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Question Answering (QA) is an innate way in which humans converse, understand abstract concepts,

and reason about complex interactions among different objects. This makes question answering

a great way to test the natural language understanding of an artificial intelligence system. The

recent advances in model architectures and large-scale datasets have led to the development of

neural QA systems that surpass human performance on simple question answering – which requires

looking up a single fact in given a document. The reason behind the success of neural systems lies

in their ability to directly learn features to extract answers from data. In contrast, symbolic systems

encounter notable difficulties in scaling due to their restricted applicability to semi-structured or

symbol-grounded data. Despite their reliance on structured data, symbolic systems demonstrate

proficiency in executing deterministic operations and performing reasoning tasks. Conversely,

neural systems exhibit limitations in reasoning, as they are (1) inconsistent, (2) unable to compose

simple facts and perform complex reasoning, and (3) sensitive to changes in domain distribution.

In this dissertation, we present a range of data intervention schemes that facilitate in building

consistent, decomposable, and generalizable neural QA systems. In the first part, we show that purely

neural systems are inconsistent and biased because most training and data collection procedures for

neural systems make the independence assumptions. We explore two ways to address this problem

in the context of question answering. Firstly, we introduce a way to curate related QA pairs and
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a contrastive loss function that takes bundles of related questions as input and learns to jointly

answer them. Such related or minimally different data enable us to capture the relationship across

examples that would otherwise have remained unseen or, at the very least, not seen simultaneously

at the time of training. This method improves the performance over baseline methods by ∼14%

in F1. Secondly, we take a generative approach to passage selection in multi-hop QA, where we

learn a prior over interactions between the current passage and the subsequent passage for hopping

along with a conditional question generation model, which ensure that parts of the question are not

overlooked. This improves the performance over baseline on adversarial set by ∼ 5% in passage

selection accuracy.

In the second part, we first introduce a compositional QA dataset, DROP, that requires extracting

multiple facts from a given document and then performing discrete (symbolic) operations on these

facts while solving a question. We show that purely neural and symbolic methods perform poorly

on this task – even commercial systems like GPT-4 are unable to reach human performance. Then,

we show that prompting-based neural QA methods lack decomposability for two reasons: (1) the

intermediate steps are not specified in a common format across different complex questions, (2)

the model ignores valuable sub-problem demonstrations associated with complex questions that

do not appear similar on the surface to the question at hand, even though they provide much better

supervision signal. We propose a method that leverages synthetically generated data to break

down a complex question into simpler sub-question answer pairs in a consistent format. This data

intervention not only promotes transfer but also enables us to search for pertinent QA pairs at

each step especially tailored to solving that step, further improving supervision signal and overall

performance in a zero-shot setting by ∼5%.

Finally, we dissect the complex interactions among questions, answers, and documents learned by

a neural QA system to assess their effectiveness towards generalization under a range of different

data distributions. We demonstrate three distinct data intervention techniques that aid in improving

generalization capabilities. The first data intervention approach involves zero-shot and few-shot
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adaptation methods that use none to little examples from unseen domain to effectively adapt

an existing QA model to those unseen domains. Our few-shot method improves out-of-domain

generalization performance by up to ∼24%. This style of intervention is typically employed for

adapting to a specific target domain. However, in real-world scenarios, a single model needs to

possess the capability to learn from multiple domains. To this end, we introduced an open reading

evaluation benchmark (ORB) that tests a single model performance on a range of reasoning abilities.

We show that the models have a tendency to forget how to solve examples that they were previously

capable of solving, when trained on multiple datasets. Our second intervention technique revolves

around strategic sampling of examples from various datasets to alleviate catastrophic forgetting.

This method, called dynamic sampling improves multi-task performance by ∼13%. In the final

data intervention technique, we introduce intermediate reasoning steps when solving compositional

problems. This approach reduces label bias by up to ∼61%. Overall, we demonstrate how data

interventions can be utilized to induce characteristics of symbolic systems into neural QA systems.
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Chapter 1

Introduction

Thinking is manipulation of symbols and

Reasoning is computation

Thomas Hobbes

(grandfather of Artificial Intelligence)

Question Answering (QA) remains one of the primary tasks for testing human [19] and machine

reading [20] capabilities. This is because the reader has to not only understand the linguistic

constructs of the natural language of the text but also reason about multiple facts that require an

intimate understanding of the ways of the world.

Early attempts at building question answering systems [21, 22] use symbolic logic over manually

written rules and/or facts that describe the world. The research community, over the years, has

developed large-scale knowledge graphs that specify the world through symbols. These symbols

capture the abstract meaning of various concepts like events [23, 24], entities [25, 26, 27] and

commonsense reasoning [28] through description about these concept and/or how a specific concept

relates to other concepts. In cognitive science, this problem of how a word or symbol gets its

meanings is referred to as symbol grounding [29, 30]. Symbol grounding can be challenging in
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natural language because writers do not often mention the meaning of a concept and assume that

readers have an inherent understanding of how to ground a symbol in the real world and envision

the effects of manipulations performed on these symbols. For instance, to answer the question

in Figure 1.1, the reader needs to: (1) have domain knowledge that SIRT1 is a protein (2) be

able to perform symbol manipulation and comprehend that EMT refers to epithelial-mesenchymal

transition in the given context and (3) be able to reason that silencing protein SIRT1 restores cell-cell

adhesion implies that presence of SIRT1 causes the loss of cell-cell adhesion further resulting in

transition of epithelial cells into mesenchymal cells.

Context: We propose a novel mechanism through which SIRT1 regulates EMT in prostate can-
cer cells through cooperation with the EMT inducing transcription factor ZEB1. We found that
forced expression of SIRT1 in non-transformed prostate epithelial cells disrupts the epithelial
morphology concomitant with decreased expression of the epithelial marker, E-cadherin, and
increased expression of mesenchymal markers. In contrast, silencing SIRT1 in metastatic prostate
tumor cells restores cell-cell adhesion and induces a shift toward an epithelial morphology con-
comitant with increased expression of E-cadherin and decreased expression of mesenchymal
markers.

Question: Which protein causes the loss of cell-cell adhesion during epithelial-mesenchymal
transition?
Answer: SIRT1

Figure 1.1: Example from BioASQ: Grounding objects in context for answering question

While knowledge graphs facilitate symbol grounding and manipulation, they are expensive to curate

making them limited and difficult to extend beyond the domains for which such facts are specified.

Additionally, the ambiguous, nuanced, and compositional nature of natural language poses a lot of

challenges in parsing natural language into a form over which symbolic logic can be executed [31].

Neural networks, conversely, learn to extract facts and/or rules by themselves from examples

demonstrating how to solve a task, making them extensible. In fact, with recent advances in research,

neural networks can learn associations between various concepts without human intervention – by

analyzing concept co-occurrences in existing cheap and abundant unstructured natural language

data [32, 33]. This paradigm is called pre-training, where we learn latent representations for

concepts that appear in natural language text. Several works [34, 35] even use multi-sensory data
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from images, text, speech, etc., to jointly learn latent representations of various symbols; and have

been shown to have a better understanding of a concept.

Besides the representation of symbols or concepts, QA systems face the additional challenge of

performing reasoning to solve the task, particularly when dealing with intricate compositional

problems [36]. Symbolic systems conduct deterministic reasoning, which results in consistent

outputs. Notably, they can also be applied to unseen symbolic compositions in a generalizable

manner. In contrast, neural networks are stochastic, and their learning is highly influenced by the

distribution of the data, which can lead to unanticipated biases [13, 2] and limited generalization [37,

38, 39].

Given that neural systems are more adept at learning symbol representation and symbolic systems

excel in reasoning, we take inspiration from symbolic systems and focus on alleviating three

problems of neural question answering systems: consistency, decomposability, and generalizability

with the help of various data interventions.

1.1 Problems with Neural QA systems

We will look at three problems with neural systems in detail below.

1.1.1 Consistency

Recent advancements in QA systems have led to a human-level performance on simple questions

that require extracting answers in a given passage 12. However, it is unclear if they can consistently

solve such questions when deployed for human use. In Fig.1.2, we show that a model trained on

HotpotQA [40] is able to answer question q1 correctly, but when we replace the word “more” with

1https://rajpurkar.github.io/SQuAD-explorer/
2https://hotpotqa.github.io/
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“less”, it gets confused. Inconsistent responses lead to a lack of trust and credibility with users. It is

imperative for any user system not to get confused with simple and straightforward changes to the

input [41]. In an ideal scenario, if a model knows the answer to q1, it should automatically know

the answer to q2 and vice-versa.

In symbolic systems, we can specify the causal relation between such words with a simple logic

rule like more (m1, m2) =⇒ less (m2, m1). Neural systems, however, need to learn that the words

more and less are not only related but are semantically polar opposites of each other from examples

alone. And they need to acquire such associations from examples that are not even presented

together during training. Neural systems are generally trained with the assumption that data is

independently and identically distributed (IID), which breaks correlations between examples that

are closely related leading to inconsistent learning [9].

Context: Marsilea is a genus of approximately 65 species of aquatic ferns of the family Mar-
sileaceae. The name honours Italian naturalist Luigi Ferdinando Marsili (1656-1730) .... Brabejum
is a genus of a single species of large evergreen tree, Brabejum stellatifolium in the Proteaceae,
commonly called wild almond, bitter almond, or ghoeboontjie.

Question (q1): Is the Marsilea or the Brabejum, the genus of more individual species of plants?
Answer (a1): Marsilea

Question (q2): Is the Marsilea or the Brabejum, the genus of less individual species of plants?
Answer (a2): Marsilea

Figure 1.2: Inconsistency: Example from HotpotQA dataset where neural systems produce same
answer for opposite questions.

1.1.2 Decomposability

Humans frequently solve problems by breaking down intricate tasks, recognizing recurring patterns,

and gradually moving toward the solution through incremental steps. Figure 1.3 shows a response

to an everyday question a person might ask a search engine like Google. A search engine, being a

simple retrieval-based system, is able to identify suitable food options for people with overactive

thyroid or hyperthyroidism. However, it does not possess the capability to reason and filter the list
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Figure 1.3: Answer retrieved by a traditional search engine. These results are from Google3 as
observed on May 8, 2023

of food items based on their calorie content and concludes that ”unsalted nuts and nut butters” have

a low calorie count.

On the other hand, large language models [42] (LLM), which are considered to be proficient at

performing general-purpose reasoning out-of-the-box, are able to identify low-calorie foods, as

shown in Figure 1.4. But they are unable to perform accurately narrow down the list to only include

the items suitable for individuals with hyperthyroidism. This is evident from their recommendation

of soy products like tofu that are not advisable for individuals with an overactive thyroid and also

healthy fats that are not low in calories. In fact, even a combination of a search engine and a large

language model is unable to perform the right reasoning and filter out high calorie foods “Unsalted

nuts and nut butters” as shown in Figure 1.5.

Symbolic systems can effectively handle compositions via semantic parsing style approaches or

inference techniques like forward and backward chaining, provided the facts and rules are specified
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Figure 1.4: A large language model is unable to filter items for hyperthyroidism. These results are
from ChatGPT4 on May 8, 2023

Figure 1.5: Retrieval augmented language models are unable to perform the right reasoning. These
results are from Bing’s chat feature on May 8, 2023
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Subject Relation Object

hyperthyroidism recommended food non-iodized salt
hyperthyroidism recommended food unsalted nuts and nut butters
hyperthyroidism recommended food egg whites
egg whites calorie low
unsalted nuts and nut butters calorie high
non-iodized salt calorie low
egg whites is a food
unsalted nuts and nut butters is a food
non-iodized salt is a food

Table 1.1: Example questions and answers from the drop dataset, showing the relevant parts of the
associated passage and the reasoning required to answer the question.

in a structured form. Let us say we have a semi-structured table containing the facts required to

answer the question “I have an overactive thyroid, what low calorie food can I eat?” as shown in

Table 1.1. If we adopt a semantic parsing [43] approach, then we need to learn to map natural

language questions to an executable program like Eq. 1.1, which can be executed with a deterministic

interpreter [44].

λx.λy Subject(x, ‘hyperthyroidism’) ∧ Relation(x, ‘recommended food’)

∧ Relation(y, ‘calorie’) ∧ Object(y, ‘low’) ∧ Object(x) == Subject(y)
(1.1)

When both the question and context can be parsed easily and effectively, the execution of rea-

soning follows a deterministic path. However, the task of semantic parsing remains formidable

because parsing natural language into a semi-structured format poses significant challenges due

to the contextual and inherently ambiguous nature of language itself [45]. Furthermore, models

struggle to generalize to novel compositions, grammatical structures, and table headers without any

adaptations [46].

7



1.1.3 Generalizability

Neural systems are sensitive to changes in the distribution of data, especially when they are tested on

examples that are very different from the original training distribution. For instance, in Figure 1.6a,

we use a retrieve-and-read approach, where the retrieved top 100 passages from the Wikipedia

document corpus are read by a reader model to answer the given question. If we extend the document

corpus to also include Pubmed (biomedical articles), in an ideal scenario, the retrieved results and

the final answer should not change. However, as illustrated in Figure 1.6b both retriever and reader

models get confused and make an incorrect prediction. This is because the term “plant” in the

biomedical corpus is often used to refer to the living organism, while in the retriever and reader

models, which were trained on the Wikipedia corpus, the it pre-dominantly referred to the plant as a

location.

Both symbolic systems and neural systems face challenges in generalizing to unseen domains, but

they suffer from different limitations. Symbolic systems require predefined logic rules in every

domain to perform reasoning computations, and without these facts or rules, they fail to produce

any output. On the other hand, neural systems tend to respond even when they encounter unfamiliar

reasoning types that they were not trained on, as they lack the ability to introspect and accurately

assess their own knowledge or lack thereof.

1.2 Background

Early question answering systems use rule-based bag-of-words [22, 47] style, shallow lexical

matching methods to extract the span in a given document as an answer. These systems perform

syntactic operations like coreference (pronoun) resolution and matching the wh-form of the question

with the type of answer; for instance, questions that start with “Where” are associated with locations

as answers. However, these systems are limited and difficult to generalize beyond the manually
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nuclear power plant located in Narora,

Dibai Tehsil, Bulandshahar District in Uttar

Pradesh, India.

In this study, oat flour (OF) was
used to replace wheat flour in

tarhana plant samples…

oat
flour

(b) Retriever gets perturbed and returns passages about plants further confusing the reader.

Figure 1.6: Retrieve-and-Read models trained on general-purpose domain with Wikipedia corpus
and tested with Wikipedia and Pubmed corpus.

crafted rules. With the resurgence of neural networks [48, 49, 50] and advancements in large-scale

dataset collection [51], it became easier to build QA systems that can learn rules and features from

data directly without manual intervention. These systems do not rely on cumbersome and noisy

linguistic features like dependency parsing, coreference resolution, semantic role labeling, etc.,

making them easier to deploy and use.

1.2.1 Notation

The question answering task can be formulated as a supervised prediction task where the goal is

to predict the answer a for a given question q. To be able to answer the question, we also need

supporting documents that contain references to the answer. When the set of supporting documents,
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cq are provided along with the question (q), it is referred to as reading comprehension. The goal

of reading comprehension is to learn a model that predicts the answer given the question, q, and

the relevant contexts, cq, as â ← p(a|q, cq). In some cases, we first need to retrieve the relevant

documents cq for a given question, a, and then answer the question based on these retrieved passages.

This is referred to as open-domain question answering.

1.2.2 Foundation Models

With the success of plug-n-play object representations [52, 53, 34, 54] in computer vision, a series

of works in natural language data sought to learn continuous representations for words in the

vocabulary. The early works on learning continuous representations or embeddings for each word

utilized word co-occurrences in the raw text to induce semantic meaning in the word representations.

These methods [55, 56] learned a fixed embedding or representation for each word or token in the

vocabulary. However, this approach was inadequate for representing natural language because the

meaning of a word can vary widely depending on the context in which it is used. For instance, the

word “bank” has different meanings in different contexts, like a food bank, river bank, blood bank,

and a financial institution where we store money, etc. To address this issue, foundation models [57]

were developed to learn contextual word representations [32, 58]. These models are initially trained

or pre-trained on a large corpus of text to capture linguistic associations and features [59] that

capture the meaning of words as used in different contexts in the natural language. Then, they

are further trained or fine-tuned to solve a single or set of tasks like question answering, textual

entailment, sentiment analysis, etc.

The fundamental building blocks of these models, known as Transformer blocks are shown in

Figure 1.7. The two main components of a transformer block are the multi-head attention (MHA)

and feed-forward network (FFN).
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Figure 1.7: Transformer Block [1]

Token Representation: The first step is to map the raw text into a continuous space. A naive way

to do this is to tokenize the text into words and then initialize each word with a random continuous

vector which can be learned during training. However, Zipf’s law indicates that this leads to a large

vocabulary size, which can be expensive to train and difficult to maintain – as new words are added

to the natural language every day. On the other hand, based on morphological studies, words like

“snowboard” and “skateboard” can be broken down into {“snow”, “board”} and {“skate”, “board”}

thereby reducing the total number of words in the vocabulary. With these inspirations in mind,

methods like byte-pair encoding [60] and word-piece [61] tokenization learn how to segment a

piece of text to fit a fixed vocabulary size based on the frequency of continuous character segments

in the text.

The input tokens, pertaining to a piece of text, are then mapped into continuous representations

via the embeddings block as X ∈ R |tokens|×d. One point to note is that the entire transformer block

computes representations for all tokens in the input in parallel to promote faster computation.

However, word ordering is crucial in natural language to understand the context. To represent order,
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positional encodings are added to the input representations that specify the position of each token.

Multi-Head attention: The MHA block performs multiple parallel scaled dot-product attention.

The dot-product attention is inspired by the lookup process in databases, where a query matches

keys to retrieve corresponding values that are relevant to solving the query. To emulate a similar

idea in a continuous space, three parameters: WQ ∈ R
d×d, WK ∈ R

d×d and WV ∈ R
d×d are first

randomly initialized. These parameters or weights learn to capture associations between various

feature dimensions of the input during the course of training. A linear transformation maps the input

into the same representation space as the above parameter to obtain an input-specific representation

for Q (i.e, XWQ), K (i.e, XWK) and, V (i.e, XWV).

The dot-product attention, computed as QKT ∈ R |tokens| × |tokens|, determines the correlation between

the query vectors and the key vectors. However, as the dimensionality (d) of the parameters (i.e.,

WQ,WK ,WV) increases, the values resulting from QKT also increase in magnitude. To prevent

gradient explosion during model training, the dot-product is scaled down by
√

d.

Attn(Q,K,V) = softmax
(

QKT

√
d

)
V (1.2)

The softmax function evaluates the significance of all neighboring tokens relative to each token

in the input sequence. Then the value (V) representations are attenuated based on the overall

importance of each token. A single head of attention (Eq. 1.2), is replicated and computed in parallel

for a predefined number of times (say N) to obtain multi-headed attention – which is also referred

to as self-attention. The outputs from each attention head are concatenated at each token position,

as [Attn(Q1,K1,V1); Attn(Q2,K2,V2); · · · ; Attn(QN ,KN ,VN)].
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Figure 1.8: Encoder-Decoder Transformer Architecture

Feed-Forward: The output of MHA is then fed into FFN, with a receptive field of d × N. The

FFN block carries out a linear projection over representations at each token position in the input

sequence. An FFN with a larger receptive field has a greater capacity to memorize knowledge

facts [62].

The resulting output from the FFN serves as the encoded representation for individual tokens, which

is then employed in the learning process for a given task. These representations can be pooled

together to obtain a representation at the sentence level, which is useful for tasks such as sentiment

analysis. Alternatively, they can be utilized for token-level classification tasks like part-of-speech

tagging or even for answering long-form questions like “How to write a diary?”.
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Encoder-decoder: In the case of long-form answer generation, the goal is to generate a sequence

of tokens using the encoded representations of tokens in the input (question and context). This is

achieved by generating tokens in an autoregressive manner, one step at a time, with well-known

encoder-decoder [63] architecture. These models take a sequence as input to output another

sequence, which is very useful in tasks like machine translation.

To maintain compatibility, the transformer blocks are used in both the encoder and the decoder.

However, two modifications are applied in the case of the decoder. First, when learning to predict

the token at each step, the self-attention is only computed across tokens at positions preceding the

current step. This is because of the left-to-right nature of writing systems like Latin languages,

where the subsequent word is composed based on knowledge of past tokens, not future tokens. A

token-wise mask, M ensures access to only tokens on the left of the current token position by setting

the softmax output of tokens on the right to zero.

Masked-Attn(Q,K,V) = softmax
(

QKT

√
d
⊙ M

)
V (1.3)

Second, to capture associations between the decoded and encoded token representations (Figure 1.8),

cross-attention is computed with query representation from the decoder and key and value rep-

resentations from an encoder for each head and at each layer, as Attn(Qd,Ke,Ve), as shown in

Figure 1.8

The number of associations or features learned by the overall model is determined by the number

of parameters it contains. The number of parameters can be adjusted by stacking transformer

blocks sequentially with different random initializations. One of the biggest problems with earlier

models like Recurrent Neural Networks (RNNs) and Long-short term memory (LSTMs) was that

it was unstable to train them over a long context and large number of parameters. However, with
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gradient stability brought on by multi-head self-attention, layer normalization [64] and residual

connections [65], the transformer architecture is capable of processing longer input sequences

without encountering issues like vanishing gradient [66] in RNNs or gradient explosion [67]

in LSTMs. Furthermore, the parallel nature of MHA and FFN computations, as opposed to

the sequential operations in recurrent networks, has simplified the scaling of model parameters.

This scalability is facilitated by hardware that is well-suited to accommodate such increased

computational requirements. As a result, it has driven progress not only in natural language tasks

but also in the realm of speech [68], videos [69] and images [69, 70]. Infact, the transformer

architecture being a foundational backbone for represnetation learning across many modalities has

led to progress in multi-modal [71] research.

In this dissertation, whenever we use the term “model”, we refer to a specific transformer model

architecture that varies in the number of attention heads, transformer blocks (or layers), and the type

of training losses used.

1.2.3 Question Answering Models

There are predominantly three ways to build question answering models: span-selection, conditional

generation, and in-context prompting.

Span-selection This approach involves extracting text snippets from the given document as the

answer. This model is trained in two stages: pre-training and fine-tuning. The pre-trained model,

known as BERT [32], is trained with cloze task [72, 73] as the objective for learning contextual

representations. Cloze task employs fill-in-the-blank problems as a way to learn context-sensitive

word associations. To learn these representations, the BERT model masks a random word in a

sentence and then predicts the word from a fixed vocabulary using the representation at the masked

location. This allows the masked or predicted word to understand the context surrounding it.
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Figure 1.9: Question Answering as span selection problem: Probability distribution of start and end
of answer spans, as heat map over words in the passage.

The fine-tuning step trains two classifiers – one to learn the probability that a token, t, in the given

context(s) is the starting index of the answer span and another to learn if it is the ending index for

the answer span. For instance, in Figure 1.9, the answer span start and end prediction classifiers

assign a significant probability to the words “Shrewsbury” and “Shropshire” respectively, based on

the given question and context. During inference, the probability of all spans, starting at each index

up to a predefined fixed length, l, is calculated and then ranked to obtain the answer span with the

highest probability, i.e. “Shrewsbury, Shropshire”.

(ŝ, ê)← argmax
s ∈ [0,|tokens|], e ∈ [s,s+l]

log pstart(ts|q, cq) + log pend(te|q, cq) (1.4)

â = tokens[ŝ : ê] (1.5)

Conditional Generation This approach involves generating the answer given a question and a

document. This modeling style is based on encoder-decoder models that map an input sequence

to an output sequence. The advantage of such a training approach is that it standardizes the

format for various tasks, making it easier to multi-task since any task can be redefined as an input-

output sequence. For instance, UnifiedQA [74] unifies question answering tasks with different
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Figure 1.10: Question Answering as generation problem: At each step (i), the next token is
generated based on representations from input tokens and previously generated tokens

answer formats like multiple-choice [75], span-selection [76], boolean (yes/no) [77] and free form

answer [78]. In fact, studies [58, 79] have demonstrated that training on multiple tasks concurrently

leads to improved transfer of linguistic understanding across various tasks and even results in the

emergence of new abilities that were not observed during training.

Similar to span selection, we first need to pre-train the model on a large amount of unstructured

natural language data with a cloze-task to impart linguistic knowledge. Since this is now a generation

model rather than a classification model, we use a placeholder token (a.k.a sentinel) that does not

exist in the vocabulary to replace the word at the masked location. The model is then prompted with

this same placeholder token to generate the correct word at the masked location. At the fine-tuning

stage, the model is prompted with a placeholder token, like “<answer>” in Figure 1.10 to generate

answer tokens in the subsequent steps until the end of the sequence token is generated.

âi ← p(ai|a<i, q,C) (1.6)

Incontext prompting In this approach, a large language model is provided with instructions

along with a few examples that demonstrate how to solve a specific task. Subsequently, the model
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Instructions: Given a passage and question answer the question with span from the passage

Passage: In the first quarter, The Patriots scored first when Tom Brady found James White on a 19-
yard touchdown pass for the only score of the period. In the second quarter, they increased their
lead when LeGarrette Blount ran for a 3-yard touchdown to make it 14-0. The Steelers got on the
board later on in the quarter when Landry Jones found Darrius Heyward-Bey on a 14-yard
touchdown pass for a 14-7 game. In the third quarter, the Pats pulled away later on when Tom
Brady made a 36-yard touchdown pass.
Question: What was the longest touchdown of the game?
Answer:

Passage: In the first quarter, the Saints trailed early as quarterback Ben Roethlisberger completed a
37-yard touchdown pass to WR Hines Ward and a 1-yard touchdown pass to TE Heath Miller. In the
third quarter, the Steelers started to fight back as Roethlisberger completed a 38-yard touchdown
pass to WR Cedrick Wilson for the only score of the period. In the fourth quarter, RB Willie Parker
followed up with a 3-yard and a 4-yard touchdown run to give Pittsburgh the lead.
Question: What was the longest touchdown of the second half?
Answer: 38-yard

Figure 1.11: The instructions explain the task to be performed in natural langue, and then examples
(in blue) demonstrate how to solve examples analogous to the test example (in pink). The model is
prompted with “Answer:” to continue producing the answer to the given question.

is prompted to solve a test question based on the given instructions and examples as shown in

Figure 1.11. Prompting [42] has recently transformed the NLP methodologies by shifting away

from training individual models for each task, such as question answering, machine transition, or

summarization. Instead, a single large language model is pre-trained auto-regressively on a vast

language corpus to generate the next token and subsequently fine-tuned on numerous instruction-

following tasks [80, 81, 82]. This yields a general-purpose model that is capable of solving a wide

range of new tasks by solely looking at instructions and example demonstrations in the prompt

during test time.

1.2.4 Forms of Reasoning in Question Answering Datasets

Simple Reasoning This style of reasoning entails conducting surface-level matching to search

for text spans that provide an answer to a question [76]. For instance, as shown in Fig. 1.12, to

answer the question, Which player made the 3-yard touchdown, a neural QA model performs lexical

matching with the span, LaGarette Blount ran for a 3-yard touchdown and then extracts the specific

span that matches the wh-form “Which player” to extract player name “LaGarette Blount” as the
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In the first quarter, The Patriots scored first when Tom Brady found
James White on a 19-yard touchdown pass for the only score of
the period. In the second quarter, they increased their lead when
LeGarrette Blount ran for a 3-yard touchdown to make it 14-0. The
Steelers got on the board later on in the quarter when Landry
Jones found Darrius Heyward-Bey on a 14-yard touchdown pass
for a 14-7 game. In the third quarter, the Pats pulled away later on
when Tom Brady made a 36-yard touchdown pass.

Q: In which quarter did LeGarrette make the 3-yard touchdown?
A: second

Q: Which player made the 3-yard touchdown?
A: second

Q: What was the longest touchdown of the game?
A: 36-yard

Figure 1.12: Reasoning types in QA datasets: The first two are simple questions while the last
question is compositional

answer.

Compositional Reasoning This style of reasoning entails performing compositional reasoning

over multiple simple facts in the passage [17]. For instance, to answer the question, What was the

largest touchdown of the game?, the model needs to locate all the touchdowns in the game and then

perform a max operation on them to find the largest value.

Other Reasoning There are other reasoning types that require commonsense reasoning [83],

integrating world knowledge [84], understanding belief state of various character [85], temporal

reasoning [86] and spatial reasoning [87] etc. but we would not be focusing on them in this work.
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1.3 Dissertation Outline

Thesis Statement: The deficiencies in reasoning abilities of neural question answering systems,

namely consistency, decomposability, and generalizability, can be overcome through targeted data

interventions and training paradigms.

In particular, we make three main contributions:

• We demonstrate that neural models exhibit unpredictable behavior when operating under the

independence assumption. We propose a way to generate related QA pairs and the show that

incorporating joint training of question and answer pairs, and even training with multiple

question and answer pairs, can effectively promote consistency in the models’ performance.

• We introduce a new benchmark dataset that tests the compositional reasoning ability of QA

systems and shows that purely neural systems struggle on this task. To further promote

decomposability, we introduce a novel approach, “Successive Prompting”, that uses data

augmentations to break down a complex problem into simpler sub-problems. This enables

the model to leverage shared sub-problems across compositional questions, even when they

are not similar on the surface.

• We propose a test to assess whether a neural QA model will effectively generalize to a new

domain without any specific adaptation in the new domain. We further show the effectiveness

of three different kinds of interventions: (1) zero and few-shot data augmentation, (2) sampling

methods, and (3) intermediate annotations detailing steps for compositional tasks, towards

domain generalization.

Organization: This dissertation is divided into three parts. In the first part, we show that

independence assumptions and bias in training data causes inconsistencies in model learning and

we propose two methods to alleviate this problem. In the second part, we develop an evaluation
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benchmark that shows neural systems struggle with compositional reasoning. We, further, propose a

method to decompose compositional questions into simpler questions which exploits shared simple

or sub-questions as supervision signals for improving few-shot performance. In the final part, we

demonstrate conditions under which generalization fails and propose different types of interventions

like sampling and data augmentation to improve generalization.

1.4 Key Findings

We present key findings across several works below.

1.4.1 Imposing Non-IID constraints improves consistency while answering.

Neural systems are stochastic in nature, which can produce inconsistent results when tested with

minimally different examples [88, 89], as discussed in Figure 1.2. Our hypothesis is that this

occurs because of the independence assumption while data collection and training of neural models.

To test this hypothesis, we propose a method to generate bundles of related QA pairs. We then

impose bijective constraints on these Instance Bundles such that each question is aligned with a

unique answer. By imposing these constraints at inference alone, the model performance trained

with conventional maximum likelihood estimation (MLE) loss improves performance by 6.5%.

Additionally, by incorporating contrastive training (CE), which jointly learns to answer all related

questions in the bundle, we further improve the performance, reaching upto 90.1%.
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Figure 1.13: Performance (F1) on HotpotQA dev set with IID vs non-IID inference for a model
trained with MLE vs CE.

1.4.2 Generative QA improves consistency while passage retrieval.

Neural systems are adept in capturing statistical correlations within data, but this also implies that

they can inadvertently learn and perpetuate biases that exist within the data distribution [90, 13, 91,

92]. Passage retrieval in multi-hop QA is also strife with bias in data and relies on shallow lexical

cues leading to incorrect reasoning [2]. We hypothesize that this is because the discriminative

training for passage selection optimizes the 0/1 loss, which solely considers whether the oracle

passages are ranked higher or not. As a result, it does not incentivize paying attention to the

conditioning variable (i.e., question) in its entirety, but enough to solve the dataset – which further

exacerbates bias in model learning.

We propose a generative model where the passage selector is trained to generate the question

given the context. This approach forces the retriever not to overlook any aspects of the question.

Along with the conditional question generation model, we learn a prior over pair of passages that

capture the compatibility between passages, which is especially useful for multi-hop question
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answering. Figure 1.14 shows that the performance of the generative retriever is better by ∼5% over

the discriminative retriever on an adversarial held-out set.

Original Adversarial

92

94

96

98

100

95.3

91.4

97.5

96.3

F1 Performance

Discriminative Generative

Figure 1.14: Performance (Acc) comparison of discriminative vs generative model with original
and adversarial dev set.

1.4.3 Purely neural systems lack Compositional reasoning

In spite of having reached human-level performance in solving simple questions (Figure 1.15), can

advancements in neural architectures for simple reasoning be applied to more complex forms of

reasoning? To answer this question, we introduce a new dataset DROP that requires composing

multiple facts to solve complex problems. In Figure 1.16, we show performance of a series of

models including symbolic, neural and hybrid (or neuro-symbolic) models on the DROP dev set.

Symbolic systems need to first parse natural language questions into an executable expression which

can be directly executed [93] and context into a semi-structured format on which the said expression

can be executed. We observe that even state-of-the-art [94] systems for parsing passages struggle

and produce a very low yield, resulting in low performance.

Purely neural models [95] trained on DROP (Neural-FT) do not perform as well as neuro-symbolic
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Figure 1.15: Successive prompting exploits shared sub-problems from questions that are not similar
on the surface

(Hybrid) systems. The neuro-symbolic approach combines neural architecture for feature extraction,

specifically addressing the limitations of Symbolic systems, with symbolic operations for performing

the final computations. Even large language models [96, 97] that are considered general-purpose

and trained on trillions of tokens with parameters in the order of hundereds of billions (Neural-LM)

are not able to match up to neuro-symbolic models – which are trained with much less data and

have fewer than a billion parameters.
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Figure 1.16: Purely Symbolic and Neural systems do not perform as well as Neuro-Symbolic
(Hybrid) systems.

1.4.4 Decomposing complex problem improves few shot model performance

Chain-of-Thought [98] has become a popular way to prompt an LLM with instructions and a few

examples of how to solve a task at inference time alone. This forces the model to reason about the

intermediate steps with aid from similar complex questions and demonstrations on how to solve

them. However, similar examples are looked up based solely on the complex question to be solved

at hand, which fails to fully leverage all potential examples that may share a sub-problem despite

their surface-level differences.

We propose Successive prompting that breaks down a complex problem into simpler problems and

successively looks up appropriate demonstrations on how to solve the simple problem. For instance,

in Figure 1.17, we observe that the test question t=“Which player made the longest touchdown

of the game?” on the surface is closer to “Which player made the longest touchdown in the first
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t=Which player
made the longest
touchdown of the

game?

Which player
made the longest
touchdown in the

first half?

How many
touchdowns were

made in the
game?

What are the
touchdowns in the

first half?

Which is the
maximum value out
of 27-yard, 56 yard?

Which player
made the 56-yard

touchdown?

What are all the
touchdowns in the

game?

27-yard, 56-yard

56-yard

Tom Brady

3

12-yard, 32-yard,
46-yard

How many items are
in the list: 12-yard,
32-yard, 46-yard?

similarity(t,q)

q

0.91

0.66

Figure 1.17: Successive prompting exploits shared sub-problems from questions that are not similar
on surface

half?” and is more likely to get selected as a similar example for demonstration over “How many

touchdowns were made in the game?” However, the latter question provides much better supervision

for solving the first step. Overall, by successively querying for demonstrations at each step, we

retrieve the most relevant examples for solving that step. In Figure 1.18, we show that our method

quantitatively improves over Chain-of-Thought by ∼4%.
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Figure 1.18: Decomposing complex problems into simpler problems allows better generalization.

1.4.5 Type of dataset shift governs the effectiveness of data augmentation

strategies.

While neural QA models excel at learning to solve a specific dataset, their learnings may not extend

to different datasets out of the box. Determining the generalizability of a model to new domains

often requires collecting a reasonable number of samples to train an effective in-domain model. We

introduce a generalizability test that can characterize the type of dataset shift in the new dataset

with respect to an existing QA model (source) – using only a limited number of test examples from

the new domain. In Figure 1.19, we show that the average end-to-end performance of the source

model is quite poor when applied to new datasets (on the top) but improves when adapted to unseen

domains with augmentation strategies. We then drill down (below) into the effectiveness of zero and

few-shot data augmentation strategies and show that the datasets exhibiting covariate and concept

shift respond to both zero and few-shot data augmentations. However, datasets without any shift

(i.e., close to source domain) do not improve much with any augmentation, while datasets with Full
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shift benefit the most from few-shot adaptation, as it aligns more closely with its data distribution.

Average F1 over all target datasets

Average F1 over target datasets with specific shifts

Figure 1.19: Effect of data augmentation techniques on dataset shifts

1.4.6 Sampling data proportional to increase in loss improves generalization

Multi-task learning [99] is often marred by underfitting on high resource tasks and overfitting on

low resource tasks [8, 14]. This is because it is often difficult to balance the sample representation of

each dataset via a pre-defined fixed sampling schedule. Our hypothesis is that drop in performance

on a specific dataset is due to catastrophic forgetting [100]. To mitigate this issue, we propose

Dynamic Sampling, which samples more examples from the dataset that the model has forgotten

how to handle effectively, despite having previously acquired the knowledge to do so. We do this by

sampling examples in proportion to the drop in the performance on the held-out set for each dataset

over the epochs.
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Figure 1.20: Baseline vs. Dynamic sampling averaged over low, medium and high resource datasets
in ORB

1.4.7 Intermediate annotations reduce bias and improve generalization

To solve compositional problems, QA models need to identify latent sequential operations and

execute them only with supervision from the final answer alone. The lack of supervision for interme-

diate steps can result in learning unanticipated biases in the data. We demonstrate that supervising

the model with annotations that emphasize the relevant sections of passages for answering questions,

alongside the question answering objective, aids in mitigating label bias – while supervising with

just more QA pairs exacerbates the problem. For instance, in Figure 1.21, we show the confusion

matrix over number-type answers that range from [0 − 9] in the dev set. A model initially trained on

number focused subset (10k samples) of DROP is biased towards numbers {0, 1, 2, 3}. The same

model, when subsequently fine-tuned with additional QA pairs, gets more biased around the number

“3”. However, when the model is subsequently fine-tuned with intermediate annotations on existing

examples, the predictions get more diffused and less biased Figure 1.21.
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(a) 10k samples (b) Additional QA pairs

(c) Intermediate Annotations

Figure 1.21: For the same cost, intermediate annotations help diffuse biased over-representation of
number 3 as compared to adding more question-answer pairs
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Part I

Improving Consistency: Objectives for Joint

Modeling
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Chapter 2

Instance Bundles

Consistency is what transforms average

into excellence.

Linda Kimonyi

When training most modern reading comprehension models, all the questions associated with a

context are treated as being independent from each other. However, closely related questions

and their corresponding answers are not independent, and leveraging these relationships could

provide a strong supervision signal to a model. Drawing on ideas from contrastive estimation, we

introduce several new supervision techniques that compare question-answer scores across multiple

related instances. Specifically, we normalize these scores across various neighborhoods of closely

contrasting questions and/or answers, adding another cross entropy loss term that is used in addition

to traditional maximum likelihood estimation. Our techniques require bundles of related question-

answer pairs, which we can either mine from within existing data or create using various automated

heuristics. We empirically demonstrate the effectiveness of training with instance bundles on two

datasets—HotpotQA and ROPES—showing up to 11% absolute gains in accuracy. The emphasis on

leveraging relationships and striving for consistency helps propels performance from being average

33



and even random in some cases.

2.1 Introduction

Machine learning models are typically trained with the assumption that the training instances

sampled from some data distribution are independent and identically distributed. However, this

assumption can cause the learner to ignore distinguishing cues [101] between related or minimally

different questions associated with a given context, resulting in inconsistent model learning [102, 89].

In a dataset like ROPES, where the ideology of collecting pairs of minimally different questions is

taken to its extreme, we see that the performance of a competitive baseline model (RoBERTA) is

close to random [103]. One potential reason for this poor performance is that the model considers

each question independently, instead of looking at differences between related questions.

Context: Marsilea is a genus of approxi-
mately 65 species of aquatic ferns of the
family Marsileaceae. The name honours
Italian naturalist Luigi Ferdinando Mar-
sili (1656-1730) .... Brabejum is a genus
of a single species of large evergreen tree,
Brabejum stellatifolium in the Proteaceae,
commonly called wild almond, bitter al-
mond or ghoeboontjie.

Question 1: Is the Marsilea or the
Brabejum the genus of more individual
species of plants?
Answer 1: Marsilea

Question 2: Is the Marsilea or the
Brabejum the genus of less individual
species of plants?
Answer 2: Brabejum

Figure 2.1: Instance bundle created from
HotpotQA

Figure 2.2: Probability of gold QA pair normal-
ized over all questions in the bundle. The higher
value indicates that positive QA pair has a high
likelihood and at the same time negative QA pair
has a low likelihood. At 0.5, both the contrastive
questions would produce the same answer with
the same likelihood. In an ideal scenario, the dis-
tribution should be a delta function at 1.0
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To address this problem, we propose to train models with sets of related question-answer (QA) pairs

simultaneously, instead of having a loss function that decomposes over independent examples. We

use the term instance bundle to refer to these sets of closely contrasting examples. Consider an

instance bundle from HotpotQA in Figure 2.1, containing two contrastive QA pairs, which differ in

their input by only one word (changing more to less), resulting in different answers. With both of

these examples in a training set, a model trained with traditional maximum likelihood estimation

will be incentivized to figure out the difference between their inputs that leads to the expected

difference between their answers, but the instances are likely to be seen far apart from each other

during training, giving only a weak and indirect signal about their relationship.

In order to more effectively learn from these instance bundles, we draw on contrastive estima-

tion [104], a method for re-normalizing an unsupervised probabilistic model using a neighborhood

of related examples (originally a set of perturbations of some observed text). We extend this

technique to apply to supervised reading comprehension problems by carefully selecting appro-

priate “neighborhoods” from instance bundles. The simplest choice of neighborhood is the set

of contrasting answers from the instance bundle, resulting in a method similar to unlikelihood

training [105] or noise-contrastive estimation [106]. However, there are other choices, including

the set of contrasting questions, or combinations of questions and answers. These re-normalized

loss functions are not effective on their own, which is likely why they have not been used before for

training reading comprehension models, but when combined with maximum likelihood training

they give substantial increases in performance.

An intuitive explanation of the reason for this performance improvement is shown in Figure 2.2.

When trained on non-contrasting data with maximum likelihood estimation, a model gives roughly

equal values for both p(A1|Q1) and p(A1|Q2), even though Q1 and Q2 are in some sense opposites.

Adding the contrasting data helps the model differentiate these two probabilities, but not as much as

unlikelihood training, which itself is not as effective as contrastive estimation.

We empirically demonstrate the utility of this approach on two reading comprehension datasets:
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HotpotQA [40] and ROPES [103]. In order to use instance bundles on these datasets, we introduce

various heuristics for obtaining closely related instances. We show that using contrastive estimation

on the instance bundles that we obtain gives up to an 11% absolute performance improvement over

prior training techniques. These results strongly suggest that data should be collected in instance

bundles wherever possible, to allow for stronger supervision signals during training.

2.2 Contrastive Estimation for Reading Comprehension

Reading comprehension is the task of producing an answer a given a question q about a context c.

The question is tied to a particular passage, so in the discussion that follows we will typically use q

as a shorthand to refer to both q and c together. Reading comprehension models are typically trained

to maximize the likelihood of the answer to each training question. Given a model’s exponentiated

scoring function ψ(q, a) for a QA pair,1 this objective normalizes the scores over all possible answer

candidatesA for a given question:

LMLE(qi, ai) = log p(ai|qi)

= log
ψ(qi, ai)∑

c∈A ψ(qi, c)

(2.1)

In this work we use a generative model for ψ, but many other alternatives are available, and our

contribution is applicable to any scoring function. Specifically, we use as ψ the (locally normalized)

probability assigned by the generative model to an answer candidate for a given question.

Instead of normalizing scores over all possible answer candidates, contrastive estimation [104]

normalizes scores over some neighborhood of closely related instances. This method was originally

introduced for unsupervised linguistic structure prediction, with a neighborhood obtained by

permuting observed text to get inputs that had similar content but were ungrammatical. Our

1ψ is parameterized by model parameters θ, but we omit this in the equations for simplicity of exposition.
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contribution is to apply this general idea to supervised reading comprehension problems. In our

setting, given a neighborhood N(q, a) of related QA pairs, CE can be described as

LCE(qi, ai) = log
ψ(qi, ai)∑

q j,ak∈N(qi,ai)
ψ(q j, ak)

(2.2)

[104] replaced the MLE objective with CE, which worked well in their unsupervised learning

problem. In supervised learning, MLE is a much stronger training signal, and CE on its own

severely underperforms MLE. This is because CE provides no learning signal for the very large

space of alternative answers to a question that are not in the neighborhood. However, CE can

provide a much stronger signal than MLE for a small set of potentially confusing alternatives, as

there are fewer ways for the model to increase the probability of the correct answer. To adapt CE to

supervised settings we interpolate between the two losses, instead of replacing MLE with CE:

L = α1LMLE + α2LCE (2.3)

Interestingly, this can be viewed as forcing the scoring function ψ to permit multiple different

probabilistic interpretations, as both losses perform softmaxes over different sets of alternatives.

Additionally, if ψ has some locally-normalized component, as is true for the generative models we

work with and for many other common models (such as BIO tagging, or independent span start

and span end positions), this interpolation in some sense trades off between the locally-focused

MLE and the more global view of the problem that the normalization in CE provides (see §2.4.3 for

further discussion of this point).

The key question in applying CE to reading comprehension is how to choose a neighborhood N

for a given training example. We do so by making bundles of related instances, then extracting

various combinations of questions and answers from a bundle to use as neighborhood. Formally, an
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Figure 2.3: Contrastive Estimation models. In each subfigure an instance bundle of size 2 is shown,
with bold lines indicating combinations whose probability is maximized at the expense of the
combinations represented by gray lines, for the positive QA pair (q0, a0) in the bundle. The total CE
loss is the sum of loss for each positive QA pair in the bundle.

instance bundle B is a collection of unique questions BQ and unique answers BA, such that there

is at least one QA pair where a is the correct answer to q: ans(q) = a. We refer to such pairs as

(qg, ag) in the discussion that follows. Our assumption is that the questions in BQ and the answers in

BA are related to each other in some way—often they differ in only a single word—though we do

not characterize this formally. However, a good bundle creation procedure is crucial for effective

model learning. We discuss several ways for creating bundles in §2.3, and discuss the limitations of

CE when effective bundles cannot be created in §2.5.2. The following section discusses choices of

neighborhood functions given an instance bundle.

2.2.1 Choosing a neighborhood

Given an instance bundle B with questions BQ and answers BA, there are many ways to construct

a neighborhood. Figure 2.3 shows some of these options graphically, with the bold line showing

the gold QA pair, and gray lines showing the other QA pairs that make up the neighborhood. We

distinguish between two kinds of neighborhood methods. A single neighborhood CE model is one

that perturbs and normalizes over a single variable, either the question (input) or the answer (output).

Similarly, multiple neighborhood CE models perturb both variables jointly and normalize over the

combinatorial space of both variables.
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Single neighborhood models

These models construct neighborhood using the set of contrasting answers or contrasting questions

from the instance bundle.

Answer Conditional: This probabilistic model maximizes the probability of the correct answer

ai at the expense of the other answers candidates in the instance bundle BA (Figure 2.3a).

LCE-AC(qg, ag,B) = log
ψ(qg, ag)∑

a j∈BA
ψ(qg, a j)

Question Conditional This model computes the normalization constant over the question neigh-

borhood for a fixed answer. This effectively computes a probability distribution over questions in the

bundle given the correct answer, and maximizes the probability of the correct question (Figure 2.3b).

LCE-QC(qg, ag,B) = log
ψ(qg, ag)∑

q j∈BQ
ψ(q j, ag)

Multiple neighbourhood models

These models consider all possible combinations of questions, BQ and answers, BA in a bundle for

normalization, unlike single neighborhood models which only look at either BA or BQ.

Two Way This method simply does a weighted combination [107] of the answer conditional and

question conditional losses.

LCE-TW(qg, ag,B) = λ1 log
ψ(qg, ag)∑

a j∈BA
ψ(qg, a j)

+ λ2 log
ψ(qg, ag)∑

q j∈BQ
ψ(q j, ag)
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Full Partition Instead of separate normalizations over questions and answers, this method does a

single normalization over the same sets as in Two Way. This is equivalent to normalizing over the

cross product BQ × BA, minus other correct pairings (Figure 2.3c).

LCE-FP(qg, ag,B) = log
ψ(qg, ag)

ψ(qg, ag) +
∑

q j∈BQ,
ak∈BA,

ans(q j),ak

ψ(q j, ak)

Joint This method switches from optimizing the probability of single QA pairs to optimizing the

set of correct QA pairs in the bundle, also known as power-set label classification [108] (Figure 2.3d).

We perform this for only bundles consisting of two correct QA pairs, because the power set becomes

prohibitively large for larger bundles. Let C(B) be a function that returns all unique subsets of size

2 from the cross product set BQ × BA, and let (qg1 , ag1) and (qg2 , ag2) be the two positive QA pairs

in the bundle.

The joint CE objective is

LCE-JT(B) =
ψ(qg1 , ag1)ψ(qg2 , ag2)∑

qi,ak ,q j,al∈C(B)
ψ(qi, ak)ψ(q j, al)

2.2.2 Alternative uses of bundles

Here we briefly consider other potential baselines that make use of instance bundles in some way;

we empirically compare against those that are applicable in §2.4.
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Data Augmentation If the bundle B contains instances that were not present in the training data

(e.g., the bundle could be generated using simple heuristics; see §2.3), the simplest use of the

bundle is to add all instances to the training data and use MLE under the standard IID assumption.

This is the standard approach to using this kind of data, and it has been done numerous times

previously [109, 110]. This is not applicable if the bundle was obtained by mining the existing

training instances, however.

Unlikelihood Unlikelihood training [105] minimizes the likelihood of carefully chosen negative

examples to improve a text generation model that would otherwise assign those examples too high

of a probability. Essentially, because the generative model only gets a single positive sequence in

an exponentially large set, it does not get strong enough evidence to push down the probability of

particularly bad generations. Unlikelihood training seeks to solve the same problem that contrastive

estimation solves, and it provides a natural alternative use of instance bundles. In our setting,

unlikelihood training would decrease the likelihood of negative answers in the bundle:

LUL(qg, ag,B) = LMLE(qg, ag) +
∑

c∈BA\ag

log(1 − p(c|qg)) (2.4)

The second term in Eq. 2.4 helps provide additional signal to further reduce the likelihood of

neighbouring negative answers, especially when the MLE loss starts to overfit at training [111].

Unlikelihood training, though easy to perform, has two drawbacks. First, it independently minimizes

the likelihood of the neighborhood, which means that the probability mass is moved from negative

QA pairs but may not necessarily move to the positive pair, unlike CE. Second, because it assumes

a conditional probabilistic model of p(a|q), it is not clear how to use alternative questions in the

bundle with this objective.
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2.3 Bundling Heuristics

In this section we discuss how we obtain instance bundles for use with contrastive estimation and

other related baselines.

A naive way to create a bundle would be to exploit the fact that all the questions associated with a

context are likely to be related, and simply make bundles consisting of all QA pairs associated with

the context. However, this approach poses two problems. First, there could be many questions asso-

ciated with any particular context, and smaller, more closely-related bundles are more informative.

Second, and relatedly, it is likely that bundles obtained this way will have many questions whose

answers can be obtained from the bundle by superficial type matching. For instance, a wh-question

starting with “where” would most likely align with a location type answer. If this were bundled

with a question starting with “how many”, with an answer that is a number, the bundle would be

largely uninformative. We instead attempt to create bundles with minimally different questions and

answers, in several different ways.

Diverse Top-k sampling We first discuss a method for getting alternative answers to a single

question. This will result in a bundle that can only be used with answer conditional CE, as there

are no alternative questions in the bundle. An easy way to get answer candidates is to employ a

pre-trained answering model and sample answers from the posterior distribution. However, since

the model has seen all the QA pairs while training, it can easily memorize answers, resulting in a

low variance, high confidence distribution. In order to achieve diverse answer samples we need to

either over-generate and prune out the gold answer from the samples or induce a diversity promoting

sampling. We adopt a hybrid sampling strategy where we use nucleus sampling for the first few

timesteps (without replacement) and then top-k for the remaining timesteps. This forces the answer

generator to consider different starting positions in the passage and then generate the best answer

span (of an appropriate length) from the token produced at the first step.
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Question Mining Some datasets, such as ROPES, are constructed with very close question pairs

already in the data. When these exist, we can create instance bundles by finding natural pairings

from the training set. To find these pairings, we cluster the questions with a high lexical bag-of-

words overlap based on Jaccard index (≥ 0.8), ensuring that each question in the cluster has a unique

answer. In ROPES, these bundles typically result in bundles of two QA pairs that differ in one or

a few words. In HotpotQA, the other dataset we focus on in this work, there are very few such

pairings naturally occurring in the dataset, so we resort to heuristics to create them.

Question Generation HotpotQA has many questions that are phrased as multiple-choice, with

answer options given in the question itself. These multiple choice questions can most often be

rephrased to provide QA pairs that can be bundled with the original question. For instance, given

the question, “Which animal is faster, turtle or hare?”, it is straightforward to obtain a minimally

different question with the opposite answer: “Which animal is slower, turtle or hare?”. We adopt

three main heuristics to generate such questions whenever possible, applicable to any dataset that

has questions of this kind. All of these heuristics require identifying the two plausible answer

choices from the question, which can be done with reasonably high precision using simple regular

expressions.

1. We replace superlatives with their contrasting counterparts, e.g., (taller, smaller), (more, less),

etc.

2. We negate the main verb, e.g., played→ didn’t play, by inflecting the verbs.2

3. We swap the noun phrases being compared in the question, e.g., “Are rock A’s wavelengths

shorter or longer than rock B’s?” can be used to generate, “Are rock B’s wavelengths shorter

or longer than rock A’s?”
2https://spacy.io/universe/project/lemminflect/
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2.4 Experiments

We use an encoder-decoder style T5-large model for all our experiments. The baseline models in

our experiments are the result of fine-tuning the T5 model on the corresponding tasks using the

MLE objective. We compare them against models that are further fine-tuned with a combination

of MLE and contrastive estimation objectives as described in §2.2.1. That is, when using various

instance bundle techniques, we initialize the model with the weights from the fine-tuned MLE

model, then continue training with the new loss function.3 The model takes a concatenated context

and question as an input to produce an answer output. We use a learning rate of 2e-5 for ROPES

and 5e-5 for COMPARISON with lowercased inputs and outputs. We truncate the concatenated

context and question up to a length of 650 for ROPES and 850 for COMPARISON.

In addition to standard metrics on these datasets, we additionally evaluate using a consistency metric.

This metric evaluates to true only if all the questions in a bundle are answered correctly, and is thus

a stricter version of EM.

2.4.1 Main results

We experiment with three datasets: a subset of HotpotQA containing only comparison type of

questions (COMPARISON), full HotpotQA and ROPES. In general, we find that all variants of CE

perform substantially better than MLE alone, with question conditional giving small improvements

over other CE variants. All CE models also outperform all UL and data-augmented MLE models.

COMPARISON HotpotQA has several different kinds of questions, with the question category

labeled in the original data. We begin by experimenting with the subset labeled as comparison

questions, as they lend themselves most naturally to instance bundles. For these questions, we adopt

3To control for the number of optimization steps, we also tried a baseline where we continued fine-tuning an MLE
model using the same setup, but this never improved over the original MLE, so we do not include it in the tables.
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the question generation strategy to create instance bundles. Table 2.1 shows a comparison of the

baseline MLE model (trained on the comparison subset only) with those further fine-tuned with UL

and CE over the instance bundles. Also shown is a comparison with further fine-tuning using MLE

on the generated QA pairs (+Aug).

EM F1 Consistency

MLE (full HotpotQA) 57.4 65.1 36.3

MLE 70.9 77.7 51.2
+ Aug 73.4 80.6 76.7
+ UL 75.1 82.4 85.8

+ Answer Cond. 76.0 83.7
+ Question Cond. 77.4 84.7 87.3
+ Two way 75.5 82.7
+ Joint 75.6 83.1
+ Full Partition 77.4 84.7

Table 2.1: COMPARISON dev set performance

Due to unavailability of the code for best model on the HotpotQA dataset, we use a T5-large

model trained on the entire HotpotQA as a proxy for state of the art model. Even though this

model has a performance of 81.1 F1 on the whole dev set (close to the current SOTA 83.5 on the

leaderboard4), on the comparison subset it performs poorly (65.1). Training an MLE model on just

this subset reaches 77.7 F1, which is outperformed by unlikelihood training (82.4 F1). The best CE

performance is from the question conditional model, which gets 84.7 F1.

HotpotQA We additionally experiment with the entire HotpotQA dataset. Here we use top-k

sampling to create instance bundles, where the top-k answer candidates were sampled from the

MLE model we use as a baseline. Table 2.2 shows the performance of the fine-tuned model as we

vary the number of answers in BA with CE-AC loss. The overall performance gets better with CE up

to |BA| = 2, but reduces after that. On a closer examination of the samples, we find that on average

we get two distinct answer candidates and the rest of the candidates are ungrammatical word-piece

4https://hotpotqa.github.io/
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variations of the two distinct candidates (including the oracle answer). These ungrammatical

variations provide a noisy signal that hurts model performance.

F1

MLE 81.1

+CE-AC (k = 1) 82.5
+CE-AC (k = 2) 83.3
+CE-AC (k = 3) 82.1
+CE-AC (k = 4) 81.8

Table 2.2: F1 performance on full HotpotQA dev set with increasing number (k) of top-k negative
answer candidates

ROPES Since ROPES already contains minimally different QA pairs, we use question mining to

create instance bundles. We use as the most closely comparable prior work the multi-step model of

[112], which adds a ROPES-specific architecture on top of RoBERTa-large [113].5 Our baseline

MLE model is a generic T5-large model, with fewer parameters (770M vs. 1.5B) and no special

architecture. Table 2.3 shows that using CE gives almost a 12% absolute improvement in EM over

an MLE model, and a larger than 12% improvement in consistency, while UL gives only a few point

gain.

EM Consistency

Multi-step [112] 71.4 -

T5-large MLE 65.7 52.1
+ UL 68.3 55.6

+ Answer Cond. 74.5
+ Question Cond. 76.6 64.7
+ Two way 73.5
+ Joint 72.5
+ Full Partition 75.1

Table 2.3: ROPES dev set performance

5UnifiedQA [74] also evaluated on ROPES, but they used much more training data from many other datasets, and a
much larger model than we experiment with, so their performance is not particularly comparable.
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2.4.2 Joint Inference

In cases where we can generate a bundle given only a question (that is, the answer candidates are

clear and our heuristics can generate a contrasting question), we can treat test time inference as

a hard assignment problem between questions and answers in the generated bundle. We use the

scoring function ψ(q, a) to align each question to an answer in the bundle by optimizing objective

below:

max
∑

a j∈BA,
qi∈BQ

ψ(qi, a j)xi j

s.t.
|BA |∑
j=0

xi j = 1,
|BQ |∑
i=0

xi j = 1

We refer to this as joint inference. Intuitively, even if the model is only given a single question

at test time, if it can reason jointly about two competing assignments it can potentially use the

alternatives to arrive at a better response than if it only considered the single question it was given.

As shown in Figure 2.4, when using joint inference the performance of a baseline MLE model

on COMPARISON improves from 79 F1 to 85.5. The CE model’s training paradigm manages

to achieve this performance (85.8 F1) without enforcing these constraints at test time, but joint

inference additionally improves CE, to 90.1 F1.
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Figure 2.4: Performance (F1) on COMPARISON dev with independent prediction versus joint
inference. Joint inference improves all models. The results are on the subset of COMPARISON for
which we have paired instances (∼93%).

2.4.3 Compatabiliy functions for conditional generation models

We experimented with a few choices of compatibility functions and presented the overall best one

in the paper. We describe all the compatibility functions we tried in detail first, and then show

results of our experiments on all of them. Our choice of compatibility functions are specific to

encoder-decoder style architecture.

A transformer style decoder, d, can be described as a markov random field [114] which takes as

input previous answer tokens and question to output current answer token at time step, t, as shown

in Figure 2.5. This decoder allows for independent parallel prediction of tokens at each time step,

which make the answer likelihood a product of independent markov random fields,
∏

t p(at|a<t, q),

tied by same parameters in function d.

48



at
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Figure 2.5: Answer decoder

Locally-normalized (LN) scores can be defined as sum of log-probability of token at each time

step locally normalized over vocabulary.

ψL(q, a) = exp log
∏

t

p(at|a<t, q)

= exp
∑

t

log
exp(d(at; a<t, q))∑

v∈|V | exp(d(v; a<t, q))

(2.5)

Un-normalized scores (UN): Locally normalized scores may suffer from label bias [115] which

can be crucial when contrastive answers that have overlapping subsequences, for eg., if answer

candidates are a list of choices {“Person A”, “Person B”, “Person C”}.

ψU(q, a) = exp log
∏

t

exp(d(at; a<t, q))

= exp log exp(
∑

t

d(at; a<t, q))

= exp
∑

t

d(at; a<t, q)

(2.6)

Whole Sequence (GS): score considers the score of the last token, which is often a special

symbol like, ⟨eos⟩ tag. Intuitively, this can be seen as a score for the entire input answer sequence,

ψG(q, a) = d(aT ; a<T , q)
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2.4.4 Ablation results

From Table 2.4 and Table 2.5 we can see that the question conditional loss overall works well.

Interestingly GS compatibility function performs well on COMPARISON but not on ROPES. We

conjecture that’s because in ROPES often the candidates have very small lexical dissimilarities (e.g.,

“Patient A”, “Patient B”) which makes looking at each token important. In ROPES, full partition

loss performs slightly better than question conditions.

Single Neighborhood Multiple Neighborhood

Answer Conditional Question Conditional Two-way Joint Full Partition

LN 76.0/83.7 77.4/84.7 75.5/82.7 75.6/83.1 73.2/81.1
UN 75.7/82.9 76.6/84.6 75.3/82.6 75.6/83.3 76.7/84.7
GS 76.9/84.1 76.4/83.6 76.0/83.2 74.7/81.5 75.7/83.3

Table 2.4: Performance (EM/F1) of COMPARISON dev set on models finetuned with different
single and multiple neighborhood CE losses.

Single Neighborhood Multiple Neighborhood

Answer Conditional Question Conditional Two-way Joint Full Partition

LN 74.5 76.6 73.5 72.5 75.1
UN 73.0 75.9 74.9 71.2 77.6
GS 71.8 69.5 71.1 69.7 73.1

Table 2.5: Performance (EM) of ROPES dev set on models finetuned with different single and
multiple neighborhood CE losses. We do not report F1 as it’s not a good performance measure on
this dataset

2.5 Discussion

In this section we try to understand how CE compares to MLE and UL and under what conditions it

is effective.
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2.5.1 Relation between MLE, UL and CE

In this section we try to understand the relation between CE, MLE and UL in the special case when

the scoring function ψ comes from a locally-normalized generative model, as it does in this work.

Let pV be the locally normalized probability of an answer candidate (i.e., the combined likelihood

of each token in a sequence under a given generative model). ψ(q, a) then equals pV(a|q). The

CE-AC loss with locally normalized compatibility score can be described as

LCE-AC(qg, ag,B) = log
pV(ag|qg)∑

c∈BA
pV(ac|qg) (2.7)

We can decompose and rewrite Eq. 2.7 as

LCE-AC(qg, ag,B) = log pV(ag|qg) − log
∑
c∈BA

pV(ac|qg)

= LMLE(qg, ag) + Reg(BA, qg)

(2.8)

Eq. 2.8 shows that LCE-AC is just a linear combination of MLE and a regularization term which

decreases the probability of each incorrect answer in the bundle.

On a closer look we can see an interesting connection between the regularization term and unlikeli-

hood. The regularization term in CE-AC is essentially the log of an unlikelihood term, except the

unlikelihood objective in §2.2.2 in practice gets applied at each timestep of decoding, while the

regularization term in CE-AC is applied over the entire answer sequence.

Our formulation of CE is more general than the specific case we are analyzing here, but we make

note of it as this is the function that we used in our experiments, and it significantly outperformed

unlikelihood training. The theoretical connections shown here could benefit from further exploration.
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2.5.2 The importance of close instance bundles

Experiments on ROPES and COMPARISON show strong improvements by using CE and UL

when instances can be grouped into very closely related bundles. But such effective grouping may

not be possible on all datasets. To analyze the applicability of our methods to a dataset without

natural bundles, we looked at Quoref [116]. Table 2.6 shows a comparison between the trends of

improvements due to UL and CE across Quoref, ROPES and COMPARISON with bundles created

using top-k sampling. As it can be seen from the results, UL does not improve on top of MLE, and

CE shows only a very small improvement which is likely statistical noise. To understand why, we

analyzed the p(a|q, c) distribution of the baseline MLE model, and computed the following two

measures on a random sample of the training set.

• Entropy10 = −
∑10

i=1 p(ai|q, c) log p(ai|q, c)

• Top-2 ratio = log p(a1|q, c)/p(a2|q, c)

As seen in Table 2.6, Quoref has a lower Entropy10, and a higher Top-2 ratio than the other datasets,

indicating that the baseline MLE model places a lot more weight on the top-1 answer in this task.

Manual analysis additionally found that most of the top predictions were ungrammatical variations

of the top-1 answer, similar to (but more extreme than) what was seen on the full HotpotQA dataset.

This could explain why the top-k bundling heuristic is not as effective in the case of Quoref as

the other two datasets. More generally, these results indicate the importance of effective instance

bundling heuristics, and future work could focus on identifying more general ways to create bundles.

2.6 Related Work

Learning with negative samples has been explored in many natural language tasks, such as dialogue

generation [117], word embeddings [118], language modeling [119], etc., and computer vision
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Dataset MLE UL CE Entropy10 Top-2 ratio

COMP. 77.7 82.4 84.7 2.31 0.5
ROPES 65.7 68.3 77.6 0.97 2.3
Quoref 84.8 83.9 85.0 0.06 3.1

Table 2.6: Comparison between Quoref, COMPARISON, and ROPES datasets with Top-k bundling.
MLE, UL, and CE results are on the corresponding development sets (F1 for COMPARISON and
Quoref, EM for ROPES) and Entropy10 and Top-2 ratio are measured on random samples of the
training sets. UL and CE columns show results after fine-tuning the baseline MLE model with the
respective objectives.

tasks such as image captioning [120], unsupervised representation learning [121], etc. In similar

vein, mutual information minimization based learners in question answering [122] and image

classification [123] try to decrease the mutual information between positive and negative samples.

Natural language applications often sample negative examples either randomly from the data or

based on likelihood (or unlikelihood) metrics from a reference model. However, the negative

samples extracted in this manner are often unrelated. A growing body of literature is exploring ways

to obtain closely-related examples, either manually [124, 11] or automatically [125, 126, 127]. This

trend is complementary to our work, as we show how to make better use of these closely-related

examples during training. There is also work on consistent cluster assignments in co-reference

resolution [128]; factually consistent summaries [129] and language models [130].

There is also a growing body of literature on training with closely related examples, to which we

are contributing. Several works make use of logical consistency in natural language inference

tasks [131, 132, 102]. Another line of work [133, 134, 135, 136] tries to increase (or decrease) the

distance between intermediate representations of contrasting (or paraphrased) instances.
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Chapter 3

Generative Question Answering

By their very nature, heuristic shortcuts

will produce biases, and that is true for both

humans and artificial intelligence, but the

heuristics of AI are not necessarily the

human ones.

Daniel Kahneman

(Nobel Memorial Prize Awardee)

Compositional reasoning tasks like multi-hop question answering, require making latent decisions

to get the final answer, given a question. However, crowdsourced datasets often capture only a slice

of the underlying task distribution, which can induce unanticipated biases in models performing

compositional reasoning. Furthermore, discriminatively trained models exploit such biases to get a

better held-out performance, without learning the right way to reason, as they do not necessitate

paying attention to the question representation (conditioning variable) in its entirety, to estimate

the answer likelihood. In this work, we propose a generative context selection model for multi-

hop question answering that reasons about how the given question could have been generated
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given a context pair. While being comparable to the state-of-the-art answering performance, our

proposed generative passage selection model has a better performance (4.9% higher than baseline)

on adversarial held-out set which tests robustness of model’s multi-hop reasoning capabilities.

3.1 Introduction

Recently many reading comprehension datasets like HotpotQA [40] and WikiHop [137] that

require compositional reasoning over several disjoint passages have been introduced. This style of

compositional reasoning, also referred to as multi-hop reasoning, first requires finding the correct

set of passages relevant to the question and then the answer span in the selected set of passages.

Most of these dataset are often collected via crowdsourcing, which makes the evaluation of such

models heavily reliant on the quality of the collected held-out sets.

Crowdsourced datasets often present only a partial picture of the underlying data distribution.

Learning complex latent sequential decisions, like multi-hop reasoning, to answer a given question

under such circumstances is marred by numerous biases, such as annotator bias [138], label

bias [13, 139], survivorship bias [140, 2], and ascertainment bias [89]. As a result, testing model

performance on such biased held-out sets becomes unreliable as the models exploit these biases and

learn shortcuts to get the right answer but without learning the right way to reason.

Consider an example from HotpotQA in Figure 3.1, where the latent entity “Virgina Commonwealth

University” can be used by the model [2] to bridge the two relevant passages (highlighted in green)

from the original dev set and correctly predict the answer “1838”. However, upon adding an

adversarial context (highlighted in pink) to the pool of contexts, the model prediction changes

to “1938” implying that the model did not learn the right way to reason. This is because the

discriminatively trained passage selector exploits lexical cues like “founded” in the second passage

and does not pay attention to the complete question. The absence of such adversarial contexts at
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Question: The 2011-12 VCU Rams men’s basketball team, led by third year head coach Shaka Smart,
represented the university which was founded in what year?
Gold Answer: 1838

Passage 1: The 2011-12 VCU Rams men’s basketball team represented Virginia Commonwealth
University during the 2011-12 NCAA Division I men’s basketball season...

Passage 2: Virginia Commonwealth University (VCU) is a public research university located in
Richmond, Virginia. VCU was founded in 1838 as the medical department of Hampden-Sydney College,
becoming the Medical College of Virginia in 1854...

Prediction: 1838

Adversarial context from [2]:
Dartmouth University is a public research university located in Richmond, Virginia. Dartmouth was founded
in 1938 as the medical department of Hampden-Sydney College, becoming the Medical College of Virginia in
1854...

New Prediction: 1938

Figure 3.1: Example from HotpotQA, showing the reasoning chain for answering the question (in
green) and an adversarial context (in pink) introduced by [2] which confuses the model, causing it
to change its prediction because it did not learn the right way to reason.

training allows the model to find incorrect reasoning paths.

In this work, we propose a generative context pair selection model, which tries to reason through the

data generation process of how a specific question could have been constructed from a given pair of

passages. We show that our proposed model is comparable in performance to the state-of-the-art

systems, with minimal drop in performance on the adversarial held-out set. Our generative passage

selector shows an improvement of 4.9% in Top-1 accuracy as compared to discriminatively trained

passage selector on the adversarial dev set.

3.2 Generative Passage Selection

Given a set of contexts C = {c0, c1, ...cN}, the goal of multi-hop question answering is to combine

information from multiple context passages to identify the answer span a for a given question q. In
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single-hop QA, the goal is to identify the pair of contexts, from all possible pairs ψ = {(ci, c j) : ci ∈

C, c j ∈ C)}, that is appropriate for answering the question.

Existing models for multi-hop question answering [3, 141] consist of two components: a discrim-

inative passage selection and an answering model. Passage selection identifies which contexts

are relevant for answering the given question, i.e. estimates p(ci j|q, ψ). This is followed by the

answering model to extract the answer span given a context pair and the question (p(a|q, ci j)). These

are combined as follows:

p(a|q, ψ) =
∑
ci j

p(a|q, ci j)p(ci j|q, ψ) (3.1)

The discriminative passage selector learns to select a set of contexts by conditioning on the question

representation. This learning process does not encourage the model to pay attention to the entire

question, which can result in ignoring parts of the question, thus, learning spurious correlations.

To predict the answer at test time, we do not sum over all pairs of contexts, but instead use the top

scoring pair to answer the question1.

In other words, we use passage selection to pick the best context pair c∗i j, which is used by the

answering module to get the answer, a∗ = argmax p(a|q, c∗i j).

3.2.1 Model Description

We propose a joint question-answering model which learns p(a, q|ψ) instead of p(a|q, ψ). This

joint question-answer model can be factorized into a generative passage selector and a standard

1Summing over all context pairs, or maintaining a beam of highly ranked pairs, did not yield much higher
performance, in particular, not worth the additional computation cost.
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answering model as:

p(a, q|ψ) =
∑
ci j

p(a|q, ci j)p(q|ci j)p(ci j|ψ) (3.2)

First, a prior, p(ci j|ψ), over the context pairs establishes a measure of compatibility between passages

in a particular dataset. Then, a conditional generation model, p(q|ci j), establishes the likelihood of

generating the given question from a selected pair of passages. Finally, a standard answering model,

p(a|q, ci j), estimates the likely answer distribution given a question and context pair. The first two

terms (prior and conditional generation) can be seen as a generative model that chooses a pair of

passages from which the given question could have been constructed. The answering model can

be instantiated with any existing state-of-the-art model, such as a graph neural network [3, 142],

entity-based chain reasoning [141], etc.

The process at test time is identical to that with discriminative passage selection, except that the

context pairs are scored by taking the entire question into account, c∗i j = argmaxci j
p(q|ci j)p(ci j|ψ).

3.2.2 Model Learning

We use a pre-trained T5 [58] based encoder-decoder model for obtaining contextual representations,

which are further trained to estimate all individual probability distributions.

For learning the generative model, we train the prior, p(ci j|ψ) and the conditional generation model

p(q|ci j, ψ) jointly. First, the prior network projects the concatenated contextualized representation,

ri j, of starting and ending token of concatenated contexts (ci; c j), from the encoder to obtain un-

normalized scores, which are then normalized across all context-pairs via softmax operator. The
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Dataset Standard Selector Generative Selector
p(ci j|q, ψ) p(q|ci j)p(ci j|ψ)

HotpotQA 95.3 97.5
WikiHop 96.8 97.2

Table 3.1: Passage selection accuracy: Accuracy that the selected passage pair (c∗i j) by different
techniques is the oracle one (cgold) on original development set.

loss function tries to increases the likelihood of gold context pair over all possible context pairs.

ri j = encoder(ci; c j) (3.3)

si j = W1×d(ri j[start]; ri j[end]) (3.4)

The conditional question generation network gets contextual representations for context-pair can-

didates from the encoder and uses them to generate the question, via the decoder. We define the

objective to increase the likelihood of the question for gold context pairs and the unlikelihood [105]

for a sample set of negative context pairs (Eq. 3.5)

L(θ) =
|question|∑

t=1

log p(qt|q<t, cgold)

+
∑

n∈|neg.pairs|

|question|∑
t=1

log(1 − p(qt|q<t, cn)) (3.5)

3.3 Experiments and Results

We experiment with two popular multi-hop datasets: HotpotQA [40] and WikiHop [137]. Most

SOTA passage selection modules for HotpotQA use a RoBERTa [113] based classifier to select

top-k passages given the question, which has an accuracy of ∼94.5% [3]. We used a T5-based

standard passage selector, p(ci j|q, ψ), as our baseline, which provides a comparable performance to

SOTA passage selector (Table 3.1).
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Models Original Adversarial

Acc F1 Acc F1

Standard Selector 95.3 79.5 91.4 76.0
Generative Selector 97.5 81.9 96.3 80.1

[3] 94.5 80.2 - 61.1
[4] - 82.2 - 78.9

Table 3.2: Performance on Adversarial Data: Passage selection accuracy and end to end QA F1
on original and adversarial set [2] of HotpotQA. The results of [3] and [4] are taken from [5].

We also use a simple T5-based answering model that has a comparable performance to SOTA

answering models to illustrate the effect of our generative selector on end-to-end model performance.

The oracle EM/F1 of our answering model, p(a|q, cgold), on HotpotQA and WikiHop are 74.5/83.5

and 76.2/83.9 respectively. The overall EM/F1 of WikiHop with generative model are 73.5/80.2.

3.3.1 Adversarial Evaluation

We use an existing adversarial set [2] for HotpotQA to test the robustness of model’s multi-hop

reasoning capabilities given a confusing passage. This helps measure, quantitatively, the degree of

biased correlations learned by the model. In Table 3.2, we show that the standard discriminative

passage selector has a much higher performance drop (∼4%) as compared to the generative selector

(∼1%) on adversarial dev set [2], showing that generative selector is less biased and less affected by

conservative changes [143] to the data distribution. We can also see in Table 3.2 that SOTA models

[3, 4], which use the standard passage selector, also have a larger F1 drop when applied to the

adversarial set. Table 3.3 shows that the generator was able to generate multi-hop style questions

using both the contexts.
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Context 1, ci: The America East Conference is a collegiate athletic conference affiliated with the
NCAA Division I, whose members are located mainly in the Northeastern United
States. The conference was known as the Eastern College Athletic Conference-North
from 1979 to 1988 and the North Atlantic Conference from 1988 to 1996.

Context 2, c j: The Vermont Catamounts men’s soccer team represents the University of Vermont
in all NCAA Division I men’s college soccer competitions. The team competes in
the America East Conference.

Original Question,
q:

the vermont catamounts men’s soccer team currently competes in a conference that
was formerly known as what from 1988 to 1996?

Generated Ques-
tions: p(q|ci j, ψ)

the vermont catamounts men’s soccer team competes in what collegiate athletic
conference affiliated with the ncaa division i, whose members are located mainly in
the northeastern united states?
the vermont catamounts men’s soccer team competes in a conference that was known
as what from 1979 to 1988?
the vermont catamounts men’s soccer team competes in a conference that was known
as what from 1988 to 1996?

Table 3.3: Sample questions generated by using the question generation decoder with top-k sampling
show that the generative model is able to construct (reason about) possible multi-hop questions
given a context-pair.

3.3.2 Context pairs vs. Sentences

Some context selection models for HotpotQA use a multi-label classifier that chooses top-k sen-

tences [4, 144] which result in limited inter-document interaction than context pairs. To compare

these two input types, we construct a multi-label sentence classifier p(s|q,C) that selects relevant

sentences. This classifier projects a concatenated sentence and question representation, followed by

a sigmoid, to predict if the sentence should be selected.

This model has a better performance over the context-pair selector but is more biased (Table 3.4).

We performed similar experiments with the generative model. Along with the passage selection

model, we train a generative sentence selection model by first selecting a set of sentences with

gumbel softmax and then generating the question given the set of sentences.

Given that the space of set of sentences is much larger than context pairs, the generative sentence

selector does not have good performance (Table 3.4).
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Model Original Adversarial

Discriminative Selectors
Passage, p(ci j|q, ψ) 95.3 96.3
Sentence, p(s|q,C) 97.6 90.9

Generative Selectors
Passage, p(q|ci j, ψ)p(ci j|ψ) 97.5 96.3
Sentence, p(q|s,C)p(s|C) 90.6 89.2
Multi-task, p(q, s|ci j, ψ)p(ci j|ψ) 98.1 97.2

Table 3.4: Passages vs Sentences: Passage selection accuracy for models with different context
inputs on the development and adversarial set of HotpotQA.

To further improve the performance of the generative selector, we add an auxiliary loss term that

predicts the relevant sentences in the context pair, p(q, s|ci j, ψ), along with selecting the context pair

in a multi-task setting. We see slight performance improvements by using relevant sentences as an

additional supervision signal.

3.4 Conclusion

We have presented a generative formulation of context pair selection in multi-hop question answering

models. By encouraging the context selection model to explain the entire question, it is less

susceptible to bias, performing substantially better on adversarial data than existing methods that

use discriminative selection. Our proposed model is simple to implement and can be used with any

existing (or future) answering model; we will release code to support this integration.

Since context pair selection scales quadratically with the number of contexts, it is not ideal for sce-

narios that involve a large number of possible contexts. However, it allows for deeper inter-document

interaction as compared to other approaches that use summarized document representations. With

more reasoning steps, selecting relevant documents given only the question becomes challenging,

increasing the need for inter-document interaction.
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3.5 Related work

Most passage selection models for HotpotQA and Wikihop’s distractor style setup employ a

RoBERTA based context selectors given the question [3, 4]. In an ideal scenario, the absence of

latent entity in the question should not allow selection of all oracle passages. However, the high

performance of these systems can be attributed to existing bias in HotpotQA [2, 140]. Another line

of work dynamically updates the working memory to re-rank the set of passage at each hop [145].

With the release of datasets like SearchQA [146], TriviaQA [147], and NaturalQuestions [148], lot

of work has been done in open-domain passage retrieval, especially in the full Wikipedia setting.

However, these questions do not necessarily require multi-hop reasoning. A series of work has tried

to match a document-level summarized embedding to the question [149, 150, 151] for obtaining

the relevant answers. In generative question answering, a few works [111, 152] have used a joint

question answering approach on single context.
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Part II

Decomposition: Understanding

Compositionality
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Chapter 4

DROP: Discrete Reasoning Over Passages

It is a capital mistake to theorize before one

has data.

Sir Arthur Conan Doyle

(British writer and physician)

In order to evaluate the compositional ability of neural models via a controlled test, we introduce

a new English reading comprehension benchmark dataset that necessitates a series (composition)

of operations to solve the question. This dataset, which we refer to as DROP, requires performing

Discrete Reasoning Over the content of Paragraphs. Within this benchmark, which comprises

96K questions created through crowdsourcing and adversarial techniques, a system is required to

handle references within a question, potentially to multiple input positions, and execute discrete

compositional operations on them. These operations may include addition, counting, or sorting.

These operations require a much more comprehensive understanding of the content of paragraphs

than what was necessary for prior datasets. We apply state-of-the-art methods from both the reading

comprehension and semantic parsing literatures on this dataset and show that the best systems only

achieve 32.7% F1 on our generalized accuracy metric, while expert human performance is 96.4%.
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We additionally present a new model that combines reading comprehension methods with simple

numerical reasoning to achieve 47.0% F1.

4.1 Introduction

Reading comprehension has recently seen rapid progress, with systems matching humans on the

most popular datasets for the task. However, a large body of work has highlighted the brittleness

of these systems, showing that there is much work left to be done. We introduce a new English

reading comprehension benchmark, DROP, which requires Discrete Reasoning Over the content

of Paragraphs. In this crowdsourced, adversarially-created, 96k-question benchmark, a system

must resolve references in a question, perhaps to multiple input positions, and perform discrete

operations over them (such as addition, counting, or sorting). These operations require a much

more comprehensive understanding of the content of paragraphs than what was necessary for prior

datasets. We apply state-of-the-art methods from both the reading comprehension and semantic

parsing literatures on this dataset and show that the best systems only achieve 32.7% F1 on our

generalized accuracy metric, while expert human performance is 96.4%. We additionally present

a new model that combines reading comprehension methods with simple numerical reasoning to

achieve 47.0% F1.

The task of reading comprehension, where systems must understand a single passage of text well

enough to answer arbitrary questions about it, has seen significant progress in the last few years, so

much that the most popular datasets available for this task have been solved [153, 32]. We introduce

a substantially more challenging English reading comprehension dataset aimed at pushing the field

towards more comprehensive analysis of paragraphs of text. In this new benchmark, which we

call DROP, a system is given a paragraph and a question and must perform some kind of Discrete

Reasoning Over the text in the Paragraph to obtain the correct answer.
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These questions that require discrete reasoning (such as addition, sorting, or counting; see Table 4.1)

are inspired by the complex, compositional questions commonly found in the semantic parsing

literature. We focus on this type of questions because they force a structured analysis of the content

of the paragraph that is detailed enough to permit reasoning. Our goal is to further paragraph

understanding; complex questions allow us to test a system’s understanding of the paragraph’s

semantics.

DROP is also designed to further research on methods that combine distributed representations

with symbolic, discrete reasoning. In order to do well on this dataset, a system must be able to

find multiple occurrences of an event described in a question (presumably using some kind of soft

matching), extract arguments from the events, then perform a numerical operation such as a sort, to

answer a question like “Who threw the longest touchdown pass?”.

We constructed this dataset through crowdsourcing, first collecting passages from Wikipedia that are

easy to ask hard questions about, then encouraging crowd workers to produce challenging questions.

This encouragement was partially through instructions given to workers, and partially through the

use of an adversarial baseline: we ran a baseline reading comprehension method (BiDAF) [49] in

the background as crowd workers were writing questions, requiring them to give questions that the

baseline system could not correctly answer. This resulted in a dataset of 96,567 questions from a

variety of categories in Wikipedia, with a particular emphasis on sports game summaries and history

passages. The answers to the questions are required to be spans in the passage or question, numbers,

or dates, which allows for easy and accurate evaluation metrics.

We present an analysis of the resulting dataset to show what phenomena are present. We find that

many questions combine complex question semantics with SQuAD-style argument finding; e.g.,

in the first question in Table 4.1, BiDAF correctly finds the amount the painting sold for, but does

not understand the question semantics and cannot perform the numerical reasoning required to

answer the question. Other questions, such as the fifth question in Table 4.1, require finding all

events in the passage that match a description in the question, then aggregating them somehow (in
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this instance, by counting them and then performing an argmax). Very often entity coreference is

required. Table 4.1 gives a number of different phenomena, with their proportions in the dataset.

We used three types of systems to judge baseline performance on DROP: (1) heuristic baselines, to

check for biases in the data; (2) SQuAD-style reading comprehension methods; and (3) semantic

parsers operating on a pipelined analysis of the passage. The reading comprehension methods

perform the best, with our best baseline achieving 32.7% F1 on our generalized accuracy metric,

while expert human performance is 96.4%. Finally, we contribute a new model for this task that

combines limited numerical reasoning with standard reading comprehension methods, allowing the

model to answer questions involving counting, addition and subtraction. This model reaches 47%

F1, a 14.3% absolute increase over the best baseline system.

4.2 Data Collection

In this section, we describe our annotation protocol, which consists of three phases. First, we

automatically extract passages from Wikipedia which are expected to be amenable to complex

questions. Second, we crowdsource question-answer pairs on these passages, eliciting questions

which require discrete reasoning. Finally, we validate the development and test portions of DROP to

ensure their quality and report inter-annotator agreement.

Passage extraction We searched Wikipedia for passages that had a narrative sequence of events,

particularly with a high proportion of numbers, as our initial pilots indicated that these passages

were the easiest to ask complex questions about. We found that National Football League (NFL)

game summaries and history articles were particularly promising, and we additionally sampled from

any Wikipedia passage that contained at least twenty numbers.1 This process yielded a collection of

about 7,000 passages.

1We used an October 2018 Wikipedia dump, as well as scraping of online Wikipedia.
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Question collection We used Amazon Mechanical Turk2 to crowdsource the collection of question-

answer pairs, where each question could be answered in the context of a single Wikipedia passage.

In order to allow some flexibility during the annotation process, in each human intelligence task

(HIT) workers were presented with a random sample of 5 of our Wikipedia passages, and were

asked to produce a total of at least 12 question-answer pairs on any of these.

We presented workers with example questions from five main categories, inspired by questions

from the semantic parsing literature (addition/subtraction, minimum/maximum, counting, selection

and comparison; see examples in Table 4.1), to elicit questions that require complex linguistic

understanding and discrete reasoning. In addition, to further increase the difficulty of the questions

in DROP, we employed a novel adverserial annotation setting, where workers were only allowed to

submit questions which a real-time QA model BiDAF could not solve.3

Next, each worker answered their own question with one of three answer types: spans of text

from either question or passage, a date (which was common in history and open-domain text) and

numbers, allowed only for questions which explicitly stated a specific unit of measurement (e.g.,

“How many yards did Brady run?”), in an attempt to simplify the evaluation process.

Initially, we opened our HITs to all United States workers and gradually reduced our worker pool

to workers who understood the task and annotated it well. Each HIT paid 5 USD and could be

completed within 30 minutes, compensating a trained worker with an average pay of 10 USD/ hour.

Overall, we collected a total of 96,567 question-answer pairs with a total Mechanical Turk budget

of 60k USD (including validation). The dataset was randomly partitioned by passage into training

(80%), development (10%) and test (10%) sets, so all questions about a particular passage belong to

only one of the splits.

2www.mturk.com
3While BiDAF is no longer state-of-the-art, performance is reasonable and the AllenNLP implementation [154]

made it the easiest to deploy as a server.
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Validation In order to test inter-annotator agreement and to improve the quality of evaluation

against DROP, we collected at least two additional answers for each question in the development

and test sets.

In a separate HIT, workers were given context passages and a previously crowdsourced question,

and were asked to either answer the question or mark it as invalid (this occurred for 0.7% of the

data, which we subsequently filtered out).

We found that the resulting inter-annotator agreement was good and on par with other QA tasks;

overall Cohen’s κ was 0.74, with 0.81 for numbers, 0.62 for spans, and 0.65 for dates.

4.3 Data Analysis

In the following, we quantitatively analyze properties of passages, questions, and answers in DROP.

Different statistics of the dataset are depicted in Table 4.2. Notably, questions have a diverse

vocabulary of around 30k different words in our training set.

Question analysis To assess the question type distribution, we sampled 350 questions from the

training and development sets and manually annotated the categories of discrete operations required

to answer the question. Table 4.1 shows the distribution of these categories in the dataset. In addition,

to get a better sense of the lexical diversity of questions in the dataset, we find the most frequent

trigram patterns in the questions per answer type. We find that the dataset offers a huge variety of

linguistic constructs, with the most frequent pattern (“Which team scored”) appearing in only 4%

of the span type questions. For number type questions, the 5 most frequent question patterns all

start with “How many”, indicating the need to perform counting and other arithmetic operations. A

distribution of the trigrams containing the start of the questions are shown in Figure 4.1.
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Figure 4.1: Distribution of the most popular question prefixes for two different subsets of the
training data.

Answer analysis To discern the level of passage understanding needed to answer the questions

in DROP, we annotate the set of spans in the passage that are necessary for answering the 350

questions mentioned above. We find that on an average 2.18 spans need to be considered to answer

a question and the average distance between these spans is 26 words, with 20% of samples needing

at least 3 spans (see appendix for examples). Finally, we assess the answer distribution in Table 4.3,

by running the part-of-speech tagger and named entity recognizer from spaCy4 to automatically

partition all the answers into various categories. We find that a majority of the answers are numerical

values and proper nouns.

4.3.1 Baseline Systems

In this section we describe the initial baselines that we evaluated on the DROP dataset. We

used three types of baselines: state-of-the-art semantic parsers (§4.3.2), state-of-the-art reading

4https://spacy.io/
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comprehension models (§4.3.3), and heuristics looking for annotation artifacts (§4.3.4). We use

two evaluation metrics to compare model performance: Exact-Match, and a numeracy-focused

(macro-averaged) F1 score, which measures overlap between a bag-of-words representation of the

gold and predicted answers. We employ the same implementation of Exact-Match accuracy as

used by SQuAD, which removes articles and does other simple normalization, and our F1 score is

based on that used by SQuAD. Since DROP is numeracy-focused, we define F1 to be 0 when there

is a number mismatch between the gold and predicted answers, regardless of other word overlap.

When an answer has multiple spans, we first perform a one-to-one alignment greedily based on

bag-of-word overlap on the set of spans and then compute average F1 over each span. When there

are multiple annotated answers, both metrics take a max over all gold answers.

4.3.2 Semantic Parsing

Semantic parsing has been used to translate natural language utterances into formal executable

languages (e.g., SQL) that can perform discrete operations against a structured knowledge represen-

tation, such as knowledge graphs or tabular databases [155, 156, 157, 158].

Since many of DROP’s questions require similar discrete reasoning, it is appealing to port some of

the successful work in semantic parsing to the DROP dataset. Specifically, we use the grammar-

constrained semantic parsing model built by [159] (KDG) for the WikiTableQuestions tabular

dataset [160].

Sentence representation schemes We experimented with three paradigms to represent paragraphs

as structured contexts:

(1) Stanford dependencies [161]; which capture word-level syntactic relations, (2) Open Information

Extraction [94], a shallow semantic representation which directly links predicates and arguments;
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and (3) Semantic Role Labeling [162], which disambiguates senses for polysemous predicates and

assigns predicate-specific argument roles.5 To adhere to KDG’s structured representation format,

we convert each of these representations into a table, where rows are predicate-argument structures

and columns correspond to different argument roles.

Logical form language Our logical form language identifies five basic elements in the table

representation: predicate-argument structures (i.e., table rows), relations (column-headers), strings,

numbers, and dates. In addition, it defines functions that operate on these elements, such as counters

and filters.6

Following [159], we use the argument and return types of these functions to automatically induce a

grammar to constrain the parser.

We also add context-specific rules to produce strings occurring in both question and paragraph, and

those paragraph strings that are neighbors of question tokens in the GloVe embedding space [166],

up to a cosine distance of d.7 The complete set of functions used in our language and their induced

grammar can be found in the code release.

Training and inference During training, the KDG parser maximizes the marginal likelihood of a

set of (possibly spurious) question logical forms that evaluate to the correct answer. We obtain this

set by performing an exhaustive search over the grammar up to a preset tree depth. At test time,

we use beam search to produce the most likely logical form, which is then executed to predict an

answer.
5We used the AllenNLP implementations of state-of-the-art models for all of these representations [154, 163, 164,

165].
6For example filter number greater takes a set of predicate-argument structures, the name of a relation, and a

number, and returns all those structures where the numbers in the argument specified by the relation are greater than the
given number.

7d = 0.3 was manually tuned on the development set.
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4.3.3 SQuAD-style Reading Comprehension

We test four different SQuAD-style reading comprehension models on DROP: (1) BiDAF [49],

which is the adversarial baseline we used in data construction (66.8% EM on SQuAD 1.1); (2)

QANet [50], currently the best-performing published model on SQuAD 1.1 without data augmen-

tation or pre-training (72.7% EM); (3) QANet + ELMo, which enhances the QANet model by

concatenating pre-trained ELMo representations [167] to the original embeddings (78.7% EM); (4)

BERT [32], which recently achieved improvements on many NLP tasks with a novel pre-training

technique (84.7% EM).8

These models require a few minor adaptations when training on DROP. While SQuAD provides

answer indices in the passage, our dataset only provides the answer strings. To address this, we use

the marginal likelihood objective function proposed by [168], which sums over the probabilities

of all the matching spans.9 We also omitted the training questions which cannot be answered by a

span in the passage (45%), and therefore cannot be represented by these systems.

For the BiDAF baseline, we use the implementation in AllenNLP but change it to use the marginal

objective. For the QANet model, our settings differ from the original paper only in the batch size

(16 v.s. 32) and number of blocks in the modeling layer (6 v.s. 7) due to the GPU memory limit.

We adopt the ELMo representations trained on 5.5B corpus for the QANet+ELMo baseline and the

large uncased BERT model for the BERT baseline. The hyper-parameters for our NAQANet model

(§4.4) are the same as for the QANet baseline.
8The first three scores are based on our own implementation, while the score for BERT is based on an open-source

implementation from Hugging Face: https://github.com/huggingface/pytorch-pretrained-bert
9For the black-box BERT model, we convert DROP to SQuAD format by using the first match as the gold span.
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4.3.4 Heuristic Baselines

A recent line of work [91, 169] has identified that popular crowdsourced NLP datasets (such as

SQuAD [170] or SNLI [171]) are prone to have artifacts and annotation biases which can be

exploited by supervised algorithms that learn to pick up these artifacts as signal instead of more

meaningful semantic features.

We estimate artifacts by training the QANet model described in Section 4.3.3 on a version of

DROP where either the question or the paragraph input representation vectors are zeroed out

(question-only and paragraph-only, respectively). Consequently, the resulting models can then

only predict answer spans from either the question or the paragraph.

In addition, we devise a baseline that estimates the answer variance in DROP. We start by counting

the unigram and bigram answer frequency for each wh question-word in the train set (as the

first word in the question). The majority baseline then predicts an answer as the set of 3 most

common answer spans for the input question word (e.g., for “when”, these were “quarter”, “end”

and “October”).

4.4 NAQANet

DROP is designed to encourage models that combine neural reading comprehension with symbolic

reasoning. None of the baselines we described in Section 4.3.1 can do this. As a preliminary attempt

toward this goal, we propose a numerically-aware QANet model, NAQANet, which allows the

state-of-the-art reading comprehension system to produce three new answer types: (1) spans from

the question; (2) counts; (3) addition or subtraction over numbers. To predict numbers, the model

first predicts whether the answer is a count or an arithmetic expression. It then predicts the specific

numbers involved in the expression. This can be viewed as the neural model producing a partially
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executed logical form, leaving the final arithmetic to a symbolic system. While this model can

currently only handle a very limited set of operations, we believe this is a promising approach to

combining neural methods and symbolic reasoning. The model is trained by marginalizing over all

execution paths that lead to the correct answer.

4.4.1 Model Description

Our NAQANet model follows the typical architecture of previous reading comprehension models,

which is composed of embedding, encoding, passage-question attention, and output layers. We

use the original QANet architecture for everything up to the output layer. This gives us a question

representation Q ∈ Rm×d, and a projected question-aware passage representation P̄ ∈ Rn×d. We have

four different output layers, for the four different kinds of answers the model can produce:

Passage span As in the original QANet model, to predict an answer in the passage we apply three

repetitions of the QANet encoder to the passage representation P̄ and get their outputs as M0, M1,

M2 respectively. Then the probabilities of the starting and ending positions from the passage can be

computed as:

pp start = softmax (FFN (M0; M1)) (4.1)

pp end = softmax (FFN (M0; M2)) (4.2)

where FFN is a two-layer feed-forward network with the RELU activation.

Question span Some questions in DROP have their answer in the question instead of the passage.

To predict an answer from the question, the model first computes a vector hP that represents the
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information it finds in the passage:

αP = softmax(WPP̄), (4.3)

hP = αPP̄ (4.4)

Then it computes the probabilities of the starting and ending positions from the question as:

pq start = softmax (FFN(Q; e|Q| ⊗ hP), (4.5)

pq end = softmax (FFN(Q; e|Q| ⊗ hP) (4.6)

where the outer product with the identity (e|Q| ⊗ ·) simply repeats hP for each question word.

Count We model the capability of counting as a multi-class classification problem. Specifically,

we consider ten numbers (0–9) in this preliminary model and the probabilities of choosing these

numbers is computed based on the passage vector hP:

pcount = softmax (FFN(hP)) (4.7)

Arithmetic expression Many questions in DROP require the model to locate multiple numbers in

the passage and add or subtract them to get the final answer. To model this process, we first extract

all the numbers from the passage and then learn to assign a plus, minus or zero for each number. In

this way, we get an arithmetic expression composed of signed numbers, which can be evaluated to

give the final answer.

To do this, we first apply another QANet encoder to M2 and get a new passage representation M3.

Then we select an index over the concatenation of M0 and M3, to get a representation for each

number in this passage. The ith number can be represented as hN
i and the probabilities of this number
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In the first quarter, the Saints trailed early as quarterback Ben Roethlisberger
completed a 37-yard touchdown pass to WR Hines Ward and a 1-yard touchdown
pass to TE Heath Miller. Afterwards, New Orleans got on the board with quarterback
Drew Brees completing a 3-yard touchdown pass to WR Terrance Copper … rookie
RB Reggie Bush got a 35-yard touchdown run on a reverse.  Pittsburgh would get
kicker Jeff Reed to get a 32-yard field goal, yet New Orleans responded with RB
Deuce McAllister getting a 29-yard touchdown run. In the third quarter, the Steelers
started to fight back as Roethlisberger completed a 38-yard touchdown pass to WR
Cedrick Wilson for the only score of the period.  In the fourth quarter, RB Willie Parker
followed up with a 3-yard and a 4-yard touchdown run to give Pittsburgh the lead.

Question: What was the smallest touchdown run of the game, 1-yard or 3-yard?

Answer type
prediction

Passage Span
Predictor

Arithmetic Sign
Predictor

Question Span
Predictor

Count
Predictor

 3

( 4 – 1 )

( 32 – 29 )

( 38 – 35 )

p

3

3

s1

s2

s3

0.42

0.10

0.10

0.38

c

q

Figure 4.2: Numerically-augmented QANet. The likelihood of answer being “3” is 0.42p +
0.1(s1 + s2 + s3) + 0.10c + 0.38q

being assigned a plus, minus or zero are:

psign
i = softmax (FFN(hN

i )) (4.8)

Answer type prediction We use a categorical variable to decide between the above four answer

types, with probabilities computed as:

ptype = softmax(FFN(hP,hQ)) (4.9)

where hQ is computed over Q, in a similar way as we did for hP. At test time, we first determine

this answer type greedily and then get the best answer from the selected type.
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4.4.2 Weakly-Supervised Training

For supervision, DROP contains only the answer string, not which of the above answer types is used

to arrive at the answer. To train our model, we adopt the weakly supervised training method widely

used in the semantic parsing literature [158]. We find all executions that evaluate to the correct

answer, including matching passage spans and question spans, correct count numbers, as well as

sign assignments for numbers. Our training objective is then to maximize the marginal likelihood

of these executions.10

4.5 Results and Discussion

The performance of all tested models on the DROP dataset is presented in Table 4.4. Most notably,

all models perform significantly worse than on other prominent reading comprehension datasets,

while human performance remains at similar high levels.11 For example, BERT, the current state-

of-the-art on SQuAD, drops by more than 50 absolute F1 points. This is a positive indication that

DROP is indeed a challenging reading comprehension dataset, which opens the door for tackling

new and complex reasoning problems on a large scale.

The best performance is obtained by our NAQANet model. Table 4.6 shows that our gains are

obtained on the challenging and frequent number answer type, which requires various complex

types of reasoning.

Future work may also try combining our model with BERT. Furthermore, we find that all heuristic

baselines do poorly on our data, hopefully attesting to relatively small biases in DROP.

10Due to the exponential search space and the possible noise, we only search the addition/subtraction of two numbers.
Given this limited search space, the search and marginalization are exact.

11Human performance was estimated by the authors collectively answering 560 questions from the test set, which
were then evaluated using the same metric as learned systems. This is in contrast to holding out one gold annotation and
evaluating it against the other annotations, as done in prior work, which underestimates human performance relative to
systems.

79



Difficulties of building semantic parsers We see that all the semantic parsing baselines perform

quite poorly on DROP. This is mainly because of our pipeline of extracting tabular information

from paragraphs, followed by the denotation-driven logical form search, can yield logical forms

only for a subset of the training data. For SRL and syntactic dependency sentence representation

schemes, the search was able to yield logical forms for 34% of the training data, whereas with

OpenIE, it was only 25%. On closer examination of a sample of 60 questions and the information

extracted by the SRL scheme (the best performing of the three), we found that only 25% of the

resulting tables contained information needed to the answer the questions. These observations show

that high quality information extraction is a strong prerequisite for building semantic parsers for

DROP. Additionally, the fact that this is a weakly supervised semantic parsing problem also makes

training hard. The biggest challenge in this setup is the spuriousness of logical forms used for

training, where the logical form evaluates to the correct denotation but does not actually reflect the

semantics of the question. This makes it hard for the model trained on these spurious logical forms

to generalize to unseen data. From the set of logical forms for a sample of 60 questions analyzed,

we found that only 8 questions (13%) contained non-spurious logical forms.

Error Analysis Finally, in order to better understand the outstanding challenges in DROP, we

conducted an error analysis on a random sample of 100 erroneous NAQANet predictions. The most

common errors were on questions which required complex type of reasoning, such as arithmetic

operations (evident in 51% of the errors), counting (30%), domain knowledge and common sense

(23%), co-reference (6%), or a combination of different types of reasoning (40%). See Table 4.5 for

examples of some of the common phenomena.
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4.6 Conclusion

We have presented DROP, a dataset of complex reading comprehension questions that require

Discrete Reasoning Over Paragraphs. This dataset is substantially more challenging than existing

datasets, with the best baseline achieving only 32.7% F1, while humans achieve 96%. We hope

this dataset will spur research into more comprehensive analysis of paragraphs, and into methods

that combine distributed representations with symbolic reasoning. We have additionally presented

initial work in this direction, with a model that augments QANet with limited numerical reasoning

capability, achieving 47% F1 on DROP.
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Reasoning Passage (some parts shortened) Question Answer

Subtraction
(28.8%)

That year, his Untitled (1981), a painting of a haloed, black-
headed man with a bright red skeletal body, depicted amid the
artists signature scrawls, was sold by Robert Lehrman for
$16.3 million, well above its $12 million high estimate.

How many more dol-
lars was the Unti-
tled (1981) painting
sold for than the 12
million dollar estima-
tion?

Comparison
(18.2%)

In 1517, the seventeen-year-old King sailed to Castile.
There, his Flemish court . . . . In May 1518, Charles traveled
to Barcelona in Aragon.

Where did Charles
travel to first, Castile
or Barcelona?

Castile

Selection
(19.4%)

In 1970, to commemorate the 100th anniversary of the found-
ing of Baldwin City, Baker University professor and play-
wright Don Mueller and Phyllis E. Braun, Business Man-
ager, produced a musical play entitled The Ballad Of Black
Jack to tell the story of the events that led up to the battle.

Who was the Uni-
versity professor that
helped produce The
Ballad Of Black Jack,
Ivan Boyd or Don
Mueller?

Don
Mueller

Addition
(11.7%)

Before the UNPROFOR fully deployed, the HV clashed with
an armed force of the RSK in the village of Nos Kalik, located
in a pink zone near Šibenik, and captured the village at 4:45
p.m. on 2 March 1992. The JNA formed a battlegroup to
counterattack the next day.

What date did the
JNA form a battle-
group to counterat-
tack after the village
of Nos Kalik was cap-
tured?

3 March
1992

Count
(16.5%)
and Sort
(11.7%)

Denver would retake the lead with kicker Matt Prater nailing
a 43-yard field goal, yet Carolina answered as kicker John
Kasay ties the game with a 39-yard field goal. . . . Carolina
closed out the half with Kasay nailing a 44-yard field goal.
. . . In the fourth quarter, Carolina sealed the win with Kasay’s
42-yard field goal.

Which kicker kicked
the most field goals?

John
Kasay

Coreference
Resolu-
tion
(3.7%)

James Douglas was the second son of Sir George Douglas of
Pittendreich, and Elizabeth Douglas, daughter David Douglas
of Pittendreich. Before 1543 he married Elizabeth, daughter
of James Douglas, 3rd Earl of Morton. In 1553 James Dou-
glas succeeded to the title and estates of his father-in-law.

How many years af-
ter he married Eliza-
beth did James Dou-
glas succeed to the ti-
tle and estates of his
father-in-law?

10

Other
Arith-
metic
(3.2%)

Although the movement initially gathered some 60,000 adher-
ents, the subsequent establishment of the Bulgarian Exarchate
reduced their number by some 75%.

How many adherents
were left after the
establishment of the
Bulgarian Exarchate?

15000

Set of
spans
(6.0%)

According to some sources 363 civilians were killed in
Kavadarci, 230 in Negotino and 40 in Vatasha.

What were the 3
villages that people
were killed in?

Kavadarci,
Ne-
gotino,
Vatasha

Other
(6.8%)

This Annual Financial Report is our principal financial state-
ment of accountability. The AFR gives a comprehensive
view of the Department’s financial activities ...

What does AFR stand
for?

Annual
Finan-
cial
Report

Table 4.1: Example questions and answers from the drop dataset, showing the relevant parts of the
associated passage and the reasoning required to answer the question.
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Statistic Train Dev Test

Number of passages 5565 582 588
Avg. passage len [words] 213.45 191.62 195.12
Number of questions 77,409 9,536 9,622
Avg. question len [words] 10.79 11.17 11.23
Avg. questions / passage 13.91 16.38 16.36
Question vocabulary size 29,929 8,023 8,007

Table 4.2: Dataset statistics across the
different splits.

Answer Type Percent Example

NUMBER 66.1 12
PERSON 12.2 Jerry Porter
OTHER 9.4 males
OTHER ENTITIES 7.3 Seahawks
VERB PHRASE 3.5 Tom arrived at Acre
DATE 1.5 3 March 1992

Table 4.3: Distribution of answer types
in training set.

Method Dev Test

EM F1 EM F1

Heuristic Baselines
Majority 0.09 1.38 0.07 1.44
Q-only 4.28 8.07 4.18 8.59
P-only 0.13 2.27 0.14 2.26

Semantic Parsing
Syn Dep 9.38 11.64 8.51 10.84
OpenIE 8.80 11.31 8.53 10.77
SRL 9.28 11.72 8.98 11.45

SQuAD-style RC
BiDAF 26.06 28.85 24.75 27.49
QANet 27.50 30.44 25.50 28.36
QANet+ELMo 27.71 30.33 27.08 29.67
BERT 30.10 33.36 29.45 32.70

NAQANet
+ Q Span 25.94 29.17 24.98 28.18
+ Count 30.09 33.92 30.04 32.75
+ Add/Sub 43.07 45.71 40.40 42.96
Complete Model 46.20 49.24 44.07 47.01

Human - - 94.09 96.42

Table 4.4: Performance of the different models on our development and test set, in terms of Exact
Match (EM), and numerically-focused F1 (§4.3.1). Both metrics are calculated as the maximum
against a set of gold answers.
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Phenomenon Passage Highlights Question Answer Our
model

Subtraction
+ Coreference

. . . Twenty-five of his 150 men were
sick, and his advance stalled . . .

How many of Bartolomé de
Amésqueta’s 150 men were not
sick?

125 145

Count + Filter . . . Macedonians were the largest
ethnic group in Skopje, with
338,358 inhabitants . . . Then came
. . . Serbs (14,298 inhabitants),
Turks (8,595), Bosniaks (7,585) and
Vlachs (2,557) . . .

How many ethnicities had less
than 10000 people?

3 2

Domain
knowledge

. . . Smith was sidelined by a
torn pectoral muscle suffered during
practice . . .

How many quarters did Smith
play?

0 2

Addition . . . culminating in the Battle of Vi-
enna of 1683, which marked the
start of the 15-year-long Great Turk-
ish War . . .

What year did the Great Turkish
War end?

1698 1668

Table 4.5: Representative examples from our model’s error analysis. We list the identified semantic
phenomenon, the relevant passage highlights, a gold question-answer pair, and the erroneous
prediction by our model.

Type (%)
Exact Match F1

QN+ BERT QN+ BERT

Date 1.57 28.7 38.7 35.5 42.8
Numbers 61.94 44.0 14.5 44.2 14.8
Single Span 31.71 58.2 64.6 64.6 70.1
> 1 Spans 4.77 0 0 17.13 25.0

Table 4.6: Dev set performance breakdown by different
answer types; our model (NAQANet, marked as QN+) vs.
BERT, the best-performing baseline.
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Figure 4.3: Question Answering HIT sample above with passage on the left and input fields for
answer on the right and Highlighted candidate spans of sample answers below
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Chapter 5

Successive Prompting

If there is a lesson to be drawn from the

history of cognitive science, it is that the

most important discoveries arise when we

break the world into small pieces.

Jerry Fodor

(Modularity of Mind - 1983)

Answering complex questions that require making latent decisions is a challenging task, especially

when limited supervision is available. Recent works leverage the capabilities of large language

models (LMs) to perform complex question answering in a few-shot setting by demonstrating how

to output intermediate rationalizations while solving the complex question in a single pass. We

introduce “Successive Prompting”, where we iteratively break down a complex task into a simple

task, solve it, and then repeat the process until we get the final solution. Successive prompting

decouples the supervision for decomposing complex questions from the supervision for answering

simple questions, allowing us to (1) have multiple opportunities to query in-context examples at

each reasoning step (2) learn question decomposition separately from question answering, including
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Who kicked the longest field goal in the first half?

Q: What are all the field
goals in first half?

A: 12-yard, 42-
yard and 33-yardQ: What is the largest

value in: 12-yard, 42-yard
and 33-yard?

A: 42-yard
Q: Who kicked the 42-
yard field goal?

A: Matt Bryant
There are no more ques-
tions left to ask. The final
answer is Matt Bryant

Decomposition Answering

Figure 5.1: Example decomposition used by Successive Prompting’s question decomposition and
question answering stage on a DROP example. The model iterates between predicting a simple
question to ask and answering the simple question.

using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large

LM does not perform well. The intermediate supervision is typically manually written, which can

be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to

bootstrap a model’s ability to decompose and answer intermediate questions. Our best model (with

successive prompting) achieves an improvement of ∼5% absolute F1 on a few-shot version of the

DROP dataset when compared with a state-of-the-art model with the same supervision.

5.1 Introduction

Compositional reading comprehension datasets like HotpotQA [40] and DROP [17] have inspired

a range of model architectures that learn to answer complex questions with weak supervision

from the final answer. One recent direction is to leverage large language models (LMs) to solve

compositional tasks with very few examples by generating latent reasoning steps before answering
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the question [98, 172, 173].

Given a complex question, this approach first finds nearest-neighbor training examples from a

dataset of (question, reasoning, answer) triples and then concatenates them to create an input for

the LM. A large LM is then prompted with this input to generate the intermediate reasoning steps

needed, while answering the complex question in a single pass.

While promising, this approach discards many of the benefits of prior approaches to this task [174,

173] by coupling the supervision for question decomposition to the supervision for performing

the intermediate steps. Moreover, its non-modular nature does not allow using alternate symbolic

reasoning engines in cases where they perform better than LMs. Additionally, the model gets

exposed to only a single set of in-context examples, selected based on their proximity to the complex

question, which may not contain optimal supervision for the intermediate steps that need to be

taken.

We propose “Successive Prompting”, where we iteratively decompose the complex question into

the next simple question to answer, answer it, and then repeat until the complex question is

answered (Figure 5.1). Each of these steps is performed with separate a query to the LM. Since

the decomposition and answering steps are performed separately, we can decouple the supervision

of each step, providing two primary benefits. First, when performing in-context learning, we

get multiple opportunities to select different in-context examples, which can be tailored to the

particular decomposition or answering step being performed, instead of selecting a single set of

examples based only on the complex question. Second, when fine-tuning (with or without in-context

examples [175]), we can provide training examples for each step independently, so the model only

has to learn to perform one step at a time.

This decoupling additionally allows us to judiciously inject synthetic data into the learning process,

e.g., to help the model answer a particular kind of simple question that it could not previously

answer, or a new reasoning composition it did not know how to decompose. Because the steps are
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separate, we can isolate model failures and develop synthetic approaches to fill in the gaps. It also

allows us to replace the LM with other, purpose-built components to perform symbolic reasoning

when appropriate [174, 176, 177].

We demonstrate the utility of successive prompting using a few-shot variant of the DROP dataset [17],

selecting 300 examples for training (either fine-tuning or in-context example selection). These

300 examples are manually annotated with simple QA pairs as decompositions. We find that

performance of all models is quite low in this few-shot setting, so we develop a synthetic data gen-

erator that produces complex questions with their decompositions from semi-structured Wikipedia

tables [95]. This synthetic data provides not just complex question supervision, but also supervision

for the intermediate steps. We augment this data with the 300 (complex) training examples and their

decompositions from DROP. In this few-shot setting, our best performing successive prompting

model shows a ∼5% improvement in F1 when compared to state-of-the-art model on DROP.

5.2 Decomposing Complex Questions

The goal of compositional question answering is to answer a complex question q in the context of a

passage p (together denoted as x) by reasoning through latent sequential decisions z = z1, z2, ..., zs

to reach the final answer, y. Many models have been proposed to accomplish this with varying

amounts of supervision and interpretability. In prompting methods like Chain-of-Thought [CoT,

98] the latent steps are supervised, interpretable sentences; in other models these latent steps might

be a program [178, 179] or even just the (unsupervised) hidden states in the model [176, 180]

We focus on models that take in-context examples and produce a discrete, language-encoded z, with

CoT being the primary exemplar. We write the general form for CoT, given an input x, a language

model encoder L and N in-context examples obtained from querying an index I—each containing

a triplet of passage with complex question (xn), latent steps (zn) and final answer (yn)—as follows:
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How many yards longer was Barth's second field goal over first?

For answering the question
"How many yards longer was
Mike Nugent's longest field
goal than his shortest?"
Next question to answer is
Q:What was Mike Nugent's
shortest field goal yards?
For answering the question
"How many yards longer was
Barth's second field goal
over his first one?" 
Next question to answer is
Q:

Question: What was Connell's
second field goal? Answer: 12-
yard
Question: What was the second
field goal of the game? Answer:
28-yard

Question: How many yards was
Nugent's first field goal?  Answer:
23-yard
Question: How many yards was the
Schabb's first field goal?  Answer:
30-yard

For answering the question "How many
yards was the difference between
Schaub's longest ans shortest field
goal?  
We already know answer to question
"How long was Schaub's shortest field
goal yards?" is 12-yard
Next question to answer is Q: How many
yards was Schaub's longest field goal?

For answering the question "How many yards
longer was Mike Nugent's longest field goal
than his shortest?" 
.....
We already know answer to question "What is
the difference between 12-yard and 19-yard?"
is 7-yard
Next question to answer is Q: There
are no more questions left to ask. The
final answer is 7
For answering the question "How
many yards was Barth's second field
goald over his first one?" 
We already know answer to question
"What was Barth's second field goal?"
is 39-yard
We already know answer to question:
"How many yards was Barth's first
field goal? is 28-yard 
We already know answer to question:
"What is the difference between 39-
yard and 28-yard?" is 11-yard  
Next question to answer is Q: 

Question: What was Barth's
second field goal? Answer: 

Question: How many yards was
Barth's first field goal? Answer:

Q
D

Q
A

What was Barth's
second field goal?

For answering the question "How
many yards longer was Barth's
second field goal over his first one?" 
We already know answer to question
"What was Barth's second field goal?"
is 39-yard
Next question to answer is Q: 

How many yards was
Barth's first field goal?

39-yard 
      

28-yard 
     

There are no more questions left
to ask. The final answer is 11

Figure 5.2: A demonstration of successive prompting with in-context learning. The selected
examples for supervision and complex question to be answered pre-pended with the context
paragraph (omitted to simplify illustration) are encoded by the model to generate question and
answer at QD and QA stage respectively. During fine-tuning, only training supervision is used in an
i.i.d manner for learning QD and QA models.
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y, z← L
(
x, {

(
xn, yn, zn) | n ∈ [1,N]}

)

5.2.1 Successive prompting

In successive prompting, we represent each latent step as a pair of simple question and answer,

zk = (qk, ak) (see Figure 5.1 for example QA pairs) unlike CoT which represents each latent step as

a declarative sentence. Moreover, CoT queries the index I for in-context examples and prompts the

language model L for generating output only once. However, in successive prompting, we separate

z into multiple question and answering steps, which gives us many opportunities to prompt L, with

potentially different in-context examples that are more tailored to the simple question at each step.

It also enables us to re-encode the context given the intermediate state zk, which can be useful in

certain questions that need long chain referencing (e.g., the sort-count example in Figure 5.3). We

can write a general form for successive prompting as follows:

q1 ← L
(
x, {

(
xn, qn

1
)
| n ∈ [1,N]}

)
a1 ← L

(
p, q1, {

(
pm
∗ , q

m
∗ , a

m
∗

)
| m ∈ [1,M]}

)
q2 ← L

(
x, q1, a1, {

(
xn, qn

1, a
n
1, q

n
2
)
| n ∈ [1,N]}

)
a2 ← L

(
p, q2, {

(
pm
∗ , q

m
∗ , a

m
∗

)
| m ∈ [1,M]}

)
· · ·

y← L
(
x, z, {

(
xn, yn, zn) | n ∈ [1,N]}

)
There are three kinds of model outputs in this general form: intermediate questions qk, intermediate

answers ak, and the final answer y. We refer to the first kind of output as question decomposition
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(QD) and the second kind as question answering (QA). We treat final answer prediction as a special

case of question decomposition, where the model decides that no more decomposition is necessary

and outputs a final answer, so we iteratively alternate between question decomposition and question

answering until the model terminates.

5.2.2 Training paradigm

We have so far described successive prompting in a setting where only in-context examples are

given, so no model training is performed. However, successive prompting can also be used in

conjuction with model fine-tuning, where each intermediate output is treated as a training example

for L. In this section, we first describe how in-context examples are selected at every step, followed

by detailing how these examples are used for model fine-tuning.

In-context Learning During in-context learning, a small number of training examples are pro-

vided directly in the prompt that is given to a large LM, before the test input. These examples are

selected from an index based on their similarity with the test input. For successive prompting, we

create two indices: ID, for looking-up relevant demonstrations for QD, and IA, for looking-up

relevant demonstrations for QA. The index ID contains partially decomposed chains at each step k,

demonstrating the next question qk to be produced for every complex question in the training data.

The index IA contains all the simple QA pairs in the training data from all the complex questions.

In the QD stage, the index ID is queried with the complex test question, q and current step number,

k, to select demonstrations regarding how to generate the next question for the held-out example. In

the QA stage, the index IA is queried with the simple question qk generated during QD to select

relevant simple QA pairs. Figure 5.2 shows a demonstration of how in-context learning is executed

step-by-step in each stage until QD outputs the special phrase “There are no more questions left to

ask”, along with a final answer.
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Successive prompting allows the QA stage to access simple questions derived from complex

questions that would not have been retrieved by Chain-of-Thought prompting because on the surface

they are not similar to the held-out complex question, even though they share similar sub-questions.

Model Fine-tuning For model fine-tuning, we use T5 [33] based sequence-to-sequence models.

Such models are typically trained with control codes in a multi-task setting [181, 182] to switch

between QD and QA tasks with shared model parameters. We adapt and extend the control codes

introduced by text modular networks [TMNs, 174] for training with our synthetic data. TMNs are

limited in terms of the operations they can handle as they do not go beyond first order reasoning.

We use synthetically generated data, which allows us to deal with higher-order reasoning questions

in DROP. Because we are fine-tuning the model, we can use special tokens to denote question

decomposition and other separators, instead of the natural language prompts shown in Figure 5.2,

though the content is the same. The specific tokens used for each step are listed in Appendix A.

Specialized Modules Successive prompting also allows us to use specialized sub-modules for

solving different QA tasks because we no longer perform QD and QA in an end-to-end manner.

Solving arithmetic operations like counting, difference, sorting, etc., can be challenging for language

models. As a result, we follow [174] and construct a simple mathematical sub-module for QA

which parses the generated simple question for symbolic operation type and its arguments and

then executes them in a deterministic way. If the generated simple question cannot be parsed as a

mathematical operation, we apply the language model to solve it.

5.3 Synthetic Dataset

Any method that prompts LMs to produce intermediate reasoning steps to answer complex questions

needs some amount of supervision for those reasoning steps. This kind of annotation can be
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expensive to collect and often requires expert knowledge. Prior work has typically relied on a small

handful of manually-written example decompositions. We find that such small collections lead to

very poor performance on a dataset as varied as DROP, even for large models.

To mitigate these data issues, we propose a way to synthetically generate complex questions and

their decompositions using semi-structured data which is easy to parse. We show that we can

bootstrap model learning with this out-of-domain, synthetically generated data so it can adapt better

when fine-tuned with limited in-domain supervision.

Generation Process: Inspired by [95], we use semi-structured data from tables in English

Wikipedia which are available in plenty.

We employ curated templates to convert the rows in the tables into paragraphs. We use single

column headers to create first order simple questions and a combination of columns for higher order

complex questions.

We synthesize data for 10 simple operations: COUNT, TOP(k), BOTTOM(k), FILTER, SUM, COMPARISON,

DIFFERENCE, NEGATION, GATHER, and INTERSECTION.

We generate higher order combinations of first-order operations, wherever possible. Figure 5.3

shows examples of higher order combinations of the atomic operation COUNT with a few other

simple operations using Table 5.1 as context. The complete list of all decompositions is provided in

Appendix A. Depending on the model, we use either symbolic or natural language version of the

arithmetic operations. If we are using an LM to perform arithmetic operations, we output natural

language; if we are using a separate symbolic reasoning engine, we output symbolic operations. We

generate approximately 141K total complex questions which result in 525K examples for QD and

257K examples for QA. See Appendix A for more dataset statistics.
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Reasoning Complex Question and Decomposition (Question [Natural Language or Sym-
bolic], Answer)

Count How many opponents were there?

• Q: What are all the opponents? Ans: Walsall; Liverpool; Sheffield Wed.;
Oxford United; Portsmouth

• Q: count(Walsall; Portsmouth; Sheffield Wed.; Oxford United; Portsmouth)
Ans: 5

– Q: How many items are in the list: Walsall, Liverpool, Sheffield Wed.
and Oxford United, Portsmouth?

Higher order decompositions

Sort-Count Which venue had the most number of opponents?

• Q: What are all the venues? Ans: A; H

• Q: What are opponents when venue was A? Ans: Walsall; Oxford United;
Portsmouth

• Q: count(Walsall; Oxford United; Portsmouth) Ans: 3

• Q: What are opponents when venue was H? Ans: Liverpool; Sheffield
Wed.

• Q: count(Liverpool; Sheffield Wed.) Ans: 2

• Q: top(1, 2;3) Ans: 3

– Q: What is the largest value in: 2 and 3?

• Q: Which venue has 3 opponents? Ans: A

Comparison-Count Which round had more venues: SF 1st Leg or QFR?

• Q: What are the rounds when venue was A? Ans: R2 1st Left; SF 2nd Leg;
QFR

• count(R2 1st Left; SF 2nd Leg; QFR) Ans: 3

• Q: What are the rounds when venue was H? Ans: QFR; SF 1st Leg

• count(QFR; SF 1st Leg) Ans: 2

• if then(1 > 2; SF 1st Leg; QFR) Ans: QFR

– Q: If 1 > 2 then answer is SF 1st Leg else it is QFR

Figure 5.3: Examples of COUNT operation and some of its higher order combinations, with natural
language and symbolic decompositions of the complex question. Underneath the first instance of
a symbolic operation we show its corresponding natural language version. See Table 5.1 for the
original table used to generate context and questions.
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Round Date Opponent Venue Attendance

R2 1st Leg 26 Sep 1990 Walsall A 5,666
QFR 23 Oct 1990 Liverpool H 18,246
SF 1st Leg 24 Feb 1991 Sheffield Wed. H 14,074
SF 2nd Leg 27 Feb 1991 Oxford United A 34,669
QFR 23 Jan 1991 Portsmouth A 33,861

Table 5.1: Example table from Wikipedia where rows become sentences and columns are used for
question generation (used as context for Figure 5.3).

5.4 Experiments and Results

The DROP dataset contains a variety of reasoning compositions which are not uniformly distributed.

In order to get a fair representation of DROP examples, we first embed the examples using a

sentence embedding method trained on the QQP dataset [183]. We then use cosine similarity to get

the top-50 nearest neighbor questions for each training example. The connection graph between

each training question to its neighbors is then used to obtain 300 questions that cover the majority

of the training data, via the vertex cover algorithm. We manually annotate these 300 examples

with decomposed QA pairs in the same format as our synthetic data (Figure 5.3). For synthetic

examples, since we know the reasoning types, we uniformly sample example demonstration from

each reasoning type.

5.4.1 In-context Learning

Setup We use faiss1 index with the QQP-based sentence embedding [183] for indexing all the

questions. We use GPT-J (6B)2 which is the largest freely available model we could use with

prompts containing 6 in-context examples.

1https://ai.facebook.com/tools/faiss/
2https://github.com/EleutherAI
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Syn-Only DROP-Only Syn+
DROP

Standard 22.7 23.8 24.9
CoT 25.3 26.2 27.6
Succ.(w/o calc.) 27.2 29.3 29.9
Succ.(w/ calc.) 28.8 30.8 31.9

Table 5.2: F1 Performance of in-context prompting on the DROP dev set with and without in-domain
annotations.

Results In Table 5.2, we compare performance of language models without any prompting

(Standard), with chain-of-thought prompting (CoT) and successive prompting. We observe that

successive prompting performs better than CoT by 3.5% when only synthetic data is available, and

4.3% better with synthetic data and 300 annotations from DROP. The best successive prompting

version on the dev set (Synthetic+DROP) has a test set performance of 30.6% F1. We also perform

an ablation where the symbolic calculator is replaced by language model and observe that the

performance drops by 1.5% F1. This further shows that modular approach is better over a single

model that tries to solve all the tasks.

5.4.2 Model Fine-tuning

Setup We employ a shared question decomposition (QD) and answering model (QA) based on

T5-large version of UnifiedQA [74], trained in a multi-task manner. We use the format described

in Appendix A for prompting UnifiedQA. For symbolic questions, we use a simple calculator that

parses the operator and arguments in the generated question and executes the discrete operator on

the detected arguments.

To deter the model from learning incorrect steps, we use contrastive estimation [104]. In particular,

we first train the model for two epochs with cross-entropy loss while generating the output sequence

(simple question or answer). Then we continue training by adding an auxiliary loss term which

increases the likelihood of the intermediate sub-question that would produce a correct sub-answer
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at the cost of one that does not [9]. We sample up to 3 negative samples at each step. We use

HuggingFace transformers3 to train our models, with a learning rate of 5e-5 and maximum input

length of 768.

Due to variance in the types of context tables present in Wikipedia, the synthetic dataset distribution

is not uniform across different reasoning types. To have a balanced representation of questions

pertaining to different reasoning types, we employ dynamic sampling [14], where at the beginning

of each epoch we select 80,000 instances from across all reasoning types in proportion to the drop

in their current performance with respect to previous epoch on held-out synthetic data. For the first

epoch we sample in proportion to original the size of each reasoning type. During inference, we use

beam search with size 5 to generate decompositions, switching between QD and QA stages until

QD reaches end of decomposition (“EOQ”) or maximum number of steps which we set as 10.

Baseline models We compare against a number of different baselines, both symbolic and non-

symbolic. As non-symbolic baselines, we use UnifiedQA [74], which is pre-trained on a number of

existing question answering datasets, and PReasM [95], which is pre-trained on synthetically gener-

ated compositional QA pairs. We also include a baseline with symbolic components, TASE [176].

This model (and others like it [177, 180]) are capable of performing a combination of continuous and

discrete operations, which is essential for DROP. TASE does not require expressing decomposition

in a specific grammar and can work with natural language. We chose this model as it is close to

state of the art on the full DROP dataset and has publicly available code.

Results In Table 5.3, we use the DROP dev set to compare the performance of different symbolic

and non-symbolic models in three settings: (1) using no training data from DROP (0-shot), (2) using

only question-answer supervision from the 300 DROP examples, and (3) using both question-answer

supervision and the decompositions for the 300 DROP examples. In each of these settings, we can

3https://github.com/huggingface/transformers
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0-shot w/o decomp w/ decomp

Non-symbolic
UnifiedQA 24.5 26.7 27.2
+ Synthetic 26.6 30.3 32.6
PReasM 24.9 34.6 37.5
+ Synthetic 30.2 36.2 38.1

Symbolic
TASE - 26.1 27.6
+ Synthetic 27.3 44.1 45.9
Succ. Prompting 49.8 - 51.3

Table 5.3: F1 Performance of various model architectures on DROP dev-set pre-trained on synthetic
data and further fine-tuned with 300 DROP examples.

train the model with or without the synthetic data that we generated.

We observe that our out-of-domain synthetic data universally improves model performance, and the

improvement is most pronounced in TASE, nearing a 20% absolute improvement. Without synthetic

data, PReasM is the best performing baseline, but TASE overtakes PReasM when synthetic data is

available. Additionally, and unsurprisingly, increasing the amount of supervision from 0-shot to

complex QA pairs to decompositions universally improves model performance.

Finally, our method, which is a fine-tuned successive prompting model combined with a symbolic

reasoning engine, achieves the best performance, giving an improvement of 5.4 F1 over the state-of-

the-art model with similar supervision, i.e. TASE+Synthetic w/ decomp.

We follow the standard practice of using test set for only our final best performing model (SP w/

decomp). We observe that our best model with a test set performance of 50.2 F1 is better than the

state-of-the-art model with similar supervision (45.1 F1) by 5.1% F1.

Overall, methods that learn to decompose complex questions into simple QA pairs adapt well to

complex questions in new domain with little (SP w/ decomp: 51.3 F1) to no in-domain supervision

for decomposition (SP 0-shot: 49.8). If we have limited complex QA supervision (without any de-

compositions), un-interpretable symbolic models result in the best performance (TASE + Synthetic
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QA: In-Context QA: Fine-tuning

QD: In-Context 30.8 40.3
QD: Fine-tuning 31.4 51.3

Table 5.4: F1 with QD and QA modules from incontext learning and fine-tuning with only DROP
annotations

w/o decomp: 44.1). This is because of two reasons. First, such models can capture domain specific

answer priors which may result it decent held-out performance [13, 184]. Second, depending on the

context, sometimes it may not be straight-forward to decompose the complex questions into QA

pairs.

5.4.3 In-context vs Fine-Tuning

To understand the gap in performance between successive prompting with in-context learning and

fine-tuning, we perform ablations across in-context and fine-tuned version of QD and QA modules.

We observe that in-context learning is unable to do well on answering simple questions that result in

a list of answers—which is especially important for DROP as symbolic aggregations are generally

applied on a list of answers. On using a fine-tuned QA model we see an improvement of ∼10% in

F1 with an in-context QD model. Moreover, since the final answer performance is dependent on

how well the QA model performs, using a better QD model (fine-tuned) does not help the overall

performance much unless the QA model can handle the decompositions produced by the QD model.

5.4.4 Qualitative Examples

To evaluate the correctness of decomposed QA pairs, we manually analyze a subset of predictions

on the dev set with in-context (DROP-only) learning and model fine tuning (few shot). We do this

by randomly sampling 50 correct predictions to determine how often the incorrect decompositions

result in correct answer. We observe that QD stage has an accuracy of 88% for in-context and 96%
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Example Chain-of-Thought Successive (In-context) Successive (Fine-Tuning)

Who threw the
longest touchdown

pass?

The touchdown passes
are 22-yard and

eight-yard. Out of 22
and eight-yard, the
longest touchdown
pass is 22. Peyton
manning threw the
22-yard touchdown
pass. The answer is

Peyton Manning.
Answer (✓)

• What are all the touchdown
passes? A: 22-yard, eight-
yard

• What is the largest value in:
22-yard, eight-yard? A: 22-
yard

• Who threw the 22-yard touch-
down pass? A: Peyton Man-
ning.

• There are no more questions
left to ask. The final answer is
Peyton Manning. Answer (✓)

• What are all the touchdown
passes? A: 22-yard, eight-
yard

• max(22;eight) A: 22

• Who threw the 22-yard
touchdown pass? A: Pey-
ton Manning. Answer (✓)

How many field
goals did both

teams kick in the
first half?

The field goals in the
game are 20, 24, 53,

30 and 40. The count
becomes 7. Answer

(✗)

• What are the field goals both
teams kicked in the first half?
A: 20, 24 and 53

• How many items are in the list
20, 24 and 53? A: 3

• There are no more questions
left to ask. The final answer is
3. Answer (✓)

• What are all the field goals
in the first half? A: 20; 24;
53

• count(20; 24; 53) A: 3 An-
swer (✓)

How many of the
personnel were not

civil servants?

The personnel are
1,513. Since 1,513 is
less than 3,183. The
answer is not civil

servants. Answer(✗)

• Q: How many of the person-
nel were not civil servants? A:
1,176

• Q: What is the difference be-
tween 100 and 1176? A: 1111

• There are no more questions
left to ask. The final answer is
1111. Answer (✗)

• Q: How many personnel
were there? A: 2,234

• Q: How many of the per-
sonnel were civil servants?
A: 1,176

• Q: diff(2234; 1176) A:
1058 Answer (✓)

Q: Which port did
the Korean

immigrants leave
first Chemulpo or
Veracruz? Passage:

In 1905, Korean
immigrants departed

from the port of
Chemulpo.. After
which they took a

train to Veracruz. In
the Veracruz port,
another boat was

taken to the port of
Progreso.

The Korean
immigrants left
Chemulpo. The

answer is Chemulpo.
Reasoning (✗) Answer

(✓)

• Q: In what year did the Korean
immigrants leave Chemulpo?
A: 1905

• Q: Which port did the Ko-
rean immigrants leave first
Chemulpo or Veracruz? A:
Chemulpo

• Q: If Chemulpo is greater
than Veracruz, answer is
Chemulpo else it is Veracruz
A: Chemulpo. Reasoning (✗)
Answer (✓)

• Q: When did Korean immi-
grants leave Chemulpo? A:
1905

• Q: When did Korean immi-
grants leave Veracruz? A:
1905

• Q: if then(1905 < 1905;
Chemulpo; Veracruz) A:
Veracruz. Answer (✗)

Figure 5.4: Generated decompositions depicting strength and weaknesses of Successive Prompting.
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for fine-tuned model. The incorrect decompositions are mainly because the decomposed question is

identical to the original question. For instance, ”Who made the longest field goal?” can sometimes

be answered correctly without decomposing the question if the passage contains a single field goal

mention.

We also sample 50 incorrect predictions to ascertain the reason for incorrect predictions in both

in-context and fine-tune setup. We observe that the final predictions are incorrect due to three main

categories of errors: incorrect QA model prediction, incorrect next question prediction (QD) and

out-of-scope reasoning type. The QA model outputs incorrect answers to simple question 40%

and 22% of the times for in-context and fine-tuned respectively. The second class of errors, due to

incorrect decomposition, occur 30% of the times for both in-context and fine-tuned. The final class

of errors, due to compositional questions that are not covered by synthetically generated annotations,

occur 28% (in-context) and 46% (fine-tune) of the times.

In Figure 5.4, we show a few examples of correct and incorrect predictions and point out the

strengths and weaknesses of successive prompting. The main strength of successive prompting is

that, by breaking down the question, we are able to get improved supervision for QA. As a result, it

is able to correctly identify the goals kicked in the first half while answering the question “How

many field goals did both teams kick in the first half?”, unlike CoT that returns goals for the entire

game.

One of the limitations of in-context learning, when compared with fine-tuning (irrespective of

the type of prompting), is that examples are chosen based on the question alone, overlooking

the context. For instance, DROP has questions like “How many people were not Germans, in

terms of percentage?” where we first need to answer “How many people were Germans, in terms

of percentage?” and then perform a negation operation (i.e, subtract from 100). The word “not”

influences the example lookup to choose decomposition that involves a negation even when the

question being answered requires a different operation.
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A limitation of successive prompting is that it is sometimes challenging to decompose a question,

especially when it involves implicit reasoning from the passage. For instance, for “Which port

did the Korean immigrants leave first Chemulpo or Veracruz?”, it is difficult to explicitly define a

comparison style decomposition from the sentence, “After which they took a train to Veracruz”.

5.5 Related Work

Prompting methods Prompting was introduced as a way to test the reasoning capabilities of

large language models [42]. In follow-up works [185, 96, 186] prompting techniques have been

used as a mechanism to supervise the model decision with few demonstrations as a conditioning

context to guide its predictions on an unseen example. Works like Chain-of-Thought reasoning [98,

187] especially focus on compositional questions where they provide a chain of reasoning as

demonstrations. In concurrent work, Least-to-Most prompting [188] takes a similar view as ours

to break down the problem into sub-problems. However, in Successive Prompting the question

decomposition and answering stages are interleaved, unlike Least-to-Most where the problem is

first reduced into sub-problem and then executed in a sequence. In our method, the next question

prediction has access to previously answered sub-questions, which is useful in questions that need

long chain referencing. Other contemporaneous works [189, 190] use very large language models

(more than twice the size we used) and show better few-shot generalization. Works like [191] have

shown the importance of having the right in-context examples for downstream performance leading

to works that learn to retrieve relevant in-context examples [192].

Non-symbolic methods Most non-symbolic methods are sequence-to-sequence models trained

on a large amount of question answering data [74, 95].
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Symbolic methods Neural module networks like approaches parse complex questions into a pre-

specified grammar and learn neural components to handle symbolic mathematical operations [178,

179, 172] which are recursively executed. State-of-the-art models on DROP, however, use a

combination of BERT-based contextual models along with a calculator that performs discrete

operations [180, 176, 193]. Works like Text Modular networks [174] and MRKL [173] are closest to

our work. However, they are limited in the terms of types of simple questions they can answer (single-

span only) and the complexity of reasoning they can do (single-order only). TMNs, additionally, use

a classifier that scores the generated chains module and filters out incorrect question decompositions,

while we use contrastive estimation to learn a better question decomposer and as a result do not

need a chain scorer.

5.6 Conclusion

We present a way to successively decompose complex questions into simple QA pairs, which allows

for modular QD and QA systems that can be trained and queried independently. When performing

in-context learning, we showed that successive prompting yields an improvement of 4.6 F1 over

chain-of-thought prompting. When replacing just the in-context QA module with a fine-tuned one,

which is adept at handling list type questions, we further improve the overall performance by 9.5 F1.

We believe that modular systems that decompose and delegate tasks to the most appropriate model,

whether that is a large LM or a tailored component, are more effective at solving complex tasks

than trying to have a large LM solve the entire task on its own. Successive prompting shows one

way this decomposition and delegation can be done.
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Part III

Generalizability: Challenges and

Interventions
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Chapter 6

Effectiveness of data augmentation for

generalization

A mathematician who can only generalize

is like a monkey who can only climb up a

tree, and a mathematician who can only

specialize is like a monkey who can only

climb down a tree. In fact, neither the up

monkey nor the down monkey is a viable

creature.

George Pólya

(Father of Problem Solving)

Recent advances in open-domain question answering (ODQA) have demonstrated impressive

accuracy on general-purpose domains like Wikipedia. While some work has been investigating how

well ODQA models perform when tested for out-of-domain (OOD) generalization, these studies

have been conducted only under conservative shifts in data distribution and typically focus on a
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single component (i.e., retriever or reader) rather than an end-to-end system. This work proposes a

more realistic end-to-end domain shift evaluation setting covering five diverse domains. We not

only find that end-to-end models fail to generalize but that high retrieval scores often still yield poor

answer prediction accuracy. To address these failures, we investigate several interventions, in the

form of data augmentations, for improving model adaption. Furthermore, we leverage our evaluation

set to establish a perspicuous relationship between the effectiveness of different intervention schemes

and the specific types of dataset shifts considered. We propose a generalizability test that estimates

the type of shift in a target dataset without training a model in the target domain and that the type

of shift is predictive of which data augmentation schemes will be effective for domain adaption.

Overall, our study emphasizes the importance of both generalization and specialization in ODQA

and with the help of these interventions, we observe an increase in end-to-end performance by up to

∼24 points.

6.1 Introduction

General-purpose open-domain question answering (ODQA; [194, 195, 196]) is an important task

that automates reading and understanding a large corpus of documents to answer a given question

succinctly. It is especially crucial in fields such as biomedicine, legal, news, etc., where more

documents are added daily, outpacing the speed at which a user can process the information.

Current state-of-the-art ODQA systems perform a two-stage pipeline process [196]: 1) Given a

question and document corpus, a retriever [150, 197, 33] selects relevant passages and 2) a question

answering model, also known as a reader [198] answers the given question based on the retrieved

passages. This decoupling allows for independent advances in domain adaptation of general-purpose

retrievers [199] and question-answering [200] models.

To enable practical application, an ODQA system should assist humans in keeping up with new
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Average F1 over all target datasets

Average F1 over target datasets with specific shifts

Figure 6.1: Effect of interventions on dataset shifts. Top: Average end-to-end performance of
source domain model is quite poor when applied to OOD datasets. Source model (trained on general-
purpose domain) performance improves when adapted to unseen target domain with interventions.
Bottom: Drill-down of performance into zero and few-shot data augmentations averaged over target
datasets exhibiting these shifts shows covariate and concept shifts respond to zero and few-shot data
augmentations. Target datasets with No shift do not improve much with any intervention while full
shift benefits most from Few-shot.

knowledge without requiring annotations for every new domain or concept. For this, the system

should be resilient to changes in the document, question, and answer distributions. Unfortunately,

the current work in ODQA focus solely on Wikipedia corpus and do not study effectiveness of a

model trained on such a general-purpose domain when applied to an unseen domain. To gauge

how likely it is for a source domain model to succeed on an unseen domain we need to understand

its ability to work out-of-the-box or even adapt to a new target domain, under varying types and

degrees of dataset shifts. [38].
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In this work, we study the challenges and interventions for generalizing ODQA models to new

domains via four contributions. First, to understand how well state-of-the-art ODQA system (trained

on general-purpose domain) performs on a variety of target distributions, we define a collection

of datasets for evaluating domain generalization. We aggregate a set of seven ODQA datasets

spanning five different domains (§6.2). We observe that source ODQA model does not generalize

well (Figure6.1, Top) on this collection (§6.4). Second, to automatically determine the type of data

shift with only a small number of labeled target domain examples we propose a generalizability test.

This test assesses the type and degree of shift, a new domain suffers with respect to source domain

(§6.3). Third, to understand the adaptability of the source model to a target domain, we analyze

the performance of various intervention schemes, including existing zero-shot in-domain question

generation and a novel few-shot language model-aided generation. These schemes create data akin

to target domain which is augmented with source domain to learn an adapted version of the source

model. Overall, we observe improvement in performance across all the target datasets (Figure 6.1).

The degree of improvement depends on the intervention scheme and underlying dataset shift (§6.5).

Finally, we propose a simple and effective few-shot method which improves the performance by up

to 24% in F1. This method prompts a large language model with 8 examples to generate examples

for further adaptation.

Putting it altogether, we use the generalizability test to guage the type and degree of dataset shift

in a target dataset. Then, we empirically show that certain types of dataset shifts respond well to

specific intervention schemes (§6.5, Figure 6.1). This helps ascertain whether we can adapt a source

model to unseen domain with minimal supervision.

6.2 Background and Evaluation Setup

An ODQA model learns interactions among three random variables: Question (Q), answer (A) and

context (C). For a given q ∈ Q, first the retriever R returns a set of passages, Cq = R(q,C). These
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passages are then sent to a reader modelM to obtain the final answer, â←M(a|q,Cq).

Following prior work, we evaluate retriever performance with the Acc@k metric, which computes if

the oracle answer is found in the top-k retrieved passages1. We set k=100 in all of our experiments.

For reader performance, we compute token-level F1 between the oracle and predicted answer.

6.2.1 Datasets

We test the generalization capabilities of a model trained on a source domain when applied to seven

datasets in five very different target domains.

Source Domain: For source domain we use documents from English Wikipedia and QA pairs for

supervision from NaturalQuestions (NQ) [148] and BoolQ [77]. We treat this domain as our source

as it is used for the vast majority of current work in ODQA (and many other areas of language

research). In addition to the supervised training data from NQ and BoolQ, we also consider

cloze-style questions derived from the QA pairs in NQ. For each QA pair, we retrieve a sentence

from Wikipedia with the highest BM25 similarity score. We convert the retrieved sentence into a

cloze-style question by replacing the answer string in the sentence with sentinel markers [33]2.

Target Domains: For our target corpora, we re-purpose seven open-domain QA and/or reading

comprehension datasets spanning five different domains (Stack Overflow, Reddit, Pubmed, Japanese

Statute Law codes, CNN/DailyMail, and Wikipedia). The datasets Quasar-S [201], Quasar-T [201],

SearchQA [146] and BioASQ [202] were introduced as ODQA datasets over Stackoverflow, Reddit,

Wikipedia, and Pubmed corpus respectively. Additionally, we re-purpose reading comprehension

datasets, NewsQA [203] and CliCR [204] as ODQA datasets, by retrieving a set of passages for

1The only exception is COLIEE dataset which primarily contains boolean (yes/no) answers so we instead use oracle
passage to compute Acc@100.

2We use cloze augmentation for training reader models because some target datasets contain cloze-style questions,
keeping the question distribution consistent across different experimental setups. We do not perform this augmentation
for retrievers because we observed a performance drop in initial experiments.
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each QA pair from Pubmed and CNN/Dailymail corpus. For COLIEE [205], we convert the original

entailment questions into boolean questions and retrieve passages from legal code statutes provided

with the task. We confirm that these reading comprehension datasets can be reasonably re-purposed

for our ODQA setup by achieving a reasonable end-to-end performance of ODQA models trained

on gold target domain QA pairs with BM25 retrievals from the target corpus (UB-Ret, Figure 6.3).

6.2.2 Models

We compare four retrievers: (1) BM25 [206] (sparse and unsupervised), (2) Contriever, semi-

supervised with MS-MARCO [197], (3) Dense Passage Retriever (DPR) [150], and (4) the

state-of-the-art source domain model Spider [207]. DPR and Spider are dense and supervised.

As for reader, we use the state-of-art fusion-in-decoder (FiD) model [198] that uses the top 100

documents to generate the final answer.

6.3 Generalizability Test

There are many aspects that determine in what ways and to what extent one data distribution differs

from another. It is often challenging to quantify the degree of generalizability or diverseness for a

new domain without collecting enough samples to train a model in the new domain. To address

this issue, we propose a method to assess the type and degree of diversity by utilizing only a few

examples from the target domain as an evaluation set.
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Figure 6.2: Generalizability Test: At the first level, we decide whether the input distribution is
closer to the uniform distribution or gold. At the second level, the gradual increase from left to
right in the leaf nodes depicts decrease in distance of output distribution from uniform. The target
datasets at the bottom are placed based on distances in Table 6.1. The nodes represent if the source
model ps(a|q, c) is compatible or not with the target dataset pt(a|q, c)

6.3.1 Types of dataset shift

Different types of dataset shifts [38] have been proposed in the literature but they are often studied

in a classification setup. For our application, we consider concept and covariate shifts which are

more amenable to our pipelined ODQA setup — with input as a joint distribution over question and

contexts and output as a distribution over answers given question and contexts as input.

No shift occurs when the input and output distributions match across the source and target

domains.

Concept shift [208] occurs when the input distribution of the source and target domains match,

i.e., ps(x) = pt(x) while the output distribution between source and target domain does not match,

ps(y|x) , pt(y|x).

Covariate shift [209] occurs when the source and target input distributions do not match, i.e.

ps(x) , pt(x) while the output distributions match ps(y|x) = pt(y|x).
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Full shift occurs when both the source and target input and output distributions do not match.

6.3.2 Calculating shift for ODQA

We characterize the shift in ODQA as a two-step process. First, we compute the input distribution,

i.e, the joint question and context distribution using un-normalized (energy) scores from a dense

retriever [150] that quantifies the compatibility between a given question and a context via R(q, c).

Then, we normalize the scores from the retriever over a set of contexts. Ideally, the set of contexts

should be the entire target domain document corpus, however, that can be prohibitively compu-

tationally expensive and also results in a high entropy distribution. Instead, we use a subset of

contexts, C, from the entire corpus C. We ignore the prior over questions since it remains constant

when calculating the context distribution for a specific question. Instead, we approximate the joint

with conditional distribution over contexts given question.

p(q, c) ∝
R(q, c)∑

ck∈C

R(q, ck)
(6.1)

In the second step, we test whether the output distributions match by computing the likelihood of

generating the oracle answer given a question, q, and the relevant contexts, Cq. In an ideal scenario,

we can do this by performing global normalization [115] over all possible answer spans in the

corpus which is intractable. Instead, we use a sub-sample of answers, A, to compute the output

distribution as shown below.

p(a|q,Cq) =
∏

tM(at|a<t, q,Cq)∑
ak∈A

∏
tM(at

k|a
<t
k , q,Cq)

(6.2)

113



Dataset Retriever Reader Shift
(wt

u − wg
u) (vr

u − vt
u)

BioASQ 0.30 0.17 Concept
CliCR -0.88 0.23 Full
Quasar-S -0.66 0.07 Covariate
Quasar-T 0.20 0.16 Concept
NewsQA -0.19 0.18 Full
SearchQA 0.61 0.00 No

Table 6.1: Wasserstein distance computed over 100 labeled examples from the target set. The
negative retriever value implies that the target dataset falls on the right side of decision tree at first
level (Figure 6.2).

6.3.3 Predicting type of dataset shift

To compute the type of shift (§6.3.1), we need a model trained on the target domain (pt) which

requires a large number of examples. However, our goal is to determine if a source model can

be adapted to the target dataset with only a few examples for target evaluation. To do this, we

conceptualize adapting or fine-tuning a pre-trained source model as a Bayesian framework. In this

framework, the source model acts as a prior which when exposed to interventional data (for adapting)

and target data (for fine-tuning), results in an adapted or fine-tuned posterior distribution. If the

prior (source model) contains an informative signal with respect to the target dataset then we do not

require much supervision to learn an effective posterior. However, if the prior is non-informative we

need a lot of supervision to learn the posterior.

Towards this end, we devise a generalizability test, where we use a small set of evaluation examples

sampled from each target dataset to compute input and output distribution using the source domain

model. Then, we compare these distribution with the a non-informative prior like uniform distri-

bution and informative prior like the oracle distribution to gauge if the source model is closer to

uniform or oracle distribution. This helps us assess the effectiveness of the source model towards

the target dataset without having to train a model in the target domain.
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Input/Retriever Distribution: To determine if the input distribution contains informative signal

with respect to target evaluation set, we need to compute the distance of the input distribution from

uniform and oracle distribution. To do this, we follow Eq. 6.1 and compute the input distribution,

with passages from across examples in the entire target evaluation set as the subset for normalizer

computation. Then, for a each question, we compute the Wasserstein distance, wt
u, [210] between

the input distribution and the uniform distribution and average these values over all the examples

in the target evaluation set. Similarly, we also compute the distance between the gold or oracle

distribution and the input distribution as wt
g. If wt

u > wg
u, we conclude that the target distribution

is far from the uniform distribution and closer to the gold distribution, indicating that the source

model is compatible with the target distribution (Figure 6.2).

Output/Reader Distribution: In similar vein as input distribution, we need to compare the output

distribution with corresponding uniform and oracle distribution over answers. To do this, we follow

Eq. 6.2 and compute the output distribution, with set of answer spans from across all the examples

in the target evaluation set for normalizer computation. Then, we compute the Wasserstein distance

between the uniform and output distribution averaged over the target evaluation set as vt
u.

In an ideal scenario, we would compare the distance between and oracle and output distribution

with vt
u, similar to input distribution. However, empirically we find that output distribution is

always closer to uniform than oracle, even when evaluated with source distribution. We believe

this is because of two reasons. First, the conditional answer generation model (M) is not trained

with a contrastive loss like the retriever, resulting in a high entropy answer likelihood distribution.

Second, the support set of answers used for normalization contains only grammatically correct

answer spans making the likelihood scores attenuated. To address these issues, we use a reference

answer conditional distribution to de-bias the likelihood scores with a threshold. To obtain this

threshold, we consider the source distribution as a reference and compute the distance between

output distribution evaluated on examples from source evaluation set and the uniform distribution
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as vr
u. Since the reference based output distribution is in-domain, it should be far from the uniform

distribution and closer to oracle distribution. As a result, if vr
u − vt

u is close to 0, we assess that the

target is far from uniform and that source model is compatible with the target dataset.

In Figure 6.2, we put this altogether as a decision tree to identify the type of dataset shift. We

observe that SearchQA falls under the No shift category as it is close to the source domain, hence, we

conjecture that it will observe minimal improvements under most data intervention schemes as the

source model already captures the target distribution (§6.5). We also conjecture that datasets falling

under Concept shift and Covariate shift are more amenable to zero-shot data interventions, while,

Full shift would benefit more from few-shot or in-domain annotations from the target domain. We

consider few shot augmentations as a proxy for annotating examples in the target domain because

they are generated with supervision from target dataset.

6.4 How Well do Models Generalize?

We test the OOD performance of the source model on target datasets and analyze the failures.

6.4.1 Reader Generalization

In Figure 6.3, we test the end-to-end performance of three model variants:

Source: a reader trained with source dataset and contexts retrieved by BM25, demonstrating

zero-shot generalization performance.

Upperbound-Reader (UB-READ): a reader trained on the target dataset with contexts retrieved by

BM25 – the overall strongest retriever.

Upperbound-Retriever (UB-RET): a reader trained on the target dataset with gold contexts to
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approximate upper-bound performance.

We observe large performance drops when evaluating the source model on target domains (Fig-

ure 6.3), especially when the target corpus differs from Wikipedia, such as in Quasar-S (Stack

Overflow) and CliCR (PubMed), even though the model requires similar reading capabilities to

those needed in the source domain. Interestingly, even though BM25 retriever accuracy is relatively

high on the target datasets (Figure 6.4, ∼83% Acc@100 on Quasar-S), that accuracy does not

translate to strong reader performance (Figure 6.3, ∼11% F1 on Quasar-S).

To understand this performance gap, we manually sample 50 predictions from each target dataset

where retrieved passages contain the oracle answer but the reader produced an incorrect prediction.

We observe that in ∼65% cases, the Acc@100 metric yields a false positive, where the passage

contains an exact string match of the correct answer, but the context does not actually answer

the given question. In other cases, the reader is unable to understand the context. For exam-

ple, for the question: What is the name of the office used by the president in

the white house? and answer: oval, the retrieved passage: A tunnel was dug into the

White House connecting the Oval Office to a location in the East Wing....

is credited (incorrectly) as context answering the question.

6.4.2 Retriever Generalization

We compare the zero-shot generalization of four retrieval models in Figure 6.4. Spider, which

is the best performing model on the source domain, exhibits improvement on SearchQA (∼1%)

(which is similar to source distribution), but shows large drops in performance when applied to the

target datasets: ∼40% on NewsQA, ∼28% on Quasar-T and, Quasar-S. To understand the drop,

we manually analyze 50 random incorrect predictions from Spider. We observe two major failure

modes. First, we find that dense models are sensitive to changes in the length of contexts. When

exposed to documents with heterogeneous lengths, models tend to over-retrieve shorter contexts. To
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Figure 6.3: Reader performance on the target set without any interventions. SearchQA, Quasar-S
and Quasar-T do not have gold passage annotations and so UB-READ does not improve over
UB-RET. The majority voting baseline on COLIEE is 50.95.

quantify the sensitivity to changes in lengths on source domains itself, we pool passages from all

target corpus into a combined index. We observe that the performance of Spider when exposed to

this combined index reduces by ∼15% and restricting the minimum length of contexts to 50 words

alleviates the problem and recovers the original performance. The second common failure mode

occurs due to changes in distribution of entity types from source to target. For example, words

like plant in Which is produced in plants of narora kakrapar tarapur refers to

power plant in Wikipedia, while in case of PubMed it often refers to living organic matter [211].

Overall, BM25, being an unsupervised method, has the best performance across all domains.

6.5 Interventions for Improving Adaptation

Domain Adaptation is shown to be a causal intervention [212] mechanism to effectively understand

impact of an augmentation technique without much concern about spurious correlations.
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Figure 6.4: Retriever performance (Acc@100) without any interventions on target domain corpus

6.5.1 Zero-shot adaptation methods

We perform a set of zero-shot data intervention methods, where we consider the effect of change in

distribution of each random variable: Question, answer and context one at a time, while keeping the

other two fixed.

Varying context distribution To test the effect of change in context distribution, we pool passages

from all corpora into a combined index. We observe that supervised models like Spider are sensitive

to out-of-domain distractors, unlike BM25, especially when the target dataset uses same corpus as

source (Wikipedia). For example, SearchQA suffers a performance drop of ∼15%. On average we

see a performance improvement of ∼2% (w/o COLIEE) when the target index is changed to the

combined index. BM25 still out-performs Spider on average by 19.1% with the combined index.

However, we observe a drop in performance of the FiD reader of up to ∼5% in F1 for NewsQA

with the combined index. More details are in the appendix (Figure 6.5 and 6.6.)
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Augmentations Retriever Reader

Random 45.35 33.50
Uniform 50.02 39.07
Most frequent 39.33 38.18
BioASQ train answers 47.48 41.33

Table 6.2: Answer distribution: Retriever (DPR) and Reader (FiD with BM25 retrievals) F1 on
BioASQ.

Varying answer distribution Many works [139, 13, 2] have shown that bias in the answer prior

distribution can introduce spurious correlations in model learning. This effectively improves the

model performance at the cost pf OOD generation. To test whether we can improve the performance

of adapted source model by varying the answer distribution, we experiment with a variety of answer

distributions over plausible set of answer spans. To obtain the set of answer spans, we extract and

annotate coarse-grained entity types from the target corpus using spaCy3. We use this coarse-grained

entity type information as a set of classes from which to choose 50k entities with four different

sampling strategies: Most frequent, uniform, randomly sampled based on entity type categories,

and sampling in proportion to entity type distribution of answers in the target training set.

The source model has reasonable end-to-end performance on BioASQ, even with passages from the

source corpus (Wikipedia), suggesting that it contains sufficient information for answering many

BioASQ questions. Consequently, we select BioASQ for these controlled experiments (Appendix

Figure 6.6). This allows us to use the Wikipedia corpus alone for retrieval, which makes it easier

to fix the passage distribution. In Table 6.2, we show that uniform sampling boosts retriever

performance compared to random sampling, allowing the model to learn from all types of answers

and generalize better to unseen answer distributions. On the other hand, the best reader model

performance is when we know the correct answer distribution of the target dataset up front, showing

that the answer priors influence reader performance. However, in a zero-shot setup, we do not have

access to this distribution, so we adopt the second-best technique, uniform sampling from across

the entity type categories, in the following experiments.

3https://spacy.io/
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Dataset Retriever Reader

Source ClozeQA QGen Source ClozeQA QGen

BioASQ 50.41 48.0 45.4 45.3 49.4 46.4
CliCR 23.8 24.9 23.9 6.12 7.34 10.5
Quasar-S 50.3 66.8 68.2 10.2 21.7 17.4
Quasar-T 54.7 53.9 55.5 34.9 41.9 44.7
NewsQA 12.5 18.7 15.2 18.5 21.2 12.7
SearchQA 63.0 52.9 54.7 34.6 38.8 37.2
COLIEE 61.4 60.5 57.8 46.7 54.1 62.3

Table 6.3: Zero-shot: Comparing retriever (DPR) and reader (FiD with BM25 retrievals) perfor-
mance on two types of question formats for augmentation.

Varying question distribution We vary the question distribution by augmenting the source

domain with QA pairs generated using two different methods. Our first approach (QGen) uses

a question generation model [213] trained on the source domain to generate a question given a

passage and an answer. This question generation model is applied to a new target passage and a

plausible answer span from the passage [214, 215, 216, 217]. The second approach (Cloze QA),

which has been less explored previously, converts a sentence in the target corpus to a fill-in-the-blank

style cloze question [72] by masking a plausible answer span (entity mention) in the sentence. We

sample answer spans uniformly based on an entity type distribution from the target corpus and then

query our combined index to create a dataset containing cloze style questions aligned with relevant

documents. We use these same sampled answers to generate standard QGen QA pairs as well. We

combine these data interventions with our initial source domain data to train a DPR retriever and a

FiD reader (Table 6.3). We observe similar average performance across both intervention types in

retriever and reader models. However, cloze QA pairs are computationally much more efficient to

generate as they do not require additional question generation models.

Discussion on generalizability test In §6.3, we hypothesized that datasets with less severe shift

(Quasar-S, Quasar-T, and BioASQ) would show more performance improvements with zero-shot

adaptation as compared to datasets with severe shift (CliCR and NewsQA). Indeed, we observe an

avg. improvement of about 8.5% F1 on datasets having Concept and Covariate shift while only
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3.5% F1 on datasets with Full shift in Table 6.3. Moreover, in Figure 6.1, we see that target datasets

with No shift, do not show much improvement with any intervention as the source model already

captures the distribution. Datasets with Full shift need few-shot examples for better adaptation

while datasets with Concept and Covariate shift are able to adapt with zero-shot data interventions.

6.5.2 Few-shot Generalizability and Adapatability

Zero-shot adaptation does not work well when the target distribution is far from the source. For

these cases, we experiment with few-shot adaptation.

Few-shot data generation Zero-shot interventions like QGen are trained on the source and do

not produce generations that are fully compatible with the target domain and thereby do not provide

much useful signal. An alternative approach would be to train a question generation model with

a few examples from the target domain. However, it is difficult to adapt or fine-tune a question

generation and answering model (for validating QA pair correctness) with very few examples.

Dataset Retriever Reader Closed
Book

Baseline DataGen Baseline DataGen (F1)

BioASQ 50.4 51.3 45.3 50.6 32.0
CliCR 23.8 29.0 6.12 19.4 10.8
Quasar-S 50.3 71.9 10.2 34.2 23.7
Quasar-T 54.7 55.4 34.9 45.8 55.3
NewsQA 12.5 22.7 18.5 23.3 8.67
SearchQA 63.0 63.3 34.6 37.6 61.5
COLIEE 73.3 82.2 46.8 61.1 53.0

Table 6.4: Both Closed Book and DataGen use eight few-shot examples from the target domain.
Closed Book LLM contains 540B params while the Retriever and Reader contain 110M and 770M
params respectively. Closed-book performance for NQ is 36.71.

To capture target distribution without a lot of supervision, we propose a few-shot technique (Data-

Gen) that prompts a large language model (LLM; [96]) to generate a sentence given a passage.

122



We use eight seed examples from the target domain to generate additional training data to help

bootstrap adaptation in the target domain. We observe that it is easier for large language models to

condition on a single variable (context) and compress [218] multiple facts from the passage into

a single sentence, as compared to conditioning on a context and answer span together. Moreover,

in §6.5.1 we observed that augmentation with cloze-style QA pairs yields similar performance to

using question-formatted QA pairs, offering evidence that the precise format is not as important as

the content itself.

We prompt the model in the following format: After reading the article, <<context>>

the doctor said <<sentence>> for PubMed articles. For other target corpora we replace

doctor with engineer, journalist, and poster for Stack Overflow, DailyMail, and Reddit

respectively. To filter out invalid sentences, we remove any generation that: 1) includes a number,

2) does not repeat part of the passage verbatim, and 3) has less than 75% word set overlap with

the passage (after removing stopwords). To gauge the precision of our generations, we sampled

20 generated sentences for each dataset and found that they are correct more than 70% of the

time. To test retriever performance, we train a DPR model with source domain data and ∼8k

examples containing pairs of original passage and generated sentence for each target dataset. We

observe performance improvements of ∼18% on NewsQA, ∼13% on CliCR, and ∼24% on Quasar-S

(Table 6.4). Moreover, LLMs contain substantial factual knowledge in their parameters and we

observe that they do particularly well in a closed-book setting on datasets with trivia-based factual

questions, like SearchQA and Quasar-T, but do not perform well in other cases. Following our

conjecture in §6.3, datasets with Full shift on average show an improvement of 12.1% with few-shot

interventions, compared to 3.5% with zero-shot, which is also evident in Figure 6.1. We show

qualitative examples in Appendix (Figure 6.7).
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6.6 Related Work

Domain generalization in readers The most popular work in generalization in reading compre-

hension was introduced as part of the MRQA [200] challenge, which focuses on transfer learning

from multiple source datasets to unseen target datasets. This multi-task learning setup requires the

model to perform complex reasoning at test time that may be unseen at training. However, in this

work, we focus on generalization capabilities of an end-to-end ODQA setup that is able understand

passages in the new domain, and not the abilities to perform unseen reasoning.

Domain generalization in retrievers A recent line of work that tests domain generalization

of retrievers [219, 207, 196] focuses on conservative changes to source domain, for instance

testing generalization of model trained on Natural Questions applied to WebQuestions [220] or

TriviaQA [147], all of which use the same Wikipedia corpus. BEIR is a recent retrieval benchmark,

[199] tests generalizability of only the retriever in isolation and not end-to-end ODQA performance

which is a brittle metric.

Domain adaptation work in retrievers [221] generate passages using few shots but do not require

the answer to be correct. [222] performs a zero-shot adaptation using noisy labels for retrievers.

[223] utilizes examples from target domain in a transfer learning setup while we work in a zero to

few shot setting.

Domain generalization in other tasks Incidental supervision signals in [224] determine which

dataset has a useful signal for a target classification task. Similar to [200], in machine translation

various works [225, 226] learn to balance positive and negative feature transfer from multiple source

domains to a target domain.
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6.7 Appendix

We used JAX on TPUs for training reader models and PyTorch on GPU for training retriever models.

We used open-source github implementations for DPR 4, Contriever 5 and Spider 6. For retrieving

top-100 passages for reader input, we used ScaNN7 library. We use T5-base model for reader and

BERT-base for retriever. We fine-tune the retriever and reader with learning rate 1e-5 and 5e-5

respectively.

6.7.1 How are evaluation sets curated?

We consider validation sets from each of the target dataset, BioASQ, CliCR, Quasar-S, Quasar-T,

NewsQA, SearchQA, COLIEE as part of our evaluation set. SearchQA, Quasar-S and Quasar-T

were already published as ODQA datasets so we used them as it is while we had re-purpose some

of the other datasets that were not originally ODQA dataset by processing them as described below.

COLIEE: The COLIEE Shared Task 48 provides a list of Japanese legal codes in English language.

To convert these legal codes from a flat list into paragraphs, first we split them into specific article

sections with regex string ”Article [0-9]+ ”. We further split each article into passages containing a

maximum of 256 words.

NewsQA: We created an index on CNN/Dailymail documents by splitting them into passages of

256 words and pooled them together to create a corpus.

4https://github.com/facebookresearch/DPR.git
5https://github.com/facebookresearch/contriever.git
6https://github.com/oriram/spider
7https://ai.googleblog.com/2020/07/announcing-scann-efficient-vector.html
8https://sites.ualberta.ca/ rabelo/COLIEE2022/
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CliCR and BioASQ: We used PubMed corpus published as part of BEIR [199] benchmark. We

split the pubmed abstracts in this corpus into passages of size 256 words.

6.7.2 Varying context distribution

As described in §6.5.1, we test retriever (Figure 6.5) and reader performance (Figure 6.6) when

exposed to different set of passage. Figure 6.6 shows reader performance with passages retrieved

with BM25 on source (i.e. wikipedia), target (i.e. respective target corpus) and combined (i.e. all

corpora pooled together). Figure 6.5 compared performance of Spider and BM25 with Target (i.e.

dataset specific target corpus) and Comb (i.e. all corpora pooled together)
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Figure 6.5: Retriever Performance (Acc@100): Varying context distribution by creating a combined
document index. For COLIEE, we use oracle passages for performance computation.
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Figure 6.6: Reader Performance (F1): Effect of change in context distribution with BM25 retrievals
from the combined index.

6.7.3 Varying answer distribution and pre-training corpus

Following §6.5.1 we try to understand the impact of pre-training and fine-tuning corpus on answer

distribution. We do this by comparing the performance of the FiD reader initialized from T5

pre-trained on common-crawl dataset(C4) compared to one that was pre-trained on PubMed articles

(Table 6.5). After pre-training, both models are then fine-tuned on our source domain data. In this

case, we observe that fine-tuning on a domain that differs from that used in pre-training results in

deterioration of model performance.

Augmentations C4 Pubmed

Random 33.50 33.51
Uniform 39.07 35.97
Most frequent 38.18 34.90
BioASQ train answers 41.33 36.71

Table 6.5: Answer distribution: Reader performance on BioASQ with C4 and Pubmed pre-trained
T5
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6.7.4 Degree of domain shift

In Table 6.1, we showed only differences that governed which side of decision tree the shift types

were categorized into, while here we show all the raw distance values.

Dataset Retriever Reader

wt
u wt

g vt
u vr

u − vt
u

BioASQ 0.6477 0.3450 0.1160 0.1765
CliCR 0.0602 0.9448 0.0573 0.2352
Quasar-S 0.1658 0.8355 0.2158 0.0767
Quasar-T 0.5978 0.3962 0.1231 0.1694
NewsQA 0.3992 0.5959 0.1125 0.1800
SearchQA 0.80350 0.1870 0.2988 -0.0063

Table 6.6: Wasserstein distance computed over 100 target domain examples. The distance between
reference (source) and uniform over 100 validation set source domain examples is vr

u=0.2925

6.7.5 Statistical Significance

The number of examples in all datasets except COLIEE are in the order of thousands, making the

performance improvements significant. In the case of COLIEE, which has a boolean output space

(i.e. answers are yes/no), we performed a binomial test to test the significance of few-shot reader

performance in Table 6.4. The number of samples n = 116 (number of test examples), p0=0.468 and

pt=0.616. We will reject the null hypothesis that baseline and few-shot distribution are equivalent,

when P(X >= pt ∗ n) <= 0.05, where X is drawn from a binomial distribution, i.e., X ∼ B(n, p0)

[227] and we can compute the L.H.S to be, P(X >= 0.616 ∗ 116) = 0.00006 making it significant.

6.7.6 Qualitative examples generated by the few-shot method
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Dataset,
Corpus

Passage Generated Sen-
tence

BioASQ,
Pubmed

Herceptin is widely used in treating Her2-overexpressing breast can-
cer. However, the application of Herceptin in prostate cancer is still
controversial.... This implies that targeting Her2 by both radio- and
immunotherapy might be a potential strategy for treating patients
with androgen-independent prostate cancer...

Herceptin is a
breast cancer drug
that has been
used in treating
prostate cancer.

CliCR,
Pubmed

An infant was admitted with symptoms of diarrhoea and vomiting.
After initial improvement she unexpectedly died. Postmortem con-
firmed a diagnosis of cytomegalovirus (CMV) enterocolitis. The
authors report this case and review other published cases of im-
munocompetent infants who presented with this infection. Clinicians
should consider stool CMV PCR test or referral for endoscopy and
biopsy in young babies who present with profuse and prolonged
episodes of diarrhoea.

Immunocompetent
infants can present
with CMV entero-
colitis.

Quasar-
S,
Stack-
over-
flow

I’ve recently found scala-bindgen from a Gitter room on Scala Native.
Seems like at the present point in time they are developing a tool
for generating Scala bindings for C header-files. Are there plans for
generating Scala bindings for Objective-C and C++ too...

scala-bindgen is a
tool that generates
scala bindings for
C header files.

Quasar-
T,
Reddit

Interview With Gary James’ Interview With Marshall Lytle of Bill
Haley’s Comets It can be safely said that “Rock Around The Clock”
was the song by the group Bill Haley And His Comets that started
the Rock ’n Roll movement. Still performing today, he spoke about
those early days of Rock ’n Roll and his appreciation for what it
meant to him.

Bill Haley and his
comets made rock
and roll music

NewsQA,
CNN/
Daily-
mail

The Kardashians are already a staple on E! Network . But they’ve
chosen the month of November to assert their dominance on the
book world. Kourtney, Kim, and Khloe’s first novel,” Dollhouse ,”
hits shelves today . “Dollhouse,” the first fiction endeavor from the
Kardashians, follows sisters Kamille, Kassidy, ...

The Kardashians
released a new
book called ’Doll-
house’.

SearchQA,
Wikipedia

Charles Henry Dow was an American journalist who co-founded
Dow Jones and Company with Edward Jones and Charles
Bergstresser. Dow also founded The Wall Street Journal, which
has become one of the most respected financial publications in the
world... In 1877, he published a History of Steam Navigation be-
tween New York and...

Charles Henry
Dow, an Amer-
ican journalist,
founded The Wall
Street Journal in
1882.

Figure 6.7: Examples of data generated from few-shot prompting.
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Chapter 7

ORB: Open-Reading Benchmark

”In God we trust, all others must bring

data.”

W. Edwards Deming

(father of the quality management)

Reading comprehension is one of the crucial tasks for furthering research in natural language

understanding. A lot of diverse reading comprehension datasets have been introduced to study

various phenomena in natural language, ranging from simple paraphrase matching and entity typing

to entity tracking and understanding the implications of the context. Given the availability of many

such datasets, comprehensive and reliable evaluation is tedious and time-consuming for researchers

working on this problem. We present an evaluation server, ORB, that reports performance on

seven diverse reading comprehension datasets, encouraging and facilitating testing a single model’s

capability in understanding a wide variety of reading phenomena. The evaluation server places no

restrictions on how models are trained, so it is a suitable test bed for exploring training paradigms

and representation learning for general reading facility. We also collect and include synthetic

augmentations for these datasets, testing how well models can handle out-of-domain questions.
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7.1 Introduction

Research in reading comprehension, the task of answering questions about a given passage of text,

has seen a huge surge of interest in recent years, with many large datasets introduced targeting

various aspects of reading [76, 17, 116, 228]. However, as the number of datasets increases,

evaluation on all of them becomes challenging, encouraging researchers to overfit to the biases of a

single dataset. Recent research, including MultiQA [229] and the MRQA workshop shared task,

aim to facilitate training and evaluating on several reading comprehension datasets at the same time.

To further aid in this direction, we present an evaluation server that can test a single model across

many different datasets, including on their hidden test sets in some cases. We focus on datasets

where the core problem is natural language understanding, not information retrieval; models are

given a single passage of text and a single question and are required to produce an answer.

As our goal is to provide a broad suite of questions that test a single model’s reading ability, we

additionally provide synthetic augmentations to some of the datasets in our evaluation server. Several

recent papers have proposed question transformations that result in out-of-distribution test examples,

helping to judge the generalization capability of reading models [230, 231, 232]. We collect the best

of these, add some of our own, and keep those that generate reasonable and challenging questions.

We believe this strategy of evaluating on many datasets, including distribution-shifted synthetic

examples, will lead the field towards more robust and comprehensive reading comprehension

models.

Code for the evaluation server, including a script to run it on the dev sets of these datasets and a

leaderboard showing results on their hidden tests, can be found at https://leaderboard.allenai.

org/orb
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7.2 Datasets

We selected seven existing datasets that target various complex linguistic phenomena such as

coreference resolution, entity and event detection, etc., capabilities which are desirable when testing

a model for reading comprehension.

We chose datasets that adhere to two main properties: First, we exclude from consideration any

multiple choice dataset, as these typically require very different model architectures, and they often

have biases in how the distractor choices are generated. Second, we require that the dataset be

originally designed for answering isolated questions over a single, given passage of text. We are

focused on evaluating reading performance, not retrieval; reading a single passage of text is far

from solved, so we do not complicate things by adding in retrieval, conversation state, or other

similar complexities.

It is our intent to add to the evaluation server any high-quality reading comprehension dataset that is

released in the future that matches these restrictions.

We now briefly describe the datasets that we include in the initial release of ORB. Table 7.1 gives

summary statistics of these datasets. Except where noted, we include both the development and test

sets (including hidden test sets) in our evaluation server for all datasets.

SQuAD [76] requires a model to perform lexical matching between the context and the question

to predict the answer. This dataset provides avenues to learn predicate-argument structure and

multi-sentence reasoning to some extent. It was collected by asking crowd-workers to create

question-answer pairs from Wikipedia articles such that the answer is a single-span in the context.

The dataset was later updated to include unanswerable questions [51], giving a harder question set

without as many reasoning shortcuts. We include only the development sets of SQuAD 1.1 and

SQuAD 2.0 in our evaluation server.
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DuoRC [233] tests if the model can generalize to answering semantically similar but syntactically

different paraphrased questions. The questions are created on movie summaries obtained from

two sources, Wikipedia and IMDB. The crowd-workers formalized questions based on Wikipedia

contexts and in turn answered them based on the IMDB context. This ensured that the model will

not rely solely on lexical matching, but rather utilize semantic understanding. The answer can be

either a single-span from context or free form text written by the annotator.

Quoref [116] focuses on understanding coreference resolution, a challenging aspect of natural

language understanding. It helps gauge how a model can handle ambiguous entity and event

resolution to answer a question correctly. This dataset was created by asking crowd workers to

write questions and multi-span answers from Wikipedia articles that centered around pronouns in

the context.

DROP [17] attempts to force models to have a more comprehensive understanding of a paragraph,

by constructing questions that query many parts of the paragraph at the same time. These questions

involve reasoning operations that are mainly rudimentary mathematical skills such as addition,

subtraction, maximum, minimum, etc. To perform well on this dataset a model needs to locate

multiple spans associated with questions in the context and perform a set of operations in a

hierarchical or sequential manner to obtain the answer. The answer can be either a set of spans from

the context, a number or a date.

ROPES [228] centers around understanding the implications of a passage of text, particularly

dealing with the language of causes and effects. A system is given a background passage, perhaps

describing the effects of deforestation on local climate and ecosystems, and a grounded situation

involving the knowledge in the background passage, such as, City A has more trees than City B.

The questions then require grounding the effects described in the background, perhaps querying

which city would more likely have greater ecological diversity. This dataset can be helpful in
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understanding how to apply the knowledge contained in a passage of text to a new situation.

NewsQA [234] dataset focuses on paraphrased questions with predicate-argument structure

understanding. To some extent it is similar to DuoRC, however the examples are collected from

news articles and offers diverse linguistic structures. This crowd-sourced dataset was created by

asking annotators to write questions from CNN/DailyMail articles as context.

NarrativeQA [78] focuses on understanding temporal reasoning among various events that

happen in a given movie plot. It also tests the model’s ability to “hop” between various parts of

the context and not rely solely on sequential reasoning. The dataset was constructed by aligning

books from Gutenberg 1 with the summaries of their movie adaptations from various web resources.

The crowd workers were asked to create complex questions about characters, narratives, events etc.

from summaries and typically can be answered from summaries. In addition, crowd workers were

required to provide answers that do not have high overlap with the context. In accordance with our

format, we only use the version with the summaries as context in our evaluation server.

Dataset Dev Size Test Size Avg. Context Len. Avg. Answer Len.

SQuAD1.1 10,570 - 123.7 4.0
SQuAD2.0 10,570 - 127.5 4.2
DuoRC 12,233 13,449 1113.6 2.8
Quoref 2,418 2,537 348.2 2.7
DROP 9,536 9,622 195.1 1.5
ROPES 1,204 1,015 177.1 1.2
NewsQA 5,166 5,126 711.3 5.1
NarrativeQA 3,443 10,557 567.9 4.7

Table 7.1: Dataset Statistics

1http://www.gutenberg.org/
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7.3 Synthetic Augmentations

Prior works [89] have shown that RC models are brittle to minor perturbations in original dataset.

Hence, to test the model’s ability to generalize to out-of-domain syntactic structures and be logically

consistent in its answers, we automatically generate questions based on various heuristics. These

heuristics fall in two broad categories.

1. The question is paraphrased to a minimal extent to create new syntactic structures, keeping

the semantics of the question largely intact and without making any changes to the original

context and answer.

2. The predicate-argument structures of a given question-answer pair are leveraged to create

new WH-questions based on the object in the question instead of the subject. This rule-based

method, adopted from [231], changes the question and answer keeping the context fixed.

We use five augmentation techniques, where the first four techniques fall into the first category and

the last technique falls into the second category.

Invert Choice transforms a binary choice question by changing the order in which the choices are

presented, keeping the answer the same.

More Wrong Choice transforms a binary choice question by substituting the wrong choice in the

question with another wrong choice from the passage.

No Answer substitutes a name in the question for a different name from the passage to create

with high probability a new question with no answer.
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Dataset IC MWC Imp No-Ans SEARs

NewsQA 0 0 501 347 16009
QuoRef 0 0 79 385 11759
DROP 1377 457 113 284 16382
SQuAD 16 0 875 594 28188
ROPES 637 119 0 201 2909
DuoRC 22 0 2706 - 45020

Table 7.2: Yields of augmented datasets

SEARs creates minimal changes in word selection or grammar while maintaining the original

meaning of the question according to the rules described by [230].

Implication creates a new question-answer pair, where the object of the original question is

replaced with the answer directly resulting in creation of a new WH-question where the answer

is now the object of the original question. These transformations are performed based on rules

described by [231].

We attempted all the above augmentation techniques on all the datasets (except NarrativeQA where

entity and event tracking is complex and these simple transformations can lead to a high number

of false positives). Table 7.2 shows the number of augmentations generated by each augmentation

technique-dataset pair. A few sample augmentations are shown in Table 7.3.

After generating all the augmented datasets, we manually identified the augmentation technique-

dataset pairs which led to high-quality augmentations. We sample 50 questions from each augmented

dataset and record whether they satisfy the three criteria: (1) Is the question understandable, with

little to no grammatical errors? (2) Is the question semantically correct? (3) Is the new answer the

correct answer for the new question?

Table 7.4 shows the number of high-quality questions generated for each dataset. We keep the

augmentation technique-dataset pairs where at least 90% of the question-answer pairs satisfy the

above three criteria. We further test the performance of these augmentations (Section 4) on a

136



Template
Type

Context (truncated) Original QA Pair Generated QA Pair

Invert Choice ... before halftime thanks to a David Akers 32-yard
field goal, giving Detroit a 17-14 edge ... in the
third, Washington was able to equalize with John
Potter making his first career field goal from 43
yards out ... in the fourth, Detroit took the lead
again, this time by way of Akers hitting a 28-yard
field goal, giving Detroit a 20-17 lead...

Q: Which player
scored more field
goals, David Akers
or John Potter? A:
David Akers

Q: Which player
scored more field
goals, John Potter
or David Akers? A:
David Akers

More Wrong
Choice

The first issue in 1942 consisted of denominations
of 1, 5, 10 and 50 centavos and 1, 5, and 10 Pe-
sos. ... 1944 ushered in a 100 Peso note and soon
after an inflationary 500 Pesos note. In 1945, the
Japanese issued a 1,000 Pesos note...

Q: Which year ush-
ered in the largest
Pesos note, 1944 or
1945? A:
1945

Q: Which year ush-
ered in the largest
Pesos note, 1942 or
1945? A:
1945

Implication ... In 1562, naval officer Jean Ribault led an expe-
dition that explored Florida and the present-day
Southeastern U.S., and founded the outpost of
Charlesfort on Parris Island, South Carolina...

Q: When did Rib-
ault first establish
a settlement in
South Carolina?
A: 1562

Q: Who established
a settlement in South
Carolina in 1562?
A: Ribault

No Answer From 1975, Flavin installed permanent works in
Europe and the United States, including ... the
Union Bank of Switzerland, Bern (1996). ... The
1930s church was designed by Giovanni Muzio...

Q: Which permanent
works did Flavin
install in 1996?
A: Union Bank of
Switzerland, Bern

Q: Which perma-
nent works did
Giovanni Muzio
install in 1996?
A: No Answer

SEARs ... Dhul-Nun al-Misri and Ibn Wahshiyya were the
first historians to study hieroglyphs, by comparing
them to the contemporary Coptic language used by
Coptic priests in their time...

Q: What did his-
torians compare to
the Coptic language?
A: hieroglyphs

Q: What’d historians
compare to the
Coptic language?
A: hieroglyphs

Table 7.3: Examples of generated augmentations with various templates.

BERT [32] based model to establish if the dataset has a sufficiently different question distribution

from the original and has enough independent value to be incorporated into the evaluation server.
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Dataset IC MWC Imp No-Ans SEARs

NewsQA - - 47 47 50
QuoRef - - 45 48 50
DROP 46 42 36 48 50
SQuAD 15/16 - 47 48 50
ROPES 48 36 - 11 50
DuoRC 18/22 - 47 - 50

Table 7.4: Quality of augmented datasets (# of good questions out of 50 sampled)

7.4 Experiments

7.4.1 Model

We train a numerically-aware BERT-based model2 (NABERT) on all the seven datasets and test its

performance on existing datasets and synthetic augmentations. NABERT is a BERT based model

with the ability to perform discrete operations like counting, addition, subtraction etc. We added

support for “impossible” answers in the existing NABERT architecture by extending the answer

type predictor which classifies the type of reasoning involved given a question into one of the

following five categories: number, span, date, count, impossible. All the hyper-parameter settings

were kept the same.

We noticed catastrophic forgetting on randomly sampling a minibatch for training, from all the

datasets pooled together. To alleviate this problem, we sampled uniformly from each dataset in the

beginning and then switched to sampling in proportion to the size of each dataset towards the end of

the epoch [235]. This helped improve the performance on several dataset by 3-4% in EM, however,

there is still a lot of room for improvement on this front. We also tried a simple BERT model [32]

and MultiQA [229] but NABERT gave the best results on the seven development sets.

In case of DuoRC and NarrativeQA, some answers are free-form human generated and do not have

an exact overlap with the context. However, the NABERT model is trained to predict a span’s start

2https://github.com/raylin1000/drop-bert
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Dataset Dev Test

EM F1 EM F1

NewsQA 29.34 45.40 29.69 46.19
Quoref 34.49 42.65 30.13 38.39
DROP 19.09 23.16 17.69 21.87
SQuAD 1.1 68.03 78.55 - -
SQuAD 2.0 33.70 39.17 - -
ROPES 40.03 49.07 47.96 56.06
DuoRC 25.65 34.28 23.44 31.73

Narrative
QA

BLEU-1 BLEU-4 METEOR ROUGE

Dev Set 0.17 0.021 0.33 0.52
Test Set 0.16 0.019 0.33 0.53

Table 7.5: Performance on baseline BERT model on different datasets

and end indices in the context. So for answers, which are not exact spans from the context we pick a

span which has the highest ROUGE-L with the gold answer to serve as labels for training. However,

for evaluation we use the original gold answer and not the extracted passage span for evaluating the

model’s performance.

7.4.2 Existing Dataset Performance

Table 7.5 shows the result of evaluating on all of the development and test sets using our evaluation

server. We chose the official metrics adopted by the individual datasets to evaluate the performance

of our baseline model. As can be seen in the table, the results are quite poor, significantly below

single-dataset state-of-the-art on all datasets. The training of our initial baseline appears to be

dominated by SQuAD 1.1, or perhaps SQuAD 1.1 mainly tests reasoning that is common to all of

the other datasets. Significant research is required to build reading systems and develop training

regimes that are general enough to handle multiple reading comprehension datasets at the same

time, even when all of the datasets are seen at training time.
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7.4.3 Synthetic Augmentations

Table 7.6 shows the performance of the baseline model on various development sets and heuristically

generated questions. The More Wrong Choice augmentation is omitted since a high enough quality

and/or yield of questions could not be ensured for any of the datasets. When evaluated on out-of-

domain linguistic structures, performance drops significantly for some augmentation-dataset pairs

but only marginally for others. For questions generated by the Invert Choice augmentation, the

model struggles to grasp the correct reasoning behind two answer options like Art Euphoric or

Trescott Street and changes the prediction when the choices are flipped. However, relative to the

dev set performances on the original datasets, the performance drop is almost nonexistent. For the

SEARs based augmentation the generated linguistic variations are close to in-domain syntactic

structure so we do not see much performance drop in most of the datasets except for ROPES

and NewsQA. The Implication style questions create a large performance drop for NewsQA and

SQuAD while having a performance boost for DuoRC. Finally, the No-Ans type questions have the

worst performance across board for all datasets.

7.5 Related Work

Generalization and multi-dataset evaluation Recently there has been some work aimed at

exploring the relation and differences between multiple reading comprehension datasets.

MultiQA [229] investigates over ten RC datasets, training on one or more source RC datasets, and

evaluating generalization, as well as transfer to a target RC dataset. This work analyzes the factors

that contribute to generalization, and shows that training on a source RC dataset and transferring to a

target dataset substantially improves performance. MultiQA also provides a single format including

a model and infrastructure for training and comparing question answering datasets. We provide no

training mechanism, instead focusing on very simple evaluation that is compatible with any training
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Dev IC Imp No-Ans SEARs

EM F1 EM F1 EM F1 EM F1 EM F1

NewsQA 29.34 45.40 - - 23.35 34.36 0.02 0.02 21.34 33.33
QuoRef 34.49 42.65 - - 32.91 44.84 0.0 0.0 34.84 42.11
DROP 19.09 23.16 40.23 48.03 - - 0.0 0.0 16.97 21.65
SQuAD 68.03 78.55 56.25 64.58 46.74 57.97 0.0 0.0 56.53 71.25
ROPES 40.03 49.07 24.08 31.74 - - - - 14.05 19.12
DuoRC 25.65 34.28 27.27 34.19 30.30 35.23 - - 21.51 28.85

Template
Type

Answered Incorrectly Answered Correctly

Invert Choice
Original: Which art gallery
was founded first, Art Eu-
phoric or Trescott Street?
Generated: Which art gallery
was founded first, Trescott Street or
Art Euphoric?

Original: Who scored more
field goals, Nate Kaed-
ing or Dan Carpenter?
Generated: Who scored more
field goals, Dan Carpenter or Nate
Kaeding?

Implication
Original: When did the
Huguenots secure the right
to own land in the Baronies?
Generated: Who secured the right
to own land in baronies in 1697?

Original: When did Henry
issue the Edict of Nantes?
Generated: What did Henry
issue in 1598?

SEARs
Original: What was the
theme of Super Bowl 50?
Generated: So what was the
theme of Super Bowl 50?

Original: Who won Super Bowl 50?
Generated: So who won Super Bowl
50?

Table 7.6: Quantitative and qualitative analysis of generated augmentations. We only show perfor-
mance for high yield and high-quality augmentations.

regime, including evaluating on hidden test sets.

MRQA19, the Machine Reading for Question Answering workshop, introduced a shared task,

which tests whether existing machine reading comprehension systems can generalize beyond the

datasets on which they were trained. The task provides six large-scale datasets for training, and

evaluates generalization to ten different hidden test datasets. However these datasets were modified

from there original version, and context was limited to 800 tokens. In addition this shared task only

tests for generalization with no intra-domain evaluation. In contrast, our evaluation server simply

provides a single-model evaluation on many different datasets, with no prescriptions about training
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regimes.

NLP evaluation benchmarks The General Language Understanding Evaluation benchmark or

GLUE [236] is a tool for evaluating and analyzing the performance of models across a diverse range

of existing NLU tasks. A newer version, Super-GLUE [82] is styled after GLUE with a new set

of more difficult language understanding tasks. In this line of work another standard toolkit for

evaluating the quality of universal sentence representations is SentEval [237]. Similar to GLUE,

SentEval also encompasses a variety of tasks, including binary and multi-class classification, natural

language inference and sentence similarity. We differ from GLUE and SentEval by focusing on

reading comprehension tasks, and only evaluating a single model on all datasets, instead of allowing

the model to be tuned to each dataset separately.

Evaluation Platforms and Competitions in NLP The use of online evaluation platform with

private test labels has been exercised by various leaderboards on Kaggle and CodaLab, as well as

shared tasks at the SemEval and CoNLL conferences.

Additional benchmarks such as ParlAI [238] and bAbI [239] proposed a hierarchy of tasks towards

building question answering and reasoning models and language understanding. However these

frameworks do not include a standardized evaluation suite for system performance nor do they offer

a wide set of reading comprehension tasks.

7.6 Conclusion

We have presented ORB, an open reading benchmark designed to be a comprehensive test of

reading comprehension systems, in terms of their generalizability, understanding of various natural

language phenomenon, capability to make consistent predictions, and ability to handle out-of-
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domain questions. This benchmark will grow over time as more interesting and useful reading

comprehension datasets are released. We hope that this benchmark will help drive research on

general reading systems.
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Chapter 8

Dynamic Sampling for improving multi-task

generalization

A single observation that is inconsistent

with some generalization points to the

falsehood of generalization, and thereby

points to itself.

Ian Hacking

(Canadian Philosopher)

Building general reading comprehension systems, capable of solving multiple datasets at the same

time, is a recent aspirational goal in the research community. Prior work has focused on model

architectures or generalizations to held-out datasets and largely passed over the particulars of

the multi-task learning setup, which focuses on learning a general-purpose single model. We

show that a simple dynamic sampling strategy, selecting instances for training proportional to the

multi-task model’s current performance on a dataset relative to its single-task performance, gives

substantive gains over prior multi-task sampling strategies, mitigating the catastrophic forgetting
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that is common in multi-task learning. We also demonstrate that allowing instances of different tasks

to be interleaved as much as possible between each epoch and batch has a clear benefit in multi-task

performance over forcing task homogeneity at the epoch or batch level. Our final model shows

greatly increased performance over the best model on ORB, a multi-task reading comprehension

benchmark.

8.1 Introduction

Building multi-task reading comprehension systems has received significant attention and been

a focus of active research [240, 241]. These approaches mostly focus on model architecture

improvements or generalizability to new tasks or domains. While these contributions are important,

it is also important to explore the optimal way to structure training; as we will show, training on

instances from diverse datasets (tasks) means that unlike in a single-task setting, ample instances

from each task distribution must be represented during training to properly capture that diversity. We

explore 2 fundamental aspects of structuring multi-task training: how many instances are sampled

from each task per epoch and how those instances are organized within the epoch. We investigate

the importance of this structuring by training a multi-task model on the 8 datasets from ORB [15], a

recent multi-task reading comprehension benchmark.

We first explore the sampling distribution over datasets at each epoch: how many instances from

each dataset should be used to train. Prior work has typically either made this a uniform distribution

over datasets (implicitly favoring smaller datasets), a distribution proportional to the sizes of the

datasets (implicitly favoring larger datasets), or some combination of the two. Because these

sampling strategies favor some datasets over others, they can lead to catastrophic forgetting in

the non-favored datasets. We introduce a dynamic sampling strategy that selects instances from a

dataset with probability proportional to the gap between its current performance on some metric

(like EM or F1 score) and measured single-task performance of the same model on that dataset.
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By adjusting the sampling distribution over the course of training according to what the model

is learning, this method is able to mitigate the catastrophic forgetting that is observed with other

sampling strategies.

Next we explore the impact of within-epoch scheduling strategies: once a set of instances has

been selected for training, how should they be ordered and batched together? We explore three

different strategies: partitioning, homogeneous batches, and heterogeneous batches. We observe

a steady increase in performance as instances from different datasets become more and more

interleaved within an epoch (less partitioned) and batches are more heterogeneous. This suggests

that more variety in batches aids convergence when performing gradient descent steps as opposed

to steps using homogeneous batches which only update the model with respect to one task at a time.

Partitioning also yields poorer performance since it does not allow the model to see the least recent

tasks later in the epoch which leads to catastrophic forgetting on those tasks.

We empirically evaluate these various training strategies on ORB, a recent multi-task reading

comprehension benchmark: we take the previous best published model and retrain it using dynamic

sampling and heterogeneous batches, leading to a performance increase averaging about 12 points

EM and 9 points F1 per task. While we only evaluate on reading comprehension, the methods we

present are quite general and can be applied to any multi-task learning setting.

8.2 Sampling and Scheduling Strategies

We explore two main dimensions along which the instances are ordered in multi-task learning: (1)

instance sampling from each dataset to get a collection of examples to use for an epoch; and (2)

within-epoch scheduling of those instances, determining how they should be ordered and batched.

The key consideration for these various strategies is avoiding a phenomenon similar to “catastrophic

forgetting” [242], where performance on a specific dataset in an unbalanced training set can drop
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dramatically when training moves on from that dataset.

8.2.1 Instance Sampling

We investigate the following four alternatives for determining how many instances to draw from

each dataset for each epoch:

Uniform The simplest way is to uniformly sample instances for each task [99], which results in

an approximately equal number of instances from each dataset per epoch. In practice, this means

randomly sampling the same number of training instances from each dataset at each epoch, which

will likely be a small subset of all the training instances, as the number of instances in constrained

by the smallest dataset. Large datasets will be proportionally underrepresented here.

By Size Alternatively, unbalanced datasets can be dealt with by sampling from each task in

proportion to their training set size [e.g. 243]. However, this approach can result in underfitting

small-sized tasks and overfitting large-sized tasks if the ratio between size differences is too extreme.

Uniform→Size 1 This sampling scheme simply has instances sampled uniformly for the first half

of training epochs and has instances sampled by training set size for the second half.

Dynamic The prior two methods use a fixed sampling distribution for every epoch of training. We

introduce a new, dynamic sampling strategy that aims to focus training on places where it is most

needed. For this sampling strategy, we first compute single-task validation metrics for the model

that we are training. For each task, we calculate the gap between current multi-task performance

and the respective single-task performance and normalize these metric differentials to create a

1github.com/mrqa/MRQA-Shared-Task-2019
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probability distribution. Then, for every epoch after the first (where we use sampling by size), we

sample instances by task from this distribution.

If performance on a dataset is far from single-task performance, it will get sampled heavily, while

datasets that have reached or exceeded single-task performance will get sampled little if at all.2

We also experimented with modifying the metric used to calculate the differential. We tested using

the (1) validation loss differential (2) validation EM differential (3) validation F1 differential and (4)

the sum of the validation EM and F1 differentials.

Amongst these, the validation loss for each dataset reaches the single-task loss far quicker than

others. This is likely due to the phenomenon that neural networks can overfit to specific loss

functions while still benefitting in terms of accuracy [245]. This explains why the gap in accuracy

metrics can be so wide while the loss gap closed within 1 or 2 epochs. Because of this behavior, the

loss differentials were all nearly identical in the first few epochs and behavior became very similar

to uniform sampling. We finally decided to use EM+F1 differential as this yielded nominally better

performance than EM or F1 differential and significantly better performance than loss differential.

8.2.2 Epoch Scheduling

We explore several different methods for scheduling and batching the instances within an epoch

after the set of instances has been sampled:

Partitioned This scheduling strategy partitions the instances in the epoch by task. In other words,

the model will never see an instance from a new dataset until all the instances from the current

dataset are exhausted. It seems intuitive that this strategy would exacerbate catastrophic forgetting

on the tasks it saw least recently, especially when there are a large number of tasks. We include this

2[244] use a related technique in reinforcement learning, though the setup is different.
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M5

Partition

Epoch

Heterogeneous

M1 M2 M3 M4 M6 M7 M8 M9

Task 3Task 2Task 1

Homogeneous

Figure 8.1: Illustration of Epoch Scheduling Strategies with Dynamic Sampling. Instances are
sampled dynamically in proportion to exact match accuracy difference of 25%, 10% and 15% for
task 1, 2 and 3 respectively. M1, M2, ... M9 depict nine mini-batches in an epoch.

method simply for completeness.

Homogeneous Batches This scheduling strategy does not force instances into partitions based on

the dataset. Instead, instances from each dataset are batched together, then the batches are shuffled.

Heterogeneous Batches This scheduling strategy shuffles all selected instances for the epoch,

then batches them together. Each batch could have instances from many different datasets.

Uniform Batches This scheduling strategy is used by the baseline model for the MRQA shared

task [200] as well as for the best prior result on ORB. This method places one instance per dataset

in each batch (forced heterogeneity) until the smallest dataset runs out of instances. This strategy

continues with the remaining datasets, until all datasets are exhausted.
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Dataset Train Size Dev Size

Small
Quoref 19,392 2,407
ROPES 10,924 1,688

Medium
DuoRC 54,746 12,224
NarrativeQA 32,717 3,393

Large
DROP 77,394 9,530
NewsQA 92,543 5,154
SQuAD1.1 87,596 10,570
SQuAD2.0 130,310 11,864

Table 8.1: Open Reading Benchmark (ORB) Datasets

Method Average Quoref ROPES DuoRC NarrQA SQuAD SQuAD2 DROP NewsQA

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Single
Task

- - 53.0 58.6 67.5 72.1 23.3 30.8 - 50.3 57.5 73.5 66.0 69.6 57.1 54.4 35.3 49.8

Uniform 49.2 55.8 56.9 61.5 69.7 74.3 23.4 32.1 - 53.1 69.3 78.0 38.1 42.9 51.8 54.4 35.0 49.9

By Size 50.0 56.3 53.7 57.7 62.7 68.1 23.3 31.6 - 52.4 65.8 74.1 58.1 63.0 52.0 54.5 34.6 49.1

Uni→Size 49.7 56.5 55.8 60.0 68.8 73.8 23.2 32.0 - 53.0 52.0 63.7 63.4 67.4 49.7 52.2 35.0 49.8

Dynamic 51.7 58.1 56.3 60.4 65.1 71.9 23.1 31.5 - 52.9 66.3 74.7 63.2 67.7 53.8 56.3 34.5 49.2

Table 8.2: Effect of using different instance sampling strategies with heterogeneous batch scheduling

8.3 Experiments

Setup The eight reading comprehension tasks are from the ORB benchmark [15]: DROP [17],

DuoRC [233], NarrativeQA [246], NewsQA [234], Quoref [116], ROPES [228], SQuAD [76], and

SQuAD 2.0 [51].

We use the NABERT3 (Numerically Augmented BERT) model with an additional reasoning type

to allow “No Answer” as an answer to accommodate the SQuAD 2.0 dataset which has about

40,000 “No Answer” questions. Each training session lasted 30 epochs with 50,000 instances

3https://github.com/raylin1000/drop_bert
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Method Average Quoref ROPES DuoRC NarrQA SQuAD SQuAD2 DROP NewsQA

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Partition 46.1 53.2 50.7 55.3 58.1 65.4 22.1 30.7 - 50.9 67.0 76.6 36.5 41.6 55.3 58.2 32.0 47.4

Homo 48.8 54.7 53.3 56.8 61.5 66.6 21.6 29.6 - 49.9 63.7 71.7 56.0 60.6 51.8 54.1 33.5 48.2

Hetero 51.7 58.1 56.3 60.4 65.1 71.9 23.1 31.5 - 52.9 66.3 74.7 63.2 67.7 53.8 56.3 34.5 49.2

Table 8.3: Effect of using different epoch scheduling strategies with dynamic sampling

Method Average Quoref ROPES DuoRC NarrQA SQuAD SQuAD2 DROP NewsQA

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

ORB 34.4 42.1 35.0 44.7 31.1 37.3 25.4 34.1 - 36.6 67.3 77.7 32.8 38.0 20.2 23.6 29.2 44.6

Dynamic 47.6 54.5 59.4 63.9 36.5 44.8 23.0 31.5 - 52.0 66.3 74.7 61.2 65.7 51.9 54.2 34.7 49.1

Table 8.4: Results on ORB test sets.

sampled per epoch. Three training sessions were conducted per sampling method and the EM and

F1 scores shown are averaged over those three sessions. Note that NarrativeQA is evaluated using

only ROUGE F1 score. Due to GPU memory constraints, we are limited to a batch size of 4, so we

are unable replicate the Uniform Batches configuration of MRQA (requires a batch size of 8 to fit 1

instance from each of the 8 datasets).

Sampling Strategies Table 8.2 shows the effectiveness of the sampling techniques discussed

above. Uniform sampling yields a very mediocre performance for 7 datasets but significantly

underperforms on SQuAD 2.0, which is likely not getting enough representation each epoch for

its unique no-answer questions. Sampling by size yields mediocre performances for 7 datasets but

underperforms on ROPES, which is easily the smallest dataset and therefore gets undersampled.

However, performance on Quoref, the second smallest dataset, is still relatively high, which might

be explained by its SQuAD-style questions. Exposure to SQuAD, one of the largest datasets, likely

benefits performance on Quoref as well. Interestingly, uniform sampling followed by size sampling

slightly alleviates the problems from the individual sampling methods but also slightly underforms

on DROP. Finally, dynamic sampling achieves the highest average performance and fully cures both
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problems mentioned above since each epoch, the sampling distribution can be adjusted based on

which datasets perform poorly. The previous sampling methods have static sampling distributions,

so these adjustments are impossible.

Scheduling Strategies Table 8.3 show that heterogeneous batches during sampling leads to the

best multi-task performance, and performance steadily decreases as instance grouping becomes

more and more homogenized with respect to the dataset.

ORB Evaluation Finally, Table 8.4 shows that our model trained with dynamic sampling and het-

erogeneous batches significantly outperforms the previous ORB state-of-the-art NABERT baseline

model (submitted on 11/12/2019 on the leaderboard site4).

8.4 Conclusions

Our goal was to investigate which instance sampling method and epoch scheduling strategy gives op-

timal performance in a multi-task reading comprehension setting. The results suggest that dynamic

sampling—sampling instances from each task based on their respective metric differentials—is a

fruitful direction to explore for improving performance. We also show that interleaving instances

from different tasks within each epoch and forming heterogeneous batches is crucial for optimizing

multi-task performance. It is also worth noting that for the DuoRC, NarrativeQA, SQuAD, and

Quoref datasets there are cases where the multi-task model outperforms the single-task model. This

suggests that for specific cases, we observe an effect similar to data augmentation (like exposure to

SQuAD benefitting QuoREF performance as mentioned above) but this needs to be explored further.

We hope that future work experiments further with dynamic sampling such as by modifying the

metric (e.g., using BLEU or ROUGE score if applicable) and/or modifying other values like number

4https://leaderboard.allenai.org/orb/submissions/public
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of instances per epoch based on performance metrics (not only does this effectively change learning

rate, but it would also allow the model to update the sampling distribution more or less frequently).
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Chapter 9

Benefits of Intermediate Annotations

A goal without a plan is just a wish.

Antoine de Saint-Exupéry

(French writer and pioneering aviator)

Complex, compositional reading comprehension datasets require performing latent sequential

decisions that are learned via supervision from the final answer. A large combinatorial space of

possible decision paths that result in the same answer, compounded by the lack of intermediate

supervision to help choose the right path, makes the learning particularly hard for this task. In this

work, we study the benefits of collecting intermediate reasoning supervision along with the answer

during data collection. We find that these intermediate annotations can provide two-fold benefits.

First, we observe that for any collection budget, spending a fraction of it on intermediate annotations

results in improved model performance, for two complex compositional datasets: DROP and Quoref.

Second, these annotations encourage the model to learn the correct latent reasoning steps, helping

combat some of the biases introduced during the data collection process.
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Question:
How many touchdown passes did Cutler throw in the second half?
Answer: 3

.....In the third quarter, the Vikes started to rally with running back Adrian Pe-
terson’s 1-yard touchdown run (with the extra point attempt blocked). The Bears
increased their lead over the Vikings with Cutler’s 3-yard TD pass to tight end Desmond
Clark. The Vikings then closed out the quarter with quarterback Brett Favre firing
a 6-yard TD pass to tight end Visanthe Shiancoe. An exciting .... with kicker Ryan
Longwell’s 41-yard field goal, along with Adrian Peterson’s second 1-yard TD run. The
Bears then responded with Cutler firing a 20-yard TD pass to wide receiver Earl Bennett.
The Vikings then completed the remarkable comeback with Favre finding wide receiver
Sidney Rice on a 6-yard TD pass on 4th-and-goal with 15 seconds left in regulation.
The Bears then took a knee to force overtime.... The Bears then won on Jay Cutler’s
game-winning 39-yard TD pass to wide receiver Devin Aromashodu. With the loss,
not only did the Vikings fall to 11-4, they also surrendered homefield advantage to the
Saints.

Figure 9.1: Example from DROP, showing the intermediate annotations that we collected via
crowd-sourcing.

9.1 Introduction

Recently many reading comprehension datasets requiring complex and compositional reasoning over

text have been introduced, including HotpotQA [40], DROP [247], Quoref [116], and ROPES [228].

However, models trained on these datasets [193, 180] only have the final answer as supervision,

leaving the model guessing at the correct latent reasoning. Figure9.1 shows an example from DROP,

which requires first locating various operands (i.e. relevant spans) in the text and then performing

filter and count operations over them to get the final answer “3”. However, the correct answer can

also be obtained by extracting the span “3” from the passage, or by adding or subtracting various

numbers in the passage. The lack of intermediate hints makes learning challenging and can lead the

model to rely on data biases, limiting its ability to perform complex reasoning.

In this paper, we present three main contributions. First, we show that annotating relevant context

spans, given a question, can provide an easy and low-cost way to learn better latent reasoning. To

be precise, we show that under low budget constraints, collecting these annotations for up to 10%

of the training data (2-5% of the total budget) can improve the performance by 4-5% in F1.
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We supervise the current state-of-the-art models for DROP and Quoref, by jointly predict the relevant

spans and the final answer. Even though these models were not designed with these annotations

in mind, we show that they can still be successfully used to improve model performance. Models

that explicitly incorporate these annotations might see greater benefits. Our results suggest that

future dataset collection efforts should set aside a fraction of budget for intermediate annotations,

particularly as the reasoning required becomes more complex.

Second, these annotations can help combat biases that are often introduced while collecting data

[139, 138]. This can take the form of label bias—in DROP, 18% of questions have answers 1, 2, or

3—or annotator bias, where a small group of crowd workers creates a large dataset with common

patterns. By providing intermediate reasoning steps explicitly, the annotations we collect help the

model overcome some of these biases in the training data.

Finally, the intermediate annotations collected in this work, including 8,500 annotations for DROP

and 2,000 annotations for Quoref, will be useful for training further models on these tasks. We have

made them available at https://github.com/dDua/Intermediate_Annotations.

9.2 Intermediate Annotations

Intermediate annotations describe the right set of context spans that should be aggregated to answer

a question. We demonstrate their impact on two datasets: DROP and Quoref. DROP often requires

aggregating information from various events in the context (Figure9.1). It can be challenging to

identify the right set of events directly from an answer when the same answer can be derived from

many possible event combinations. We annotate the entire event span including all the attributes

associated with the specific event. Quoref requires understanding long chains of coreferential

reasoning, as shown in Figure9.2, which are often hard to disentangle, especially when the context

refers to multiple entities. We specifically annotate the coreference chains which lead to the entity
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Question:
What record do the children that Conroy teaches play back to him?
Answer: Beethoven’s Fifth Symphony

Conroy tries to teach them about the outside world but comes into conflict both
with the principal and Mr. Skeffington, the superintendent. He teaches them how to brush
their teeth, who Babe Ruth is, and has the children listen to music, including Flight of
the Bumblebee and Beethoven’s Fifth Symphony. He explains that the when Beethoven
wrote the Fifth Symphony, he was writing about ”what death would sound like”. He is
also astounded they’ve never even heard of Halloween, and he decides to take them to
Beaufort on the mainland to go trick-or-treating, which the superintendent has forbidden.
He also must overcome parental fears of ”the river.” As he leaves the island for the last
time, the children come out to see him leave, all of them lined up on a rickety bridge. As
he is about to leave by boat, one of the students then begins playing a record, which is the
beginning movement of Beethoven’s Fifth Symphony.

Figure 9.2: Example collected annotation from Quoref, showing the intermediate steps.

being queried.

Collection process: We used Amazon Mechanical Turk to crowd-source the data collection.

We randomly sample 8,500 and 2,000 QA pairs from the training set for DROP and Quoref

respectively. We showed a QA pair and its context to the workers and asked them to highlight

“essential spans” in the context. In case of DROP, crowd workers were asked to highlight complete

events with all their corresponding arguments in each span. For Quoref, they were asked to highlight

the coreference chains associated with the answer entity in the context.

Cost of gathering intermediate annotations: Each HIT, containing ten questions, paid $1, and

took approximately five minutes to complete. Overall, we spent $850 to collect 8,500 annotations

for DROP and $200 to collect 2,000 annotations for Quoref. If these annotations are collected

simultaneously with dataset creation, it may be feasible to collect them at a lower cost, as the time

taken to read the context again will be avoided.
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9.3 Experiments and Results

In this section, we train multiple models for the DROP and Quoref datasets, and evaluate the benefits

of intermediate annotations as compared to traditional QA pairs. In particular, we will focus on the

cost vs benefit tradeoff of intermediate annotations, along with evaluating their ability to mitigate

bias in the training data.

9.3.1 Setup

We study the impact of annotations on DROP on two models at the top of the leaderboard: NABERT1

and MTMSN [193]. Both the models employ a similar arithmetic block introduced in the baseline

model [247] on top of contextual representations from BERT [32]. For Quoref, we use the baseline

XLNet [248] model released with the dataset.

We supervise these models with the annotations in a simple way, by jointly predicting intermediate

annotation and the final answer. We add two auxiliary loss terms to the marginal log-likelihood

loss function. The first is a cross-entropy loss between the gold annotations (g) and predicted

annotations, which are obtained by passing the final BERT representations through a linear layer to

get a score per token p, then normalizing each token’s score of being selected as an annotation with

a sigmoid function.

L1(θ) = α1CE(g, σ(p)) (9.1)

The second is an L1 loss on the sum of predicted annotations, encouraging the model to only select

1https://github.com/raylin1000/drop_bert
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Figure 9.3: Performance of model for a varying percentage of budget invested in collecting
intermediate annotation. The calculation was done with costs as $0.4 and $0.7 for a QA pair in
DROP and Quoref, respectively.

a subset of the passage.

L2(θ) = α2

|tokens|∑
ℓ=0

σ(pl)

The hyper-parameters α1 and α2 were used to balance the scale of both auxiliary loss terms with the

marginal log-likelihood.
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Figure 9.4: Performance of model trained on varying amount of annotations used in training

9.3.2 Cost vs Benefit

To evaluate the cost-benefit trade-off, we fix the total collection budget and then vary the percentage

of budget that should go into collecting intermediate annotations. As shown in Figure9.3a, the

model achieves better performance (+1.7% F1) when spending $7k where 2% budget is used for

collecting intermediate reasoning annotations as compared to model performance when spending

$10k for collecting only QA pairs. Overall, from Figure9.3 we can see that allocating even 1%

of the budget to intermediate annotations provides performance gains. However, we observe that

allocating a large percentage of the budget to intermediate annotations at the expense of QA pairs

reduces performance. In our experiments, we find that the sweet-spot percentage of the budget and
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training-set that should be allocated to intermediate annotations is 2% and ∼10% respectively.

9.3.3 Bias Evaluation

Unanticipated biases [140, 249] are often introduced during dataset collection due to many reasons

(eg., domain-specific contexts, crowd-workers distributions, etc.). These “dataset artifacts” can be

picked up by the model to achieve better performance without learning the right way to reason. We

explore two examples of such dataset artifacts in DROP and Quoref.

In DROP, around 40% of the passages are from NFL game summaries. The frequency of counting

and arithmetic questions from this portion of the data resulted in the answers 1, 2, and 3 making up

18% of the entire training set.

To study the effect of biased answer distribution on model performance, we sample 10k QA pairs

with answers ∈ [0,9] from the training set randomly as a biased training set. We also sample QA

pairs from the validation set uniformly for each answer ∈ [0,9] thus ensuring that each answer has

equal representation in the unbiased validation set.

In Quoref, we found that around 65% of the answers are entity names present in the first sentence

of the context. Similar to DROP, we create a biased training set with 5k QA pairs from the original

training data, and an unbiased validation set with equal representation of answers from the first

sentence and the rest of the context.

We investigate the effects of spending a small additional budget, either by adding more QA pairs

(from the biased data distribution) or by collecting intermediate annotations, on this bias.

We use two metrics to measure the extent to which bias has been mitigated. The first is the original

metric for the task, i.e. F1, that measures how accurate the model is on the unbiased evaluation.

Further, we also want to evaluate the extent to which the errors made by the model are unbiased;
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Dataset Baseline More QA pairs Annotations

F1 (%) Conf. loss F1 (%) Conf. loss F1 (%) Conf. loss

DROP 24.6 101.5 25.5 107.5 28.1 94.5
Quoref 61.8 103.0 62.7 109.0 64.3 97.0

Table 9.1: F1 performance and confusion loss (lower is better) of models in three settings: baseline
with 10k(DROP) and 5k(Quoref) QA pairs, additional QA pairs worth $250 and $100 for DROP
and Quoref respectively, and additional annotations worth $250 and $100 for DROP and Quoref
respectively. To put confusion loss in perspective, the best confusion loss, i.e. perfect diffusion, is
90.1 for DROP and 87.0 for Quoref.

in other words, how much is the error diffused over all possible answers, rather than only over the

biased labels. We compute confusion loss [250] as the metric for this, which measures error diffusion

by computing the highest singular value of the unnormalized confusion matrix after setting the

diagonal elements (i.e. true positives), to zero [251] (lower confusion loss implies more diffusion).

In an ideal scenario, all labels should have an equally likely probability of being a mis-prediction.

Higher confusion loss implies that if we consider mis-classifications of a model we see that it has a

tendency of over-predicting a specific label, making it biased towards that specific class.

(a) 10k samples (b) Additional QA pairs worth $250 (c) Annotations worth $250

Figure 9.5: For the same cost intermediate annotations helps diffuse biased over-representation of
number 3 as compared to adding more question-answer pairs

Table 9.1 shows that along with higher improvements in F1 on providing annotations as compared

to more QA pairs, we also see a reduction in the confusion loss with annotations indicating bias

mitigation.
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(a) 5k training samples (b) Additional QA pairs worth
$100

(c) Annotations worth $100

Figure 9.6: For the same cost intermediate annotations helps diffuse biased over-representation of
number 3 as compared to adding more question-answer pairs

How many times did the Cowboys score in the first half?

Still searching for their first win, the Bengals flew to Texas Stadium for a Week
5 interconference duel with the Dallas Cowboys. In the first quarter, Cincinnati trailed
early as Cowboys kicker Nick Folk got a 30-yard field goal, along with RB Felix Jones
getting a 33-yard TD run. In the second quarter, Dallas increased its lead as QB Tony
Romo completed a 4-yard TD pass to TE Jason Witten. The Bengals would end the
half with kicker Shayne Graham getting a 41-yard and a 31-yard field goal. In the third
quarter, Cincinnati tried to rally as QB Carson Palmer completed an 18-yard TD pass to
WR T. J. Houshmandzadeh. In the fourth quarter, the Bengals got closer as Graham got a
40-yard field goal, yet the Cowboys answered with Romo completing a 57-yard TD pass
to WR Terrell Owens. Cincinnati tried to come back as Palmer completed a 10-yard TD
pass to Houshmandzadeh (with a failed 2-point conversion), but Dallas pulled away with
Romo completing a 15-yard TD pass to WR Patrick Crayton.

Figure 9.7: Predicted relevant spans for question answered correctly with annotation (prediction:
“3”) and incorrectly without annotations (prediction: “2”) by MTMSN model trained on DROP

Further, we also find that for DROP, the false positive rate for top-3 common labels fell from 47.7%

(baseline) to 39.6% (with annotations), while the false positive rate for the bottom-7 increased

from 30.4%(baseline) to 36.3%(with annotations), further demonstrating mitigation of bias. The

confusion matrices are included in Appendix.

9.3.4 Qualitative Result

Figure 9.7 shows a DROP example where the model trained without annotations is not able to

determine the right set of events being queried, returning an incorrect response. The model trained
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What is the full name of Mary Harriette’s father?

Motteux was also without heirs and bequeathed Sandringham, together with another Norfolk estate and a property in
Surrey, to the third son of his close friend, Emily Lamb, the wife of Lord Palmerston. At the time of his inheritance in 1843, Charles
Spencer Cowper was a bachelor diplomat, resident in Paris. On succeeding to Motteux’s estates, he sold the other properties and
based himself at Sandringham. He undertook extensions to the hall, employing Samuel Sanders Teulon to add an elaborate porch and
conservatory. Cowper’s style of living was extravagant he and his wife spent much of their time on the Continent and within 10 years
the estate was mortgaged for £89,000. The death of their only child, Mary Harriette, from cholera in 1854 led the couple to spend
even more time abroad, mainly in Paris, and by the early 1860s Cowper was keen to sell the estate.

Figure 9.8: Predicted relevant spans for question answered correctly with annotation
(prediction:“Charles Spencer Cowper”) and incorrectly without annotations

(prediction:“Lord Palmerston”) by XLNet on Quoref

with annotations can understand the semantics behind the query terms “first half” and “Cowboys”,

to arrive at the correct answer. The curves depicting quantitative performance gains with varying

amounts of annotations and QA pairs are in the appendix.

9.3.5 Related Works

Similar to our work, [252] studied the impact of providing explicit supervision via rationales, rather

than generating them, for varying fractions of training set in text classification. However, we study

the benefits of such supervision for complex compositional reading comprehension datasets. In

the field of computer vision, [253] collected similar annotations, for visual recognition, where

crowd-workers highlighted relevant regions in images.

Within reading comprehension, various works like HotpotQA [40] and CoQA [254] have collected

similar reasoning steps for entire dataset. Our work shows that collecting intermediate annotations

for a fraction of dataset is cost-effective and helps alleviate dataset collection biases to a degree.

Another line of work [255] explores the cost vs. benefit of collecting full vs. partial annotations for

various structured predictions tasks. However, they do not focus on intermediate reasoning required

to learn the task.

Our auxiliary training with intermediate annotations is inspired by extensive related work on training
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Figure 9.9: HIT interface used for collection annotations

models using side information or domain knowledge beyond labels [256, 257, 258, 259]. Especially

relevant is work on supervising models using explanations [260], which, similar to our annotations,

identify parts of the input that are important for prediction [261, 262]

9.4 Conclusion

We show that intermediate annotations are a cost-effective way to not only boost model performance

but also alleviate certain unanticipated biases introduced during the dataset collection. However,

it may be unnecessary to collect these for entire dataset and there is a sweet-spot that works

best depending on the task. We proposed a simple semi-supervision technique to expose the

model to these annotations. We believe that in future they can be used more directly to yield

better performance gains. We have also released these annotations for the research community at

https://github.com/dDua/Intermediate_Annotations.
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Chapter 10

Conclusion and Future Directions

Data is the new oil.

Clive Humby

(British Mathematician)

This dissertation was motivated by the need to build better neural reasoning systems. Our results

demonstrate that data is an indispensable commodity for learning neural systems, emphasizing the

necessity for its meticulous curation. Natural language is contextual, ambiguous, unstructured, and

compositional, making it difficult to operationalize akin to programming languages. The power of

higher-order correlations through parameter and data scaling has led to the development of strong

statistical models. With this work, we have initiated the exploration of new avenues for pushing

neural models to engage in reasoning, decision-making and effectively assisting humans in a manner

that is consistent, interpretable, and generalizable.

We show that the inadequacy of data often impedes neural systems from fully understanding how

to learn and solve a specific reasoning type. Recent works in neural network scaling have shown

emergent abilities [263] that are able to generalize to unseen tasks and reasoning. However, the

conditions under which such abilities emerge remain unclear and mostly random. Data interventions,
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on the other hand, can explicitly learn any reasoning and higher-order association without the need

to rely on parameter scaling.

Limitations and Future Directions

One of the major drawbacks of data intervention schemes is the retrospective cost. It is often difficult

to curate datasets for new tasks which are complete and unbiased. Multi-task training can promote

positive transfer [264] across different tasks, thereby supplementing the need for complete data.

However, it is difficult to know upfront which task will be similar to the new task at hand. Under

the assumption that we are able to intervene with the right type of data, we outline the limitations

and future prospects for the research presented in this dissertation.

• Instance bundles: Using bundles of related or minimally different instances has inspired

several works [265, 266, 267, 268] to develop methods for curating instance bundles and

imposing inference time constraints to improve textual entailment, event understanding, and

commonsense reasoning. However, curating minimally different instances automatically is

task and reasoning dependent, and difficult to generalize any task. it is probably better to

consider such perturbations upfront while data collection.

• Generative Passage Selection: Generating questions for every pair of contexts can be very

expensive, especially when dealing with a large document corpus. While discriminative

models tend to exploit bias in data, they are less expensive at test time. Recent advances

in alignment research develop preference models to reward model behavior. These reward

models can learn to imitate question generation likelihood, thereby distilling the associations

learned by the generative model into a discriminative model.

• Successive Prompting: Previously, neural approaches employed non-modular, end-to-end

differentiable architectures due to the inherent challenges in seamlessly integrating discrete
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outputs from external APIs into a continuous framework. However, LLMs have led to a

resurgence in the modularization of tasks. This is because these models are able to (1) learn

to decompose in a gradient-free or in-context [269, 270] way without the need for training

with continuous variables, (2) code-switch, being pre-trained on StackOverflow style forums,

making it easier to transition between symbolic and natural language surface forms. However,

the current task modularization approaches predominantly follow a top-down decomposition

which is effective when the decomposition plan for a similar example is available for supervi-

sion. To achieve compositional generalization, the concept of modularity of mind [271] in

cognitive sciences suggests that a combination of top-down plan generation and a bottom-up

exploration for module composition can help us reach intelligence. Investigating training

strategies and loss functions that are able to do a global top-down plan generation and a

bottom-up local module execution and composition can aid in the emergence of abilities that

are able to reason about unseen compositional tasks.
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Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

[82] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32,
2019.

[83] Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Cosmos qa: Ma-
chine reading comprehension with contextual commonsense reasoning. arXiv preprint
arXiv:1909.00277, 2019.

[84] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa:
A question answering challenge targeting commonsense knowledge. arXiv preprint
arXiv:1811.00937, 2018.
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