building blocks) with an appropriate interconnection network. The requirements are in terms of

memory capacity and memory bandwidth for different types of memory, the network bandwidth,

and number of tiles. These requirements depend on the structure of the graph, representation of

different data structures, and physical constraints such as the maximum I/O on each tile. With the

assumption that graph algorithms are throughput limited, these requirements capture the behavior

of many graph accelerators. Additional constraints could be added to the model if this assumption

does not hold (e.g., the compute capability is a limiting factor).

To calculate the bandwidth for each component, we consider the maximum performance re-

quired from each component individually. Equation 3.1 shows Graph Algorithm Iron Law (GAIL) [18]

which calculates the execution time for graph workloads. GAIL separates algorithm and hardware

performance. Traversed Edge Per Second (TEPS) shows the hardware performance. For the same

algorithm implementation, larger TEPS will result in a smaller execution time. Our model focuses

on maximizing this TEPS performance metric.

(3.1)
time

kernel
=

number of edges

kernel
× 1

TEPS

17

3.2.1. Memory System. Next we describe what data structures to store in the memory and

the capacity and bandwidth requirement of these data structures. Both edges and vertices have

different characteristics. The proposed model calculates the capacity and bandwidth requirements

of edges and vertices separately. For simplicity we only consider vertex and edge data structures

in the description below, but the model can extend with other data structures easily.

3.2.1.1. Edge. In general, edges require a larger memory capacity compared to vertices (graphs

such as WDC12, Twitter, and LiveJournal have 36×, 34×, and 15× more edges than vertices). In

most graph programming models [41, 56, 73] access to edges are sequential and read-only. The

model should determine the number of memory devices that provides enough capacity for a tar-

geted graph. Table 3.1 Row 1 shows the required capacity for the edge memory which depends

on the number of bits representing edge information. The size of the edge is different between

accelerators. At a minimum it should include the vertex ID (destination or source) and the weight

of the edge. The other constraint for the edge memory is the required bandwidth to achieve a

certain performance in TEPS (shown in Table 3.1 Row 2).

3.2.1.2. Vertex. In contrast to edges, vertices have low spatial and temporal locality in most

graph algorithms. This lack of locality causes inefficient off-chip memory access and low memory

access throughput. Prior work exploits locality through graph pre-processing [40] or by online

traversal scheduling [?] to improve the on-chip cache usage. Other hardware accelerators use on-

chip SRAMs to store vertices and/or events to reduce off-chip memory access [75].

The required vertex bandwidth depends on the performance of the edge memory. For every

edge read there is at most one vertex read and one vertex update. Therefore, vertex access rate is

2× higher than edge access rate. The maximum supported bandwidth also depends on the access

granularity to the vertex memory system (a.k.a. atom size). On-chip caches reduce the off-chip

vertex memory access rate. Therefore in our model we use a parameter α to model accelerators with

on-chip memory assigned to vertices. α indicates the fraction of the off-chip memory bandwidth

that is needed by the accelerator. α is a value between zero and one. An accelerator that exploits

locality/reuse will have a smaller α which means it will have lower off-chip memory bandwidth

requirement. Table 3.1 Row 3, shows the maximum required bandwidth for vertex memory given

a TEPS (usually from the peak edge bandwidth (Table 3.1 Row 2). In addition to the bandwidth,

18

we must also meet the capacity requirement of the vertex memory. Our model needs to consider

the capacity of vertices (Table 3.1 Row 4).

3.2.2. Network Requirements. After finding the best memory technology for vertex and

edge data structures, we must ensure that data movement among accelerators will not cause a

performance bottleneck. We consider the network as the third constraint in our model. What we

consider as network in our scaled-out system is the interconnection fabric between accelerators.

Accelerators use this network to communicate inter-slice updates. A well-partitioned graph with a

low inter-slice event rate does not require a high bandwidth network. The proposed model takes

into account the bisection bandwidth, port bandwidth, and topology of interconnection network.

3.2.2.1. Bisection Bandwidth. The required bisection bandwidth is dependent on the perfor-

mance of each accelerator and the size of the message communicated through the network. With

every edge read a new message is created to another vertex. Hence, TEPS indicate the maximum

rate of messages generated from the aggregate edge memory across all accelerators. We use γ to

indicate the fraction of the messages targeting vertices in remote accelerators and have to be com-

municated over the network interconnect. Table 3.1 Row 5 shows the required network bisection

bandwidth.

Data representation dictates the size of the message communicated in the system. It depends

on the implementation of the accelerator and is a parameter in our model.

3.2.2.2. Port Bandwidth. The required network bandwidth for each accelerator can also be a

limiting factor. Port bandwidth depends on the required bisection bandwidth and the number of

accelerators in the system. See Table 3.1 Row 6.

Network

ACCL

... ...

Bi-Section BW

Port BWVM: Vertex Memory
EM: Edge Memory

ACCL ACCL
VM

EM

ACCL
VM

EM

VM

EM

VM

EM

VM

EM

VM

EM

(a)

Network

ACCL

...

Bi-Section BW

ACCL

VM

EM

VM

EM

VM

EM

ACCL

VM

EM

VM

EM

VM

EM

...

Port BW

(b)

Figure 3.2. System architecture for the scaled-out accelerator. a) Near memory
processing. b) disaggregated memory-based.

19

3.2.2.3. System Architecture. The system architecture dictates the interconnection traffic pat-

terns and depends on the port bandwidth and the interconnection network topology. We model

two systems: near memory processing architectures and disaggregated memory-based architectures

as shown in Figure 3.2. In the near-memory processing system, each accelerator tile is connected

to a local memory system, and the interconnection network is between the accelerators. Here, each

accelerator is operating on its local vertex and edge information, and only events are communicated

through the interconnect (Table 3.1 Row 5). Whereas in the disaggregated memory-based system

the accelerators do not communicate directly with each other—the communication is through the

memory. In this topology, accelerators use interconnects for communicating events and for read-

ing/writing vertex and edge information. Hence, it required a larger bisection bandwidth in the

network (Table 3.1 Row 7).

1
Edge

= Number of edges × Sizeof(Edge)
Capacity

2
Edge

= Maximum TEPS × Sizeof(Edge)
Bandwidth

3
Vertex

= 2× atom size × TEPS ×α
Bandwidth

4
Vertex

= Number of vertices × Sizeof(Vertex)
Capacity

5
Bisection BW

= TEPS × Sizeof(message) ×γ
(Near-memory)

6
Port

= Bisection Bandwidth
Number of acceleratorsBandwidth

7
Bisection BW

= Vertex BW + Edge BW
(disagg.)

Table 3.1. System constraints used in the proposed model. α is the miss ratio of
vertex on-chip memory. γ is the percentage of inter-accelerator to intra-accelerator
communication.

3.2.3. Accelerator Node. The internal architectural parameters of accelerators are another

constraint in our model. These parameters are: 1) Number of bits for representing data struc-

tures. This parameter impacts the network’s bisection and port bandwidth and the edge memory

bandwidth requirement. 2) On-chip resources such as caches and SRAMs. These on-chip memory

systems will impact the required bandwidth from the main memory (α). 3) The number of I/O pins

connected to each accelerator and their data rate limits the number of memory nodes connected to

the accelerators (total capacity supported by a single accelerator) and the port bandwidth of the

20

interconnect. Given the high memory access and communication-to-computation ratios of graph

workloads, we do not consider the computation within the accelerator as a bottleneck in our model.

Ham et al. show that only 6% of instructions executed in a graph workload are responsible for

custom graph computations, and the rest of the instructions are used for loading and traversing

the graph [40].

3.3. SEGA Architecture

In the previous section, we demonstrated that depending on temporal partitioning for enhancing

locality is a limiting factor for processing large graphs. Therefore, we design SEGA, a scalable graph

accelerator that can achieve high performance without exploiting locality and temporal partitioning.

In this section, we will explore the microarchitectural and system-level considerations that enable

the scalability of graph processing to handle large-scale graphs. Our main objectives are twofold:

first, to decouple performance from the on-chip memory size and eliminate the need for temporal

partitioning for large graphs, and second, we will investigate a system-level approach to creating a

balanced graph accelerator that maximizes performance while minimizing cost (i.e., with the least

over-provisioning of bandwidth and capacity) as we scale to large graphs.

Prior work achieves high (though not full) utilization of their edge memory bandwidth by placing

vertices in on-chip memory. However, since on-chip memory is limited, it must be temporally shared

between different partitions of the graph. We eliminate the need for temporal partitioning by

storing and processing vertices in off-chip storage, mitigating the performance degradation caused

by temporal partitioning. Furthermore, we architect a balanced design such that messages are

processed at the rate they are generated, and active vertices are available to generate messages

at the rate they are processed. Figure 3.3 shows a logical diagram of SEGA where we decouple

the reduction operations from the message propagation. The rest of this section describes how we

decouple vertex processing from edge-based message propagation so they can run at different rates

through the message processing unit (Section 3.3.2), the message generation unit (Section 3.3.3),

and the vertex management unit (Section 3.3.4).

21

Vertex
Mgmt.
Unit

2

Reduce on
vertices

Propagate from
edges

Vertex
Mem

Edge
Mem

T edges/second

N vertex/second

T edges/second

1

3

Manage active
verticesNetwork

Message Processing Unit

Message Generation Unit

Figure 3.3. Logical demonstration of a balanced system.

Algorithm 1 Decoupled message-driven implementation for single source shortest path.

dist[:∥V ∥] = ∞;
messages.append({u,0});

while not messages.empty() do
for u, δ in messages do

old dist = dist[u];
dist[u] = min(old dist, δ);
if old dist != dist[u] then

active list.append(u);

while not active list.empty() do
for v in active list do

start, end = row ptr[v], row ptr[v+1];
active vertex info.append({dist[v],start,end});

while not active vertex info.empty() do
for α, start, end in active vertex info do

for i in range(start, end) do
dest = edge dests[i];
ϵ = add(α, edge wgt[i]);
messages.append({dest,ϵ});

3.3.1. System-level design of SEGA. SEGA consists of one or many graph processing

nodes (GPNs). The building block of a GPN is a processing elements (PE). A single PE is a

message-driven processor capable of executing algorithms expressed using the model described

in Algorithm 1. Algorithm 1 shows the decoupled message-driven implementation of the SSSP

workload. For SSSP, the reduce function is the minimum function, and the propagate function

is the addition function. Decoupling the reduction from message propagation enables SEGA to

support both asynchronous [104] and bulk synchronous parallel [90] execution models. In the bulk

synchronous parallel execution, the red block (message propagation) is executed serially after there

22

are no more messages to process in the blue block (message processing). This serial execution

is enforced by the decoupled active list (shown in yellow). When executing in bulk-synchronous

mode, these three blocks continue to execute until no messages are generated, i.e. the program has

converged. In asynchronous [104] execution, all blocks are executed simultaneously until there are

no more messages.

A PE consists of three main units which correspond to the three parts of Algorithm 1. The

colors of the units in Figure 3.3 and Figure 3.4 correspond the colors in Algorithm 1 as well.

• Message processing unit processes messages and updates vertices. It determines the new

property of a vertex using the reduce function.

• Vertex management unit keeps track of active vertices from the message processing unit

and sends active vertices to the message generation unit.

• Message generation unit uses active vertices and their edges to generate new messages. It

produces the update in a message using the propagate function.

For every vertex processed by the message processing unit, there can be many messages gen-

erated by the message generation unit since each vertex can have many outgoing edges. This

one-to-many relationship where one message creates many messages can cause the buffers on the

message processing units to become full which introduces backpressure and queuing at the message

generation unit. However, to empty the incoming message queue we must have available buffers in

the message generation unit. Thus, we need a way to deal with the back pressure in the system

without causing deadlock when the system is overwhelmed with messages. To break this deadlock,

we decouple message processing from message generation with the active vertex management unit.

The combination of active vertex management unit and the decoupling allows us to support bulk

synchronous execution.

The message processing unit pushes new active vertices into the active_list in the vertex

management unit, and when the message generation unit is ready to accept more work, it pulls from

the vertex management unit. The vertex management unit allows the active vertices to spill into

the vertex memory if the work generation and work consumption are not balanced. By decoupling

the push and the pull from the message processing and generation units, the vertex management

unit allows SEGA to balance the work generation and fully utilize the off-chip bandwidth resources.

23

3.3.2. Message Processing Unit. The primary function of the message processing unit is

to process vertices based on incoming network messages. To process a message (< u, δ >), the

destination vertex (u) has to be read. After the vertex has been read, its property (e.g., distance in

case of SSSP) and the message’s update (δ) are used by the reduce function (e.g., minimum in case

of SSSP) to determine the new property of the vertex. In addition, the read, modify, and write

steps on each vertex should be done atomically to ensure correctness.

Due to a lack of locality in accesses, reading vertices from DRAM can result in long access

latency. The message processing unit utilizes a hardware managed buffer to track multiple atomic

operations and hide the access latency. Nevertheless, due to the massive size of some graphs, it is

unlikely that the buffer can capture much locality. In our implementation, we have configured this

buffer with a size of 64 KiB for each PE (512 KiB per GPN). We have evaluated the effect of the

size of this buffer in Section 3.5.

When the read data arrives from the memory, the whole memory block is placed in this buffer

and the destination vertex (u) is sent to the reduction engine. After the reduction, the memory

block data in the buffer is updated with the new copy of the vertex.

SEGA manages this buffer as a direct-mapped cache, and the following steps are taken upon

insertion and eviction.

Insertion: blocks of memory are placed in this buffer every time a vertex has to be read. The

location of a block of memory in this buffer is determined using a direct-mapped function based on

vertex’s address. Therefore, it is possible that two read requests collide with each other, in which

case the two requests have to be serialized.

Eviction: blocks of memory are evicted from the buffer in two circumstances. (1) The whole

buffer is flushed back to the memory upon the completion of execution. (2) Blocks of memory

are written back to memory upon a read conflict. Before a block is evicted, if it contains active

vertices, the message processing unit notifies the vertex management unit of this eviction. The

vertex management unit will track this memory block as an active block for use by the message

generation unit.

The choice of a direct-mapped function for the placement is an appropriate decision because

conflicts are not frequent enough for an associative design to exhibit significant benefits. We found

24

that ∼4% of the accesses result in conflict. Therefore, the choice of direct-mapped placement results

in lower latency and simpler design.

3.3.3. Message Generation Unit. The main purpose of the message generation unit is to

propagate messages to the destination vertex. The messages are generated using the edges1 of

active vertices from the vertex management unit (an active vertex is an updated vertex that needs

to communicate its value to its neighbors). The unit initiates its process by reading an entry from

the active vertex buffer (as described in the next subsection). Each entry in the active vertex

buffer has three members < α, start, end >. α denotes the property of the active vertex, and

< start, end > identifies the location of its edges in the edge memory.

For each edge, < v,w >, in < start, end >, a message is generated. The destination of

the message is determined by the destination vertex of the edge (v), and the message update is

calculated using the propagate function on the property of the vertex (α) and the weight of the

edge (w). Subsequently, the message is sent to the network, where it is received by its designated

message processing unit. The addressing function is assigned at initialization time since vertices

are statically assigned to PEs.

Graph Processing Node

PE PE PE PE

PE PE PE PE

HBM2.0 Stack

DDR4

DDR4

DDR4

DDR4

 I/O

Tracker
Module

Prefetch
Logic

Reduction
Engine

A
ct

iv
e

Ve
rt

ex
B

uf
fe

r

Propagation
Engine Edge Buffer

Vertex
Memory

Edge
Memory

Message Processing Unit

Vertex
Mgmt.
Unit

Message Generation Unit

Input message
from network

Output message
to network

Buffer

Figure 3.4. Hardware implementation of processing elements.

3.3.4. Vertex Management Unit. The main role of the vertex management unit is to: 1)

keep track of active vertices assigned to a PE and 2) send active vertices to the message generation

unit.

1We store the destination vertex and edge weight in the edge memory and the vertex property values and other CSR
metadata such as index array pointers in the vertex memory.

25

The vertex management unit has three main components. (1) An on-chip memory to keep

track of active vertices in the vertex memory (tracker module in Figure 3.4). (2) A first-in-first out

buffer to send active vertices to the message generation unit (active vertex buffer in Figure 3.4).

(3) Control logic for searching and recovering active vertices from the vertex memory (prefetch

logic in Figure 3.4). In the following section, we discuss the details of the implementation of each

component and how the vertex management unit accomplishes its tasks.

During the execution of our graph accelerator, new active vertices can be generated faster than

messages created from prior active vertices because each active vertex generates multiple messages

(i.e., one vertex can connect to multiple edges). Therefore, the active vertices will quickly outgrow

the on-chip memory size in the message processing unit. Due to the one-to-many relationship

between vertices and edges and the presence of fixed-size queues in the system, storing all active

vertices on limited on-chip storage causes a deadlock. In this scenario, active vertices are spilled

to the backing vertex memory to prevent stalls or potential deadlocks. The active vertices spilled

from the buffer can overwrite their previous values in the vertex memory. However, to accurately

execute the application, these spilled active vertices will have to be accessed and sent to the message

generation unit.

When the message generation unit has the bandwidth for creating and sending new messages,

spilled active vertices are accessed and sent to the message generation unit. To access the spilled

active vertices, we can perform an associative search in the vertex memory or track the spilled

active vertices. Performing associative searches in DRAM is significantly more expensive compared

to SRAM. Hence, we developed a tracking mechanism to allow the vertex management unit to

track the location of these off-chip active vertices.

Naively, keeping a single bit for every vertex in the graph would enable us to track the active

vertices, but it would result in significant on-chip capacity. For example, in WDC12, a structure

that keeps 1 bit per vertex would require approximately 440 MiB of on-chip storage. In addition,

the size of the vertex data structure can vary greatly depending on the program or programmer,

making it difficult to predict the number of vertices that need to be tracked with a constant capacity

for tracking information.

We take three approaches to track active vertices efficiently: (1) We track locations in memory

with active vertices, not the vertices themselves, (2) we group these locations in memory (memory

26

blocks) into superblocks to reduce the tracking metadata, and (3) prefetch active vertices before

they are requested from the message generation unit.

While graph workloads operate at the granularity of vertices, any transaction with the vertex

memory happens at a fixed size referred to as the block size. We will refer to a block of the memory

that stores at least one active vertex as an active block. Tracking active blocks instead of active

vertices has two main benefits. (1) Unlike vertices, which are program-specific data structures, a

memory block has a fixed size; separating the size of the vertex management unit from the size of

the vertex data structure. (2) It is safe to assume that a block of the vertex memory is bigger than

the size of a vertex. Tracking active blocks instead of active vertices allows us to reduce the size of

the tracking information.

In SEGA, we track active vertices based on a superblock of N blocks and count the number of

active blocks in the superblock. Therefore, the capacity to implement the tracker module could be

significantly reduced by grouping more blocks into a superblock. The total capacity required by such

an implementation could be calculated using Equation 3.2 and Equation 3.3 where super block dim

denotes the number of memory blocks grouped into a superblock, and block size denotes the block

size for the vertex memory. In our implementation, we use super block dim = 128 and HBM2

(block size = 32 B) as our vertex memory. Given these parameters, only 1 MiB of on-chip storage

is required to track a 4 Hi stack of HBM2 with a capacity of 4 GiB (128 KiB per PE). Storing

WDC12 vertices with 4 B for each vertex requires 4 HBM2 stacks and only 4 MiB of on-chip storage

across four GPNs.

It should be noted that grouping memory blocks is a middle ground between tracking one bit

per vertex and no tracking at all. Therefore, instead of eliminating the need for performing an

associative search in the vertex memory, this implementation reduces the amount of associative

search. We analyze the sensitivity of performance to the size of the tracker module in Section 3.5.4.2.

(3.2) capbits = (log2 super block dim+ 1) ∗ num super blocks

(3.3) num super blocks =
vertex memory capacity

super block dim ∗ block size

Finally, the message generation unit depends on the vertex management unit for its execution.

Therefore, the vertex management unit needs to fetch and deliver activate vertices to the message

27

generation unit in a timely manner. To hide the latency of searching for active vertices in the

vertex memory, the vertex management unit takes advantage of a buffer (active vertex buffer) to

prefetch active vertices.

The active vertex buffer is an 80-entry buffer that can be populated with active blocks of

vertices. The prefetch logic is configured to read 16 blocks of memory from a superblock whenever

there are 16 or more entries available in the buffer. When the data arrives from the memory,

only the active blocks are placed in the buffer. The remaining blocks are dropped. In turn, this

associative search in DRAM results in some wasted bandwidth. We have investigated the effect of

vertex recovery on the utilization of vertex memory bandwidth in Section 3.5.4.2.

3.3.5. Choice of off-chip Memory. In graph workloads, vertices and edges have different

requirements for capacity and bandwidth. In general, edges require a larger memory capacity

compared to vertices. In most graph programming models [56,73], access to edges is sequential

and read-only. In contrast to edges, vertices have low spatial and temporal locality in most graph

algorithms. This lack of locality results in a long memory access latency. Due to these differences,

we have chosen a heterogeneous system for the off-chip memory in a GPN.

We have chosen HBM2 as the off-chip memory to store vertex information. HBM2 is an

appropriate choice for storing vertex because it offers substantially more bandwidth under random

access patterns [94]. Moreover, HBM allows for finer granularity accesses (32 bytes), resulting in

less bandwidth waste.

To store the edges, we have chosen DDR4 as the off-chip memory. This is because the edge

information is accessed with amostly sequential and read-only pattern. Lastly, for most graphs,

edges require a much bigger storage than vertices. Therefore, DDR4 is an appropriate choice for

storing the edges because of its high capacity density compared to HBM2 and its high bandwidth

under sequential access. Fariborz et al. showed heterogeneous memory system is the most cost-

effective solution for creating a system that meets the capacity and bandwidth requirements of the

two data structures [34].

We have assigned eight PEs to one stack of HBM2 memory (eight channels). Each PE is

dedicated to one channel of the HBM2 stack and operates only on the vertices stored in that

channel. Fariborz et al. show that vertex memory needs to offer 4× the bandwidth of the edge

28

memory [34]. Therefore, we have allocated four DDR4 channels for the edge memory for each GPN

(12 of a channel per PE) to create this balance.

AWGR
nxn

HBM2 Stack

DDR4
Channels λ0λ1...λn-1
HBM2 Stack

DDR4
Channels

HBM2 Stack

DDR4
Channels

GPN 0
HBM2 Stack

DDR4
Channels

GPN 2
HBM2 Stack

DDR4
Channels

GPN 6
HBM2 Stack

DDR4
Channels

GPN 1

GPN 3

GPN
n-1

... ...
Optical Waveguide

Figure 3.5. System-level architecture of SEGA with n GPNs. To scale to the Size
of WDC12 (3.6 Billion vertices and 128.7 Billion edges) SEGA requires eight GPNs
(n=8) using 8×8 AWGR with eight wavelengths per port is used. [79]

3.3.6. Graph Processing System Using GPNs. Figure 3.4 shows the layout of one SEGA

node or GPN. A GPN consists of multiple PEs connected through an interconnected network

and off-chip memory as storage for storing the vertices and edges. We connect PEs within one

GPN through a point-to-point on-chip electrical network. Scaling to larger graphs is possible

by connecting multiple GPNs together. The choice of the inter-GPN interconnect is an important

design decision as it affects both the bandwidth and energy/bit. Electrical interconnects can support

the bisection bandwidth for small number of GPNS. However, when scaling to more than 8 GPNs

(to support WDC12) we propose using optical interconnectss.

Optical links provide low latency, high bandwidth density through wavelength division multi-

plexing (WDM) [65], and distance-independent energy consumption and latency. By exploiting

WDM one GPN can connect to multiple GPNs through a single optical IO pin (addressing them on

different wavelengths), enabling high-radix and low-diameter networks. Array Waveguide Grating

Router (AWGR) [79] is a passive silicon photonic fabric with a compact layout that offers scal-

able all-to-all connectivity through wavelength routing. Recent advances in the fabrication process

of AWGRs now enable their integration with a significantly reduced footprint (1 mm2), crosstalk

(< -38dB), and loss (< 2dB) [79]. Initial studies have shown AWGR to be a promising choice

for processor-to-memory network [36,37]. The number of ports in an AWGR can easily scale up

to 64 ports [26]. We propose to use an Array Waveguide Grating Router (AWGR) based optical

29

network [37,79] as the inter-GPN interconnection network as shown in Figure 3.5 that can easily

scale to WDC12.

3.3.7. Spatial Vertex Mapping. In our proposed architecture, each vertex and its edges are

assigned to a single PE. Choosing the vertex assignment is a tradeoff between preprocessing cost,

load balancing, and locality. In a load balanced system, a similar number of edges are assigned to

each PE for processing. The approach to optimizing load balance is to sort the vertices by their out-

degree and distribute the vertices with the highest out degrees uniformly across PEs. Interleaving

vertices between PEs with a fine granularity ensures load balance. In the locality-based approach,

we used community detection techniques such as RABBIT [13] to detect highly connected vertices

and assign sequential ids to vertices in each community. By taking advantage of locality, we can

reduce network traffic at the cost of a lower load balance. We can also use the original ordering

made by the graph publisher and eliminate any pre-processing. In this case, we interleave the

vertices based on their vertex IDs between PEs, assigning a similar number of vertices to each PE.

3.3.8. Summary of Design. As described in this section, we create a balanced architecture

by (1) decoupling vertex and edge processing to process edges and vertices at different rates;

(2) spilling active vertices to HBM and tracking the active vertices to avoid expensive off-chip

memory search; (3) using a heterogeneous memory system that optimizes the different memory

access patterns in the graph workloads with higher vertex bandwidth to edge bandwidth; (4)

proposed using a passive optical all-to-all interconnect to scale out the accelerator to multiple

nodes enabling support for larger graphs.

To extract maximum throughput, active vertices need to be sent to the message generation

unit at a high rate (path 1 in Figure 3.3). On the other hand, messages generated by the message

generation unit should also be processed at the same rate (path 2 in Figure 3.3). Both these criteria

require vertices to be processed with low latency.

In a graph workload, for every modified vertex, multiple messages will be created depending on

the degree of the active vertex. Therefore, the message processing unit needs to process the incoming

messages at a faster rate than the message generation unit creates them (path 3 in Figure 3.3).

Separating vertex and edge processing allows the accelerator to process vertices at a higher rate.

By decoupling, the message generation unit requests new work when it has enough bandwidth at

30

Specifications per GPN SEGA

PE 8 @ 2GHz

Spad 512 KB (buffer) + 1 MiB (VMU)

Vertex memory HBM2 stack - 8GB cap. - 256GB/s

Edge memory 4 DDR4 channels - 128GB cap. - 76.8GB/s

Inter-GPN Net. 8 × 8 SiN AWGR, 8 Wavelengths per port, 4GiB/s per wavelength

Table 3.2. System specifications.

the edge memory. Since the vertex processing is faster, SEGA ensures that the message generation

engine can pull active vertices upon request.

Now the size of on-chip memory is no longer dictated by the size of the graph. In our design,

the on-chip hardware buffer simply hides the long off-chip memory access latency instead of storing

all active vertices. We sized the on-chip buffer using Little’s law based on the message generation

rate of the edge memory and the average vertex latency when running with random traffic.

Finally, the active vertex management acts as an intermediary between message generation

and processing, allowing the processing unit to store active vertices in off-chip memory without

performing costly associative searches by tracking the locations of spilled vertices. Simultaneously,

this unit enhances the message generation engine’s ability to read active vertices at a faster rate

by prefetching them from the buffer or DRAM.

3.4. Methodology

We implemented our model in gem5 v22.0 [57]. We implement cycle-level models for all the

modules in a GPN (Figure 3.4) proposed message generation unit, message processing unit, vertex

management unit, and a model for the point-to-point interconnect network and AWGR at 2GHz

in gem5. We used gem5’s models for HBM2 and DDR4 memories. The implementations of SEGA

is shown in Table 3.2.

We also implemented a model of PolyGraph [29] in gem5 including the partitioning of a large

graph into slices. We compared our performance to PolyGraph since it already showed better

performance compared to notable graph accelerators such as GraphPulse, Chronos, Ozdal, and

Grapicionado [10,40,68,75], and software platforms such as Ligra, and Galois. [73,81].

3.4.1. Workloads. We implemented five graph analytics workloads specified in GAPBS [17].

We used breadth f irst search (BFS), connected components (CC), single source shortest path

31

Graph Footprint Vertices Edges Description

RoadUSA [1] 805.7 MiB 23.9M 58.3M Road graph

Twitter [49] 14.4 GiB 41.65M 1.46B Social network

Friendster [49] 15.4 GiB 65.6M 1.8B Social network

Host [8] 16.6 GiB 101M 2B Hyperlink graph

Urand [33] 34.0 GiB 134.2M 4.2B Synthetic graph

Table 3.3. Graph Workloads used in evaluations.

(SSSP), page rank (PR) and betweenness centerality (BC). We have implemented BFS, CC, and

SSSP in the asynchronous mode, while PR and BC are implemented in the bulk-synchronous

mode. BC in its proposed asynchronous implementations requires forward and backward passes,

which doubles the number of edges required to be stored. Our implementation of PR-delta as

specified by [75] proved to be very sensitive to the order of the traversal of the graph. To find the

optimal order of traversal requires an overall view of the graph at the timing of scheduling updates.

Therefore, ordering is not a feasible solution for problem sizes that are significantly bigger than the

size of on chip resources. Hence, we have chosen to implement PR in BSP mode.

3.4.2. Input Graphs. Our objective is to evaluate how SEGA performs for large graphs.

Table 3.3 demonstrates the details of each of our input graphs. We have used a combination of

synthetic graphs (Urand and RMAT [51]) along with real-world graphs such as Twitter. Previous

accelerators used Twitter and RMAT 226 as their largest graph input [29,67]. We evaluate SEGA

using Urand which has 2× more vertices and 1.5× edges compared to Twitter, as the input to our

workloads.

3.5. Evaluation

To evaluate the performance of SEGA, we conducted a thorough evaluation across multiple

dimensions. This includes (1) performance comparison with PolyGraph, (2) strong and weak scal-

ing, (3) estimation of resources needed for PolyGraph, Dalorex, and SEGA to scale to WDC12

size graphs, and (4) the sensitivity analysis of GPNs to various design parameters, such as buffer

size, and the size of memory used by vertex management unit to track active vertices in the main

memory, and different vertex placements between PEs.

3.5.1. Scaling to Terascale Graphs. WDC12 [8] is a hyperlink graph representing 3.5 bil-

lion web pages and 128 billion hyperlinks. This is representative of future terascale graph analytics.

32

Accelerator
HBM

Stacks

DDR

Channels

SRAM/

eDRAM
Cores

of

Partitions

SEGA 14 (56 GiB) 56 (1TiB) 21 MiB 112 1

PolyGraph 272 (1.088 TiB) - 4 GiB 2176 15

PolyGraph 256 (1 TiB) - 56 GiB 6400 1

non-sliced

Dalorex - - 1 TiB 249661 1

Table 3.4. Requirements to support WDC12. Note that SEGA has 8 cores per
node, PolyGraph has 16 cores per node, and Dalorex has 256–4096 cores per node.

We compared the resource cost of SEGA to two recent works, PolyGraph [29] and Dalorex [67] for

this graph.

We assumed all accelerators use the vertex size is 16 B and the edge size is 8 B. WDC12

requires 53 GiB of vertex capacity and an edge capacity of 959.15 GiB. Table 3.4 shows the system

configuration to meet the minimum memory required to support WDC12. PolyGraph performs

temporal partitioning that requires additional capacity, but we do not consider that. Dalorex,

requires 1 TiB of on-chip capacity to support WDC12 without the need for temporal partitioning

with a disk.

Table 3.4 shows that PolyGraph and Dalorex will have extremely high costs (many 100s of

HBM stacks or a terabyte of SRAM) required to process tera-scale graphs. SEGA still requires

significant resources to process large graphs, but by storing the high-capacity data structure in

lower-cost memory (storing edges in DDR instead of HBM or SRAM) and the vertices in high-

performance memory, SEGA scales to large graphs more practically than PolyGraph and Dalorex.

2 4 6 8 10 12 14 16
Number of GPNs

10

20

30

40

50

60

G
T
E
P

S

Simulated
Analytical Model

Figure 3.6. Comparing performance of Twitter to the analytical model.

33

We estimated the TEPS based on our proposed model, and the results are shown in Figure 3.6

using a dotted line. The solid blue line shows the simulated TEPS for these systems. As shown, the

model predicts the performance accurately. For large graphs (high on-chip miss rate), the TEPS

depends on the system and not the graph input. Therefore, we can use this model to predict the

performance of large graphs based on its capacity requirements and calculate its TEPS.

3.5.2. Comparison to State-of-the-art. Figure 3.7 compares SEGA to PolyGraph with the

same amount of off-chip memory bandwidth. In this comparison, both SEGA and PolyGraph are

provisioned with 332.8 GB/s of off-chip memory bandwidth, which is equivalent to the aggregate

bandwidth of one SEGA GPN with one HBM stack (256 GB/s) and four DDR4 channels (76.8

GB/s). While SEGA uses 1.5 MiB of on-chip memory (512 KiB for the on-chip buffer and 1 MiB

for the active vertex tracker module), PolyGraph uses 32 MiB of on-chip memory.

Figure 3.7 shows that when running BFS for the Twitter graph PolyGraph is 30% faster than

SEGA. In this case, PolyGraph can process Twitter graph using only 5 temporal slices. However,

as discussed in Chapter 2, the overhead of switching temporal partitions grows significantly as the

number of partitions grows. For other graphs (Friendster, Host, and Urand) that are larger than

Twitter, SEGA outperforms PolyGraph. Overall, as the size of the graph increases SEGA gets

higher speedup compared to PolyGraph, ranging from 1.12× faster for Host to 1.84× faster for

Urand.

twitter host friendster urand
Graphs

0.00

0.25

0.50

0.75

1.00

1.25

Ex
ec

ut
io

n
tim

e(
s) PolyGraph

SEGA

Figure 3.7. SEGA vs. PolyGraph (iso-bandwidth 332.8 GB/s) for different graph
sizes. SEGA with 1.5 MiB on-chip memory beats SEGA with 32 MiB on-chip
memory for larger graphs.

34

In all cases, SEGA utilizes 80% to 85% of the edge memory bandwidth. However, PolyGraph

does not leverage the memory bandwidth efficiently. PolyGraph uses around 25% to 35% of the

memory bandwidth for processing edges while the rest of the bandwidth is spent for switching

partitions. As input graphs become larger, the time spent switching partitions constitutes a bigger

part of the execution time which results in SEGA exhibiting higher performance compared to

PolyGraph.

3.5.3. Scalability Analysis. We analyze both strong scaling (performance improvement as

we scale the resources on a fixed size graph) and weak scaling (performance improvement as we

scale both the size of the graph and resources).

For example, a system with 8 GPNs requires at most 128 GB/s bi-section bandwidth. Each port

of AWGR is connected to each GPN using a 8 GiB/s bandwidth. AWGR fabric uses 8 waveguides,

each carrying 8 wavelengths with 4 GB/s bandwidth per wavelength [79].

Figure 3.13 shows how the performance changes as we increase the number of GPNs for a

fixed graph size (strong scaling). We only show BFS and BC due to limitations in space. Other

workloads see a similar scaling trend. BFS is an example of a data-driven workload that experiences

dynamic changes in the number of active vertices. In contrast, BC is a topology-driven workload

in which the graph itself determines the active nodes.

In general, SEGA shows a near-perfect scaling in the performance as the number of GPNs

grows. We observed a maximum 19% difference between the ideal scaled performance and SEGA’s

performance (Twitter in Figure 3.8b. For the Urand graph, performance grows beyond the ideal

1 2 3 4 5 6 7 8
Number of GPNs

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Sp
ee

du
p

twitter
host
Friendster

urand
Ideal

(a) BFS (asynchronous)

1 2 3 4 5 6 7 8
Number of GPNs

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Sp
ee

du
p

twitter
host
Friendster

urand
Ideal

(b) BC (bulk-synchronous)

Figure 3.8. Strong Scaling Analysis: How hardware resources (GPNs) affect per-
formance for a fixed graph. This experiment shows that in SEGA strong scaling is
ideal.

35

scaling due to increased work efficiency. Overall, SEGA achieves excellent scalability in performance

as the number of GPNs increases.

1(21) 2(22) 4(23) 8(24)
Number of GPNs (Scale)

0.0
2.0
4.0
6.0
8.0

10.0
12.0

Ex
ec

ut
io

n
tim

e
(m

s)

bfs bc cc pr sssp

Figure 3.9. Weak scaling analysis when hardware resources (GPNs) and graph
size increase. using synthetic graphs RMAT21-24 and BFS. Ideally, performance
stays constant as the graph and GPNs grow together.

Figure 3.9 demonstrates how the performance improves as we increase the number of nodes for a

fixed problem size per node (weak scaling). Weak scaling is typically employed for memory-bound

applications that require a memory capacity beyond the capabilities of a single node. As illustrated

in Figure 3.9, increasing both the resources and problem size will not lead to any performance

degradation. In an ideal scenario of perfect weak scaling, the workload on a graph twice as large as

a baseline should take the same amount of time for twice as many Graph Processing Nodes (GPNs)

to execute.

3.5.4. Sensitivity Analysis.

3.5.4.1. Sensitivity to Buffer Size. As discussed in section 3.3 each PE uses a hardware buffer

to hide the long off-chip random access latency. Due to the significant size of the graphs, it is not

possible for the buffer to capture much locality in the accesses to the vertex memory. Figure 3.10

shows the buffer size does not affect performance. We ran BFS with two of our largest graphs

(Twitter and Urand). Overall, we find there is less than 2% performance improvement when

increasing the buffer size from 64 KiB to 4 MiB per PE (512 KiB to 32 MiB per GPN). The

average bandwidth between two graphs and different buffer sizes is 6.4 GTEPS which is 80% of the

peak achievable bandwidth in this system, which shows a high off-chip bandwidth utilization.

36

twitter friendster host urand
Graphs

0.0

0.5

1.0
Sp

ee
du

p

Buffer Sizes
64KiB
128KiB

256KiB
512KiB

1MiB
2MiB

4MiB

Figure 3.10. Performance sensitivity to buffer size for BFS
.

Moreover, Figure 3.10 demonstrates a small change in the execution time for both graphs which

shows both the throughput and work efficiency in large graphs are independent of buffer size.

576KiB 1MiB 1.75MiB 3MiB0

20

40

60

80

100
BFS, twitter

576KiB 1MiB 1.75MiB 3MiB

PR, twitter

576KiB 1MiB 1.75MiB 3MiB
Storage Size

0

20

40

60

80

100
BFS, RoadUSA

576KiB 1MiB 1.75MiB 3MiB
Storage Size

PR, RoadUSA

Sh
ar

e
of

 M
em

or
y

Ba
nd

wi
dt

h
(%

)

Useful Read Write Wasteful Read

Figure 3.11. Breakdown of vertex memory bandwidth between useful reads (read-
ing vertices for reduction or reading active vertices for propagation), writes, and
wasteful reads (inactive vertices read while searching for active vertices). The band-
width distribution is fairly insensitive to the storage Size.

37

3.5.4.2. Sensitivity to tracker module size. As discussed in Section 3.3.4, it is important to

identify the effect of superblock dimension of the vertex management unit on the system behavior.

Therefore, we have evaluated three different grouping dimensions of 32, 64, 128, and 256 for the

implementation of the vertex management unit. In these cases, we are tracking 32, 64, 128, and

256 different memory locations with a single entry in the work tracking engine. These dimensions

require 3 MiB, 1.75 MiB, 1 MiB, and 576 KiB of on-chip storage, respectively. We have used BFS

and PR as representative programs and Twitter and RoadUSA as input for our experiments.

Since our blocking technique can not directly pinpoint the location of active vertices in the

memory, it is important to evaluate the overheads introduced by the search for active vertices

in each block. We measured the bandwidth waste of the vertex memory for different blocking

dimensions. Figure 3.11 summarizes the division of the vertex memory bandwidth between useful

reads, writes, and wasteful reads in proportion to the peak theoretical bandwidth of the vertex

memory. The bandwidth marked as wasteful reads represent the bandwidth used to read inactive

vertices while searching a superblock for active vertices. The distribution of bandwidth does not

show observable change as the size of the vertex management unit changes.

However, there is a significant waste when running the RoadUSA graph. The main reason

RoadUSA shows bandwidth waste is that it has a high diameter, and at most times there are a

small number of vertices active Furthermore, high-diameter graphs commonly have smaller average

degrees which in turn creates a smaller slack for the vertex management unit to search for active

vertices in the DRAM. In this case, the prefetching mechanism of the vertex management unit

aggressively over fetches resulting in this bandwidth waste. Also, as shown in Figure 3.11, dense

frontier workloads such as PR (right) result in smaller wasted bandwidth as opposed to sparse

frontier workloads. When the frontier is dense, the number of active vertices in a block grows,

resulting in lower wasted bandwidth. Moreover, in all cases, we did not observe any change in our

measured throughput as the size of the vertex management unit changed. However, for the case of

running BFS with RoadUSA, we observed a drop in the work efficiency when we changed the size

of the vertex management from 1 MiB to 576 KiB. For all other evaluations of our performance,

we have used 1 MiB as the size of our vertex management unit.

3.5.4.3. Sensitivity to Spatial Vertex Mapping. Figure 3.12 shows the sensitivity to different ver-

tex placement mechanisms. We compared a placement that is load-balanced and locality-optimized

38

(using RABBIT [13]) and random vertex assignment with no preprocessing cost. We observed that

locality optimized shows at most 20% improvement compared to load balanced due to better over-

all work efficiency that is achieved from lower network traffic. However, RABBIT requires a time

complexity proportional to the number of edges. in contrast to load-balanced and random that

require no preprocessing cost.

3.6. Applications of Model

(a) Edge memory:
Desirable region: right-side of capacity limit.

(b) Vertex memory:
Desirable region is the Upper right quadrant.

Figure 3.13. Performance vs. capacity: (a) Edge memory the dotted vertical
line indicates the required edge capacity. (b) Vertex memory Uses the performance
(TEPS) in addition to the required vertex capacity (dotted horizontal line). We
consider α = 1.

twitter friendster host
Graphs

0.0

0.5

1.0

Sp
ee

dU
p

Vertex Arrangement
Locality Random Load-balanced

Figure 3.12. Performance sensitivity to spatial partitioning normalized to load
balanced optimized using BFS workload.

39

We show three concrete use cases (or applications) for the proposed model. In the first use case,

we show how to use the model to create a balanced system taking advantage of a heterogeneous

memory such as HBM3, Intel® Optane™, and DDR5 for a given graph. Next, we show how given

a homogeneous memory system, the proposed model can be used to calculate the locality required

from on-chip memory to store vertices and edges in the same memory. This could be useful to

someone developing the microarchitecture of the accelerator. In the third use case, we compare

the system generated from our model with a high-performance computing system given a graph,

algorithm, and performance.

In the first two applications, we use the WDC12 hyperlink graph [8]. We use 8 bytes to represent

edges and 16 bytes for vertices. The accelerator for WDC12 requires 55 GiB for vertices and 2 TiB

of edges. We consider the Breath First Search (BFS) algorithm and assume our accelerators have

no on-chip resources i.e., α = 1. In our partitioning scheme we assume 80% more inter-slice edges

than intra-slice (γ). We assume our accelerators have 2000 data pins. Note, that these are just

assumptions to illustrate the specific applications. The proposed model is not restricted to these

assumptions.

3.6.1. Use Case 1: Creating a Scaled-out System. In this section, we address the ques-

tion How to create a balanced Scale-Out graph accelerator given graph input and a given performance

target? The proposed model provides the required memory devices for vertex and edge memory

and network bisection bandwidth to answer this question.

Edge Memory: Figure 3.13a shows the capacity-performance relationship for different mem-

ory technologies using Table 3.1 Row 1 and Row 2. The right side of the red dotted line shows

the region of interest for edge memory capacity. HBM3.0 requires more than 128 stacks to scale to

WDC12 graph, and although it provides a significant amount of performance, it also has a high cost.

Optane provides a significantly larger capacity with 32× fewer channels than HBM3.0 stacks, but

with less performance due to its lower read bandwidth. Given DDR5’s improved cost-performance

tradeoff, we choose its performance (100 GTEPS) as the target accelerator performance for the

bottleneck analysis for the rest of the system.

Vertex Memory: Figure 3.13b shows the performance-capacity trade-off for the vertex mem-

ory. The red dashed and solid red lines show the minimum capacity and performance requirements

40

respectively. The upper quadrant region of these lines shows the memory systems with both per-

formance and capacity considerations.

Network: For our network constraints we consider near memory processing system architecture

due to its low bisection bandwidth requirements. With 8-byte message size and using the equation

in Table 3.1 Row 5, the required bisection bandwidth for WDC12 is 640GB/s.

Answer: Using our model, we find that 8 accelerators each with one stack of HBM3.0 as vertex

memory and one DDR5 channel as edge memory in a near memory processing configuration is the

best for the given performance target (100 GTEPS) and the graph (WDC12).

3.6.2. Use Case 2: Locality Calculation. The proposed model can be used to calculate

the locality requirement (i.e., α) for the accelerator while using homogeneous memory technology

for edges and vertices. In this example we consider using only DDR5 devices.

From our previous calculation we will use eight accelerators, and we will now use two channels

of DDR5 each (Figure 3.13b). Eight channels of DDR5 provides the required capacity for the vertex

memory (right-side of dashed red line). Eight channels of DDR5 only provides 6.4 GTEPS with

α = 1. To increase the performance to 100 GTEPS our model determines α must be less than

0.064 using Table 3.1 Row 3. Thus, if the accelerator’s on-chip memory for vertex information was

a simple cache it would require a hit ratio of 93.6% for a balanced system with DDR5 channels for

both edge and vertex with minimum over provisioning on the capacity. Thus, our model shows that

in a homogeneous memory system, unless the accelerator can find significant locality, the vertex

memory will be the bottleneck.

3.6.3. Use Case 3: System Evaluation. Next, we compare the results from our model

to a real example of a highly-scalable graph analytics system. We use our model to estimate

the performance of the new Sunway supercomputer running BFS on a synthetic graph with 17.56

trillion vertices and 281 trillion edges and compare our result with the performance reported by

Cao et al. [21].

Sunway supercomputer is equipped with 40 million processing cores across 103,912 processing

units each with eight DDR3 channels. Using our model we predict a performance of 71,680 GTEPS

with the Sunway supercomputer without any optimization (γ = 1, α = 1). However, Cao et al.

41

achieves 180,792 GTEPS (2.5× better performance). This discrepancy is due to their novel 3-D

partitioning method which leads to a lower γ (γ ≈ 0.4).

Furthermore, we can use our model to create a balanced system for the same synthetic graph and

a performance target of 180,792 GTEPS and compared our system against Sunway supercomputer.

The proposed balanced system from our model requires 256 TiB of memory for storing the vertices

and 2 PiB of memory for storing the edges. The model shows the balanced design only needs

8192 accelerators each with 2 DDR5 channels and 2 HBM3.0 stacks for edge and vertex memory,

respectively. The system derived using our model uses 12× fewer processors (accelerators tiles) and

4× smaller memory by taking advantage of heterogeneous memories to better match the capacity-

bandwidth tradeoffs inherent in graph processing.

3.7. Conclusion

As the size of the graphs increases, by orders of magnitude in the future, simulation is no longer

viable for conducting a system-level design space exploration of graph accelerators. We need an

analytical model that can help an architect make high level design decisions such as the number

of tiles, what is the target network bisection bandwidth, what mix of memory technologies make

sense, what are the trade-offs between a disaggregated memory configuration and a near-memory

configuration, and how to build a balanced system for a given graph size and given performance

target. In this chapter, we present a high-level performance model for large-scale graph processing

and how to use this model to answer these questions and a scalable graph accelerator that does not

rely on a large on-chip memory to mask the irregular accesses to the off-chip memory.

Currently the proposed model targets asynchronous vertex-based graph programming paradigms.

In the future we plan to extend this model to linear algebra-based formulation of graph analyt-

ics [85] and dynamic graphs and use this model to drive the design of the microarchitecture of the

accelerator tile itself.

SEGA achieves high performance for large graphs by creating a balanced system. Compared

to previous hardware accelerators, SEGA uses off-chip memory bandwidth for both sequential

edge read and random vertex read and writes. However, the throughput in SEGA for different

graph sizes will remain constant, while other studies require temporal partitioning, which results in

degradation of performance as the size of the graph increases. In addition, we propose a scaled-out

42

mechanism with an all-to-all optical interconnect that allows the design to scale to multiple cores

without network overheads. Combining these two insights, the scalable SEGA architecture charts

the path toward tera-scale graph analytic accelerators.

43

CHAPTER 4

Enabling Large Scale Graph Accelerations Using Silicon Photonics

The end of Dennard scaling restricts the ability of software frameworks to scale performance

by utilizing larger processors due to the dark silicon effect. This situation encourages the devel-

opment of custom hardware accelerators, designed for specific application domains, which can be

significantly more efficient in terms of performance and power. As we face an exponential growth

of data and an AI-driven transformation of the modern world, there is a demand for computing

systems that can keep pace. Graph processing systems that can manage graphs with trillions of

edges pose new challenges, necessitating innovative approaches to architecting computing systems

that can scale effectively. A significant portion of industry workloads, such as graph workloads,

consist of a small set of repetitive tasks that could greatly benefit from specialized units for execu-

tion. Scalability for handling large graphs is achieved by dividing larger graphs into slices that are

processed either sequentially by the accelerator or concurrently using multiple accelerators.

In this work, we focus on the scaled-out approach, in which to process large graphs, we increase

the number of accelerators. This approach is similar to going from single-core to multiple-core

processors. The main challenge of scaling out is how to compose such a multi-accelerator system.

To answer this question, it is important to understand the traffic pattern between the accelerators

and also between the accelerator and the memory system. Furthermore, we need to detect the

system requirements to package this accelerator which depends on the type and number of memory

systems and the interconnect network.

We show that the interconnect requirements of large-scale graph processing systems integrate

well with the unique strengths of photonic interconnects, such as high radix networks, low latency,

and low energy per bit across long distances. These advantages of photonics can be synergized with

emerging 3D and chiplet-based integration technology to create rack-scale or warehouse-scale sys-

tems for high-speed predictive data analytics that can enable new applications in many disciplines.

Large-scale graph processing presents three main challenges:

44

• To process graphs with trillions of edges, we need hundreds of terabytes of memory and

hundreds of terabytes per second (TB/s) of bandwidth to move data in and out of the

memory subsystem.

• Graph workloads exhibit low arithmetic intensity and the underlying memory access pat-

terns are highly irregular with little locality. As a result, traditional architectural tech-

niques such as caches and prefetchers do not work well.

• The size of accessed data in graph workloads is relatively small, typically 4 or 8 bytes in

size. However, memory is accessed in chunks known as cachelines, which are either 64 or

32 bytes. This results in low cache utilization, out of 64Byte cacheline data only 8 bytes

of that is useful.

These challenges largely mean that conventional CPUs with deep cache hierarchies and GPUs that

rely on high arithmetic intensity to hide memory latency are not suitable to meet the demands

of scalable graph processing. Therefore, the architecture community has been looking into new

approaches such as in-memory processing and dedicated domain-specific hardware accelerators to

speed up graph processing. However, the proposals in current research literature can only handle

modest-size graphs (for example, the Twitter follower graph used in many benchmarks has only

around 40 million vertices and 1.46 billion edges). It is not clear how these accelerators can be

combined to scale to trillions of edges with good strong and weak scaling properties and energy

efficiency.

In the previous chapters, we showed an analytical model that characterizes the system-level

requirements to scale to a large graph and/or to achieve a certain performance. Furthermore, we

showed the scalability limitations of previous graph accelerator nodes and proposed the architecture

of a graph processing element that can process any size graph that fits in its memory without the

previous limitations. The new accelerator design allows us to achieve strong and weak scaling as

long as the network is not the bottleneck. In this chapter, we focus on the interconnect and how

to organize these graph processing nodes. Furthermore, we also propose a package scheme that

enables us to scale to peta-size graphs.

SEGA consists of multiple standalone processing elements (PEs) with dedicated vertex and

edge memory. The contributions of this work are:

45

• By creating an all-to-all network between PEs we can detect the traffic distribution between

PEs and calculate the bandwidth requirements (average and peak bandwidth) between

PEs.

• We utilize the strengths of photonic interconnects, such as bandwidth density, low latency

across long distances, and the emerging 3D and chiplet-based integration technology to

create large scale graph accelerator systems.

• We evaluate the impact of different network topologies on the performance and create a

scalable network between PEs.

The rest of this chapter is organized as follows: In Section 4.1 we present a background on the

challenges of chiplet-based design and solutions for packaging. We analyze the network bandwidth

requirements, and traffic patterns, in Sections 4.2 and 4.2.2.

4.1. Background on Chiplet-base Systems

Processing elements are small computation units. Multiple of these graph processing elements

can be organized into a node which we refer to them as a graph processing node (GPN). GPNs can

be considered as chiplets. Similar to chiplets we can use multiple GPNs and create a large-scale

graph processing accelerator. To package the graph processing nodes we look into the packaging

technologies that is used for chiplet in the HPC systems. In this section, we focus on the challenges

of chiplet-based designs and their packaging solutions.

4.1.1. Challenges of scalability. To scale to tera/peta scale graphs we need to increase the

number of GPNs (chiplets). To enable further scaling to large graphs the number of chiplets in

the system can be increased. Scaling these chiplets has several key challenges that need to be

addressed. Fotouhi et al. [36] categorized these challenges into different categories:

1. Interconnection Challenge. The energy and latency of electrical interconnects can be signifi-

cantly impacted by distance. To overcome these disadvantages, a popular solution is to only allow

interconnecting adjacent chiplets without excessive crosstalk and energy overheads. This leads to

low-radix/high-diameter topologies with high average hop counts in which each inter-chiplet hop

imposes tens of nanoseconds latency [9]. Given these latency overheads, inter-chiplet communica-

tion in general can now significantly degrade system performance and thereby limit scalability.

46

2. Packaging Challenge. To fit more chiplets into a single package, larger substrates are needed.

While silicon interposers provide large IO density, they are too costly for the system sizes used in

current HPC nodes, which mostly use less expensive organic substrates with lower IO density.

However, to meet the future bandwidth demands of inter-chiplet links, high IO density is essential.

Silicon bridges integrated into organic substrates can connect the edges of closely-coupled chiplets

with high IO density, but they can only connect chiplets that are physically adjacent. Therefore,

there is a high demand for interconnects with high IO density and energy-efficient signaling over

long distances that can be integrated into a cost-effective organic package substrate.

4.1.2. Packaging Technologies.

4.1.2.1. Multi-Chip Modules (MCMs). MCMs mount and connect chiplets with high-density

interconnects (HDIs) on the package substrate using wire-bond or flip-chip technology [84]. MCMs

typically utilize organic package substrates as these are not manufactured in the foundry and

therefore much cheaper. In addition, no further processing steps such as 2.5D integration and

additional processing steps for the vertical interconnects are needed. Thus MCMs the cheapest

option from both material and processing costs, making them an attractive option for systems of

larger scale.

One of the challenges of MCMs is that flip-chip interconnects offer relatively low IO pin densities,

restricting off-chip(let) bandwidth. Having a low IO pin density causes “pin wall” due to the

vast majority of pins that are dedicated to power/ground, leaving few pins to satisfy off-chip

communication demands. In addition, high IO pitches can also restrict the number of connected

chiplets, which leads to low-radix chiplets requiring networks with high diameters and average hop

counts. Inter-chiplet hop latency has a large impact on system performance and leads to complex

systems with high latency variations. By connecting distant nodes we can create a topology with

low diameter; however, energy grows linearly with distance for electrical links, which makes this

approach infeasible for chiplet-based systems.

4.1.2.2. 2.5D Integration with Silicon (Si) Interposers. 2.5D integration places an additional

silicon die on top of the package substrate, and the chiplets on top of the interposer. Chiplets

connect to each other and to the package substrate through the interposer with through-silicon

vias (TSVs) and µbumps. Interposers can be passive (interconnects only) or active (interconnects

and logic). The main benefit of 2.5D integration is the substantially higher interconnection density

47

compared to MCMs which allows for higher maximum bandwidth or for lower energy per bit by

reducing the data rates of the IO transceivers. High IO density can enable higher-radix switches on

the chiplets (i.e., connect each chiplet to more other chiplets), thereby reducing network diameter.

2.5D integration with Si interposers overcomes the challenges such as low pin IO density however,

Si is significantly more expensive than organic substrates and 2.5D integration requires additional

(and more complex) processing steps. Even with high IO density, 2.5D integration cannot overcome

the limitations imposed by electrical interconnects such as length.

4.1.2.3. Silicon bridges. Si bridges, like Intel’s EMIB technology, aim to solve the limitations

of both MCM (poor interconnection density) and 2.5D integration (high cost for Si interposer) by

embedding small and thin Si chips (“bridges”) into an organic package substrate to interconnect the

edges of adjacent chiplets. Si bridges offer high IO density with latency and energy metrics similar

to on-chip wires and enable short interconnects through tight packaging with just 100µm between

chiplets. Si bridges thereby offer a more scalable solution by combining the low material costs of

organic substrates with the high IO bandwidth density of Si interposers. Just like Si interposers and

MCMs, Si bridges utilize electrical interconnects and thus impose the same distance-related energy

limitations, and thereby the same network radix/diameter problem. Consequently, Si bridges alone

cannot overcome the NUMA, interconnect, and scalability challenges in chiplet-based computing

systems. Systems with one large chiplet and several (much) smaller chiplets could exploit the high

IO density of Si bridges to directly connect the large chiplet to each small chiplet, but inter-chiplet

traffic would likely be bottlenecked by the crossbar on the large chiplet, limiting the scalability of

this approach.

4.1.2.4. Silicon Photonics. SiPhs-enabled integrated optical interconnects have properties that

can be used to address the challenges posed by electrical interconnects. Optical technology offers

energy consumption that is virtually independent of distance, near speed-of-light signal propaga-

tion latency, and high bandwidth density through wavelength-division multiplexing (WDM), which

allows for parallel transmission on multiple wavelengths within the same optical link. Additionally,

SiPh devices can perform wavelength-selective routing, allowing data to be routed based on the

wavelength channel and enabling a chiplet to connect to multiple other chiplets through a single

48

waveguide. Furthermore, SiPhs can be integrated into organic package substrates, providing a so-

lution to interconnection challenges while allowing for the use of a relatively inexpensive packaging

substrate (compared to a Si interposer) [4].

4.2. SEGA a Chiplet-Based System for Large Graph Acceleration

In large-scale systems, ensuring scalability is crucial. To achieve scalability, we must prevent

data movement between accelerators from becoming a performance bottleneck as we add more

processing elements. For this purpose, an adaptive network capable of adjusting based on traffic is

essential.

In our scaled-out system, we use the interconnect network to communicate messages to neigh-

boring vertices, also known as inter-slice updates. If a graph is well-partitioned and has a low

rate of inter-slice events, it does not require a high bandwidth network. However, creating such

a well-partitioned graph with few inter-slice events involves a pre-processing cost. This cost is

typically higher than the cost of the graph workload itself. Therefore, we aim to use an inter-

connect technology that can handle the traffic when the graph is randomly distributed among the

accelerators.

To understand the maximum required bandwidth needed on the interconnect, we need to un-

derstand the maximum traffic that the graph accelerators generate. We use PEs as potential

accelerator cores and study their network pattern and bandwidth requirements as the size of the

system grows.

One of the key characteristics of SEGA is the connection of each PE to a dedicated vertex and

edge memory. By assigning each vertex to a dedicated PE, this approach not only eliminates the

atomic updates resulting from multiple PEs attempting to update a single vertex but also allows

each PE to access the full bandwidth of its edge and vertex memory with reduced contention from

other PEs. In addition, in this scenario, we decouple the memory accesses from the message-passing

network between PEs. Each PE performs vertex reads/write, and edge reads using its dedicated

memory bus and only uses the network between PEs to send inter-slice messages (messages prop-

agated between an active vertex to its remote neighbors).

Recent works from Intel, the importance of SiPh in scaling accelerator cores to 10k nodes

by using SiPh technology using a hyper-x topology to reduce the diameter of this network and

49

therefore reduce the number of router hops and the network latency. In the scaled-out PUIMA

architecture, Intel uses optical fibers and fiber routing to communicate data at high bandwidth

density Similar technology can be used in a SEGA-like architecture to create a system that can

scale to petascale graph size. However, we need to understand the network requirements of SEGA

and use an interconnect according to our system’s bandwidth and latency needs.

Making efficient use of network bandwidth is another critical aspect as the available network

bandwidth directly impacts system performance, cost, and power consumption. Communication

patterns between compute nodes in modern workloads are typically not evenly distributed, and

they cause high variances in link utilization between low-utilization computing-intense and high-

utilization communication-intense phases. It is challenging to simultaneously provide sufficient

bandwidth for high-communication phases between certain node pairs without wasting energy in

low-utilization phases. Unfortunately, electronic switches, and in particular transceivers connecting

them, have fixed bandwidth which prevents adapting the link bandwidth to current communica-

tion demands. This has led to systems that typically deploy multi-hop topologies (like Fat-Tree,

butterfly, or clos topologies) to provide load-balancing capabilities for high utilization phases with-

out excessively over-provisioning the network resources for low utilization phases. Previous works

on reconfigurable bandwidth steering show how bandwidth reconfiguration can help improve the

overall execution time of different HPC applications by improving network utilization [35,55]. The

applications with phases in traffic distribution reconfigurations can play an important role in im-

proving performance without the need to overprovision the resources, whereas in applications with

uniform random traffic patterns reconfiguration will not be beneficial. Therefore, it is important

to understand both the bandwidth requirement of the system along with the traffic distribution

between nodes.

In this section, we look into the traffic pattern and bandwidth requirements between PEs in

the graph accelerator. We use both the analytical analysis and the simulation to determine the

inter-PE link bandwidth, the required bisection bandwidth, and the traffic distribution among PEs.

We also use experiments to help us predict how the traffic needs increase as the number of PEs

scales.

To characterize the interconnect network traffic, we implemented a cycle-accurate model of

the system shown above in gem5, with a point-to-point network between the accelerator nodes.

50

We used live-journal as the input graph and sampled the traffic on each link every 5 us. In this

particular system, we assumed an infinite link bandwidth between PEs.

4.2.1. Bisection Bandwidth Requirements. In Chapter 3 we used an analytical model

to predict the bisection bandwidth requirements in a scale-out graph accelerator based on TEPS

(traversed edges per second). In a balanced system, TEPS can be calculated based on the edge

memory bandwidth. However, realistically, the edge memory bandwidth is not fully utilized during

the execution. The cause of this under-utilization is caused because the edge memory and vertex

memory are accessed at different rates. TEPS is dictated by the one that causes the bottleneck.

Equation 4.1 shows the system’s TEPS. In cases where the TEPS is dictated by the vertex memory

or the network then the edge memory bandwidth is underutilized.

bf
s,

in
fin

ite

bf
s,

12
0M

iB
/s

bf
s,

10
0M

iB
/s

bf
s,

80
M

iB
/s

cc
, i

nf
in

ite

cc
, 1

20
M

iB
/s

cc
, 1

00
M

iB
/s

cc
, 8

0M
iB

/s

ss
sp

, i
nf

in
ite

ss
sp

, 1
20

M
iB

/s

ss
sp

, 1
00

M
iB

/s

ss
sp

, 8
0M

iB
/s

pr
, i

nf
in

ite

pr
, 1

20
M

iB
/s

pr
, 1

00
M

iB
/s

pr
, 8

0M
iB

/s
Application, Max Link BW

0

20

40

60

80

BW
 U

til
iza

tio
n

(%
) UsefulBW(%) WastedBW(%)

Figure 4.1. Edge memory bandwidth utilization of graph workload in an ideal
point-to-point network when running live-journal graph.

(4.1) TEPS = min(
EdgeMemBW

SizeOf(Edge)
,
VertexMemBW

2× atomSize× α
,

BisectionBW

Sizeof(message)
)

Equation 4.2 can be used to calculate the realistic value of TEPS based on the edge memory

when the edge memory utilization is known.

(4.2) Bisection Bandwidth = EdgeMemBW× EdgeMemBW Utilization

51

Figure 4.1 shows the edge bandwidth utilization of different applications in a system with 64 PEs

that are connected together through a point-to-point network. We use an infinite link bandwidth

in this experiment to show the network traffic pattern of graph applications without any restriction

on the network. The average bandwidth utilization in a system with infinite link bandwidth is

76.1%.

Figure 4.1 also illustrates the percentage of bandwidth that is wasted. This waste occurs

because not all edges read from the edge memory are connected to an active vertex. We access

the edge memory based on the cache size, but the edge information is smaller than this size. As

a result, there are times when the edges read are connected to neighboring vertices instead of the

active vertex. Consequently, not all edges read from the edge memory lead to message propagation,

resulting in wasted bandwidth as depicted in Figure 4.1. This figure highlights the percentage of

wasted bandwidth caused by large memory access size, which results in reading redundant edges.

The figure also presents the bandwidth utilization when there are bandwidth limits on the

interconnect links. With a link bandwidth of 120 MiB/s, the bandwidth utilization is similar or

even larger (in the case of bfs, sssp, and pr) than in scenarios with infinite link bandwidth. However,

as the maximum link bandwidth decreases, so does the bandwidth utilization. This reduction in

bandwidth is primarily due to the interconnect becoming a bottleneck in these scenarios. As

indicated in Equation 4.1, the bisection bandwidth drives the TEPS. Due to bandwidth limits, the

message generation engine experiences backpressure and cannot send messages to the network at a

high rate.

bfs cc sssp pr
Application

0

20

40

60

80

Av
er

ag
e

Lin
k

BW
 (M

iB
/s

)

Figure 4.2. Average PE-to-PE traffic bandwidth with a point-to-point network
with infinite bandwidth when running live-journal graph.

52

bfs cc sssp pr
Application

0

100

200

300

Bi
se

ct
io

n
Ba

nd
wi

dt
h

(G
B/

s)

Figure 4.3. Required bisection bandwidth in an ideal point-to-point network with
infinite bandwidth when running live-journal graph.

It is not feasible to create a network with unlimited link bandwidth. Therefore, to impose a

restriction on link bandwidth, we need to understand both the average link bandwidth between

PEs and the distribution of traffic on each link. Figure 4.3 shows the average network bisection

bandwidth for all the applications. This shows that in a system with 64 PEs that can scale to

graphs with terabytes of memory footprint, the average bisection bandwidth is 350 GiB/s, which

is 76.1% of the system’s maximum bandwidth.

In a system with 64 processing elements (PEs) and full edge bandwidth utilization, the network

bandwidth reaches 468 GiB/s. Opting for a 120 MiB/s link bandwidth in a point-to-point network

can effectively support maximum network traffic.

A point-to-point network is particularly desirable for applications with uniform random traffic

patterns. However, in scenarios where traffic distribution is uneven across links, we encounter

situations with hotspot links (high demand) and underutilized links. To mitigate this, a thorough

study of the traffic pattern on each link is essential.

4.2.2. Network Traffic pattern. In the previous section, we looked into the bisection band-

width required to create a system with 64 PEs. We study 64 PEs since, based on our model, SEGA

can use 64 PEs to scale to WDC12 [8], the largest publically available graph.

53

0 100 200 300 400 500
Bin

0

200

400

600

800

1000

1200

1400

1600

Tr
af

fic

(a) LinkID 1

0 100 200 300 400 500
Bin

0

200

400

600

800

1000

1200

1400

1600

Tr
af

fic

(b) LinkID 65

0 100 200 300 400 500
Bin

0

200

400

600

800

1000

1200

1400

1600

Tr
af

fic

(c) LinkID 1025

0 100 200 300 400 500
Bin

0

500

1000

1500

2000

2500

3000

Tr
af

fic

(d) LinkID 3969

Figure 4.4. Histogram of network traffic on three random links.

A combination of bisection bandwidth and the distribution of traffic among PEs helps us cal-

culate the link bandwidth among PEs. In a uniform random distribution, each PE communicates

with others at a uniform rate. Therefore we can calculate the link bandwidth by simply dividing

the bisection bandwidth by the number of links. Our goal is to understand the traffic distribution

on the network which consequently helps us calculate the link bandwidth and type of network

technology to use.

We used the same 64-PE system with infinite link bandwidth to capture the traffic pattern

between PEs. Figure 4.4 shows the histogram of traffic on four random links in the system. This

figure shows that in each time sample, the number of packets sent on each link is not uniform. The

other observation is that the traffic does not follow any type of particular distribution. Therefore,

the traffic distribution on each link is random. During the execution of the application, there are

54

phases in the application where the link is underutilized, and there are time samples where the

traffic is heavy.

0 500 1000 1500 2000 2500 3000 3500 4000
LinkID

0

50

100

150

200

250

300

350

M
iB

yt
e/

s

Time sample 1435us - 1440us

Figure 4.5. Average bandwidth of all the links in a certain time sample.

While Figure 4.4 shows the histogram of traffic on each link, we need to understand how traffic

distribution changes between links. Are there situations where there are more inter-slice events

between PEi and PEj than between PEi and PEk? Figure 4.5 shows the average link bandwidth

within a random 5 µs time sample. In this time sample the average link bandwidth changes between

0 and 350 MiB/s, showing that within this time sample some links are completely underutilized.

Due to this traffic nonuniformity a “hot spot,” typically but not uniquely is produced on certain

links which can produce effects that severely degrade all network traffic.

In such a system with irregular bandwidth assignments, the designer can maintain the perfor-

mance by either using a link bandwidth that matches the traffic on the congested link, or they

can use a reconfigurable interconnect to steer the bandwidth from underutilized links toward the

hotspot links. In the former case, the network resources are over-provisioned for the low-utilization

links. Thus reconfiguration can play a vital role in improving performance without overprovisioning

bandwidth.

55

0 100 200 300 400 500
Bin

0

100

200

300

400

500

600

Tr
af

fic

(a) LinkID 1

0 100 200 300 400 500
Bin

0

100

200

300

400

500

600

Tr
af

fic

(b) LinkID 65

0 100 200 300 400 500
Bin

0

100

200

300

400

500

600

Tr
af

fic

(c) LinkID 1025

0 100 200 300 400 500
Bin

0

200

400

600

800

1000

1200

Tr
af

fic

(d) LinkID 3969

Figure 4.6. Histogram of network traffic on three random links.

Figure 4.2 shows the average link bandwidth for different applications. Based on these values

and the bisection bandwidth, we used 120 MiB/s as the link bandwidth. By adding this restriction

to the link, the traffic pattern on each link changes. Figure 4.6 shows the histogram of link traffic,

showing that the traffic is uniform compared to Figure 4.4, by adding the traffic bandwidth restric-

tion, the extra traffic from heavy time samples rolls over to the time samples with low traffic, which

results in a more uniform distribution. In addition, with infinite link bandwidth, we are allowing

the PEs with bursty accesses to utilize all the resources of the destination PE, preventing other PEs

from sending requests to this destination PE. In contrast, by adding bandwidth restriction, we are

only allowing a limited number of messages to be sent to a particular PE from other PEs. Which

allows a more uniform access pattern between PEs. This is one of the reasons that in Figure 4.1

we get better bandwidth utilization with 120MiB/s compared to infinite bandwidth.

56

In addition to better bandwidth utilization, work efficiency can also be impacted. The work

efficiency can be improved by coalescing multiple updates to the same vertex. At the message

processing engine, more PEs can send their request to a particular vertex, allowing for more coa-

lescing at both on-chip memory and the vertex memory. There is a higher degree of spatial locality

in requests sent from multiple PEs compared to those sent from a single PE. Figure 4.10 shows

the normalized number of coalescing compared to infinite link bandwidth. This figure shows that

bandwidth restriction allows for better coalescing.

0 500 1000 1500 2000 2500 3000 3500 4000
LinkID

40

50

60

70

80

90

100

M
iB

yt
e/

s

Time sample 1435us - 1440us

Traffic

Figure 4.7. Average bandwidth of all the links in a certain time sample.

Opportunities for Reconfiguration: Figure 4.7 shows the average bandwidth of links com-

pared to other links within a time sample. Compared to the infinite link bandwidth, the average

link bandwidth changes between 40 MiB/s to 100 MiB/s, showing the traffic between links is uni-

form compared to the infinite link bandwidth where the bandwidth changes from 0 to 350 MiB/s

(Figure 4.5). Thus, by adding bandwidth restriction, the traffic becomes more uniformly random

compared to the infinite link bandwidth. Bandwidth reconfiguration is not a good solution for

uniform random distribution traffic.

Consequently, since the traffic is uniformly random, we can assign the link bandwidth restriction

by dividing the bisection bandwidth by the number of links. Figure 4.8 shows how adding link

bandwidth restriction impacts the overall performance. This figure shows that 120 MiB/s maximum

link bandwidth can achieve similar/higher performance compared to infinite link bandwidth. This is

57

due to both better edge bandwidth utilization that causes higher overall TEPS and a higher number

of vertex coalescing that ultimately improves the work efficiency. Figure 4.10 shows the normalized

number of coalescing compared to the infinite link bandwidth. By assigning link bandwidth, we

achieve higher/similar coalescing compared to the infinite link bandwidth. However, as we decrease

the link bandwidth to 100 and 80 MiB/s throughput starts to decrease due to contention on the

network. 120 MiB/s shows the highest coalescing rate with the highest TEPS across different

networks.

bfs cc sssp pr
Application

0.0

0.5

1.0

Sp
ee

dU
p

Max Link BW
infinite 120MiB/s 100MiB/s 80MiB/s

Figure 4.8. Performance for different link bandwidth restrictions. This figure
shows that the link bandwidth of 120MiB/s shows similar or higher performance to
a simulation with infinite bandwidth. Higher is better.

bfs cc sssp pr
Application

0.0

0.5

1.0

No
rm

al
ize

d
Nu

m
be

r o
f C

oa
le

sc
e Max Link BW

infinite 120MiB/s 100MiB/s 80MiB/s

Figure 4.9. The normalized number of vertices coalesced. More coalesced vertices
result in better work efficiency and a lower number of vertex memory reads. These
values are normalized to the infinite link bandwidth

58

bfs cc sssp pr
Application

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
TE

PS

Max Link BW
infinite 120MiB/s 100MiB/s 80MiB/s

Figure 4.10. The normalized throughput. These values are normalized to the
infinite link bandwidth

4.3. Packaging

During our initial experiments, we assumed 64 PEs all connected point-to-point in a single

package. However, in such system there are 32 DDR4 channels and 8 HBM2 stacks. Such a system

requires 17,408 pins. One significant bottleneck of such a system and sustaining the scalability is

processing power.

To maintain the processing power within tight power envelopes, we can rely on breaking mono-

lithic chips into smaller “chiplets.” Utilizing several smaller chiplets assembled using advanced

packaging technologies, instead of one large monolithic chip, reduces costs by exploiting the higher

yield of smaller dies. This approach incurs low performance and energy overheads through tight

integration in the same package [36].

Due to the low traffic required between PEs, we are not limited by the link bandwidth but by

the number of pins connecting each PE to the off-chip memory. Due to such a large number of pins

required, we propose to organize a group of PEs into GPNs of graph processing nodes and only fit

a number of GPNs into a die. To scale to larger graphs we increase the number of connected dies.

In the recent PUIMA architecture from Intel, the number of pins per die is calculated to be 3275

pins [5]. A single HBM stack and a DDR channel have 1024 and more than 184 pins respectively.

In this design, we can connect 8 PEs, 1 stack of HBM2, and four DDR4 channels in one GPN.

connect two GPNs into a single die. Two GPNs in a single die require 3072 pins for die memory

interconnection.

59

Since the bandwidth requirement between PEs is small. We are proposing that PEs inside

one GPN be connected through a point-to-point electrical interconnect. GPNs within a die are

connected through a PCIe4 ×4 lane with 16 GiB/s bisection bandwidth. Each die can support

a graph with a maximum of 1 billion vertices and 1 trillion edges. For scaling to graphs larger

than 1 trillion edges, we can scale the number of graph accelerator dies. In graph processing

communications, latency is significant to system performance. Since the network bandwidth is

low between PEs, the link latency plays an important part in determining the execution time. To

ensure low data movement overhead the on-die network needs to be extended to an off-die network

with low latency, by reducing the link propagation time and minimizing the number of hops.

To scale to WDC12 which is the largest publicly available real-world graph, our calculations

show that we need 8 GPNs. In a scale-out 4-die system, the maximum bisection bandwidth required

is 360 GiB/s. to support a 4×4 system with 22.5 GiB/s link bandwidth in a 4×4 can be supported

using NVLink with 50GB/s link bandwidth.

Scaling to graphs larger than WDC12 or systems with more than 4 number of dies, the number

of hops can cause a bottleneck. The required bisection bandwidth increases with the order of n2 (n

is the number of dies in the system). To reduce the impact of communication on performance, a low-

dimeter topology with low network transmission time is required. Although electrical interconnects

such as PCIe and NVLink can support this bandwidth, to create a low-dimeter interconnection

electrical interconnects require large amounts of wiring and their energy and latency are dependent

on distance.

Wavelength-selective routing allows GPNs to connect to multiple other GPNs through a single

optical IO pin (addressing them on different wavelengths), enabling high-radix low-diameter net-

works with a distance-independent latency. Optical networks provide sufficient scalability in terms

of crosstalk and power consumption to enable point-to-point connectivity. The bisection bandwidth

in the array waveguide grating router (AWGR) also scales with the order of n2. The bandwidth

scalability along with low latency and high radix feature makes this device an ideal candidate for

the inter-die interconnection fabric between the accelerator dies.

60

GPN

PE PE PE PE

PE PE PE PE

HBM2.0 Stack

DDR4

DDR4
Router Router

GPN

PE PE PE PE

PE PE PE PE

HBM2.0 Stack

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

SiPh TRX SiPhTRX

AIB AIB

Electrical Links

Silicon Bridge

Figure 4.11. Architecture of single graph accelerator die

To connect the die to the SiPh transceivers we use Intel’s Advanced Interface Bus (AIB). AIB

moves data from microbumps on one chiplet to microbumps on another adjacent device. The fine

pitch of new high-density packaging microbumps keeps the real estate required for the interface

modest. Current optical I/O chiplets from Ayar labs can also be used to connect the Graph

accelerator dies to the optical transceivers through PCIe [4]. PCIe uses high speed through a

few wires, whereas AIB uses a wide parallel interface supported by new high-density packaging

technology. By running each wire of the interface at a relatively low speed in AIB, the circuitry for

each transmitter and receiver is greatly simplified and uses little silicon area. AIB connections can

be made by wires on an interposer or by using a bridge technology like Intel’s Multi-Die Interconnect

Bridge (EMIB) bridge. We propose using EMIB to interconnect optical transceivers to the routers

to extend the on-die network between dies.

4.4. Methodology and Evaluation

We have implemented a model for the intra-die network shown in Figure 4.11 and the inter-die

network with AWGR in gem5. We evaluate the networks with both synthetic and application traffic

to study how the networks perform under graph workloads and how they would perform based on

the network injection rate (which allows us to scale to large systems without being limited by

the long simulation latency). For the electrical interconnection, we are using a 4-cycle router

latency working at 1GHz frequency. The internal GPN links use a 120MB/s data rate while the

electrical link between routers is 7.5 GiB/s (8 routers, 8 links each, 120 MiB/s). For the optical

interconnection, we are using a 32 Gb/s link bandwidth with a transmission time of 1 ns and an

optical-to-electrical-optical latency of 2 ns.

61

10 20 30 40 50 60
Number of dies

0

20

40

60

80

100

Av
er

ag
e

pa
ck

et
 L

at
en

cy
 (n

s)

Topology
Mesh
Point-to-point

Figure 4.12. Iso-bisection bandwidth test: The average network packet latency
for point-to-point vs. mesh topology. Higher link bandwidth for mesh compared to
the point-to-point topology. The network latency increases for the mesh topology
for higher number of dies due to more number of average network hops.

In the synthetic traffic evaluation, we used gem5 [57] with garnet3.0 [20] for detailed network

performance simulation, and for the detailed graph simulation, we used our own implementation of

gem5 implementation of SEGA and the router implementation to model the graph accelerator and

the interconnect. We use uniform random traffic for the synthetic traffic simulation that matches

the inter-GPN traffic distribution. We used Mesh topology as the baseline since it is the topology

used in the previous graph accelerators [29]. Figure 4.12 shows the iso-bandwidth test and the

average packet latency in the network as the number of dies increases. The link bandwidth in mesh

topology is O(n), where n is the number of dies. In the mesh interconnect, the average number

of network hops increases as the size of the network increases, resulting in higher overall network

latency.

62

bfs cc sssp pr
Applications

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

dU
p

point-to-point SEGA

Figure 4.13. Iso-bisection bandwidth test in an 8 GPN system: comparing the
point-to-point network in a system without pin wall vs. comparing with a SEGA
packaging with two GPNs per die, connecting 4 SEGA dies

Figure 4.13 running our simulation results when running real graph workloads on our gem5

implementation of SEGA. In this case, we are comparing an ideal 64×64 PE system with point-

to-point interconnection on a single die compared to a system similar to Figure 4.11 with 4 dies

connecting through optical links and 16 PEs per die clustered into two GPNs.

Figure 4.13 shows that the performance of SEGA is similar to the ideal point-to-point connection

mostly due to the bandwidth density and low communication latency that is provided by optical

interconnections.

4.5. Conclusion

In graph applications, the data movement plays an important part in determining the per-

formance. In addition to performance, scalability is another challenge for these applications. In

this chapter, we looked at the characteristics of traffic between accelerator nodes and proposed a

packaging scheme that helps the accelerator to scale out without performance degradation. While

this chapter improved the data movement among the graph processing nodes, the accelerator mem-

ory interaction can still cause limitations, especially for the vertex memory since the vertices are

the data structures with irregular memory access patterns. In the next chapter, we propose a high

63

bandwidth, low latency, and low energy memory system that can be a great candidate as the vertex

memory in the graph accelerators.

In this new memory system, we rearchitect the memory bank and reduce the bank conflicts

in the memory channel, furthermore, we co-design the memory controller and a silicon photonic-

enabled data bus that reduces the contention on the data path and creates a system with high

bandwidth and low memory access latency specialized for sparse workloads.

64

CHAPTER 5

Low Latency Memory

5.1. Introduction

Emerging applications, such as recommendation systems, mining large sparse graphs, etc.,

exhibit irregular memory access patterns with little data reuse and poor locality [38]. For these

irregular workloads, the memory subsystem is increasingly becoming the bottleneck in modern

computing architectures. The memory subsystem should not only provide high bandwidth but also

low latency to achieve high performance for irregular applications [24,32]. In addition, variability

in memory latency is another concern as it limits the performance of computing systems [24] and

increases the burden on the programmer. It is desirable that both the average memory access

latency and its variability (e.g., as measured by the 95th percentile) are low.

To address these challenges, there has been a resurgence of interest in DRAMmicroarchitectures

and memory system designs. With the emergence of silicon photonics technologies, and chiplet-

based architectures with 2.5D/3D packaging, there are new opportunities to co-design the various

components of the memory subsystem. Recent advances in DRAM architecture, such as wider

I/O enabled by 2.5D/3D packaging (as in HBM and its derivatives [44, 69]), higher data rates

with serial links, and increased bank-level parallelism (again with HBM like technologies), have

improved DRAM bandwidth significantly. However, often these bandwidth improvements come at

the expense of additional latency and variability due to deeper queues in the memory controller to

take advantage of the bank-level parallelism and serialization/deserialization (SerDes) latency [25].

There are also proposals [22,42,45,47] in literature that explicitly address the latency question in

DRAM microarchitectures, and most of these proposals simply take advantage of locality to reduce

latency.

We argue that the main source of latency for irregular workloads in the memory subsystem is

contention caused by sharing resources such as buffers, ports, data/command/control buses, and the

DRAM cells where the data actually resides. Increasing these resources comes at a significant cost

65

and may have physical limits such as the number of pins (I/O pads) that can be placed in a given

space. Thus, we must consider sources of contention in the entire end-to-end path, which includes

the processor/memory interconnect, memory controller, and DRAM microarchitecture. In the past,

end-to-end optimization of the memory subsystem was not feasible in commodity CPUs (though

there has been a slow transition in this direction with integrated memory controllers and special-

purpose processors with GDDR SDRAM). However, chiplet-based architectures such as AMD’s

EPYC and recently announced Intel’s Sapphire Rapids offer the opportunity to co-design the off-

chip(let) processor/memory interconnect, memory controller, and the DRAM microarchitecture [9].

This chapter describes our co-design approach, which we call Low Latency Memory (LLM).

LLM simultaneously optimizes latency, bandwidth, and energy efficiency by taking advantage of

silicon photonics (SiPh) interconnects with optical parallelism and wavelength routing to reduce

contention in the entire path from chiplet to the DRAM subarrays. This co-optimization is now

possible because silicon photonics offers lower energy/bit [78], high bandwidth density (Gb/s/mm2)

with wavelength division multiplexing (WDM) [65], and all-to-all interconnectivity with chip-scale

AWGRs (Arrayed Waveguide Grating Routers) [79].

5.2. Motivation

The primary source of performance degradation for irregular applications is contention among

shared resources [32]. Figure 5.1a shows the high-level schematic of a generic chiplet-based archi-

tecture such as AMD EPYC [9]. There are four major components in this system: the interconnect

fabric between each chiplet and the memory controllers, usually a complex crossbar-like structure

with high bisection bandwidth; the memory controller, which consists of queues to buffer read/write

requests bound for the particular memory channel; and finally the DRAM device, which consists

of multiple banks, with each bank itself made up of subarray of cells. It is important to note that

the interconnect fabric, the queues inside the memory controllers, data buses within the channel,

global sense amplifiers, and global bitlines within the DRAM devices are shared, which introduces

the potential for contention and additional latency due to arbitration, buffering, and serialization

(time multiplexed sharing).

Figure 5.1b, shows the simulation results of end-to-end latency by adding parallelism only at

the DRAM microarchitecture. Here we used eight random traffic generators connected to 4-Hi stack

66

(a)

HBM HBM+ HBM++ WHBM++
Memory

0

20

40

60

80

100

120

La
te

ny
 (

ns
)

Average DRAM Latency
Average Memory Controller queueing Latency
Average Packet Network Latency

(b)

Figure 5.1. (a) Generic High-level Architecture of the Memory Subsystem. (b)
Breakdown of end-to-end latency. HBM+ increases the pseudo-channels, HBM++
reduces the size of each bank, andWHBM++ increases the data bus width compared
to HBM++.

Table 5.1. DRAM configuration

Category HBM HBM+ HBM++ WHBM++
Channels/stack 8 8 8 8

pseudo-channel/channel 2 4 16 8
Banks/channel 16 16 32 32

Pins/pseudo-channel 64 32 8 64
tBURST 4 8 32 4

HBM2 (eight channels) in gem5 [57]. We used HBM as a baseline model of HBM2 working in the

pseudo-channel mode, which divides each HBM2 channel into two pseudo-channels that share the

channel’s address/control (ADD/CMD) bus but have their own 64-bit wide I/O interface. Table 5.1

shows the specification of different memories. WHBM++ has an 8 × number of pins compared to

HBM++ while providing the same number of banks and pseudo-channels as HBM++.

We divided the end-to-end latency into three categories: network latency, the queuing latency

at the memory controller, and DRAM access latency. Figure 5.1b shows that for HBM, most

of the latency is in the queuing at the memory controller. When we increase resources without

considering co-design, the memory controller bottleneck is alleviated. Still, the other components

(the device and the network latency) begin to dominate the total latency, and there are diminishing

returns. Thus, a high-performance memory, not only needs higher parallelism to reduce the memory

controller queuing latency, but it must also reduce the device and interconnect latency. In fact, we

67

propose to re-architect the entire end-to-end system to reduce the latency of the memory subsystem,

specially as we scale the system to large number of compute units and run irregular workloads with

poor data reuse and locality.

LLM makes the following contributions towards removing these sources of contention: (a)

It proposes a ground up co-design of the entire path from the processor/memory interconnect to

the DRAM microarchitecture. This co-design enables both bandwidth and latency improvement

without sacrificing one for the other. LLM is composed of three pieces: a contention-less optical

data plane, a low-bandwidth electrical control plane, and fine-grained memory banks with inte-

grated photonics. (b) In the data plane (Figure 5.2a), LLM provides a dedicated data path from

every requestor to every memory bank. An LLM-like architecture is impractical with electrical

interconnects because of the energy costs of data movement and the wiring complexity of providing

these dedicated data paths. We propose using a passive and contention-less optical interconnect for

the data plane with no intermediate buffering, thus reducing the queuing and the interconnect la-

tency compared to other chiplet-based architectures. (c) The control plane (shown in Figure 5.2b)

communicates the address and command between chiplets and memory and coordinates the time

that a chiplet sends or receives its data. A low bandwidth electrical network is used for carrying

this control information. (d) LLM uses fine-grained memory units called µbanks that are exposed

to the memory controller to exploit massive amounts of parallelism. LLM memory devices have

integrated optics to allow low-latency high-bandwidth direct connections from the requestors to

the memory µbanks.

5.3. Silicon photonic enabling technologies

Over the past decade, optical interconnects have shown great potentials in overcoming the

bandwidth bottlenecks that limit inter-processor and memory performance [16,36,95]. Commer-

cial products (e.g., Ayar Labs in collaboration with Intel) leveraging foundry-enabled (e.g. Glob-

alFoundries offers SiPh-CMOS fabrication) SiPh fabrics and WDM SiPh transceivers have been

announced, making SiPh technology feasible for chiplet-based communications [2].

The first SiPh device we use in this study is a microring resonator. Microrings are compact

and energy efficient, WDM-compatible devices that are designed to resonate when presented with

specific individual wavelengths and remain quiescent at all other times. Active microrings are

68

designed to tune their resonance frequency as the amount of current in their base layer changes,

enabling data modulation and demodulation. Microring modulators encode bits onto the optical

medium (electrical-to-optical (EO) conversion), and microring filters extract the optical signal and

send it to a photodetector performing optical-to-electrical (OE) conversion.

Earlier proposals used optical buses and large matrices of microrings (consisting of hundreds of

microrings) for the memory-to-processor network [16,27,48]. In this proposal, we use AWGR [37,

74, 79, 87] which is a passive silicon photonic fabric with a compact layout that offers scalable

all-to-all connectivity through wavelength routing. Recent advances in the fabrication process of

AWGRs now enable their integration with a significantly reduced footprint (1 mm2), crosstalk (< -

38dB), and loss (< 2dB) [79]. This makes the AWGR a favorable candidate for energy-efficient,

high bandwidth, all-to-all connectivity within HPC systems. Initial studies have shown AWGR to

be promising choice for processor-to-memory network [36,37]. Figure 5.2d shows the wavelength

routing in a 5×5 AWGR; all wavelengths inside a waveguide entering one input port of AWGR are

evenly distributed over all the output ports, each to a unique output port.

A Vertical Optical Interconnect (VOI) is an optical waveguide that can potentially replace

through-silicon vias (TSVs) in 3D stacked memories. Unlike previously demonstrated optical

TSVs [71], VOIs have 1-2 µm pitch size [105] and they can provide higher bandwidth density

compared to state-of-the-art TSVs (20 µm pitch size [70]).

5.4. Architecture

In this section we present the detailed design and implementation of LLM that harnesses the

benefits of silicon photonics to reduce contention in the entire memory subsystem from the requestor

(chiplet or group of chiplets) to the fine grain access units called µbanks inside the DRAM.

5.4.1. Processor-Memory Interconnect. LLM reduces contention by taking advantage of

the lower energy consumption and the higher bandwidth density of optical interconnects for data

communication. In addition, it uses a low bandwidth all-to-all electrical interconnect to manage

bank conflicts and orchestrate the data movement.

Figure 5.2a shows the optical data plane with an AWGR provideing an all-to-all connection.

On the memory-side, each channel is connected to a port of the AWGR using a waveguide.

69

(a) (b)

(c) (d)

Figure 5.2. High-level Overview of (a) data plane, and (b) control plane, (c)
demonstrates an example of routing scheme in LLM, and (d) shows the wavelength
routing property illustration of AWGR.

Each waveguide carries a wavelength for each µbank. Inside the memory channel, µbanks mod-

ulate/demodulate data on the waveguide through a tuned microring which is tuned to a specific

wavelength. To enable simultaneous reads/writes per channel we can assign two waveguides per

channel to connect to two separate AWGRs (one for carrying read and another for write data).

While the AWGR can route the optical signal to the destination µbank, the requestors should

modulate the data on the intended wavelength and send it to the correct AWGR port. Thus, each

chiplet uses an array of tunable microrings where each microring in the array directly connects to

a different input ports of the AWGR to send/receive the data. For an n× n AWGR, each chiplet

requires n microrings.

The request’s µbank address indicates the wavelength, and its channel address indicates which

microring on which waveguide needs to be tuned to the corresponding wavelength. This configu-

ration allows (a) single requestor to send requests to every bank within a single channel using a

different wavelength on each of the waveguides connected to different input ports of the AWGR;

70

(b) at a particular time, all the requestors can send requests to different channels using different

wavelengths on a single waveguide connected to a single port of the AWGR; (c) at a particular

time any combination of the above could occur. Note that the only possible contentions are bank

conflicts, which cannot proceed in parallel anyway and are stalled at the memory controllers.

The choice of the number of waveguides, the number of wavelengths per waveguide, and the

data rate in the waveguide are design parameters which dictate the maximum number of requestors,

memory channels, µbanks, and µbank bandwidth. An n×n AWGR interconnects nmemory channel

and n requestors (or group of requestors) each connected to n microrings using n wavelengths. The

scalability of the system depends on the scalability of AWGR. The number of ports in an AWGR

can easily scale up to 64 ports [26]. For larger systems, multiple smaller AWGRs (lower port count)

can be used in parallel to provide the all-to-all interconnection as a large AWGR [74].

Due to the small size of control packets, an electrical interconnect can provide sufficient bandwidth

for the communication of command and address bits. Therefore, LLM takes advantage of an

electrical interconnect for the implementation of the control plane.

Figure 5.2c illustrates an example of our proposed routing scheme, where multiple chiplets are

performing write operations. When request 1 from chiplet 0 wins the arbitration in the memory

controller (Explained in Section 5.4.2), the memory controller sends an acknowledgment signal to

chiplet 0, allowing it to send data to the memory. Chiplet 0 uses the second ring and tunes it

to the wavelength of its destination (in this example µbank 1 is the destination, which operates

with blue wavelength). At the same time, chiplet m can use the red wavelength on a different

waveguide connected to another port on the AWGR to reach the µbank 0 in the same channel.

After issuing a request to the DRAM, data will be ready in the memory at a predefined time

later (which is related to the memory access latency). The requestor uses this latency to tune the

correct microring (the channel and µbank address indicate which microring must be tuned to which

wavelength). Therefore, the memory device needs to have a deterministic response time. Hence,

LLM uses a closed-page policy, where the DRAM row buffer is closed immediately after every read

or write.

5.4.2. Memory Controller. LLM redesigns the memory controller to accomplish three main

tasks- (i) issuing request at a high rate to increase throughput, (ii) manage arbitration in case of

71

bank conflicts, and (iii) coordinate between requests and data signals (control flow scheme to enable

processors to tune the microrings at a particular time).

To improve throughput, we propose reducing the head-of-line-blocking in memory controllers.

In a standard memory controller, a bursty sender can overload the entire queue in the memory

controller, forcing other processing units to stall. To avoid this, we assigned a single entry queue

per requestor (a single or group of processing units) as shown in Figure 5.3a. These single-entry

queues only store the electrical command signals and the data is buffered at the requestor. Then,

instead of requiring a complex priority queue (e.g., first-ready first-come-first-serve), we use a round

robin arbiter to select an available request from one queue to a free memory µbank.

To maintain consistency between data and control signal, the memory controller must let the

requestors know when to tune their microrings. On an LLC miss or write-back, the requestor sends

a request to the memory controller. Then, every cycle, the arbiter selects a ready request from one

of the command queues. For read requests, the memory controller asserts the appropriate command

and address on the electrical command bus (shown in Figure 5.3a in red). At the same time, the

arbiter sends a notification back to the requestor to inform the requestor when the data will appear

on the dedicated data bus for that µbank, allowing the requestor to tune its microring to an specific

wavelength. We use electro-optically tunable microrings with few-nanosecond tuning speed [31,60].

The requestor can tune its microring while memory is activating the corresponding row in the

memory. The microring at the requestor needs to be tuned to the corresponding wavelength once

the memory row is activated. To ensure this, memory controller delays the activation request by

guard time of 10 ns.

5.4.3. Memory Microarchitecture. For irregular workloads, bank conflicts could cause long

latency due to their random memory access pattern. Bank conflicts happen when multiple con-

secutive requests target different rows in the same bank. The impact of bank conflicts on latency

is quite high. For instance, in HBM2 this latency is approximately 50 ns (precharge latency plus

activation latency) [6].

LLM reduces the probability of bank conflicts by dividing HBM banks into smaller µbanks. In

both HBM and LLM, groups of DRAM cells are combined into “mats” which are planar 2D arrays

of 512×512 DRAM cells. Mats inside of a subarray are connected to a local sense amplifier and a

global bitline connects local sense amplifiers to a global sense amplifier. In LLM µbanks, both the

72

(a) (b)

Figure 5.3. (a) LLM channel organization. Data and commands are communi-
cated through optical waveguide and electrical bus respectively. (b) µbank archi-
tecture which is divided into two sub-µbank that share the same optical data bus
through a multiplexer. Each µbank is connected to a microring which is tuned to a
certain wavelength.

number and size of subarrays are 2× smaller than HBM banks. Lower number of subarrays in LLM

µbanks results in shorter global bitlines compared to HBM since each µbank is physically smaller

than the HBM banks. LLM further reduces the size of the row buffer by splitting each µbank into

two sub-µbanks. This design further reduces the activation energy in LLM which allows for more

parallel accesses. Figure 5.3b shows the detailed architecture of µbank. The impact of our design

decisions on the DRAM die size is discussed in Section 5.5.

In addition to the increased parallelism, this new bank organization also reduces the activation

energy. A series of studies have shown that the activation row size directly impacts the DRAM

activation energy [28,39,69,103]. Dividing the HBM banks into µbanks and sub-µbanks, reduces

the activation row size and the activation energy by 75% compared to HBM2.

The second source of contention is the data bus shared by multiple banks inside of one channel.

To remove this contention requests targeting different banks need to be tBURST apart. LLM

removes the contention on the shared data bus inside the channels by assigning a dedicated optical

wavelength to each µbank. Each µbank uses a SerDes and a tuned microring to communicate data.

These microarchitectural changes in DRAM also affect the timing constraint of the memory

system. tCAS or tCL defines the time between the column command and the appearance of the

73

data at the memory interface I/O. This makes tCAS the data movement latency within the memory

die, which consists of pre-GSA (global sense amplifier) and post post-GSA latency. Reducing the

length of the global bitline (2× smaller), lowers the capacitance which reduces the pre-GSA tCAS

by 2×. Post-GSA tCAS also will be 1 ns [37,97] since the banks send data to the I/O through

optical wavelengths. Note that the E-O and O-E latency is discussed in Section 5.5.

tFAW limits the activation rate in DRAM to limit the drawn current. Since LLM reduces the

number of activated bits by 4×, it can activate 4× more rows compared to HBM2. In HBM2,

tFAW is 12 ns. If the command bus works at a high frequency of 2 GHz, memory controller can

issue the maximum of 24 activations which is still lower than the limitations of tFAW in LLM

(32 activations). Therefore, the parallelism in LLM channels is not limited by the power delivery

constraints.

tBURST is the time to transfer the data for a single DRAM request on the I/O bus. With

32 Gb/s data bus bandwidth and 64 byte data, the tBURST in LLM is 16 ns. However, since each

µbank in LLM has a dedicated data bus increasing tBURST does not affect the requests targeting

different µbanks in one channel. In a system with a shared data bus, the long tBURST increases

the serialization effect, enforcing all requests going to different banks in each channel to be tBURST

apart. The dedicated data bus eliminates the bus contention in LLM.

5.4.4. LLM Organization and packaging. LLM dies can be organized as both 3D stacks

(similar to HBMs) or non-stacked DRAMs (similar to GDDR memories). In this study, we assume

that the LLM dies are organized in 3D stacks to offer increased capacity and bandwidth. To this end,

we propose using the innovatively new enabling technology called Vertical Optical Interconnects

(VOIs) [105] to replace the TSVs. These optical vias allow substantially higher bandwidth and

scaling with number of channels, while keeping the area and number of I/O pins the same. In 3D

stacked LLM, data can be moved between µbanks in different layers vertically through optical links.

Thus VOIs can replace most of the electrical copper TSVs. Werner et al. explored the bandwidth

and scalability advantages of VOIs in 3D stacked memories [96].

Figure 5.4 presents an overview of the packaging approach we use in our design. We place

memory stacks, AWGR, and compute cores on the same package substrate and use a previously

proposed technique for intra-package communication [36,92]. This approach uses dedicated pro-

cessor node chiplets, and memory node chiplets with embedded SiPh transceivers. For instance

74

the processor node chiplet consists of SerDes, SiPh transceivers, and the compute core dies. The

dedicated SiPh transceivers are connected to the chiplets through Si bridges (which are ideal for

short-distance electrical interconnection) and optically to AWGR through polymer waveguides.

The memory node has SiPh transceivers embedded inside and can use polymer waveguides to con-

nect to AWGR. The polymer waveguides are integrated on top of the organic package substrate

and provide connectivity to AWGR. SiPh is ideal for long-distance, inter-package communication,

enabling this system to scale out to multiple packages. The multipackage system uses a polymer

waveguide for interconnecting separate packages for computing cores, AWGR, and memory stacks

without performance and energy degradation.

Figure 5.4. The package layout for a computing system using the proposed LLM
memory design. SiPh transceiver chiplets are connected to the compute core dies
through Si bridges, memory stacks already have embedded SiPh transceivers and
can directly connect to a polymer waveguide.

5.5. Methodology

To evaluate the performance and latency of LLM, we used the gem5 simulator version 21.0 [57]

with both synthetic workloads and full-system (with Linux kernel version 5.2.3). We modeled the

network interconnect with Garnet3.0 and the cache hierarchy using Ruby to evaluate the system

architecture.

We compared our design with high bandwidth memory systems such as HBM2. In addition,

we used two state-of-the-art memory systems with more memory level parallelism. The first one

is HBM2, with added subarray level parallelism for lower memory access latency. We augmented

75

HBM2 by adding techniques from Kim et al. [47]. Throughout the paper, we refer to this as

HBMSALP. The second one is a highly concurrent memory system with 4× higher bandwidth than

HBM2. In this architecture, the memory banks are finer and more independent. A narrow electrical

bus with 4× higher datarate compared to HBM2 is assigned to these fine-grain memory banks. This

design is our interpretation of Fine-Grained DRAM, and we refer to it as FGDRAM [69]. FGDRAM

shows the benefits of incorporating µbanks without the contention-less optical data plane.

To be able to fully stress the bandwidth, we used synthetic traffic with different access patterns

both with high and low locality. We used three different traffic patterns: Stream, Random, and

GUPS. The Stream and Random traffic create a sequence of requests with linearly increasing and

uniform random distributed addresses respectively. They both generate requests at user-specified

frequencies. GUPS is a data dependent application [58] with a random distribution over memory

addresses.

Using traffic generators is a processor architecture agnostic evaluation allowing these results to

be portable whether LLM is used in a CPU, GPU, or accelerator platforms. Using traffic generators

also enables experiments with different network injection rates to model memory intensive workloads

that can fully stress the high bandwidth of our proposed memory system.

For the synthetic traffic simulation, we used 32 traffic generators. For this experiment, we

scaled our high bandwidth baseline memories to reach the same peak bandwidth as LLM stack

which is 4 TB/s (iso-bandwidth). In these iso-bandwidth experiments, both HBM and HBMSALP

are given 8× the channels of LLM and FGDRAM 2× compared to LLM.

For latency and overall evaluation, we ran real workloads in the gem5 simulator. We used

applications such as GAP benchmark suite (GAPBS) [17] as a representative for irregular workloads

due to their random memory access pattern. Table 5.2 shows the system configuration. We used a

multiple core CPU system, each with two levels of cache hierarchy.

5.5.1. Latency Parameters. The memory system needs to model both the network latency

(which also includes the O-E and E-O and SerDes latencies) and the DRAM timing constraints.

Both of these timings are included in our simulation platform. Due to the different bank and channel

organizations, some timing constraints are different from LLM and HBM2. Table 5.2 illustrates the

changed timing constraints between HBM, FGDRAM, and LLM. We assumed an optical traversal

of 1 ns [37,52]. We are using a low-power 16 Gb/s SerDes for seriliazing/deserializing 32 bits of data

76

Table 5.2. Full System Simulation Parameters

Parameter Description
CPU 16 cores ; x86 @ 4GHz
Caches private 32 kB L1I/D, 2/8-way per core

private 512 kB, 8-way L2 per core
directory coherence

Memory 8 DRAM channels

Timing parameter (ns) HBM2 [6] FGDRAM [69] LLM
tCAS 16 16 5

tBURST 4 16 16
tFAW 12 12 12

activates in tFAW 8 32 32

Table 5.3. Silicon Photonic device parameters

Parameter Value Parameter value Parameter value
VOI loss 1.3 dB Photodetector loss 0.1 dB Modulator Insertion loss 1 dB

Waveguide loss 0.5 dB/cm Filter through loss 0.1 dB Power Margin 3 dB
Filter drop loss 1.5 dB Receiver Sensitivity -17 dBm Laser efficiency 14 %

Coupler: Fiber-to-Package 3 dB AWGR crosstalk -20 dB AWGR loss 1.8 dB

from global sense amplifiers, resulting in 2 ns latency. We assume that the E-O, O-E conversion

latency takes 35 ns [31,60]. We also modeled the electrical control plane in LLM with a network

latency of 20 ns, which is a conservative assumption in our system.

5.5.2. Power Model. For the power modeling of the optical interconnects, we used values

for 65 nm CMOS [52,101] and scaled it down to 28 nm using SPICE models [52,101]. The laser

efficiency is based on commercially-available comb lasers [7]. Table 5.3 illustrates the details of our

silicon photonic devices.

5.5.3. Area. We compared the area of LLM stack based on both microarchitectural changes

and the optical circuitry we have added to the memory microarchitecture design. We compared

the area for a 4 die stack (4Hi) LLM and HBM. The dimensions of HBM dies are typically 5.5 mm

× 7.7 mm [53].

Each µbank includes SiPh transmitter and receiver circuitry (5 µm pitch size), and a 16 Gb/s

serializer-deserializer (SerDes) with an area of 0.0045 mm2 (estimated using TSMC 28 nm CMOS

process). Two waveguides are connected to each memory channel, each with 2 µm pitch size [105].

A 4Hi HBM requires 1024 TSVs for data but LLM requires only 32 VOIs. Overall, optical circuitry

adds 4.94% area overhead compared to a HBM stack.

LLM also requires 2× more column decoders and 4× more global sense amplifiers. Dividing

each µbanks to sub-µbanks adds additional circuitry such as 4 bit wordline-select, and sub-µbank

77

multiplexer. These area overheads are equal to FGDRAM and subchannel [25,69] which are 4.67%.

LLM also requires latches to enable subarray-level parallelism. Each latch requires 2 µm2 area. In

total microarchitectural changes to DRAM adds an additional 4.8% area overhead. A 4 stack-high

LLM requires 9.74% area overhead compared to HBM2.

5.6. Evaluation

5.6.1. Synthetic Traffic Evaluation. In the first experiment, we ran stream and random

synthetic traffic with different traffic rates to see how latency and throughput change as we increase

the traffic rate. Figure 5.5 shows both the achieved throughput and the average access latency for

read-only memory requests under varying injection rates. With stream traffic, all memories can

achieve high throughput. However, under high injection rates, LLM has lower latency than the

other designs due to its low latency interconnect and zero data queuing at the memory controller.

At very low injection rates, HBMSALP has a lower average latency due to increased page hit rate

and the SALP optimizations [47]. Since LLM uses closed-page policy for applications with high

locality LLM will not show significant reduction in latency compered to HBMSALP. However, at

all injection rates LLM has lower latency than FGDRAM and HBM.

For random traffic, Figure 5.5b shows that LLM has much lower latency for all injection rates.

The main reason HBM’s latency increases even under a relatively low injection rate is due to DRAM

row buffer misses which incur high latency. These row buffer misses cause contention in the memory

controller which results in a high queuing delay. For LLM, reducing the size of the queues in the

memory controller and using a closed-page policy leads to low latency under high injection rates.

This low queuing is unlike HBM and FGDRAM which experience significant increase in latency

as the traffic rate increases. Figure 5.5b shows the biggest difference between LLM and prior

technologies. LLM can achieve nearly the same throughput with random traffic as with streaming

traffic. In contrast, the best other technology, FGDRAM, can only achieve approximately 50%

of its peak theoretical bandwidth under a random access pattern. The difference between LLM

and FGDRAM, also shows that simply adding parallelism in the memory subsystem (µbanking)

without re-architecting the entire datapath will not remove the contention in the system; it will

simply move the contention to another point in the datapath.

78

To increase complexity in our synthetic traffic experiments, we applied the Giga Updated Per

Second (GUPS) benchmark which has data dependent accesses. We measured the performance of

these systems based on the GUPS as defined by the benchmark. Similar to Random and stream

we used iso-bandwidth test for GUPS. Figure 5.7b show that even when given significantly more

I/O (and cost) HBM and FGDRAM cannot match LLM’s performance for this irregular workload.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Throughput (TB/s)

50
100
150
200
250
300

Av
er

ag
e

re
ad

 la
te

nc
y

(n
s)

Stream
HBM
HBMSALP
FGDRAM
LLM

(a)

0.5 1.0 1.5 2.0 2.5 3.0
Throughput (TB/s)

50
75

100
125
150
175
200
225

Av
er

ag
e

re
ad

 la
te

nc
y

(n
s)

Random
HBM
HBMSALP
FGDRAM
LLM

(b)

Figure 5.5. Iso-bandwidth test with (a) Stream, (b) Random. Comparing the
average read latency and throughput for different injection rates and access patterns.

Although HBMSALP adds more intra-bank parallelism compared to HBM, Figure 5.7b shows

it does not achieve considerable performance improvements. This result demonstrates the impor-

tance of optimizing the memory system for both bandwidth and latency. Even for latency-critical

workloads like GUPS, the bandwidth can also be the limiting factor. Only optimizing for latency

does not necessarily lead to the best performance.

512 1024 2048 4096
Peak theoretical bandwidth (GB/s)

0

20

40

60

80

100

Ba
nd

w
id

th
 u

ti
liz

at
io

n
(%

) Random

HBM HBMSALP FGDRAM LLM

(a) Random traffic

512 1024 2048 4096
Peak theoretical bandwidth (GB/s)

0

20

40

60

80

100

Ba
nd

w
id

th
 u

ti
liz

at
io

n
(%

) Stream

HBM HBMSALP FGDRAM LLM

(b) Linear traffic

Figure 5.6. The iso-bandwidth experiment: Comparing bandwidth utilization of
three memories. In random traffic LLM achieves in average 1.96× better band-
width utilization compare to FGDRAM. LLM achieves high bandwidth utilization
for stream traffic because multiple µbanks can be activated at the same time.

79

Figure 5.6a shows the performance of these memory technologies with a random traffic pattern.

This figure shows that HBM, HBM with SALP and FGDRAM have poor utilization with a random

traffic pattern. These technologies have poor utilization because they depend on high page hit rates

to saturate the theoretical bandwidth. FGDRAM does the best of these prior memory technologies

since it has the smallest row buffer size and the most internal parallelism.

1024 2048 4096
Peak theoretical bandwidth (GB/s)

0
1
2
3
4
5
6
7
8

G
ig

a
up

da
te

s
pe

r
se

co
nd HBM

HBMSALP
FGDRAM
LLM

(a)

8 16 32
Number of channels

0

1

2

3

4

5

6

7

8

G
ig

a
up

da
te

s
pe

r
se

co
nd

HBM HBMSALP FGDRAM LLM

(b)

Figure 5.7. (a) GUPS traffic, shows even with the same peak bandwidth LLM
provides more parallelism resulting in 2× improvement on average performance
compared to HBM (with 8× more channels). (b)For the same number of channels
(same capacity), LLM provides higher peak bandwidth compared to HBM, HBM
with SALP, and FGDRAM. The higher peak bandwidth allows for a higher number
of updates and therefore better performance.

LLM shows nearly full utilization even under a random traffic pattern reaching over 90% of

the peak theoretical bandwidth. The main reason LLM has a high utilization under this traffic

pattern is due to the closed page policy, increased internal parallelism, and inherently low (near-

zero) contention. Under random traffic LLM outperforms HBM by 23.23× and FGDRAM by 3.85×

when using 32 channels.

Figure 5.6b shows the performance for the Stream workload (linear/sequential accesses). Under

this workload, HBM and HBM with SALP perform much better (around 80% utilization). However,

FGDRAM and LLM are able to achieve almost 100% bandwidth utilization since they have more

internal parallelism and more dedicated data links (grains in FGDRAM and dedicated links per

µbank in LLM).

80

bc bfs cc pr sssp tc avg.
0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

N
et

w
or

k
La

te
nc

y HBM
HBMSALP

FGDRAM
LLM

(a)

bc bfs cc pr sssp tc avg.
0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

Q
ue

ue
in

g
La

te
nc

y HBM
HBMSALP

FGDRAM
LLM

(b)

bc bfs cc pr sssp tc avg.
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Av
er

ag
e

D
RA

M
 L

at
en

cy

HBM
HBMSALP

FGDRAM
LLM

(c)

bc bfs cc pr sssp tc avg.
0

20
40
60
80

100
120

Av
er

ag
e

En
d-

to
-e

nd
 L

at
en

cy
 (

ns
)

H
BM

H
BM

SA
LP

FG
D

RA
M

LL
M

Average DRAM Latency
Average Memory Controller queueing Latency
Average Packet Network Latency

Average DRAM Latency
Average Memory Controller queueing Latency
Average Packet Network Latency

(d)

Figure 5.8. Average latency normalized to HBM2 for (a) network (b) queuing
(c) memory device, and (d) shows the average end-to-end latency. (a) shows LLM
achieves in average 2× lower network latency, 1.1× higher DRAM latency due to the
long bus latency, and (b) indicates 10× lower queuing latency compared to HBM2.

5.6.2. Irregular Workloads. In a more realistic setup, we used gem5 21.0 full system mode

to compare LLM with, HBM, HBMSALP, and FGDRAM in a system with 8 processing cores

and 8 memory channels (iso-capacity configuration of different memory technologies) as opposed

to the iso-bandwidth tests used in the synthetic traffic experiments. Though it is difficult for us

to estimate the costs of each technology, this iso-capacity experiment compares the performance

in a real system setting with each technology given approximately the same amount of resources.

Due to the extensive time of simulation for each system configuration, we created traces for 8 core

systems and extended it to 16 core configurations. This enabled us to stress the bandwidth of the

system under the same traffic pattern. We used 64 × 64 AWGRs with 64 wavelengths.

For the first experiment, we compared the average latency for DRAM access, the queuing latency

at the memory controller, and the average network latency. Figures 5.9(a–c) show the normalized

81

comparison between these memory systems. For all workloads, LLM has significantly lower queuing

at the memory controller which is what we expected based on lack of data queuing at the memory

controller. Also, the network latency for LLM remains smaller for all workloads because in large-

scale systems with higher crossbar radix electrical interconnect latency is higher. Compared to

HBM, FGDRAM shows lower queuing latency which indicates the benefits of added parallelism at

the memory microarchitecture without the optical datapath. Comparing LLM and FGDRAM, the

queuing latency is on average 3× lower which shows the benefit of the co-design architecture of the

memory controller, the interconnect design, and the all-optical data path. Finally, for the device

latency (Figure 5.8c), all systems have approximately the same latency except FGDRAM which is

higher due to the larger tBURST .

Figure 5.8d shows the total average latency of the three components (device, queuing, and

network latency). This shows that for all systems except LLM, queuing latency is the dominant

portion of the time (broken out in Figure 5.8b). Figure 5.8d indicates the memory intensity of

the workloads as well. For instance, tc has lower average end-to-end latency with lower queuing

compared to the other workloads. Thus, optimizing just for throughput will not improve the

execution time for this workload (e.g., FGDRAM does not improve performance for tc as shown in

Figure 5.9a since it sacrifices latency for bandwidth).

Figure 5.9a compares the execution time of GAPBS workloads for HBM, HBMSALP, FG-

DRAM, and LLM. Compared to HBM, LLM provides 3× reduction on average execution time. For

the more memory-intensive workloads, the increased bandwidth of LLM provides reduced execution

time. Importantly, for the lower-intensity workloads, LLM also provides an improvement over the

other technologies (most notably FGDRAM running tc) due to its lower contention on the shared

data bus.

5.6.3. Energy and power analysis. The DRAM access energy consists of activation energy,

data movement energy, and I/O energy. We used the HBM2 energy values from O’Conner et

al. [69]. The activation energy directly depends on the number of bits in a row that get activated.

Similar to FGDRAM [69], LLM reduces the size of the row by a factor of 4×, and therefore, we

reduce the activation energy to 227 pJ for LLM from 909 pJ in HBM 2.0. Pre-GSA energy is the

energy of moving data from local and master bitlines to the global row buffer, and it depends on

82

bc bfs cc pr sssp tc avg.
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e HBM

HBMSALP
FGDRAM
LLM

(a)

bc bfs cc pr sssp tc avg.
0.00
0.25
0.50
0.75
1.00
1.25
1.50

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n HBM

HBMSALP
FGDRAM
LLM

(b)

Figure 5.9. Execution time (a) and power consumption (b) normalized based on
HBM2. LLM provides in average 3× lower execution time while maintaining same
power consumption compared to HBM2.

0 200 400 600 800 1000
Latency (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

ti
ve

 fr
eq

ue
nc

y Random

HBM
HBMSALP
FGDRAM
LLM

(a)

0 100 200 300 400 500 600
Latency (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

ti
ve

 fr
eq

ue
nc

y Stream

HBM
HBMSALP
FGDRAM
LLM

(b)

0 500 1000 1500 2000 2500
Latency (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

ti
ve

 fr
eq

ue
nc

y GUPS

HBM
HBMSALP
FGDRAM
LLM

(c)

Figure 5.10. The latency distribution for different memory systems under 3 types
of synthetic traffic: (a) Random, (b) Stream, and (c) GUPS. LLM has a lower 95th

percentile (shown as dashed lines) and therefore has lower latency variation. In (b)
HBM and HBMSALP have the same distribution of latency.

the length of bitline. Since we are reducing the size of the global bitlines, this energy will also be

reduced to 0.755 pJ/bit from 1.51 pJ/bit in HBM2.

LLM uses optical links to move data between µbanks and processing cores. Therefore, both

I/O and post-global sense amplifier energy values are equal and are independent of laser, SerDes,

and modulation circuitry. For this SiPh stack, we used the parameters shown in Table 5.3 to match

realistic current technologies. We found the total I/O energy (including laser, SerDes, modulation

circuitry) to be 760 fJ/bit. In comparison, for conventional DRAM the I/O requires 800 fJ/bit [69],

which is expected to increase as the height of DRAM stacks increases. Figure 5.9b illustrates a

comparison of overall memory power consumption normalized to HBM between a DRAM stack

83

interconnected electrically with TSVs against LLM with SiPh DRAM stacks. As shown, the LLM

is approximately the same power as the electrically implemented FGDRAM showing the SiPh

implementation is feasible to integrate in a chiplet-based package. In some cases, the power is

higher, mostly due to the higher bandwidth that FGDRAM and LLM enable compared to HBM.

5.6.4. Latency Variation. Finally, we analyzed the latency variation in each memory system.

In current systems, the main cause of latency variation in the system is queuing. Thus, one of the

byproducts of our low contention memory system should be lower latency variation. Figure 5.10

shows the distribution of access times for each technology under stream, random, and GUPS

synthetic traffics using 16 memory channels. This figure also shows the 95th percentile latency with

dashed vertical bars.

Figure 5.10 shows that LLM achieves significantly lower and more predictable latency com-

pared to other technologies. In general HBM has the broadest distribution, with FGDRAM and

HBMSALP having slightly less variation than HBM for Random and GUPS traffics. On average

LLM has 3× lower 95th percentile latency compared to HBM which can be translated into 3× lower

memory latency variations. We see similar results for the full system graph workloads as well.

5.7. Related Work

Several studies have shown the benefits of using photonics to increase bandwidth and reduce

data movement energy for processor/memory communication [16, 19, 77, 80, 89, 96]. Although

these studies reduce contention at the interconnect, they did not contribute to increasing memory

performance at the microarchitectural level. LLM extends these prior works by (a) reducing in-

memory activation and data movement energy, allowing for higher parallelism, and (b) integrating

optics inside of the memory channel and co-designing the memory controller to facilitate both

bandwidth and latency improvements.

Previous work on DRAM energy [28, 39, 69, 103] showed the benefits of reducing activation

energy while maintaining a higher bandwidth than HBM2. These studies are still bounded by the

processor/memory data movement energy. LLM extends these prior works by exploiting silicon

photonic interconnects. Optical links do not suffer from the distance/bandwidth trade-off that

impacts electrical interconnects. This allows LLM to achieve a low energy data movement in a

chiplet based architecture while achieving higher peak bandwidth than the previous studies.

84

Creating smaller channels with narrower data bus and higher datarate is the technique used both

in in the industry (with HBM2 and HBM2 pseudo-channel mode, and GDDR) and research [69] to

enable high throughput memory systems. However, they do not consider optimizing the memory

for latency. Furthermore, they use deep queues for bandwidth improvements which will result in

higher latency. In contrast, LLM is a redesign of the complete memory subsystem. Decoupling

data and control signals in the LLM allows for bandwidth and latency improvement at the same

time.

Previous work, has explored many different avenues for decreasing DRAM latency including

changing the DRAM controller [22], segmenting and shortening bitlines [47] and caching and

paging policies [45]. Although these techniques proved to be effective in reducing the DRAM access

latency, they are not optimized for irregular applications and in some cases can increase memory

access latency variability. Wang et al. improved latency for irregular workloads by creating a low-

cost DRAM substrate that enables data relocation [86]. Although effective for irregular workloads

they have not shown any benefits for applications with high locality and the effects on memory

latency variations. LLM reduces the amount of data queuing on the entire path and assigns a

dedicated data path between each requestor and memory µbank. This technique reduces latency

in both regular and irregular workloads but it also reduces memory access variability due to low

queuing on the path.

Table 5.4 shows the comparison between LLM to FGDRAM, SALP, FGDRAM, and optically

interconnected 3D stack memory and how these memory systems impact bandwidth, latency, and

energy. Compared to these state-to-art memory systems, LLM can achieve high bandwidth, low

latency, and low energy consumption. This is due to using optical link and WDM, and reducing

contention at the memory bank level, and the memory controller.

5.8. Conclusion

In this paper, we investigated a new memory system that is optimized for applications with both

regular and irregular access patterns with poor spatial locality. LLM introduces lower execution

time compared to the baseline HBM2 systems. It also utilizes an all-optical data communication

fabric that provides a direct contention-free data link between processing cores and memory banks.

The use of optical interconnects, optical links, and the new memory microarchitecture improve

85

Table 5.4. Comparison between LLM (ours) and other DRAM architecture designs
that target increasing bandwidth, reducing latency, and/or reducing energy. While
most prior work trades off one or two of these characteristics for another, LLM
increases bandwidth, reduces latency, and reduces energy.

Bandwidth Latency Energy

FGDRAM [69]

+ More channels (grains) for more inter-bank
parallelism (4×) Higher peak bandwidth
- Bandwidth is limited by the number and datarate of
TSVs

- Similar to HBM it sacrifices latency for higher bandwidth
+ Lower row activation energy:
smaller row buffer size

SALP [48] No change in increasing peak memory bandwidth of memory

+ Enabling the possibility of having multiple rows activated
within the bank. Thus, fewer bank conflicts

- More latency variation

No significant change to energy

PIDRAM [19] + Optics provide higher bandwidth
Not focusing on the latency. The latency is
is impacted by the DRAM access latency and
memory controller latency.

+ Lower data movement energy
due to optical links

Optically
interconnected
3D stack
Memory

[88]
+ Can easily increase number of memory channels

No improvement within the stack

The memory access latency does not change,
however the data movement latency among
stacks will differ

+ Lower data movement energy
with optics

LLM
+ Dedicated optical bus for each µbank
+ More channels per stack
+ More inter-bank parallelism

+ Finer grain banks: Fewer bank conflicts
+ Less memory controller queuing delay
+ Less memory access variability with close-page policy
and small queues

+ Smaller row buffer size
+ Lower data movement energy
with optics

data movement, reduce activation energy, and provide higher bandwidth/mm2. By incorporating

all these methods, LLM can reduce the execution time and energy with a modest area overhead.

The cost increase for optoelectronic integrated LLM would be around 30% compared to electronic-

only HBM2. However, LLM achieves around 3× better execution time while maintaining the same

power consumption as HBM2.

Due to low-contention data access in LLM, we believe that LLM-like designs can improve the

performance of other computing systems. LLM can be a great candidate as the vertex memory

in graph accelerators such as SEGA due to its low memory access latency and low contention for

irregular memory access patterns.

86

CHAPTER 6

Conclusion and Future Works

The architectural concepts explored in this dissertation pave the way for a range of system-level

designs to be investigated. This chapter summarizes the primary insights derived from this study

along with limitations and proposes potential avenues for future research.

Part of our decision in the graph accelerator architecture studied in Chapter 3 is to separate

the memory-processor access from the inter-processor communication. It also allocates a vertex

and edge memory to each accelerator core, which we call the processing element or PE. Although

this selection is effective in removing the atomic updates and coherency traffic between PEs, it

can potentially result in the underutilization of memory capacity and bandwidth. A disaggregated

memory system with edges and vertices stored in shared memory can be used to potentially maintain

the same performance as SEGA while achieving better memory utilization.

Another path to explore is to add support for streaming graphs with the capability to add/delete

vertices and edges for the graph accelerator presented in Chapter 3. Graphs in many real-world

applications are inherently dynamic. For example, new users will join a social network, and users in

the social network will create new relations. Users in the e-commerce platform continue interacting

with new items, and new connections are established in a communication network over time.

During the execution of a workload, adding and deleting a new edge can affect the two vertices

directly connected to the edge and influence other neighboring vertices. As the graph evolves, a

straightforward approach is to restart the application from scratch after applying a batch of graph

updates. However, if the number of vertices or edges modified in a graph is small relative to the

size of the graph, the changes only modify a small subset of the graph. Therefore, much of the

computation performed during reevaluation is redundant.

Lastly, in SEGA, we propose using off-the-shelf memory systems. These memory systems are

accessed at cache-line size granularity to take advantage of spatial locality. However, the large

memory access granularity can lead to wasted off-chip memory bandwidth in graph workloads.

Specifically, we access vertex memory at a cache-line size granularity while operating on only a

87

portion of the data (8 bytes in our case). This inefficiency in memory access can cause significant

bandwidth and energy waste. Choosing costume memory systems with fine-grain access in graph

accelerators can reduce these inefficiencies.

6.1. Opportunities for Disaggregated Memories

In SEGA, we proposed dedicated HBM vertex and DDR edge memory per processing element,

which has the following advantages:

• Removes multiple nodes from updating a single vertex. Therefore, we no longer need the

coherency data.

• Reduces the contention on the memory system since only the processing element can access

vertex and edge memory.

• Seperating the PE-memory traffic from the inter-PE traffic

Despite effectively removing atomic updates to the vertices and reducing contention on the memory

system, this tight coupling between the number of processing elements (PEs) and memory channels

can lead to underutilization of resources in the system.

Considering the structure and capacity of graph data, particularly when employing spatial par-

titioning methods, some memory channel capacities (especially edge memories) remain underused.

The growth of the number of edges and vertices in real-world graphs is unrelated to each other.

However, due to the tight coupling between the number of processing elements and memory chan-

nels, even a small addition to vertices necessitates an increase in the number of processing elements

and. For instance, when a new vertex is added, it results in an additional processing element with

an edge memory. However, even if some of the edge memory channels in the system remain un-

derutilized, this tight coupling between the number of processing elements and memory channels

persists.

Additionally, coupling capacity and bandwidth in both HBM and DDR-based memory tech-

nologies poses challenges. In an ideal large-scale graph processing system, we would provision

bandwidth and capacity independently to meet performance targets for specific graph sizes. Unfor-

tunately, this independence is not achievable with HBM/DDR-based memory technologies, resulting

in significant overprovisioning.

88

As graph sizes continue to grow into the terascale or beyond, resource utilization problems

become even more pronounced. Given recent advancements in technology supporting disaggregated

memory systems, these solutions may offer a desirable approach to optimize memory usage for

scalable graph processing.

Furthermore, the disaggregated memory system can also enable easier vertex and edge addition

and thus facilitate the streaming graph processing.

In chapters 3 and 4, we showed that the maximum TEPS is calculated based on the memory

bandwidth, which is the bottleneck in a balanced graph processing system. This means any memory

bandwidth underutilization will affect the actual achieved TEPS in a given system. Figure 6.1 shows

a distributed graph accelerator, running BFS and BC, our memory utilization ranges from 60%

to 80%, meaning even in a best-case scenario, we have 20% less performance than we potentially

could have. In data-driven graph workloads such as BFS, not all vertices are active, which causes

some of the memory systems to have low bandwidth utilization (the ones with low active vertices)

and the rest with overprovisioned bandwidth utilization (memories with active vertices).

The main challenges of disaggregated memory are resource allocation and deallocation between

processing elements based on their bandwidth and capacity demand. Another interesting feature

that disaggregated memory can provide is to unlock more parallelism by reallocating vertex assign-

ments to different PEs based on the utilization of the PEs in the system

bc bfs
Applications

0

20

40

60

80

M
em

or
y

Ut
iliz

at
io

n
(%

) Number of Cores
8 16 32 64

Figure 6.1. Bandwidth utilization of BFS with Twitter with different amounts of
cores.

89

6.2. Support for Streaming Graphs

So far in our studies, we have focused on graph applications that ingest static data structures,

where the topology of the graph remains untouched with no deletion or addition on the number

of vertices and edges. SEGA, similar to other graph applications, optimizes the performance of a

given application for a static graph. However, in many real-world applications, we face streaming

graphs that constantly change as new attributes are created or removed or new interactions occur.

A stream of updates in the form of edge/vertex additions/deletions is typically applied to the

graph in batches for efficiency. For graphs with a large number of edges modified, we can restart

the application from scratch after applying a batch of graph updates. However, vertices or edges

modified in a batch are typically exceedingly small relative to the size of the graph. Thus, as

the changes in the structure of the graph can only modify a small subset of the graph for many

workloads, much of the computation performed during reevaluation is unnecessary.

Among graph accelerators, JetStream [76] is the only accelerator that supports streaming

graphs. JetStream is an event-based accelerator that is built upon GraphPulse [75] and supports

both the addition and deletion of edges in the graph. However, Jetstream, unlike SEGA, only

supports asynchronous programming models, and since it is based on PolyGraph its performance

relies on the size of on-chip memory. Therefore, it has the same scalability limitations. This new

vertex

Based on the insight from JetStream, the edge addition in the graph workload is similar to

adding a new message to the outgoing vertex. This new edge can only change the property of

vertices that are connected to the new edges. Thus, only a subset of the large graph is affected.

Unlike edge addition, edge deletion is more complex because the contribution of the deleted

edge to the previous converged state must be undone. For algorithms such as single source shortest

path and page rank with accumulative updates, reversing the effect of edge deletion is easier. In

such applications, we need to inverse the effect of the deleted edge by sending the inverse of its

previous converged state, transformed by the propagate function, which negates the cumulative

effect of all updates over this edge. Propagating the negative events from the receiver vertices leads

to the rollback of all contributions from this edge and puts the graph in a recoverable state. For

algorithms having selective updates such as breath-first-search and single source shortest path, it is

more difficult to identify which edges contributed to a vertex. The destination vertex of a deleted

90

edge is reset to its initial value so that it can be updated later in the reevaluation phase. To remove

the effect of deleted edges in workload with selective reduction, the system needs to identify the

potentially affected vertices and efficiently reset them to their initial value. Afterward, new events

are created for all the neighbors of the impacted vertices. We process the inserted edges at this

point to create and queue the events for them. These new events allow the impacted vertices to

set their new state using the states of their neighbors. At the end of this phase, when the queue is

empty, the graph arrives at a correct state, and the process of reevaluation concludes.

6.3. State of the art Memory Systems for Graph Workloads

Current memory systems are optimized to extract locality, for instance, large memory access

granularity is used to extract spatial locality. However, graph workloads have little to no locality

and vertex and edge information are much smaller than memory block size. This causes inefficient

use of off-chip memory bandwidth. In graph workloads, the vertex accesses are random with low

locality, while edge memory accesses exhibit high spatial locality. Therefore, vertices can benefit

from smaller memory access granularity, while edge memory can benefit from wider access width.

Another characteristic of these workloads is that they are memory latency and bandwidth-

bound. Figure 6.2 shows the average flops/bytes for a variety of graph algorithms on the Twitter

graph. Lower flops/byte translates to greater demands on external bandwidth to remote memories

and remote nodes. Thus, in such systems, memory technology can play an important role in

dictating the energy and performance.

The ideal memory system for graph applications is memories with low memory access granu-

larity, high bandwidth, and low latency. Low Latency Memory, or LLM is a perfect candidate for

vertex memory in graph accelerators.

The hardware buffer used in SEGA accelerates active vertex read and hides the long memory

access latency to the edge memory. We can reduce the vertex memory access latency by replacing

HBM with LLM as the vertex memory. By using LLM as the vertex memory, we can update

vertices and read active vertices at a higher rate, and utilizing higher edge memory bandwidth

results in processing elements with significantly higher throughput. We can effectively reduce data

movement energy by accessing LLM at a finer granularity. Specifically, when reading data from

91

the vertex memory, we retrieve information about active vertices individually rather than fetching

an entire block of memory containing multiple vertices.

bfs pr bc cc sssp
Applications

0.00

0.01

0.02

0.03

0.04

0.05

Fl
op

s/
by

te

Figure 6.2. Compute to Memory Requirements in Graph Processing for Different
Algorithms.

Due to the cost of electrical-to-optical (E-O) and optical-to-electrical (O-E) conversion, using

LLM in a disaggregated memory system would be more beneficial. This is because the energy and

latency of optics are independent of distance.

6.4. Conclusion

This dissertation delves into the hardware limitations of current computing systems when pro-

cessing graph applications. Our focus lies in improving the performance of graph workloads, partic-

ularly for real-world graphs. Additionally, we project the capacity and bandwidth requirements of

future large-scale graphs and emphasize the significance of state-of-the-art Silicon Photonics (SiPh)

fabrics in scaling out graph accelerators. Furthermore, we propose a novel memory microarchitec-

ture tailored for applications with random memory access patterns, such as graph workloads. The

proposed memory system can be used to reduce the memory access latency and data movement

energy consumption while providing high throughput.

Chapter 3 presents a high-level bottleneck-analysis model for designing and evaluating scalable

and balanced accelerators for graph processing. It also shows several applications of this model,

including choosing the right mix of different memory types, network topology, network bisection

bandwidth, and system-level architecture to match the access patterns and capacity requirements

of different data structures for a given graph and a performance target. It also proposes an ar-

chitecture for a scalable graph accelerator called SEGA (Scalable Engine for Graph Acceleration).

92

SEGA introduces microarchitectural and system-level changes that enable scalability. SEGA is a

balanced architecture that facilitates fast work generation (sending updates to neighbors) and work

consumption (performing vertex reductions) at the available off-chip memory bandwidth, with a

small on-chip SRAM buffer to harbor the slack between work generation and consumption and to

hide the latency of updates to off-chip vertices. Unlike prior accelerators that focus on graph core

microarchitecture to improve locality, SEGA offers scalable performance for large graphs without

the need to increase on-chip resources.

Chapter 4 focuses on the interconnect between graph accelerators and different packaging tech-

nologies to organize the graph accelerators efficiently. It studies the network traffic pattern and

bandwidth needs in a randomly assigned graph with no pre-processing costs. It shows how SiPh

can enable scaling out without degrading performance.

Chapter 5 proposes LLM (Low Latency Memory), a codesign of the DRAM microarchitecture,

the memory controller, and the last level cache and DRAM interconnect by leveraging embedded

silicon photonics in 2.5D/3D integrated system on a chip. LLM relies on Wavelength Division

Multiplexing (WDM)-based photonic interconnects to reduce the contention throughout the mem-

ory subsystem. LLM also increases the bank-level parallelism, eliminates bus conflicts by using

dedicated optical data paths, and reduces the access energy per bit with shorter global bit lines

and smaller row buffers. LLM exhibits low memory access latency for traffic with both regular

and irregular access patterns. For irregular traffic, LLM achieves high bandwidth utilization (over

80% peak throughput compared to 20% of HBM2.0). For real workloads, LLM achieves 3× and

1.8× lower execution time compared to HBM2.0 and a state-of-the-art memory system with high

memory level parallelism, respectively. This study also demonstrates that by reducing queuing on

the data path, LLM can achieve on average, 3.4× lower memory latency variation compared to

HBM2.0.

State-of-the-art computing systems employ increasingly complex hardware and software stacks

to meet their performance goals. A large portion of these added complexities is due to limitations

at the technology level (e.g., memory wall, pin wall, reticle size, energy cost of data movements,

etc). These limitations shift the architects away from their ideal design choices, and result in many

compromises at the design stage. The unique properties of SiPh links in terms of their energy-

consumption and bandwidth-density can be utilized to change the way we think about computing

93

systems today. This dissertation explored a subset of the design space for computing systems

enabled by SiPh, and provided pointers for several studies in the future.

94

Bibliography

[1] 9th dimacs implementation challenge: Shortest paths.

[2] Ayar Labs Realizes Co-Packaged Silicon Photonics – WikiChip Fuse.

[3] Graph 500 — large-scale benchmarks.

[4] An important milestone in delivering on the promise of optical i/o - ayar labs.

[5] Intel demos 528-thread chip with 1tb/s of optical bandwidth • the register.

[6] JEDEC.

[7] Thermistor Specification Fiber Specification an exemplary Eye Diagram of one F-P mode Externally modulated

at 2.5GHz filtered-out single channel.

[8] WDC - Hyperlink Graphs.

[9] Zen - Microarchitectures - AMD - WikiChip.

[10] M. Abeydeera and D. Sanchez, Chronos: Efficient speculative parallelism for accelerators, in Proceedings

of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Op-

erating Systems, 2020, pp. 1247–1262.

[11] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, A scalable processing-in-memory accelerator for parallel

graph processing, in Proceedings of the 42nd Annual International Symposium on Computer Architecture, 2015,

pp. 105–117.

[12] H. Akinaga and H. Shima, Resistive random access memory (reram) based on metal oxides, Proceedings of

the IEEE, 98 (2010), pp. 2237–2251.

[13] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura, Rabbit order: Just-in-time parallel

reordering for fast graph analysis, in 2016 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), 2016, pp. 22–31.

[14] A. Ayupov, S. Yesil, M. M. Ozdal, T. Kim, S. Burns, and O. Ozturk, A template-based design method-

ology for graph-parallel hardware accelerators, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 37 (2017), pp. 420–430.

[15] V. Balaji and B. Lucia, When is graph reordering an optimization? studying the effect of lightweight graph

reordering across applications and input graphs, in 2018 IEEE International Symposium on Workload Charac-

terization (IISWC), 2018, pp. 203–214.

[16] C. Batten et al., Building many-core processor-to-dram networks with monolithic cmos silicon photonics,

International Symposium on Microarchitecture (MICRO), (2009.), pp. 8–21.

95

[17] S. Beamer and K. Asanović, The gap benchmark suite, arXiv preprint arXiv:1508.03619, (2015).

[18] S. Beamer, K. Asanović, and D. Patterson, Gail: The graph algorithm iron law, in Proceedings of the 5th

Workshop on Irregular Applications: Architectures and Algorithms, 2015, pp. 1–4.

[19] S. Beamer et al., Re-architecting dram memory systems with monolithically integrated silicon photonics, in

Proceedings International Symposium on Computer Architecture (ISCA)., IEEE, 2010, p. 129–140.

[20] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna, Kite: A family of heterogeneous interposer topologies

enabled via accurate interconnect modeling, in 2020 57th ACM/IEEE Design Automation Conference (DAC),

2020, pp. 1–6.

[21] H. Cao et al., Scaling graph traversal to 281 trillion edges with 40 million cores, in PPoPP, 2022, pp. 234–245.

[22] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo, R. Ku-

ramkote, M. Parker, et al., Impulse: Building a smarter memory controller, in Proceedings Fifth Interna-

tional Symposium on High-Performance Computer Architecture, IEEE, 1999, pp. 70–79.

[23] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swaminathan, J. Sampson, Y. Chen,

and V. Narayanan, Gaas-x: Graph analytics accelerator supporting sparse data representation using crossbar

architectures, in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),

2020, pp. 433–445.

[24] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonia, Managing dram

latency divergence in irregular gpgpu applications, in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis (SC), 2014, pp. 128–139.

[25] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and W. J. Dally,

Architecting an energy-efficient dram system for gpus, in IEEE International Symposium on High Performance

Computer Architecture (HPCA), IEEE, 2017, pp. 73–84.

[26] S. Cheung, T. Su, K. Okamoto, and S. Yoo, Ultra-compact silicon photonic 512× 512 25 ghz arrayed

waveguide grating router, IEEE Journal of Selected Topics in Quantum Electronics, (2013), pp. 310–316.

[27] M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi, Phastlane: a rapid transit optical routing network,

in Proceedings of the 36th annual international symposium on Computer architecture, 2009, pp. 441–450.

[28] E. Cooper-Balis and B. Jacob, Fine-grained activation for power reduction in dram, IEEE Micro, 30 (2010),

pp. 34–47.

[29] V. Dadu, S. Liu, and T. Nowatzki, Polygraph: Exposing the value of flexibility for graph processing accel-

erators, in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), IEEE,

2021, pp. 595–608.

[30] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math. Softw., 38

(2011).

96

[31] G. de Valicourt, J. E. Simsarian, A. Maho, R. Brenot, K. Kim, A. Melikyan, P. Dong, C.-M.

Chang, and Y.-K. Chen, Dual hybrid silicon-photonic laser with fast wavelength tuning, in Optical Fiber

Communications Conference and Exhibition (OFC), 2016, pp. 1–3.

[32] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten, Bandwidth bandit: Quantitative char-

acterization of memory contention, in Proceedings of the 2013 IEEE/ACM CGO, 2013, pp. 1–10.

[33] P. Erdős, A. Rényi, et al., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci, 5 (1960),

pp. 17–60.

[34] M. Fariborz, M. Samani, T. O’Neill, J. Lowe-Power, S. B. Yoo, and V. Akella, A model for scalable

and balanced accelerators for graph processing, IEEE Computer Architecture Letters, 21 (2022), pp. 149–152.

[35] M. Fariborz, X. Xiao, P. Fotouhi, R. Proietti, and S. B. Yoo, Silicon photonic flex-lions for reconfig-

urable multi-gpu systems, Journal of Lightwave Technology, 39 (2021), pp. 1212–1220.

[36] P. Fotouhi, S. Werner, J. Lowe-Power, and S. B. Yoo, Enabling scalable chiplet-based uniform memory

architectures with silicon photonics, in Proceedings of the International Symposium on Memory Systems, 2019,

pp. 222–334.

[37] P. Grani, R. Proietti, V. Akella, and S. B. Yoo, Design and evaluation of awgr-based photonic noc

architectures for 2.5 d integrated high performance computing systems, in 2017 IEEE International Symposium

on High Performance Computer Architecture (HPCA), IEEE, 2017, pp. 289–300.

[38] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K. Hazelwood,

M. Hempstead, B. Jia, et al., The architectural implications of facebook’s dnn-based personalized recommen-

dation, in IEEE International Symposium on High Performance Computer Architecture (HPCA), IEEE, 2020,

pp. 488–501.

[39] H. Ha, A. Pedram, S. Richardson, S. Kvatinsky, and M. Horowitz, Improving energy efficiency of dram

by exploiting half page row access, in 2016 49th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), IEEE, 2016, pp. 1–12.

[40] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, Graphicionado: A high-performance and

energy-efficient accelerator for graph analytics, in 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), IEEE, 2016, pp. 1–13.

[41] M. Han and K. Daudjee, Giraph unchained: Barrierless asynchronous parallel execution in pregel-like graph

processing systems, Proceedings of the VLDB Endowment, 8 (2015), pp. 950–961.

[42] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and O. Mutlu, Charge-

cache: Reducing dram latency by exploiting row access locality, in IEEE International Symposium on High

Performance Computer Architecture (HPCA), IEEE, 2016.

[43] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, Graphlily: Accelerating graph linear algebra on hbm-equipped fpgas,

in 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), IEEE, 2021, pp. 1–9.

[44] J. JESD235A, High bandwidth memory (hbm) dram, JEDEC Solid State Technology Association, (2015).

97

[45] D. Kaseridis, J. Stuecheli, and L. K. John, Minimalist open-page: A dram page-mode scheduling policy

for the many-core era, in International Symposium on Microarchitecture (MICRO), IEEE, 2011, pp. 24–35.

[46] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, The Bell System

Technical Journal, 49 (1970), pp. 291–307.

[47] Y. Kim et al., A case for exploiting subarray-level parallelism (salp) in dram, in Proceedings of the International

Symposium on Computer Architecture (ISCA)., IEEE, 2012, pp. 368–379.

[48] N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A. Watkins, and D. H. Al-

bonesi, Leveraging optical technology in future bus-based chip multiprocessors, in 2006 39th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’06), IEEE, 2006, pp. 492–503.

[49] H. Kwak, C. Lee, H. Park, and S. Moon, What is twitter, a social network or a news media?, in Proceedings

of the 19th international conference on World wide web, 2010, pp. 591–600.

[50] C. E. Leiserson, The cilk++ concurrency platform, in Proceedings of the 46th Annual Design Automation

Conference, 2009, pp. 522–527.

[51] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, Kronecker graphs: an

approach to modeling networks., Journal of Machine Learning Research, 11 (2010).

[52] H. Li, Z. Xuan, A. Titriku, C. Li, K. Yu, B. Wang, A. Shafik, N. Qi, Y. Liu, R. Ding, et al., A

25 gb/s, 4.4 v-swing, ac-coupled ring modulator-based wdm transmitter with wavelength stabilization in 65 nm

cmos, IEEE Journal of Solid-State Circuits, (2015), pp. 3145–3159.

[53] L. Li, P. Chia, P. Ton, M. Nagar, S. Patil, J. Xue, J. Delacruz, M. Voicu, J. Hellings, B. Isaacson,

et al., 3d sip with organic interposer for asic and memory integration, in IEEE 66th Electronic Components

and Technology Conference (ECTC), IEEE, 2016, pp. 1445–1450.

[54] C. Liu, Z. Shao, K. Li, M. Wu, J. Chen, R. Li, X. Liao, and H. Jin, Scalabfs: A scalable bfs accelerator on

fpga-hbm platform, in The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

2021, pp. 147–147.

[55] G. Liu, R. Proietti, M. Fariborz, P. Fotouhi, X. Xiao, and S. B. Yoo, Architecture and performance

studies of 3d-hyper-flex-lion for reconfigurable all-to-all hpc networks, in SC20: International Conference for

High Performance Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1–16.

[56] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Hellerstein, Graphlab: A

new framework for parallel machine learning, arXiv preprint arXiv:1408.2041, (2014).

[57] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi, A. Armejach,

N. Asmussen, B. Beckmann, S. Bharadwaj, et al., The gem5 simulator: Version 20.0+, arXiv preprint

arXiv:2007.03152, (2020).

[58] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas, R. Rabenseifner, and

D. Takahashi, The hpc challenge (hpcc) benchmark suite, in Proceedings of the 2006 ACM/IEEE conference

on Supercomputing, vol. 213, 2006, p. 1.

98

[59] A. Manocha, T. Sorensen, E. Tureci, O. Matthews, J. L. Aragón, and M. Martonosi, Graphat-

tack: Optimizing data supply for graph applications on in-order multicore architectures, ACM Transactions on

Architecture and Code Optimization (TACO), 18 (2021), pp. 1–26.

[60] S. Matsuo and T. Segawa, Microring-resonator-based widely tunable lasers, IEEE Journal of Selected Topics

in Quantum Electronics, (2009), pp. 545–554.

[61] R. R. McCune, T. Weninger, and G. Madey, Thinking like a vertex: a survey of vertex-centric frameworks

for large-scale distributed graph processing, ACM Computing Surveys (CSUR), 48 (2015), pp. 1–39.

[62] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez, Exploiting locality in graph analytics

through hardware-accelerated traversal scheduling, in 2018 51st Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), IEEE, 2018, pp. 1–14.

[63] Q. Nguyen and D. Sanchez, Fifer: Practical acceleration of irregular applications on reconfigurable ar-

chitectures, in MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021,

pp. 1064–1077.

[64] Q. M. Nguyen and D. Sanchez, Pipette: Improving core utilization on irregular applications through intra-

core pipeline parallelism, in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), IEEE, 2020, pp. 596–608.

[65] C. J. Nitta, M. Farrens, and V. Akella, On-chip photonic interconnects: A computer architect’s perspective,

Synthesis Lectures on Computer Architecture, (2013), pp. 1–111.

[66] M. Orenes-Vera, A. Manocha, J. Balkind, F. Gao, J. L. Aragón, D. Wentzlaff, and M. Martonosi,

Tiny but mighty: Designing and realizing scalable latency tolerance for manycore socs, in Proceedings of the

49th Annual International Symposium on Computer Architecture, 2022, pp. 817–830.

[67] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi, Dalorex: A data-local program execution

and architecture for memory-bound applications, in 2023 IEEE International Symposium on High-Performance

Computer Architecture (HPCA), IEEE, 2023, pp. 718–730.

[68] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk, Energy efficient

architecture for graph analytics accelerators, ACM SIGARCH Computer Architecture News, 44 (2016), pp. 166–

177.

[69] M. O’Connor et al., Fine-grained dram: Energy-efficient dram for extreme bandwidth systems, in Interna-

tional Symposium on Microarchitecture (MICRO), IEEE, 2017, pp. 41–54.

[70] I. A. Papistas and V. F. Pavlidis, Bandwidth-to-area comparison of through silicon vias and inductive links

for 3-d ics, in 2015 European Conference on Circuit Theory and Design (ECCTD), IEEE, 2015, pp. 1–4.

[71] M. S. Parekh, P. A. Thadesar, and M. S. Bakir, Electrical, optical and fluidic through-silicon vias for

silicon interposer applications, in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC),

IEEE, 2011, pp. 1992–1998.

[72] J. T. Pawlowski, Hybrid memory cube (hmc), in 2011 IEEE Hot Chips 23 Symposium (HCS), 2011, pp. 1–24.

99

[73] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H. Lee,

A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui, The tao of parallelism in

algorithms, ACM SIGPLAN Notices, 46 (2011), pp. 12–25.

[74] R. Proietti, X. Xiao, K. Zhang, G. Liu, H. Lu, P. Fotouhi, J. Messig, and S. Yoo, Experimental

demonstration of a 64-port wavelength routing thin-clos system for data center switching architectures, Journal

of Optical Communications and Networking, 10 (2018), pp. B49–B57.

[75] S. Rahman, N. Abu-Ghazaleh, and R. Gupta, Graphpulse: An event-driven hardware accelerator for asyn-

chronous graph processing, in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), IEEE, 2020, pp. 908–921.

[76] S. Rahman, M. Afarin, N. Abu-Ghazaleh, and R. Gupta, Jetstream: Graph analytics on streaming data

with event-driven hardware accelerator, in MICRO-54: 54th Annual IEEE/ACM International Symposium on

Microarchitecture, 2021, pp. 1091–1105.

[77] S. RRumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, Silicon photonics for

exascale systems, Journal of Lightwave Technology (JLT), (2015).

[78] A. Shacham, K. Bergman, and L. P. Carloni, Photonic networks-on-chip for future generations of chip

multiprocessors, IEEE Transactions on Computers, (2008), pp. 1246–1260.

[79] K. Shang, S. Pathak, C. Qin, and S. B. Yoo, Low-loss compact silicon nitride arrayed waveguide gratings

for photonic integrated circuits, IEEE Photonics Journal, 9 (2017), pp. 1–5.

[80] Y. Shen, X. Meng, Q. Cheng, S. Rumley, N. Abrams, A. Gazman, E. Manzhosov, M. S. Glick, and

K. Bergman, Silicon photonics for extreme scale systems, Journal of Lightwave Technology (JLT), (2019),

pp. 245–259.

[81] J. Shun and G. E. Blelloch, Ligra: a lightweight graph processing framework for shared memory, in Pro-

ceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming, 2013,

pp. 135–146.

[82] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, Graphr: Accelerating graph processing using reram,

in 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), IEEE, 2018,

pp. 531–543.

[83] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, Graphr: Accelerating graph processing using reram,

vol. 2018-Febru, IEEE Computer Society, 3 2018, pp. 531–543.

[84] I. D. Sousa and L. Achard, The future of packaging with silicon photonics, 2016.

[85] N. Sundaram, N. R. Satish, M. M. A. Patwary, S. R. Dulloor, S. G. Vadlamudi, D. Das, and

P. Dubey, Graphmat: High performance graph analytics made productive, arXiv preprint arXiv:1503.07241,

(2015).

100

[86] F. I. system performance via fine-grained In-DRAM data relocation and caching, Figaro: Improv-

ing system performance via fine-grained in-dram data relocation and caching, in International Symposium on

Microarchitecture (MICRO), IEEE, 2020, pp. 313–328.

[87] K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, Low-crosstalk 10-ghz-spaced 512-channel

arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer, IEEE Photonics Technology Letters,

13 (2001), pp. 1182–1184.

[88] A. N. Udipi et al., Combining memory and a controller with photonics through 3d-stacking to enable scalable

and energy-efficient systems, ACM SIGARCH Computer Architecture News, 39 (2011), pp. 425–436.

[89] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N. P. Jouppi,

Rethinking dram design and organization for energy-constrained multi-cores, in Proceedings of the International

Symposium on Computer Architecture (ISCA)., 2010, pp. 175–186.

[90] L. G. Valiant, A bridging model for parallel computation, Commun. ACM, 33 (1990), p. 103–111.

[91] , A bridging model for parallel computation, Commun. ACM, 33 (1990), p. 103–111.

[92] M. Wade, E. Anderson, S. Ardalan, P. Bhargava, S. Buchbinder, M. L. Davenport, J. Fini, H. Lu,

C. Li, R. Meade, et al., Teraphy: A chiplet technology for low-power, high-bandwidth in-package optical i/o,

International Symposium on Microarchitecture (MICRO), (2020), pp. 63–71.

[93] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, Gunrock: A high-performance graph

processing library on the gpu, in Proceedings of the 21st ACM SIGPLAN symposium on principles and practice

of parallel programming, 2016, pp. 1–12.

[94] Z. Wang, H. Huang, J. Zhang, and G. Alonso, Shuhai: Benchmarking high bandwidth memory on fpgas,

in 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2020, pp. 111–119.

[95] S. Werner, P. Fotouhi, R. Proietti, and S. B. Yoo, Awgr-based optical processor-to-memory communi-

cation for low-latency, low-energy vault accesses, in Proceedings of the International Symposium on Memory

Systems (MEMSYS), 2018, pp. 269–278.

[96] S. Werner, P. Fotouhi, X. Xiao, M. Fariborz, S. B. Yoo, G. Michelogiannakis, and D. Vasudevan,

3d photonics as enabling technology for deep 3d dram stacking, in Proceedings of the International Symposium

on Memory Systems, 2019, pp. 206–221.

[97] S. Werner, J. Navaridas, and M. Luján, Amon: An advanced mesh-like optical noc, in IEEE 23rd Annual

Symposium on High-Performance Interconnects, 2015, pp. 52–59.

[98] M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng, P. Gu, L. Deng, X. Ye, Z. Zhang,

D. Fan, and Y. Xie, Alleviating irregularity in graph analytics acceleration: A hardware/software co-design

approach, in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO ’52, New York, NY, USA, 2019, Association for Computing Machinery, p. 615–628.

101

[99] P. Yao, L. Zheng, Y. Huang, Q. Wang, C. Gui, Z. Zeng, X. Liao, H. Jin, and J. Xue, Scalagraph: A

scalable accelerator for massively parallel graph processing, in 2022 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), IEEE, 2022, pp. 199–212.

[100] P. Yao, L. Zheng, X. Liao, H. Jin, and B. He, An efficient graph accelerator with parallel data conflict

management, in Proceedings of the 27th International Conference on Parallel Architectures and Compilation

Techniques, 2018, pp. 1–12.

[101] K. Yu, C. Li, H. Li, A. Titriku, A. Shafik, B. Wang, Z. Wang, R. Bai, C.-H. Chen, M. Fiorentino,

et al., A 25 gb/s hybrid-integrated silicon photonic source-synchronous receiver with microring wavelength

stabilization, IEEE Journal of Solid-State Circuits (JSSC), (2016), pp. 2129–2141.

[102] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian, Graphp: Re-

ducing communication for pim-based graph processing with efficient data partition, in 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA), IEEE, 2018, pp. 544–557.

[103] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, Half-dram: A high-bandwidth and low-power

dram architecture from the rethinking of fine-grained activation, ACM SIGARCH Computer Architecture News,

42 (2014), pp. 349–360.

[104] Y. Zhang, Q. Gao, L. Gao, and C. Wang, Maiter: An asynchronous graph processing framework for delta-

based accumulative iterative computation, IEEE Transactions on Parallel and Distributed Systems, 25 (2013),

pp. 2091–2100.

[105] Y. Zhang, Y.-C. Ling, Y. Zhang, K. Shang, and S. B. Yoo, High-Density Wafer-Scale 3-D Silicon-Photonic

Integrated Circuits, IEEE Journal of Selected Topics in Quantum Electronics, (2018), pp. 1–10.

[106] M. Zhou, M. Imani, S. Gupta, Y. Kim, and T. Rosing, Gram: graph processing in a reram-based computa-

tional memory, in IEEE Asia and South Pacific Design Automation Conference, 2019.

[107] S. Zhou, C. Chelmis, and V. K. Prasanna, High-throughput and energy-efficient graph processing on fpga,

in 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), IEEE, 2016, pp. 103–110.

[108] S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna, An fpga framework for edge-centric graph processing,

in Proceedings of the 15th ACM International Conference on Computing Frontiers, 2018, pp. 69–77.

[109] X. Zhu, W. Chen, W. Zheng, and X. Ma, Gemini: A computation-centric distributed graph processing

system., in OSDI, vol. 16, 2016, pp. 301–316.

[110] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian, Graphq: Scalable pim-based graph

processing, in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019,

pp. 712–725.

102

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Background and Related Work on Graph Workloads
	2.1. Background on Graph Workloads
	2.2. Related Work
	2.3. Limitations of Previous Work

	Chapter 3. Scalable Engine for Graph Acceleration
	3.1. Background on Message-driven Graph Applications
	3.2. A Model for Scalable Accelerator
	3.3. SEGA Architecture
	3.4. Methodology
	3.5. Evaluation
	3.6. Applications of Model
	3.7. Conclusion

	Chapter 4. Enabling Large Scale Graph Accelerations Using Silicon Photonics
	4.1. Background on Chiplet-base Systems
	4.2. SEGA a Chiplet-Based System for Large Graph Acceleration
	4.3. Packaging
	4.4. Methodology and Evaluation
	4.5. Conclusion

	Chapter 5. Low Latency Memory
	5.1. Introduction
	5.2. Motivation
	5.3. Silicon photonic enabling technologies
	5.4. Architecture
	5.5. Methodology
	5.6. Evaluation
	5.7. Related Work
	5.8. Conclusion

	Chapter 6. Conclusion and Future Works
	6.1. Opportunities for Disaggregated Memories
	6.2. Support for Streaming Graphs
	6.3. State of the art Memory Systems for Graph Workloads
	6.4. Conclusion

	Bibliography

