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Abstract  

Stresses applied to the spinal column are distributed between the intervertebral disc and facet 

joints. Structural and compositional changes alter stress distributions within the disc and between 

the disc and facet joints. These changes influence the mechanical properties of the disc joint, 

including its stiffness, range of motion, and energy absorption under quasi-static and dynamic 

loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the 

relationship between biochemical composition and torsion mechanics is not well understood. 

Therefore, the first objective of this study was to investigate the role of facet joints in torsion 

mechanics of healthy and degenerated human lumbar discs under a wide range of compressive 

preloads. To achieve this, each disc was tested under four different compressive preloads (300-

1200 N) with and without facet joints. The second objective was to develop a quantitative 

structure-function relationship between tissue composition and torsion mechanics. Facet joints 

have a significant contribution to disc torsional stiffness (~60%) and viscoelasticity, regardless 

of the magnitude of axial compression. The findings from this study demonstrate that annulus 

fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG 

content with degeneration reduced torsion mechanics by more than an order of magnitude, while 

collagen content did not significantly influence disc torsion mechanics. The biochemical-

mechanical and compression-torsion relationships reported in this study allow for better 

comparison between studies that use discs of varying levels of degeneration or testing protocols 

and provide important design criteria for biological repair strategies. This article is protected by 

copyright. All rights reserved 
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Introduction 

 The intervertebral disc provides the spine with flexibility and stability over a wide range 

of motions. Stresses applied to the spinal column are distributed between the intervertebral disc 

and surrounding structures, including facet joints, which are diarthrodial joints posterior to the 

vertebral column.1 Facet joints play a crucial role in restricting excessive motions and thereby 

protecting the disc from mechanical overloading and structural damage.2 Compression is the 

primary loading modality placed on the disc, but the disc also experiences complex coupled 

motions, including bending and axial rotation. Large complex loads have been shown to cause 

tissue remodeling and increase the risk of micro-damage and failure.3-5 Moreover, there is a 

higher prevalence of lower back pain in people that experience large daily loads with rotation, 

including factory workers, athletes, and military service personnel.6-9 While extensive research 

has been performed to understand changes in compressive mechanics with degeneration, there 

have been few studies investigating disc torsion mechanics with degeneration.  

 The relative contribution of load sharing between the intervertebral disc and facet joints 

depends on posture and loading modality.10,11 It is difficult to evaluate the effects of injury or 

degeneration on disc mechanics, separate from degenerative changes in the facet joints. 

Therefore, most biomechanical studies remove the facet joints to study disc mechanics separately 

from the entire disc-joint. The role of facet joints on disc-joint mechanics has been investigated 

through serial testing of the disc-joint before and after facet joint removal (i.e., facetectomy).12-16 

These studies showed that facet joints support up to 25% of axial compressive forces15 and 40-

65% of rotational and shear forces in healthy disc-joints.15,16 Characterizing the contribution of 

the facet joints for healthy and degenerated human discs under axial rotation is important for 

understanding observed changes in torsional behavior of the spinal column in vivo.17 
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 Structural and compositional changes, with injury or degeneration, alter stress 

distribution within the disc and between the disc and facet joints.14,18-20 These changes influence 

the mechanical properties of the disc joint, including its stiffness, range of motion, and energy 

absorption under quasi-static and dynamic loads,19,21-23 and increase the likelihood of annular 

tears.24 For example, radial tears, which are precursors for herniated or bulging discs, reduce 

joint stiffness in torsion, lateral bending, flexion, and extension.21 Mild to moderate degeneration 

has also been shown to decrease stiffness in torsion, but joint stiffness increases again with 

severe degeneration.22,23 Assessment of disc degeneration in these early studies has been largely 

limited to visual inspection of gross morphology or radiographic images; therefore, the 

relationship between tissue composition and torsion mechanics is not well understood.  

 The objectives of this study were to 1) investigate the role of facet joints in torsion 

mechanics of healthy and degenerated human lumbar disc joints under a wide range of 

compressive preloads, and 2) develop a quantitative structure-function relationship between 

tissue composition and torsion mechanics. We hypothesize that torsional mechanical properties 

of human lumbar discs will depend on the presence of facet joints, axial compressive preload, 

and biochemical composition of the disc’s subcomponents (nucleus pulposus and annulus 

fibrosus). 

Methods 

Specimens and preparation 

 Seven human lumbar spine segments were obtained using an IRB approved protocol (age 

range: 43 – 80 years; Table 1). T2-weighted magnetic resonance images were obtained from the 

mid-sagittal plane to grade disc degeneration based on the Pfirrmann scale.25 After imaging, the 

surrounding musculature and ligaments were removed with a scalpel. Bone-disc-bone motion 
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segments with intact facet joints were prepared from the L3-L4 and/or L4-L5 levels by cutting 

through the mid-vertebrae with an industrial bone saw (n = 10; Model no: MS-72ALV, General 

Slicing Red Goat Disposers, Murfreesboro, TN). Samples were potted in 

polymethylmethacrylate bone cement (PMMA, Bosworth Co., Skokie, IL) to ensure parallel 

loading surfaces for mechanical testing. Prior to potting, five screws were inserted into the 

superior and inferior vertebral bodies to improve attachment between the vertebral body and 

bone cement. Specimens were wrapped with saline-soaked gauze and stored in plastic bags at -

20°C until testing. Before testing, samples were hydrated in 0.15 M phosphate buffer solution 

(0.15 M PBS) at 4º C for 24 hours and allowed to equilibrate to room temperature.  

Mechanical testing 

 Potted specimens were mounted onto a servohydraulic materials-testing machine (Bionix 

858, MTS Corp.) consisting of a custom-built bath that allowed specimens to remain hydrated 

during testing (0.15 M PBS). Specimens were secured in place with evenly spaced screws that 

attached the grips to the bone cement (30º spacing). Each test consisted of an axial compression 

preload followed by axial rotation applied through the disc’s geometric center. First, axial 

compression (300, 600, 900 and 1200 N) was applied at a rate of 20 N/sec and held for 2 hours to 

allow for creep deformations. The range of compressive preloads was selected to represent low 

to moderate physiological stresses.26 Following creep, ten cycles of cyclic rotation (haversine 

function; ± 2º at 0.05 Hz) were applied based on values reported for moderate in vivo rotations.17 

Each sample was tested under four axial compressive preloads, applied in a random order, with 

full recovery between tests.27 Following intact motion segment testing, facet joints were removed 

with the bone saw and samples were retested under the same loading conditions. Force, 

displacement, rotation angle, and torque were recorded during each test. 
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Disc Geometry 

After mechanical testing, each disc was isolated from the vertebral bodies using a scalpel.  

The axial plane was imaged with a digital camera to measure disc area, anterior-posterior width, 

and lateral width using a custom-written algorithm in Matlab (Mathworks, Inc.).28 Disc height 

was measured with digital calipers and reported as an average of measurements taken from five 

locations: posterior, anterior, left and right lateral sides, and the center of the disc. The applied 

axial stress was calculated as the compressive load divided by cross-sectional area. Digital 

images were graded using the Thompson scale,29 and results of macroscopic grading were 

compared with radiographic-based grades. Pfirrmann and Thompson grading was performed by a 

trained orthopaedic surgeon.  

Data Analysis 

 Disc height loss following two hours of creep was measured, and disc geometry was used 

to compute the axial compressive and creep moduli. Axial compressive modulus was defined as 

the slope of the stress-strain response in the linear-region during loading. Creep modulus was 

calculated by dividing the applied stress by disc height loss at the end of the 2-hour hold. 

The last cycle of axial rotation was used to calculate torsional mechanical properties. 

Stiffness was calculated as the slope of the torque-rotation curve, where the toe-region stiffness 

was calculated between 0 o - 0.5 o and the linear-region stiffness was calculated between 1.5o - 2o. 

Torque range was calculated as the difference between torques measured at +2o and -2o. Strain 

energy (U) was calculated as the area under the loading curve and represents energy stored in a 

material during loading. Torsional hysteresis (EH) was calculated as the area between the loading 

and unloading torque-rotation curves during a full cycle and represents energy dissipation. Strain 

and hysteresis energy measurements were used to calculate the specific damping capacity (i.e., 
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EH,L/U, where EH,L = EH/2), which describes the material’s ability to absorb energy during 

dynamic loading. The specific damping capacity also assesses viscoelasticity, where values close 

to 0 represent a more solid-like behavior and values close to 1.0 indicate a more fluid-like 

behavior. The percent contribution of facet joints to disc joint mechanics was calculated by 

finding the percentage change in disc mechanics after facetectomy with respect to disc 

mechanics of intact disc-joints.   

 During axial rotation, we observed a sinusoidal response in axial displacement, uz, with two 

separate and distinct amplitudes. A mathematical model was developed to describe the response 

using a superposition of two Fourier series (Equation 1). The unknown parameters, DRS and 

DRB, describe the ranges of the small and big peaks, respectively.  
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 for k ≥ 1, and T is the time for half a cycle (10 sec. in this study).     

Biochemical Analysis 

 Cylindrical tissue cores were harvested from the nucleus pulposus (NP) and annulus 

fibrosus (AF) using a biopsy punch (4.0 mm diameter; 6 locations/disc; Figure 1A). Samples 

were lyophilized for 48 hours to obtain dry weights. Dried samples were digested with 

proteinase-K (10 µg/µL at 65 °C for 24 hours; Sigma-Aldrich, St. Louis, MO). 

Glycosaminoglycan (GAG) content was measured using the dimethyl methylene blue (DMMB) 

assay. Collagen content was determined using the orthohydroxyproline (OHP) colorimetric assay 

and measurements were converted to collagen composition, assuming a OHP:collagen ratio of 

1:7.5.30 GAG and collagen contents were normalized by dry weight to account for differences in 

tissue swelling31 and expressed as μg/mg of dry tissue weight (dw). 

  

(1) 
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Statistical Analyses 

 A two-way analysis of variance (ANOVA) was performed on torsional mechanical 

properties with factors of axial compressive preload and facet joint condition (with or without 

facet joints). A one-way ANOVA was performed on biochemical composition to evaluate 

regional differences in the AF (i.e., anterior, posterior, and lateral AF). Biochemical composition 

of the left and right lateral AF were averaged because no significant differences were observed 

between the two sides (paired t-test, p > 0.80). A Bonferroni post-hoc analysis was performed 

when significance was found using the ANOVA test. A Student’s paired t-test was used to 

compare the biochemical compositions of the NP and AF. A Pearson’s correlation was 

performed between torsion mechanics and biochemical properties and between facet joint 

contribution to torsion mechanics and biochemical composition. All statistical analyses were 

performed using R statistical software, and significance was assumed at p ≤ 0.05. A moderate 

correlation was defined as 0.5 ≤ r < 0.7 and a strong correlation was defined for r ≥ 0.7. All 

values were reported as mean ± standard deviation.   

 Prior to testing, power analyses were performed to determine the appropriate sample size 

(G*Power, power analysis inputs: power ≥ 0.80 and α = 0.05). Separate sample size estimations 

were performed for each factor (preload and facet joint condition) and the interaction term for 

two-way ANOVA (input: effect size ≥ 0.40). Finally, a power analysis was conducted to 

determine the sample size required to perform correlations between torsion mechanics and tissue 

composition. Based on previous work on disc torsion mechanics,22-23 strong correlations were 

expected and this was taken into account in sample size estimation (input: ρ ≥ 0.80). Based on 

the results of all power analyses, nine discs were required to achieve the desired power and alpha 

level. 
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Results 

 The disc cross-sectional area was 1781 ± 285 mm2 (range = 1352 – 2337 mm2) and disc 

height was 8.6 ± 1.5 mm (range = 5.9 – 10.5 mm). There were no significant differences in 

degenerative grades between the Thompson and Pffirmann scales (Student’s paired t-test, p = 

0.3; Table 1). AF GAG and collagen contents did not depend on spatial location (one-way 

ANOVA, p = 0.23 for GAG and p = 0.68 for collagen; Figure 1B-C). Thus, AF data were pooled 

and average values were used for further statistical analyses (AF GAG: 125 ± 43 μg/mg dw; AF 

collagen: 676 ± 74 μg/mg dw). The NP GAG content (186 ± 115 μg/mg dw) was not different 

from AF GAG content (Student’s paired t-test, p = 0.89); however, AF collagen content was 

greater than NP collagen content (252 ± 82 μg/mg dw; Student’s t-test, p < 0.001; Figure 1C). 

There was a strong negative correlation between the Pfirrmann grade and NP GAG content (p = 

0.02, r = -0.71), as expected.32,33 In contrast, there were no significant correlations between disc 

degeneration and collagen content in the NP (p > 0.8) or AF (p  = 0.16). 

Combined effect of axial compressive preload and facet joints 

 There was a strong correlation between disc height loss during creep and axial 

compressive preload (Fax, Δh = 0.0021*Fax + 1.03 mm; p < 0.0001, r = 0.84), and this 

relationship was not affected by facet joint removal (paired t-test, p = 0.1). A four-fold increase 

in axial compressive load from 300 N to 1200 N resulted in a two-fold increase in disc height 

loss. Similarly, axial compressive modulus during loading (Eax = 0.0024*Fax + 1.63 MPa; p < 

0.0001, r = 0.75) and creep modulus (Ec = 9E-05*Fax + 0.09 MPa; p < 0.0001, r = 0.61) increased 

with compressive load and this response was not affected by facet joint removal (p > 0.5). 

 Torsional mechanical properties were strongly influenced by axial compressive preload 

and the presence of facet joints (two-way ANOVA, p < 0.001 for all properties; Figure 2). The 
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torque-rotation response was nearly linear for all discs before and after facetectomy, and there 

were no significant differences between the toe- and linear-region stiffness (two-way ANOVA, p 

= 0.10 for intact and p = 0.26 with facetectomy); hence, average stiffness measurements were 

reported. Torsional stiffness and torque range increased linearly with compression; however, the 

magnitude of these properties and the rate of increase with compression depended on the 

presence of facet joints (Figure 2A-B). Torsional stiffness and torque range decreased by 50-60% 

for all compressive loads after facetectomy (e.g., not dependent on the magnitude of 

compression; one-way ANOVA, p > 0.2; Figure 2A-B).  

 Strain energy and hysteresis energy increased linearly with axial compression and 

decreased with facetectomy (p < 0.001; Figure 2C-D). Energy absorption during rotation 

decreased by approximately 70% after facet joint removal (Figure 2C – blue vs. yellow bars; p < 

0.001 for all groups). The rate of increase in strain and hysteresis energies with compressive load 

decreased after facetectomy. That is, there was 74% increase in disc-joint strain energy from 300 

N to 1200 N, compared to a 62% increase in disc-only strain energy for the same range of axial 

compression (Figure 2C). The specific damping capacity of intact and facetectomy disc joints did 

not change with compression (p > 0.05); however, it decreased by ~0.1 after facet joint removal 

(0.34 ± 0.09 to 0.24 ± 0.07, Student’s paired t-test, p < 0.001).  

 The superposition of two Fourier series fit well to the sinusoidal response in axial 

displacement (r2 > 0.98; Figure 3A – solid lines). The axial displacement range decreased with an 

increase in axial compression, and the rate of decrease did not depend on facet joint condition 

(Figure 3B; i.e., intact versus facetectomy; one-way ANOVA p > 0.3). 
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Effect of biochemical composition 

 Torsional mechanical properties were strongly correlated with GAG content, but the 

linearity of the correlation depended on the disc region (Figure 4 – left vs. right column). That is, 

the correlations between the AF GAG content and torsion mechanics were linear, while the 

trends between the NP GAG content and torsion mechanics were nonlinear. Therefore, a linear 

correlation was not performed with NP GAG content. Torsional mechanical properties were 

linearly correlated with AF GAG content under all compressive preloads (r ≥ 0.42, Table 2), and 

there was an approximately six-fold increase in torsional mechanical properties with a three-fold 

increase in AF GAG content (Figure 4).  

 There was a strong linear correlation between percent facet contribution to hysteresis 

energy and AF GAG content (EH = -0.26*AFGAG+104.5, p < 0.0001, r = -0.88) and a moderate 

correlation between percent facet contribution to torque range and AF GAG content (TR = -

0.13*AFGAG+78.8, p = 0.05, r = -0.64). No other correlations were observed with respect to facet 

joint contribution to elastic properties (e.g., torsional stiffness and strain energy) and biochemical 

composition (p > 0.4). 

Discussion 

 The cross-ply structure of the annulus fibrosus is well suited to withstand shear stresses 

developed from axial rotation,34 and the facet joints play a crucial role in restricting spinal 

rotation, protecting the disc from exposure to excess shear stresses and damage.2 In this study, 

we characterized the role of facet joints under torsion combined with axial compression, and 

established a structure-function relationship between biochemical composition and torsion 

mechanics. Torsional mechanical properties decreased significantly with the removal of the facet 

joints under all compressive preloads and highly depended on GAG content. Defining 
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relationships between GAG content, disc geometry, and loading modality (i.e., compression-

torsion behavior) allows for comparison across studies that use discs of varying levels of 

degeneration or testing protocols (e.g., with or without compression).35 

Collagen fibers are thought to be primarily responsible for absorbing AF tensile stresses 

that arise during compression, bending, and axial rotation, while GAGs are important for 

withstanding compressive stresses.34, 36-38 Although AF fibers are under tension during axial 

rotation,34 we did not observe any correlations between collagen content and torsion mechanics. 

Interestingly, disc torsion mechanics strongly depended on NP and AF GAG content (linear 

relationship with AF GAG content). Based on our findings, disc torsion mechanics are likely 

resistant to compositional changes during early degeneration, which is noted by a decrease in NP 

GAG content.32 However, as the AF GAG content decreases with moderate degeneration, there 

are significant decreases in elastic and viscoelastic torsional properties. That is, we observed an 

85% decrease in torsional stiffness from the healthiest disc to the most degenerated disc (based 

on AF GAG content), which agreed with data reported in the literature.22,23 The decrease in 

torsional stiffness increases disc compliance, which has been observed as an increase in rotation 

range in patients with disc degeneration,39 resulting in a greater proportion of hysteresis energy 

being absorbed by the facet joints. 

 The intervertebral disc and surrounding facet joints act together to absorb loads applied to 

the spinal column, and the overall contribution of facet joints depends on the loading modality. 

In this study, there were no significant changes in relative disc height loss, axial compressive 

modulus, and creep modulus after facetectomy, indicating a negligible effect of facet joints on 

compressive mechanics, corroborating data reported by Gardner-Morse et al.40 In contrast, disc 

torsion mechanics were greatly influenced by facet joint removal (>50% decrease in properties), 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

This article is protected by copyright. All rights reserved 

regardless of the magnitude of axial compression preload. However, the rate of increase in 

torsion mechanics with axial compression was higher for intact disc joints than discs without 

facet joints, highlighting the interaction between axial compression and facet joints on 

mechanical properties. The intervertebral disc alone was less viscoelastic than the intact disc 

joint, as observed by a ~30% decrease in specific damping capacity after facet joint removal. The 

findings of this study indicate that facet joints have a significant contribution to disc-joint 

viscoelasticity besides disc torsional stiffness as reported previously.22-23 Therefore, design 

criteria for total disc replacement strategies should consider the load distribution between the 

artificial disc and facet joints during rotation to prevent abnormal loading of the facet joints and 

the increased rate of osteoarthritis.41 

 The intervertebral disc experiences complex stress distributions throughout the NP and 

AF. Under axial compression, the pressurized NP transfers stresses radially to the AF, resulting 

in tensile circumferential and axial strains19,42 that pre-stress collagen fibers prior to rotation. 

During rotation, we observed a sinusoidal response in axial displacement, resulting in changes in 

disc height (Figure 3). This response was confirmed with a finite element model, where 

differences in amplitudes were due to the alternating fiber architecture in adjacent layers, causing 

slight differences in moment arms between the outermost lamella and the adjacent layer.34 

Changes in axial displacement during torsion shifted stresses from the AF back to the NP, where 

an increase in disc height during maximum rotation decreases collagen fiber stretch and 

increases NP pressure.34 Thus, the architecture of the AF may act to protect collagen fibers from 

failure and reduce shear stresses at the AF-endplate interface, which is a common site for disc 

failure under large rotation angles.5  It should be noted that while the AF structure may protect 
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the disc from catastrophic failure, high local shear stresses may still initiate tissue remodeling 

towards the degenerative cascade.43,44  

This study had some limitations. Although discs from the same spines might share some 

similarities, we neglected inter-spinal differences. Axial compression was maintained for two 

hours to allow for creep deformation (creep slope < 0.01 mm/min); however, human discs 

require more than 12 hours to achieve full equilibrium.30,45 To limit creep time, we only 

investigated between-group differences and minimized creep effects during torsion by using a 

short loading protocol (<4 minutes). During torsion, the axis of rotation of each disc was aligned 

with its geometric center to make comparisons across discs with different degeneration grades; 

however, the geometric center may be different from the in vivo axis of rotation and degeneration 

is known to alter the axis of rotation.46, 47 Biochemical correlations were performed only on disc 

mechanics without facet joints because we were not able to assess facet joint osteoarthritis. 

While the contribution of facet joints to disc-joint torsion mechanics may differ with facet joint 

osteoarthritis, it is difficult to decouple these changes and disc degeneration is thought to precede 

facet degeneration.48  

Lastly, wherever possible, we attempted to compare our results with previously reported 

data. Torsional stiffness for the healthy disc (0.10 MPa/deg) in this study was in agreement with 

previously reported values for bovine (0.10 MPa/deg)35, mouse (0.095 ± 0.030 MPa/deg)49 and 

human (0.087 ± 0.019 MPa/deg)49 discs when normalized by disc geometry. The maximum 

normalized hysteresis energy (i.e., hysteresis energy divided by disc volume) agreed with 

predicted values obtained for bovine caudal discs from our previous study (EH,measured = 0.17 

MPa-deg vs. EH,predicted = 0.12 MPa-deg). 35 However, the positive correlation between torsional 

hysteresis energy and GAG content disagreed with the negative correlation reported by Zirbel et 
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al.,22 and we did not observe a parabolic change in torsion mechanics with degeneration, which 

was likely due to differences in loading protocols (3 degrees of freedom (DOF) under combined 

compression-torsion vs. 6 DOF).22,23 Although coupled motions involving multiple loading 

modalities (i.e., axial rotation, lateral bending, flexion-extension) more closely represent 

physiological motions, disc mechanical properties associated with each loading modality might 

not be independent, resulting in the differences observed between studies. 

In conclusion, disc torsion mechanics are greatly dependent on NP and AF GAG content, 

the magnitude of compressive preload, and the presence of facet joints. Loss in GAG content 

with degeneration reduced torsion mechanics by more than an order of magnitude, while changes 

in collagen content did not significantly influence disc torsion mechanics. Facet joints have a 

significant role in torsion mechanics through their contribution to joint viscoelasticity and 

stiffness, allowing the disc-joint to withstand large dynamic loads. However, the relative 

contribution of the facet joints to torsion mechanics did not change with respect to the magnitude 

of axial compression, indicating that both the disc and facet joints are capable of resisting high 

amounts of torque.  
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Figure captions 
 
Figure 1: A) The location of tissue plugs harvested from each disc for biochemical analyses. B-
C) GAG and collagen content normalized by dry weight within disc regions. * indicates 
significant difference (p < 0.05) between the average NP and AF values.  
 
Figure 2: A) Torsional stiffness (N-m/deg), B) torque range (N-m), C) hysteresis energy (N-m-
deg), and D) strain energy (N-m-deg) before and after facetectomy. All axial groups were 
statistically different than one another (p <0.05). 
 
Figure 3: A) Axial displacement during torsional loading and B) displacement range for both 
peaks for discs with intact facet joints.   
 
Figure 4: The correlation between GAG content and torsion mechanics (representative graphs - 
only shown under 600 N).  
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Spine No Age Sex Level Pfirrmann Thompson 

1 80 M L4-L5 III III 
2 43 M L3-L4 IV III 
2 43 M L4-L5 II II 
3 71 F L3-L4 III III 
4 78 M L3-L4 III IV 
4 78 M L4-L5 V V 
5 80 M L3-L4 II III 
6 77 F L3-L4 III V 
6 77 F L4-L5 IV V 
7 44 M L4-L5 I I 

M: male, F: female 
Table 1: Age, sex, spinal level and degeneration grades of lumbar discs 
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Parameter 
Preload (N) 

300 600 900 1200 
Torsional 
Stiffness 0.91 0.92 0.93 0.94 

Hysteresis 
Energy 

0.78 0.88 0.74 0.42 

Strain 
Energy 

0.90 0.92 0.92 0.92 

Torque 
Range 

0.89 0.92 0.92 0.94 

 
Table 2: Pearson’s correlation coefficients for correlations between disc torsion mechanics and 
AF GAG content. Blue color indicates high correlations (r ≥ 0.7).     
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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