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Key points:  16 

1. Antarctic tundra is a natural source of CHCl3, emitting up to 0.1 Gg each year into 17 

the atmosphere. 18 

2. Penguins input organic matter and marine halides into soil through excrement, 19 

which facilitate microbial-mediated CHCl3 production. 20 

3. The strength of CHCl3 source will vary in response to changes in penguin 21 

population/colony size, and the extent of Antarctic warming. 22 

Abstract 23 

In this study, the first in situ static-chamber measurements were conducted at coastal 24 

Antarctica tundra for CHCl3 fluxes, which showed that CHCl3 was naturally emitted from 25 

the Antarctic tundra at 35 ± 27 nmol m-2 d-1, comparable to other reported important natural 26 

sources. Significantly enhanced CHCl3 emission rates (66 ± 20 nmol m-2 d-1) were observed 27 

from ornithogenic soil on the island populated with penguins, which was rich in organic 28 

matter and halides coming from penguin excrements. It is estimated that Antarctic tundra 29 

emits up to 0.1 Gg CHCl3 per year, which is an important source for regional atmospheric 30 

CHCl3. Laboratory-based incubations suggested that organic carbon and chlorine inputs by 31 

penguins may stimulate O2 dependent microbial-mediated CHCl3 emission from the 32 

Antarctic tundra, and all tundra soils showed the maximum CHCl3 emission at 4 °C. The 33 

strength of this CHCl3 source is also expected to change in response to Antarctic warming. 34 

Plain language summary 35 

Chloroform (CHCl3) is the second largest natural carrier of atmospheric chlorine, 36 

which can catalyze stratospheric ozone depletion. Natural sources of CHCl3 are believed 37 

to predominate over anthropogenic sources, accounting for 50-90% of global CHCl3 38 
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emissions. Among the natural sources, soils are the second largest source, after the ocean. 39 

This study conducted the first in situ static-chamber measurements and lab-based 40 

incubations on CHCl3 emissions from Antarctic tundra, and found that it was an important 41 

regional source, emitting up to 0.1 Gg CHCl3 each year (< 1% of natural terrestrial sources) 42 

into the atmosphere. Penguin activites deposited large amounts of excrement in colony 43 

tundra and enhanced organic matter and chlorine content in the soil, which promoted the 44 

production of CHCl3 mediated by microbial activities. Temperature-controlled incubations 45 

indicated that tundra soils showed the maximum CHCl3 emission at 4 °C, and temperature 46 

increase and freeze-thaw cycles might influence annual and seasonal CHCl3 emissions 47 

from Antarctic tundra. This study suggested that the strength of CHCl3 source will vary in 48 

response to changes in penguin population/colony size, and the extent of Antarctic 49 

warming.  50 
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Introduction 51 

Chlorine-containing halocarbons, such as chloromethane (CH3Cl), chloroform (CHCl3), 52 

and chlorofluorocarbons (CFCs), can photo-dissociate in the stratosphere, releasing 53 

reactive chlorine radicals that catalyze ozone depletion. Among the naturally produced 54 

atmospheric chlorocarbons, CHCl3 is the second largest natural carrier of chlorine after 55 

CH3Cl. With an average tropospheric lifetime of 149 days (Engel et al., 2018), it is 56 

categorized as a very short-lived substance (VSLS). Hence, the ozone-depleting capacity 57 

of CHCl3 was thought to be minor and was not regulated by the Montreal Protocol. 58 

However, observations over the past decade showed its atmospheric molar fractions have 59 

been steadily increasing (Engel et al., 2018; Fang et al., 2019). Numerical model 60 

simulations also indicated the recovery of stratospheric ozone may be significantly delayed 61 

if atmospheric concentrations of VSLSs, including CHCl3, continue to grow (Fang et al., 62 

2019).  63 

Natural sources of CHCl3 are believed to predominate over anthropogenic sources, 64 

accounting for 50-90% of global CHCl3 emissions (McCulloch, 2003; Worton et al., 2006). 65 

The natural emissions of CHCl3 are mainly from surface ocean (~360 Gg yr-1) and 66 

terrestrial soils (over 200 Gg yr-1). Rhew et al (2008a) first measured CHCl3 fluxes from 67 

the Arctic tundra, and an extrapolation of these fluxes suggested that tundra globally could 68 

contribute to 1–2% of atmospheric CHCl3. Tundra in Greenland and Northern Scandinavia 69 

also showed large emissions of CHCl3 (Johnsen et al., 2016; Macdonald et al., 2020). Ice-70 

free tundra in the Antarctica is as large as 7.2 × 1010 m2, but no CHCl3 flux measurement 71 

has ever been conducted due to the remote location and adverse weather conditions (Lee 72 

et al., 2017; Terauds & Lee, 2016). 73 

Different from other terrestrial ecosystems, Antarctic tundra is often colonized by large 74 

numbers of sea animals, such as penguins (Croxall et al., 2002; Sun et al., 2000). Penguin 75 
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activities strongly alter local biogeochemical environments through depositing guano, 76 

promoting the formation of ornithogenic tundra soil, which is fertile in organic matter and 77 

marine elements (Michel et al., 2006; Schaefer et al., 2008). The activities of 78 

microorganisms are often higher in these ornithogenic soils, compared to normal tundra 79 

soil (Tscherko et al., 2003; Zdanowski et al., 2005). Significantly higher emission rates of 80 

greenhouse gases and other trace gases were observed from ornithogenic soil in penguin 81 

colonies (Zhu et al., 2006, 2008, 2009). Therefore, given the abundant organic carbon, 82 

chloride contents and microorganism populations in Antarctic colony tundra soil, the 83 

unique biogeochemical environment may facilitate the chlorination of organic matter to 84 

produce CHCl3. 85 

In this study, in situ static-chamber measurements of CHCl3 fluxes were conducted in 86 

Antarctic tundra during the 36th Chinese Antarctic Research Expedition (CHINARE-36). 87 

Soil samples were also collected from the tundra on Fildes Peninsula and Ardley Island, 88 

and then incubated in the laboratory (1) under simulated natural conditions to obtain CHCl3 89 

fluxes, and to compare with the in situ results; (2) in the range of -12 °C to 12 °C to quantify 90 

CHCl3 emissions under simulated seasonal cycles and projected Antarctic warming; and 91 

(3) under different manipulated conditions (such as N2-anoxic and thermal treatments) to 92 

explore the CHCl3 formation pathway in Antarctic tundra.  93 

Materials and methods 94 

Study sites 95 

The study area is located on Fildes Peninsula (61°51′S-62°15′S, 57°30′W-59°00′W) 96 

and Ardley Island (62°13′S, 58°56′W) in West Antarctica (Figure 1). The annual average 97 

temperature is about -2.5 °C, in a range of -26.6~11.7 °C, and the annual average 98 

precipitation (mainly in snowfall) is about 630 mm (Zhu et al., 2013). Fildes Peninsula 99 

(Figure 1b) is the largest ice-free area in King George Island, the middle of the peninsula 100 
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is bedrock-exposed hills, and a well-developed tundra ecosystem is located along the 101 

coastline, with the lichens and mosses as the main vegetation types (Borchhardt et al., 102 

2017). The western coast of the peninsula is inhabited by a variety of seals (Wang et al., 103 

2019). The eastern side of Ardley Island is an important habitat for Adélie, gentoo and 104 

chinstrap penguins with a combined population over 10,000 (Zhu et al., 2013) (Figure 1c). 105 

The adjacent penguin-lingering tundra areas are covered by cushions of mosses, lichens, 106 

and algae (Borchhardt et al., 2017), and penguins occasionally wander here. The western 107 

side of the island, which is in the prevailing wind direction, is a lowland tundra marsh as 108 

well as an abandoned former penguin colony (Yang et al., 2019). Each year, large amounts 109 

of excrement are deposited on Ardley Island and leached into tundra soil by snowmelt from 110 

surrounding hills, and seawater is also brought inland by penguins. In general, sea animal 111 

colony tundra soils have higher gravimetric moisture and soil organic matter levels in 112 

comparison to normal tundra soils (soil properties are given in Table S1). 113 

 114 

Figure 1. Maps of the study area and sampling sites. (a) Antarctic continent and 115 
the location of the Great Wall Antarctic Research Station (red dot); (b) Sampling 116 
sites on the Fildes Peninsula, including the seal colony tundra SCS (S1-5) and 117 
normal upland tundra UTS (U1-5); (c) Sampling sites on the Ardley Island, 118 
including the western abandoned former penguin colony FPS (F1, F2), the eastern 119 
active penguin colony tundra PCS (P1-4), and the adjacent penguin-lingering 120 
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tundra PLS (PL1, PL2). The orange and black dots represent in situ flux 121 
measurement sites and soil sample collection sites, respectively. 122 

In situ CHCl3 flux measurements  123 

During the 36th Chinese National Antarctic Research Expedition, in situ static-chamber 124 

measurements (Figure S1) for CHCl3 fluxes were conducted from seal colony tundra (S1, 125 

S2; Histic Cryosols), penguin colony tundra (P1, P2; Ornithogenic Cryosols) and normal 126 

upland tundra (U1, U2; soil combinations of Turbic Cryosols and Hyperskeletic Leptosols) 127 

(Figure 1, orange dots). Air samples within the chamber were drawn into pre-evacuated air 128 

flasks (1-litre; Entech, California, United States) at 1 min, 16 min and 31 min through a 129 

stainless-steel tube extended into the chamber center point. During sampling, the chamber 130 

was vented through a tube to allow for pressure equilibrium and to avoid over-sampling 131 

the soil pore air (additional information on sampling procedure is given in Text S1). Each 132 

location had two replicate static-chamber measurements. 133 

CHCl3 within the flask samples were cryotrapped and analyzed by a gas 134 

chromatograph-mass spectrometer (GC/MS, Agilent 7890B/5973N, Agilent Technologies, 135 

California, United States). The samples were calibrated against a commercial standard 136 

mixture of TO-15 compounds (Linde PLC, New Jersey, United States). The CHCl3 molar 137 

fraction was reported in units of parts per trillion (p.p.t; the same hereafter). Based on daily 138 

standard measurements, the instrumental precision (1σ) for CHCl3 analysis was less than 139 

4%. Details on the cryotrapping procedure, capillary column selection and GC oven 140 

temperature setting are given in Supporting Information (Text S2). 141 

Laboratory soil incubation experiment  142 

Soil samples (top 5-10 cm) were collected from Ardley Island at penguin colony (P1-143 

P4), penguin-lingering area (PL1, PL2), and abandoned former penguin colony (F1, F2).  144 

Soils were also collected on Fildes Peninsula from normal upland tundra (U1-U5) and seal 145 
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colony (S1-S5) (Figure 1). Each sample (25 grams) had at least two replicates (n ³ 2) 146 

incubated as described below. 147 

 (i) Soil incubation under simulating summertime temperature. Each soil sample 148 

(U3-U5; S3-S5; F1-F2; PL1-PL2; P3-P4) was enclosed in glass Mason jars, and then 149 

incubated overnight at 4 ℃ using a water/ethylene glycol bath (VWR Model 1180S, 150 

Pennsylvania, United States) to simulate Antarctic mean summer temperature. A stainless-151 

steel lid to the glass jar was connected to a pre-evacuated stainless-steel tube (V ≈ 25 mL), 152 

which was further connected to the cryo-trapping system (Khan et al., 2012) of a gas 153 

chromatograph/mass spectrometer (GC/MS; Agilent 6890N/5973, Agilent Technologies, 154 

California, United States). The headspace air was drawn, cryofocused, and injected into 155 

the GC/MS at 1 min, 31 min and 61 min after sealing. Weekly calibration curves were 156 

constructed with a natural whole air standard collected and calibrated at the Scripps 157 

Institution of Oceanography, University of California at San Diego (SIO-98 calibration 158 

scale). The same standard was run before and after each batch of incubations to correct for 159 

the daily drift of the mass spectrometer signal. 160 

(ii) Incubation under anoxic condition and post thermal sterilization. Two sets of 161 

incubation experiments were carried out at 4 ℃ under anoxic conditions and post thermal 162 

sterilization, respectively, with the soil samples (U3-U5; S3-S5; F1-F2; PL1-PL2; P3-P4) 163 

to explore the potential effects of oxygen levels and soil microorganisms. The anoxic 164 

condition was induced by flushing and filling the jar with ultra-pure nitrogen gas (≥ 165 

99.999%, Praxair, Connecticut, United States); thermal sterilization was conducted by 166 

autoclaving the soil samples at 150 ℃ for 2 hours. The moisture was brought back by 167 

adding the same amount of distilled water as mass loss. The soil samples were incubated 168 

for CHCl3 flux following the same procedure above. 169 
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(iii) Temperature-gradient incubation. Soil samples (U3-U5; S3-S5; P3-P4) were 170 

also incubated along a temperature gradient between -4 and 12 ℃ at 4 ℃ intervals, in order 171 

to construct the relationship between CHCl3 fluxes and soil temperature, and to explore 172 

projected CHCl3 emissions under Antarctic warming. 173 

(iv) Freeze-thaw cycles (FTCs) incubation. To simulate Antarctic seasonal 174 

temperature cycles, soil samples (U1-U2; S1-S2, S4; P1-P2, P4) were incubated over three 175 

consecutive FTCs. Within each FTC, soil sample was frozen at -12 °C (mean wintertime 176 

temperature) for 8 hours, and then 20 ml of headspace air was extracted and analyzed every 177 

2 hours for four times. The sample was then thawed at 4 °C (mean summertime temperature) 178 

for 8 hours, after which the headspace air was analyzed following the same procedure. 179 

After each sampling, the jar was flushed with the standard whole air to conserve constant 180 

pressure within the jar. 181 

Flux calculation 182 

For CHCl3 productions, most of the flux measurements showed significant linear 183 

relationship (R2 > 0.70, p < 0.05) between CHCl3 concentrations in chamber/jar headspace 184 

and enclosure time. Therefore, net positive fluxes were calculated using the linear least 185 

squares fit between CHCl3 molar fraction and time, multiplied by the number moles of air 186 

in the static-chamber or glass jar, and then normalized to the surface area of soil (Jiao et 187 

al., 2018). 188 

𝐹 =
1
A
	
𝑑𝑐
𝑑𝑡
	𝑁+			×××××××××			(Eq. 1)		 189 

Where F represents the CHCl3 flux from the soil [nmol m-2 d-1]; A represents soil 190 

surface area; and Na is the number moles of air in the chamber or jar. For soil incubations, 191 

CHCl3 emission rates are normalized to the dry mass of soil, and reported in the unit of 192 
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pmol g-1 d-1. For linear regressions with low coefficients of determination (r2<0.70), the 193 

curve fits were not considered robust and the fluxes were treated as zero. 194 

CHCl3 degradation in soil was assumed to follow first-order kinetics to the ambient 195 

CHCl3 concentration (Khan et al., 2011).  196 

𝑑[𝑐]
𝑑𝑡

	= 	−𝑘[𝑐]				×××××××××			(Eq. 2)			 197 

Therefore, when uptake of CHCl3 was observed, a linear least squares fit was applied 198 

to the natural log of headspace CHCl3 concentration (ln[c]) over incubation time to get the 199 

first-order constant, k, which was then multiplied by background CHCl3 concentration in 200 

Southern Hemisphere (Prinn et al., 2018) to obtain in situ uptake rates. 201 

Analysis of soil properties 202 

Soil pH, gravimetric moisture content (Mc), total organic carbon (TOC), total nitrogen 203 

(TN), total phosphorus (TP) and chlorine (Cl) contents were also analyzed. The 204 

methodology is given in Supporting Information (Text S3).  205 

Results and discussion 206 

CHCl3 Emission from Antarctic Tundra  207 

In situ static-chamber measurements showed that normal upland tundra (UTS), seal 208 

colony tundra (SCS), and active penguin colony tundra (PCS) were CHCl3 sources, with 209 

emission rates of 16 ± 6 nmol m-2 d-1, 22 ± 11 nmol m-2 d-1, and 66 ± 20 nmol m-2 d-1, 210 

respectively (Figure 2a). Laboratory-based incubations showed that all Antarctic tundra 211 

soils emitted CHCl3, with mean emission rates ranging from 0.4 to 7.5 pmol g-1 d-1 (Figure 212 

2b), further supporting the in situ finding that Antarctic tundra was a CHCl3 source. 213 

This study provides the first CHCl3 flux measurements from the Antarctic tundra. The 214 

average CHCl3 flux (35 ± 27 nmol m-2 d-1) of different types of Antarctic tundra was within 215 
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the range of those from the Alaskan Arctic tundra (45 nmol m-2 d-1) (Rhew et al., 2008a), 216 

and Arctic glacial forefield tundra (74 ± 33 nmol m-2 d-1) (Macdonald et al., 2020); the flux 217 

from penguin colony tundra (66 ± 20 nmol m-2 d-1), where the highest emission rates were 218 

observed in this study, was higher than or close to those from Arctic tundra.  219 

 220 

Figure 2. (a) Bar plots of in situ measurements on chloroform (CHCl3) fluxes 221 
from normal upland tundra (UTS, n = 4), seal colony tundra (SCS, n = 4), and 222 
active penguin colony tundra (PCS, n = 4) in coastal Antarctica. (b) Box plots of 223 
laboratory-based measurements on chloroform (CHCl3) emission rates from the 224 
soils of normal upland tundra (UTS, n = 8), seal colony tundra (SCS, n = 8), active 225 
penguin colony tundra (PCS, n = 7), penguin-lingering tundra (PLS, n = 6) and 226 
abandoned former penguin colony tundra (FPS, n = 6). The different lowercase 227 
letters (a, b, or c) indicate significant differences between the means (LSD, p < 228 
0.05).  229 

The average CHCl3 fluxes from Antarctic tundra were an order of magnitude smaller 230 

than those from several mid- and low- latitudes ecosystems, such as temperate peatland 231 

(258 ± 288 nmol m-2 d-1) (Khan et al., 2012), pasture (241 ± 221 nmol m-2 d-1) (Cox et al., 232 

2004), subtropical degraded forested wetland (209 ± 183 nmol m-2 d-1) (Jiao et al., 2018; 233 

Wang et al., 2016), and tropical rice paddies (201 nmol m-2 d-1) (Khalil et al., 1998). These 234 

results from such diverse ecosystems (Table S2) suggest that soils globally are important 235 

and widespread sources for atmospheric CHCl3, even in coastal Antarctica. 236 

Exploring CHCl3 production mechanism 237 
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 238 

Figure 3. (a) Bar plots of chloroform (CHCl3) emission rates from normal upland 239 
tundra (UTS), seal colony tundra (SCS), active penguin colony tundra (PCS), 240 
penguin-lingering tundra (PLS) and former penguin colony (FPS) based upon 241 
laboratory incubations under simulated natural conditions, N2-anoxic conditions 242 
and post thermal treatment. (b) Linear correlation between chloroform (CHCl3) 243 
emission rates from coastal Antarctic tundra soils under ambient oxic conditions 244 
and N2-anoxic conditions. 245 

In this study, soil CHCl3 emission rates significantly declined to near zero after thermal 246 

sterilization (Figure 3a). A number of studies have shown that CHCl3 formation within soil 247 

may be primarily of biotic origins (Bastviken et al., 2009; Breider & Hunkeler, 2014a; 248 

Macdonald et al., 2020; Ruecker et al., 2014, 2015). Chloroperoxidases (CPOs), commonly 249 

found in soil fungi, such as Caldariomyces fumago and Peniophora pseudopini, are capable 250 

to produce hypochlorous acid (HOCl), which can chlorinate soil organic matter to produce 251 

intermediate organohalogens (such as trichloroacetyl-containing compounds), and 252 

subsequently cleave to yield CHCl3 (Albers et al., 2017; Breider & Hunkeler, 2014a, 2014b; 253 

Wever & Barnett, 2017). The enzymatic activities of various CPOs are all suppressed at 254 

high temperatures. For example, the activity of iron-CPO in Caldariomyces fumago is 255 

reduced to almost 0% after a 15-minute incubation at 60 °C (Pickard & Hashimoto, 1988). 256 

Thus, the dramatic reduction of emissions post thermal sterilization suggests that the 257 

observed CHCl3 production in Antarctica tundra soils was predominantly by enzymatic or 258 

microbial activities. However, on the other hand, thermal sterilization may have altered the 259 
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chemical composition of soil organic matter to some extent, such as by decomposing or 260 

volatilizing labile carbon compounds, and inhibited CHCl3 production potential of abiotic 261 

process which is usually catalyzed by Fe3+ (Huber et al., 2009). 262 

The optimal pH for chlorinating activities of CPOs was around 3-4 (Asplund et al., 263 

1993; van Schijndel et al., 1994), lower than the soil pH of Antarctic tundra (Table S1). 264 

Consistent with this, an inverse proportional relationship was observed between CHCl3 265 

fluxes and soil pH across different types of Antarctic tundra (r = -0.72, p = 0.008, Figure 266 

S2, S3). 267 

CHCl3 emission rates from Antarctic tundra soils under anoxic conditions (0.5 ± 0.4 268 

pmol g-1 d-1) declined to about 14.3 % of that under oxic conditions (3.5 ± 3.4 pmol g-1 d-269 

1), but still conserved a strong linear correlation (r = 0.94, p < 0.001) with those under 270 

ambient conditions (Figure 3), suggesting that the production of CHCl3 can occur both 271 

aerobically and anaerobically, although the aerobic production mechanism dominates. 272 

Most of the CPOs are heme-dependent, or prosthetic groups of transition metals are in 273 

oxidized states, such as iron (III) or vanadium (V) (Breider & Hunkeler, 2014a; Wever & 274 

Barnett, 2017).  An oxic environment is essential to keep these transition metals in 275 

oxidation states for soil CHCl3 production. Laboratory incubations of soil samples from a 276 

coniferous forest confirmed that O2 is required in the dominant CPO-mediated chlorination 277 

process (Bastviken et al., 2009). The anaerobic environment may have reduced the 278 

oxidation states of transition metals, and subsequently suppressed the enzymatic pathway 279 

of CHCl3 formation in Antarctic tundra soils.  280 

Effects of penguin activities on tundra CHCl3 emission 281 

In situ CHCl3 fluxes showed that the average fluxes from penguin colony tundra were 282 

more than 3-4 times higher than those from seal colony tundra and normal upland tundra 283 

(Figure 2a). For lab-based incubations, the highest emission rate was observed from the 284 
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abandoned former penguin colony (FPS, mean 7.5 ± 4.1 pmol g-1 d-1) and the active 285 

penguin colony (PCS, mean 6.5 ± 1.9 pmol g-1 d-1), followed by the adjacent penguin-286 

lingering tundra (PLS, mean 3.5 ± 1.2 pmol g-1 d-1). These values were about 3-6 times 287 

higher than normal upland tundra (UTS) (1.2 ± 1.3 pmol g-1 d-1). These results indicated 288 

that penguin activities may have increased the CHCl3 emission from tundra soils. 289 

Microorganisms, which are responsible for CHCl3 production, are often unevenly 290 

distributed and can lead to differences in CHCl3 forming activity (Albers et al., 2011). 291 

Ornithogenic soil on Ardley Island affected by penguin activities was more abundant in 292 

organic carbon (TOC), nitrogen (TN) and phosphorus (TP) than other tundra soils (Table 293 

S1), which were major factors influencing microbial populations in Antarctic soil 294 

(Tscherko et al., 2003; Wang et al., 2019; Zhu et al., 2015). Fungi abundance analysis of 295 

the Antarctic tundra soil samples showed that the majority of the microorganisms was in 296 

the phylum of Ascomycota and Basidiomycota, to which most of CPOs-related fungi 297 

belonged (Durán et al., 2019). Therefore, the higher CHCl3 emission rates from penguin-298 

related tundra may be attributed to the colonization of CPO-related microorganisms in this 299 

organic matter rich soil. 300 

CHCl3 fluxes across all the types of tundra soils also showed significant correlations (p 301 

< 0.05) with TOC, TP, Cl, and Mc (Figure S2, S3). Compared to seal colony soil and 302 

normal upland tundra soil, ornithogenic soil within the penguin colony and its adjacent 303 

tundra were much richer in organic carbon (Table S1), which can provide organic 304 

substrates for CPOs-catalyzed CHCl3 production. The high frequency transit of penguins 305 

between the sea and tundra brings seawater inland, and the sea breeze also blew in abundant 306 

salt aerosols onto Ardley Island (especially the western side), which increased soil chloride 307 

and moisture. All these factors induced by penguin activities and wind patterns potentially 308 

led to the enhanced CHCl3 emissions from tundra populated with penguins. 309 
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Temperature effects on CHCl3 emission  310 

 311 

Figure 4. Chloroform (CHCl3) emission rates based on laboratory soil incubations 312 
(a) at different temperatures; and (b) during three consecutive freeze-thaw cycles 313 
(FTCs) between -12 °C and 4 °C. The inserted plot showed the comparison of 314 
CHCl3 emission rates in the first FTC. The incubated samples were collected from 315 
normal upland tundra (UTS), seal colony tundra (SCS), and active penguin colony 316 
tundra (PCS). 317 

The temperature-gradient incubation experiments showed that Antarctic tundra soils 318 

were a source for CHCl3 across the entire temperature range of -4 ~ 12 °C (Figure 4a). All 319 

tundra soils showed maximum production rates of CHCl3 at 4 °C (close to local mean air 320 

temperature in summer); mean CHCl3 emission rates decreased to close to zero at -4 °C 321 

and increased significantly when temperature rose above zero. Compared to 4 °C, CHCl3 322 

emission rates from tundra soils decreased at 8 °C and 12 °C, but they were still higher 323 

than those at -4 °C. The Antarctic region is highly sensitive to climate change (Bockheim 324 

et al., 2013; Schofield et al., 2010), and Western Antarctica, especially the Antarctic 325 
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Peninsula, has been experiencing the highest temperature increase (Bromwich et al., 2013; 326 

Vaughan et al., 2003). With additional warming, more days above freezing can be expected, 327 

which would influence the annual pattern of CHCl3 emissions from Antarctic tundra.  328 

Freeze-thaw cycles (FTCs) incubations showed that CHCl3 emission rates were 3.3 329 

times higher during thaw than during freeze under the first FTC for PCS, while for UTS 330 

and SCS, the emission rates were about 2.5 times higher (Table S3). As permafrost thaws, 331 

the increase of soil moisture and temperature can enhanced soil microbial activity and 332 

organic material release for microorganisms to access (Ludwig et al., 2006; Schimel & 333 

Clein, 1996). However, CHCl3 emission rates did not significantly differ between the 334 

freeze and thaw incubations in the two following FTCs, with rates remaining low, similar 335 

to those during the first freeze period, but CHCl3 emission rates from PCS were 336 

consistently higher than those from SCS and UTS (Figure 4b, Table S3). The lack of 337 

significant CHCl3 emission rates in the two following FTCs is not necessarily predicted. It 338 

might be attributed to the depletion of substrates in the soil, such as chloride ions, iron (III), 339 

etc. More likely, the inhibited CHCl3 emission rates in the following cycles may be 340 

attributed to a rapid FTC-induced reduction of microbial populations. A single rapid FTC 341 

can kill up to half of the soil microorganisms, leading to either reduced decomposition rates 342 

or to immobilization of nutrients tied up in the microbial biomass (Larsen et al., 2002; 343 

Schimel & Clein, 1996). Hence, the seasonal pattern of CHCl3 emission needs to be 344 

considered when quantifying the annual fluxes. 345 

Regional Assessment  346 

Given the spatial and temporal variabilities of CHCl3 fluxes and the limited number of 347 

measurements, the attempt to extrapolate to the continental scale would introduce 348 

significant uncertainties. More in situ studies are needed to capture diurnal, seasonal, and 349 

spatial variations of CHCl3 emissions. However, since no prior fluxes have been measured 350 
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from Antarctic environment, a simple quantitative upscaling of these first-reported CHCl3 351 

fluxes is still worthwhile in assessing its influence on regional atmospheric compositions 352 

and on global CHCl3 inventory. 353 

Assuming the CHCl3 fluxes measured from this study are representative of the 7.2 × 354 

1010 m2 ice-free tundra in Antarctic continent (Lee et al., 2017; Terauds & Lee, 2016), 355 

among which 30% is colonized or influenced by penguins or other sea animals (Zhu et al., 356 

2008), during the austral summertime (assuming an active period of 100 days), and CHCl3 357 

flux in winter (the other 265 days) accounts for one-third of that based upon the FTCs 358 

experiments, it is estimated that Antarctic tundra emits 0.08 ± 0.02 Gg of CHCl3 per year 359 

naturally, which constitutes a small fraction (< 1%) of global CHCl3 terrestrial sources. 360 

The size of this CHCl3 source is minor compared to other sources, largely due to the 361 

relatively small area of ice-free tundra in the Antarctica. Therefore, it may not exert a 362 

significant impact on global atmospheric CHCl3 concentrations, such as mid-/low- 363 

latitudes and the other hemisphere. However, it may have a relatively greater influence on 364 

local CHCl3 concentrations, especially given the relatively small portion of the troposphere 365 

in the Antarctic region. On the other hand, the rapid warming of the Antarctic continent is 366 

expanding the area of ice-free tundra and influencing the size of penguin populations and 367 

colonies (Barbraud et al., 2020; Lee et al., 2017; Lyver et al., 2014). Hence, the relative 368 

contribution to atmospheric CHCl3 from tundra ecosystems will vary in response to these 369 

changes in the future.  370 
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