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ENVIRONMENTAL MICROBIOLOGY
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Abstract
Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no
other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring
the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated
that acetoclastic methanogens from the genus Methanosarcina were enriched after 40 days of acetate amendment. The
increased abundance of Methanosarcina corresponded with an accumulation of methane in the groundwater. In order to
determine whetherMethanosarcina species could be participating in U(VI) reduction in the subsurface, cell suspensions of
Methanosarcina barkeri were incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was
reduced by metabolically active M. barkeri cells; however, no U(VI) reduction was observed in inactive controls. These
results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-
contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that
Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary
environments.

Keywords Uranium bioremediation .Methanogenesis . U(VI) reduction . Acetate amendment .Methanosarcina

Introduction

Injection of acetate into the groundwater of uranium-
contaminated aquifers has been shown to be an effective
way to stimulate microbially mediated reductive precipita-
tion of soluble U(VI) to poorly soluble U(IV) [1–3]. Awide
diversity of microorganisms are capable of U(VI) reduction
[4–9] but only Geobacter species have been shown to re-
duce U(VI) with acetate as an electron donor. Although
growth with acetate as the electron donor and U(VI) as
the electron acceptor is possible [4], the low concentrations
of U(VI), even in heavily contaminated subsurface environ-
ments requires that microbes use other forms of respiration
as their primary means of energy conservation [10].
Geobacter species grow rapidly in the initial phases of sub-
surface uranium bioremediation with added acetate because
Fe(III) oxides are typically abundant in subsurface environ-
ments [1, 11–14] and Geobacter species outcompete other
Fe(III) reducers under conditions of high acetate
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availability [15, 16]. However, the potential for other mi-
croorganisms to contribute to acetate oxidation coupled to
U(VI) reduction, especially after the Fe(III) oxides that sup-
port Geobacter growth are depleted, has not been intensive-
ly investigated. Sulfate reducers that can reduce U(VI) have
been identified, but none of these are known to use acetate
as an electron donor [5, 7, 9, 17]. Furthermore, relying on
sulfate reducers to reduce U(VI) may not be a good long-
term strategy because acetate additions can rapidly deplete
sulfate from groundwater [18–20].

Unlike Fe(III)- and sulfate-reducers, methanogens can
thrive for long periods of time in organic-rich environments
without external inputs of electron acceptors because they can
conserve energy either from acetate dismutation or from the
reduction of carbon dioxide, an electron acceptor generated by
fermentation in their environment. If methanogens were capa-
ble of U(VI) reduction then this would make long-term in situ
bioremediation of U(VI) a more attractive practice. To our
knowledge, U(VI) reduction by methanogens has not been
previously described. Previous studies have shown that
methanogens can transfer electrons to various Fe (III) forms
[21–26], as well as vanadate [27], molecular sulfur [28] and
quinones [22, 29]. However, acetate has not been shown to
serve as an electron donor for these processes.

Evidence for methane production in response to acetate
amendments during in situ uranium bioremediation [30] led
us to investigate the potential for methanogens to further con-
tribute to uranium bioremediation. The results suggest that
Methanosarcina species that can couple the oxidation of ace-
tate to the reduction of U(VI) might aid in the bioremediation
process.

Materials and Methods

Description of Sampling Site

The Rifle 24-acre experimental site is located close to the
Colorado River, on the premises of an earlier uranium ore
processing facility. Uranium concentrations in the water
table of the Rifle aquifer are 2–8 times higher than the
drinking water contamination limit (0.126 μM) established
by the uranium mill tailings remedial action (UMTRA). A
detailed review of geochemical characteristics of the site
has already been published [31] and in situ bioremediation
of U(VI) has been intensely studied at this site [1–3].
Similar to previous years, acetate was injected into the sub-
surface at a concentration of ~ 15 mM between August and
October, 2011 and monitored from six different wells [32].
Groundwater and sediments for this study were collected
from well CD-01 (a down gradient well) and a background
well (CU-01) that never received any acetate additions.

Nucleic Acid Extraction and cDNA Preparation

For nucleic acid extraction, it was first necessary to concen-
trate 50 L of groundwater by impact filtration on 293 mm
diameter Supor membrane disc filters with pore sizes of 1.2
and 0.2 μm (Pall Life Sciences). All filters were placed into
whirl-pack bags, flash frozen in a dry ice/ethanol bath, and
shipped on dry ice back to the laboratory where they were
stored at – 80 °C. RNA was extracted from the filters using
a modified phenol–chloroform method, as previously de-
scribed [12]. DNA was extracted from the filters with the
FastDNA SPIN Kit for Soil (MP Biomedicals, Santa Ana,
CA) according to the manufacturer’s instructions.

Extracted RNA and DNA were quantified with a
NanoDrop spectrophotometer (Thermo Scientific,
Wilmington, DE, USA) and stored at – 80 °C until further
analyses. A DuraScript enhanced avian RT single-strand syn-
thesis kit (Sigma, Sigma-Aldrich, St Louis, MO, USA) was
used to generate cDNA from RNA, as previously described
[32]. In order to ensure that RNA samples were not contam-
inated with DNA, PCR with primers targeting the 16S rRNA
gene was conducted on RNA samples that had not undergone
reverse transcription.

PCR Amplification Parameters and Microbial
Community Analysis

For clone library construction, fragments from the mcrA gene
which codes for the large subunit of methyl CoM reductase
and the 16S rRNA gene were amplified from cDNA with
mcrAf/mcrAr primers [33] and with 344f/915r [34] (ESM 1:
Supplementary Table S1). Amplicons were ligated into the
pCR-TOPO2.1 TA cloning vector according to the manufac-
turer’s instructions (Invitrogen, the Netherlands). Inserts from
the recombinant clones were directly amplified by PCR with
M13 primers, purified and sequenced at the University of
Massachusetts sequencing facility.

Quantification of Methanosarcina mcrA Transcript
Abundance

The quantitative PCR primer set (msa_mcrA173f/271r)
targeted mcrA genes from Methanosarcina species found in
the Rifle subsurface and was designed according to the man-
ufacturer’s specifications (Applied Biosystems) (ESM 1:
Supplementary Table S1). Quantitative PCR amplification
and detection was performed with the 7500 Real Time
System (Applied Biosystems) using cDNA made by reverse
transcription from total RNA extracted from groundwater col-
lected during the bioremediation experiment. Each reaction
mixture consisted of a total volume of 25 μl and contained
1.5 μl of the appropriate primers (stock concentration
1.5 μM), 5 ng cDNA, and 12.5 μl Power SYBR Green PCR
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Master Mix (Applied Biosystems). All qPCR experiments
followed MIQE guidelines [35] and qPCR efficiencies were
98%. Optimal thermal cycling parameters consisted of an ac-
tivation step at 50 °C for 2 min, an initial 10 min denaturation
step at 95 °C, and 50 cycles of 95 °C for 15 s and 60 °C for
1 min. A dissociation curve generated by increasing the tem-
perature from 58 to 95 °C at a ramp rate of 2% showed that the
PCR amplification process yielded a single predominant peak,
further supporting the specificity of the qPCR primer pair.

Phylogenetic Analysis

mcrA gene sequences were compared to Genbank nucleotide
and protein databases with the BLASTn and BLASTx algo-
rithms [36, 37]. Alignments were generated withMAFFT [38]
and PRANK [39] algorithms. The phylogenetic tree was in-
ferred with the Maximum Likelihood method using MEGA7
software [40]. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (100
replicates) is shown next to the branches [41]. All positions
with less than 95% coverage were eliminated and a total of
117 positions were considered in the final dataset.

Nucleotide sequences ofmcrA genes used for phylogenetic
analyses have been deposited in the Genbank database under
accession numbers MF616623-MF616647.

U(VI) Reduction Studies

Methanosarcina barkeri (DSM 800) was selected for U(VI)
reduction studies because sequences most similar to this strain
were significant members of the Methanosarcina community
(37% of the sequences). Although M. barkeri was isolated
from an anaerobic sewage digester [42], it grows in freshwater
medium and can utilize acetate as a substrate for
methanogenesis, similar to methanogens likely to be enriched
from the acetate-amended Rifle aquifer. In addition, the ma-
jority of studies examining reduction of extracellular electron
acceptors by Methanosarcina have focused on M. barkeri
[22–25].

Batch cultures of 500-mL M. barkeri were grown under
strictly anaerobic conditions [42] onmodified DSMZmedium
120 [43] with acetate (40 mM) as substrate, and incubated at
37 °C for ~ 3 weeks. Cultures were harvested when they
reached an optical density at 600 nm of 0.19. All cell suspen-
sion preparations were performed in an anaerobic chamber to
minimize oxygen exposure. Cells were pelleted by centrifu-
gation for 10 min at 4000 × g in a Sorval RC 5B Plus centri-
fuge. These pellets were then washed twice in anoxic phos-
phate depleted buffer (PDB), which consisted of the following
salts 0.2 g/L MgSO4 × 7H2O, 0.025 g/L CaCl2 × 2H2O, 1 g/L
NaCl, and 2 g/L NaHCO3. Cell pellets were then resuspended
in 10-mL anoxic PDB to a cell density of ~ 0.4–0.5 at 600 nm.
To generate heat-killed cells, 3 mL of this suspension was

autoclaved at 122 °C for 30 min. Six replicates were prepared
by diluting 1 mL of the cell-suspension in 9-mL PDB buffer.
For the heat-killed incubation, 1-mL autoclaved cell suspen-
sion was diluted in 9-mL PDB buffer. Sulfide (0.5 mM) was
added to all inoculated tubes to ensure anoxic conditions.
Acetate (40 mM) was also added to the tubes to fuel methan-
ogenic activity. Triplicate live cell suspensions (active cells)
and triplicate heat-killed controls (heat-killed cells) were in-
cubated at 37 °C. The other three live cell suspensions were
incubated at 4 °C (inactive cells). All cell suspensions were
incubated with 0.2 mM U6+ prepared from a stock of uranyl-
acetate (5 mM). Cell densities were determined with a bench
top spectrophotometer, by absorbance measurements at
600 nm with mili-Q water as a blank.

The ability ofMethanosarcina barkeri to reduce U(VI) was
verified with U(VI) depletion measurements carried out on
different cell suspensions over the course of 24 h. Samples
(0.1 mL) were retrieved anaerobically and diluted in 14.9 mL
anoxic bicarbonate (100 mM) and 14.9 mL Uraplex solution.
Concentrations of U(VI) were then measured with a kinetic
phosphorescence analyzer, as previously described [44].

Chemical Analyses

Groundwater samples for geochemical analyses were collect-
ed after purging 12 L of groundwater from the wells with a
peristaltic pump. The phenanthroline method [45] was used to
determine ferrous iron concentrations. Sulfate and thiosulfate
concentrations were measured with an ion chromatograph
(ICS-2100, Dionex, CA) equipped with an AS18 column un-
der isocratic elution with 32 mM KOH as the eluent. Acetate
concentrations were determined with a high performance liq-
uid chromatograph equipped with an ion exclusion HPX-87H
column (Biorad, Hercules, CA) using 8 mM sulfuric acid as
eluent. In situ methane production was monitored as previous-
ly described [30]. Methane in the headspace of sediment/
groundwater incubations was measured as previously de-
scribed [43] using a gas chromatograph with a flame ioniza-
tion detector (Shimadzu, GC-8A).

Results and Discussion

Evidence for Acetoclastic Methanogenic Activity
During Acetate Amendments

Methanogens that utilize acetate are restricted to the order
Methanosarcinales [46]. In order to determine whether the
addition of acetate could promote the growth of acetoclastic
methanogens in a uranium-contaminated aquifer, the activity
of Methanosarcinales was investigated by monitoring
Methanosarcina mcrA gene transcript abundance. Before
day 39, fewer than two Methanosarcina mcrA mRNA
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transcripts were detected per mcrA gene copy number in the
groundwater (Fig. 1a). However, by day 46, Methanosarcina
mcrA transcripts increased by four orders of magnitude to
1.7 × 104 transcripts per gene copy. This increase in
Methanosarcina coincided with a steep decline in groundwa-
ter sulfate concentrations (Fig. 1b). Although sulfate reducers
and methanogens compete for acetate [47, 48], high concen-
trations of acetate in the groundwater (Fig. 1c) made it unlike-
ly that growth of Methanosarcinales in the subsurface was
being restricted by competition for acetate.

The increase in Methanosarcinales coincided with an in-
crease in free sulfide in the groundwater, producing highly
reducing conditions that favor the growth of methanogens.
Another consideration is the slow growth rate of
Methanosarcinales, which might have limited their growth
after acetate injections even under the most favorable

conditions. The lack of sufficient reducing conditions coupled
with the slow growth rate of Methanosarcinales may explain
the finding that although acetate concentrations were high
during the Fe(III) reducing phase of the experiment (days 0–
33) (Fig. 1c), the number of Methanosarcinales sequences
stayed low until sulfate reduction became the primary subsur-
face metabolism (Fig. 1a, d). The increase in abundance of
Methanosarcinales was later followed by a decline, which
coincided with acetate limitation associated with the halt in
acetate injections on day 68.

Measurements of methane concentrations in the groundwa-
ter were not initiated until day 79 (Fig. 1e). The high concen-
tration of methane at this time demonstrated that methanogens
had been active in the preceding days.Methane concentrations
steeply declined over time coincident with the steep decline in
acetate availability.
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Fig. 1 The injection of acetate into a uranium-contaminated aquifer,
triggered acetate utilization coupled with iron reduction, sulfate
reduction, and methanogenesis. a Quantitative RT-PCR of
Methanosarcina mcrA mRNA transcripts normalized against
Methanosarcina mcrA gene copy numbers recovered in the groundwater
over the course of 100 days. b Concentrations of hydrogen sulfide (μM)
and sulfate (mM) detected in the groundwater. cConcentrations of acetate

(mM), Fe(II) (μM), and U(VI) (μM) detected in the groundwater. d
Proportion of mcrA sequences from various methanogenic families
found in cDNA clone libraries assembled from RNA extracted from
groundwater at different points during the experiment. e Concentrations
of methane and acetate in an active well (CD-01) and a background well
(CU-01) on days 79, 89, and 100. For further reference to geochemical
parameters and cDNA clone libraries, see Holmes et al. 2014
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Phylogenetic Analysis of the In Situ Methanosarcina
Community

Methanosarcinales accounted for the majority of methanogen-
ic mcrA transcripts recovered from the groundwater on days
46 through 81 (Fig. 1d). The most abundant Methanosarcina
mcrA cDNA sequences recovered from groundwater during

this period clustered with M. horonobensis (48.2%) and M.
barker i (37% of the sequences) (Fig . 2) . Other
Methanosarcina mcrA cDNA sequences detected included se-
quences most similar to M. mazei (11.1% of the sequences),
andM. acetivorans (3.7% of the sequences). More than half of
these sequences clustered with acetoclastic Methanosarcina
that are unable to use formate or hydrogen as substrates for
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Fig. 2 Phylogenetic tree
generated with the maximum
likelihood algorithm comparing
translated mcrA mRNA transcript
sequences to McrA protein
sequences from known
methanogenic archaea. Bootstrap
values were generated with 100
replicates and Methanobacterium
formicum, Methanothermobacter
marburgensis, and
Methanobrevibacter
ruminantium were used as
outgroups

Fig. 3 UraniumU(VI) reduction by metabolically activeMethanosarcina
cells. Metabolically active cells which were defined as such because they
were producing methane from acetate were able to convert 51% of U(VI)
to U(IV) (a) whereas metabolically inactive cells kept at 4 °C in the same
medium did not producemethane and also did not convert U(VI) to U(IV)

(b), and neither did autoclaved cell suspensions from the same culture (c).
The difference between original concentrations of U(VI) and the amount
recovered in metabolically active cell suspensions after 24 h of exposure
was statistically different (p = 0.0003)
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growth (i.e., M. horonobensis and M. acetivorans) [49, 50]
suggesting that they might be growing during the in situ
U(VI) experiment via acetate dismutation.

U(VI) Reduction by Metabolically Active
Methanosarcina Cells

To evaluate whether Methanosarcina species might be capa-
ble of U(VI) reduction, cell suspensions of M. barkeri were
incubated with acetate as the electron donor and 200-μM
U(VI) as a potential electron acceptor. Within 1 day, the cells
produced 1.6-mM methane while depleting 51% of the pro-
vided U(VI) (Fig. 3a). In contrast, cell suspensions incubated
at 4 °C or autoclaved prior to incubation, did not produce
methane or remove U(VI) (Fig. 3b, c). These results indicated
that U(VI) removal could be attributed to U(VI) reduction by
metabolically active cells.

Implications

Our findings that acetate additions during in situ uranium
bioremediation promotes the growth of Methanosarcina
and that a Methanosarcina can reduce U(VI) has important
implications for the design of long-term in situ uranium
bioremediation strategies. Previous interpretations of
U(VI) reduction during acetate-amendment at the Rifle,
Colorado study site have focused on the U(VI) reduction
capacity of Geobacter species because of their prevalence
at the site [1–3, 51–54] and because the sulfate-reducers
that are enriched with acetate amendments [18, 19, 55,
56] are not likely to be effective U(VI) reducers. In fact,
there has yet to be a description of an acetate-utilizing sul-
fate-reducing microorganism capable of U(VI) reduction.
The results presented here suggest that Methanosarcina
may also contribute to U(VI) reduction in the field experi-
ments. Unlike Geobacter species, Methanosarcina do not
require an external electron acceptor for acetate metabo-
lism. Therefore, in long-term in situ uranium bioremedia-
tion, Methanosarcina may emerge as an important micro-
bial catalyst for uranium removal.

Furthermore, microbial reduction of U(VI) may play an
important role in the uranium geochemistry of a diversity of
sedimentary environments [4]. Thus, the potential contribu-
tion ofMethanosarcina to U(VI) reduction in anaerobic envi-
ronments should be considered.
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