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Bayesian Mixture Labeling and Clustering

Weixin Yao

Department of Statistics, Kansas State University, Manhattan, Kansas 66506, U.S.A.

wxyao@ksu.edu

Abstract

Label switching is one of the fundamental issues for Bayesian mixture modeling. It

occurs due to the nonidentifiability of the components under symmetric priors. Without

solving the label switching, the ergodic averages of component specific quantities will

be identical and thus useless for inference relating to individual components, such

as the posterior means, predictive component densities, and marginal classification

probabilities. In this article, we establish the equivalence between the labeling and

clustering and propose two simple clustering criteria to solve the label switching. The

first method can be considered as an extension of K-means clustering. The second

method is to find the labels by minimizing the volume of labeled samples and this

method is invariant to the scale transformation of the parameters. Using a simulation

example and two real data sets application, we demonstrate the success of our new

methods in dealing with the label switching problem.

Key words: Bayesian mixtures; Clustering; K-means; Label switching; Markov chain Monte

Carlo;

1 Introduction

Suppose x = (x1, . . . , xn) are independent observations from a m-component mixture density

p(x; θ) = π1f(x; λ1) + π2f(x; λ2) + · · ·+ πmf(x; λm) ,
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where θ = (π1, . . . , πm, λ1, . . . , λm), f(·) is some parametric component density/mass func-

tion, (λ1, . . . , λm) are the component specific parameters, which can be scalar or vector, and

(π1, . . . , πm) are the mixture proportions with
∑m

j=1 πj = 1. For a general introduction to

mixture models, see ?, ?, ?, and ?. The likelihood for x is

L(θ;x) =
n∏

i=1

{π1f(xi; λ1) + π2f(xi; λ2) + · · ·+ πmf(xi; λm)} . (1.1)

For any permutation ω = (ω(1), . . . ,ω(m)) of the identity permutation (1, . . . ,m), define

the corresponding permutation of the parameter vector θ by

θω = (πω(1), . . . , πω(m), λω(1), . . . , λω(m)). (1.2)

Then L(θω;x) will be numerically the same as L(θ;x) for any permutation ω. Hence for

Bayesian mixtures, if the prior is symmetric or permutation invariant for all components, the

posterior distribution will be similarly symmetric and thus invariant to all the permutations

of the component parameters. The marginal posterior distributions for the parameters will be

also identical for each mixture component. It is then meaningless to draw inference, relating

to individual components, directly from Markov chain Monte Carlo (MCMC) samples using

ergodic averaging before solving the label switching problem.

Many methods have been proposed to deal with the labeling problem in Bayesian analysis.

The easiest way to solve the label switching is to impose constraints on the parameters. See

?, ?, and ?. Another popular labeling method is relabeling algorithm (??), which is based

on minimizing a Monte Carlo risk. ? suggested a particular choice of loss function based on

the Kullback-Liebler (KL) divergence. We will refer to this particular relabeling algorithm

as KL algorithm. ? imposed an asymmetric prior by fixing the label of a single observation.

? proposed to label the samples based on the posterior modes they are associated with

when they are used as the starting points for an ascending algorithm of the posterior. Other
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labeling methods include, for example, ??????. ? provided a recent review of attempts to

solve the label switching problem in mixture models.

In this article, we establish the equivalence between the labeling and clustering and pro-

pose two simple clustering criteria to solve the label switching. The first loss function is based

on the euclidian distance between the sample and the center of the labeled samples. We will

show that this labeling method is equivalent to applying the K-means clustering to all the

permuted MCMC samples. If we only include one component specific parameter in the loss

function (such as component means), then this method will be exactly the same as order

constraint labeling on this component parameter. However, unlike the order constraint la-

beling, this method can simultaneously incorporate different component parameters together

and can be easily extended to high dimensional case. In addition, this labeling method is

computationally very fast as shown in our examples. The second method is to label the

samples by minimizing the volume of the labeled samples. Here the volume is defined to

be the determinant of covariance matrix. One nice property of this method is its invariance

to the linear transformation of the parameters (changing both component means by a scale

factor, both variances by a different one, for example). In addition, unlike some of the other

labeling methods (such as the KL algorithm (?)), both of our proposed methods can be

applied to solve label switching for frequentist mixtures. Using a simulation example and

two real data sets application, we demonstrate the success of our new methods in dealing

with the label switching problem.

The rest of the paper is organized as follows. Section ?? introduces our two new labeling

methods. In Section ??, we use one simulation example and two real data sets to compare

our new labeling methods with two popular existing methods. We summarize our proposed

labeling methods in Section ??.
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2 New labeling method

For Bayesian mixtures, after we get a sequence of MCMC samples, θ1, . . . ,θN , from the

posterior distribution of θ, where N is the number of MCMC samples, the label switching

problem is “solved” by finding the “right” labels (ω1, . . . ,ωN) for (θ1, . . . ,θN), i.e. relabeling

the output of the sampler, such that θω1
1 , . . . ,θωN

N have the same label meaning. If we solve

the label switching problem in this way, then we can use the labeled samples to estimate the

quantities relating to individual components.

Due to the symmetry of the posterior, for a m component mixture model, the posterior

distribution has m! symmetric modal regions (each modal region is corresponding to one

well labeled parameter space). Given the MCMC samples (θ1, . . . ,θN), the latent “true”

labels (ω1, . . . ,ωN) are defined such that θω1
1 , . . . ,θωN

N are all in the same modal region and

therefore have the same label meaning. The aim of labeling is to recover the latent labels

(ω1, . . . ,ωN). Since each modal region defines a set of latent labels, there are essentially

m! sets of latent “true” labels and they are identifiable up to the same permutation. To do

labeling, one only needs to recover one of the modal regions and the corresponding set of

latent “true” labels.

From the asymptotic theory for the posterior distribution, see ? and ?[Sec 1.3, 3.3],

we know that when sample size is large, the “correctly” labeled MCMC samples/the modal

region should, approximately, follow the normal distribution. Therefore, it is reasonable to

assume that the “right” labels (ω1, . . . ,ωN) will make the “size” of the cluster consisting of

the labeled samples (θω1
1 , . . . ,θωN

N ) smaller than the “wrong” labels.

To explain the equivalence between labeling and clustering under a special setting, let

∆ = {θω(j)

t , t = 1, . . . , N}, where {ω(1), . . . ,ω(m!)} are the m! permutations of (1, . . . ,m).

Note that ∆ includes both of the original samples and all of their permutations. Suppose

one can find m! tight clusters for ∆, each containing exactly one permutation of each sample

element θ. One can then choose any one of these tight clusters to be the newly labeled
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sample set and assume they are in the same modal region. So, the labeling problem is very

similar to the clustering problem if only one permutation of each sample element θ is allowed

in each cluster.

Different clustering criteria lead to different labeling methods. In this section, we propose

two simple clustering criteria to solve the label switching. The first method is to define the

size of a cluster by the trace of their covariance matrix. The second method is to use the

determinant of covariance matrix to define the size of a cluster.

2.1 The K-means method

We propose to find the labels Ω = (ω1, . . . ,ωN) together with their center θc by minimizing

the following loss functions

`(θc,Ω) = tr

(
N∑

t=1

(θωt
t − θc)(θ

ωt
t − θc)

T

)
=

N∑
t=1

(θωt
t − θc)

T (θωt
t − θc) , (2.1)

where Ω = (ω1, . . . ,ωN) and tr(A) is the trace of A. Since the loss function (??) is within

cluster sum of squares, this labeling method can be also called K-means method.

When the labels (ωt, t = 1, . . . , N) are fixed, the minimum of (??) over θc occurs at the

sample mean of {θω1
1 , . . . ,θωN

N }. When θc is fixed, the optimum over ωt, t = 1, . . . , N can

be done independently for all t. The algorithm to minimize (??) will be as follows.

Algorithm 2.1 Labelling by Trace of Covariance (TRCOV)

Starting with some initial values for (ω1, . . . ,ωN) (setting them based on the order constraint,

for example), iterate the following steps until a fixed point is reached.

Step 1: Update θc by the sample mean based on the current values {ω1, . . . ,ωN},

θc =
1

N

N∑
t=1

θωt
t .
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Step 2: Given the current estimated center θc, {ω1, . . . ,ωN} are updated by

ωt = arg min
ω

(θω
t − θc)

T (θω
t − θc) , t = 1, . . . , N. �

The loss function `(θc,Ω) defined in (??) decreases after each of the above two steps. So

this algorithm must converge.

Theorem 2.1 The loss function `(θc,Ω) of (??) is decreased in each iteration of Algorithm

1 until a fixed point is reached.

The proof of Theorem ?? is very simple and is omitted. Note that the minimum found by

Algorithm ?? may only be a local minimum. To increase the chance of detecting the global

minimum, one may run this algorithm starting from several initial values. In step 2, after

each change of ωt, one could also update θc, thereby increasing the speed of convergence

but increasing complexity.

Notice that for θ if the information from one component specific parameter dominates

the other component parameters, then this labeling method will be very close to the order

constraint labeling on this component specific parameter. Specially, if only m component

specific parameters, say the m component means for one dimension data, are used in (??),

then this labeling method will be exactly the same as the labeling by putting an order

constraint on the component means. Because of this, the order constraint labeling can be

considered as a special case of the TRCOV method. However, unlike the order constraint

labeling, the TRCOV method can automatically make use of the most informative component

parameters. In addition, the new method can simultaneous incorporate the information from

different component parameters and can be easily extended to the high dimensional case.
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2.2 The Determinant Based Loss

A drawback of TRCOV method is that the objective function (??) is not invariant to the

scale transformation of the parameters. To solve the scale effect of the parameters, we

propose another way to define the size of a cluster by the determinant of covariance matrix.

We find the labels on the samples, along with the center, that minimize the determinant of

covariance matrix

L(θc,Ω) = det

(
N∑

t=1

(θωt
t − θc)(θ

ωt
t − θc)

T

)
, (2.2)

where Ω = (ω1, . . . ,ωN) and det(A) is the determinant of matrix A. The idea of determinant

loss has also been used to create a robust estimator of the multivariate location and scatter

(see the minimum covariance determinant (MCD) method of ?) and do robust cluster

analysis (see, for example, ?).

One nice property about the determinant criterion (??) is that it is invariant to all

permutation invariant linear transformations of the parameters (changing all component

means by a linear transformation, all variances by a different one, for example). Therefore,

the labels found by minimizing (??) will not be affected by such linear transformations.

Let θ̃ be the new parameter vector after a permutation invariant linear transformation

of θ.

Theorem 2.2 The determinant criteria of (??) is invariant, up to a multiplication constant,

to all permutation invariant linear transformations of the parameters, i.e.

det

(
N∑

t=1

(θ̃
ωt

t − θ̃c)(θ̃
ωt

t − θ̃c)
T

)
= k det

(
N∑

t=1

(θωt
t − θc)(θ

ωt
t − θc)

T

)
,

where the multiplication constant k does not depend on Ω = (ω1, . . . ,ωN). The proof of

Theorem ?? and the constant k are given in the Appendix.

Based on the next theorem, we can know that when (ω1, . . . ,ωN) are fixed, the minimum

of (??) over θc occurs at the sample mean of {θω1
1 , . . . ,θωN

N }.
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Theorem 2.3 Given (ω1, . . . ,ωN), let

θ̄ =
1

N

N∑
t=1

θωt
t ,

which is the sample mean of {θω1
1 , . . . ,θωN

N }. Then θ̄ minimizes (??) over θc.

The proof of Theorem ?? is given in the Appendix. Unlike the trace of covariance case, the

minimum of (??) over Ω = (ω1, . . . ,ωN), given θc, can not truly be done independently for

all t. Rather we need to optimize over ωt one t at a time while holding all others fixed.

Let

C<t> =
∑
l 6=t

(θωl
l − θc)(θ

ωl
l − θc)

T . (2.3)

Notice that the objection function L(θ,Ω) in (??) is

L(θ,Ω) = det
(
C<t> + (θωt

t − θc)(θ
ωt
t − θc)

T
)

= det(C<t>) det
[
I + C

−1/2
<t> (θωt

t − θc)(θ
ωt
t − θc)

T C
−1/2
<t>

]
= det(C<t>)

[
1 + (θωt

t − θc)
T C−1

<t>(θωt
t − θc)

]
. (2.4)

Thus to optimize over ωt for a particular t, other terms fixed, we just minimize

(θωt
t − θc)

T C−1
<t>(θωt

t − θc),

which is a weighted distance between θt and θc. The leave-one out weight matrix C−1
<t> makes

this labeling method invariant to the affine transformation of the component parameters.

The algorithm to minimize (??) will be as follows.

Algorithm 2.2 Labelling by Determinant of Covariance (DETCOV)

Starting with some initial values for (ω1, . . . ,ωN) (setting them based on the order constraint,

for example), iterate the following two steps until a fixed point is reached.
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Step 1: Update θc by the sample mean based on the current values {ω1, . . . ,ωN},

θc =
1

N

N∑
t=1

θωt
t .

Step 2: For t = 1, . . . , N , given the current estimated center θc, and {ωl, l 6= t}, ωt are

updated by

ωt = arg min
ω

(θω
t − θc)

T C−1
<t>(θω

t − θc) . � (2.5)

The above algorithm will monotonically decrease the objective function (??) after each

step. So, the Algorithm 2 must converge.

Corollary 2.1 The loss function L(θc,Ω) of (??) will decrease after each iteration of Al-

gorithm 2 until a fixed point is reached.

The proof of Corrollary ?? follows directly from Theorem ?? and the result (??).

Note that in step 2, we need to calculate C−1
<t> for every t, which might be computationally

expensive when the dimension of θ is quite large. Based on the following result, we can

greatly reduce the computation burden of C−1
<t>. Its proof is given in the Appendix.

Theorem 2.4 Let

C =
N∑

t=1

(θωt
t − θc)(θ

ωt
t − θc)

T , ut = C−1/2(θωt
t − θc), vt = C

−1/2
<t> (θωt

t − θc)C
−1/2
<t> .

Then

C−1
<t> = C−1/2

(
I +

1

1− uT
t ut

utu
T
t

)
C−1/2 , (2.6)

and

C−1 = C
−1/2
<t>

(
I − 1

1 + vT
t vt

vtv
T
t

)
C
−1/2
<t> . (2.7)

Based on (??) of Theorem ??, we can see that in order to calculate C−1
<t>, we only need to find

C−1/2. Since C−1/2 only needs to be updated after some label ωt changes, the computation
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of (??) is much less than updating C−1
<t> for each t.

In addition, based on (??), we can also see that we only need to find the inverse of C

once during the whole algorithm. Suppose that we have optimized over t, and we changed

the permutation involved. Before we move to t+1, the C−1 can be updated using (??) based

on C
−1/2
<t> and vt = C

−1/2
<t> (θωt

t − θc)C
−1/2
<t> , where ωt is the updated new label for θt.

If C−1
<t> in (??) is replaced by C−1, which does not depend on t, then the Algorithm 2 is

the same as the normal likelihood labeling proposed by ?. However, their method is based

on the asymptotic normality assumption of the labeled samples. Our proposed DETCOV

method does not require such assumption and is derived from different motivation.

3 Examples

In this section, we will use one simulation example and two real data sets to compare our

proposed labeling methods TRCOV and DETCOV with order constraint (OC) labeling and

Stephens’ KL algorithm (KL). By default, the OC method refers to ordering on the mean

parameters. For TRCOV, DETCOV, and KL methods, we use the OC labels as the initials.

All the computations are done in Matlab 7.0 using a personal desktop with Intel Core 2

Quad CPU 2.40GHz.

Example 1 : We generate 400 data points from 0.3N(0, 1) + 0.7N(0.5, 22). Based on this

data set, we generate 20,000 MCMC samples (after initial burn-in) of component means,

component proportions, and the unequal component variance. The MCMC samples are

generated by Gibbs sampler with the priors given by ?. That is to assume

π ∼ D(δ, δ), µj ∼ N(ξ, κ−1), σ−2
j ∼ Γ(α, β), β ∼ Γ(g, h) j = 1, 2 ,

where D(·) is Dirichlet distribution and Γ(α, β) is gamma distribution with mean α/β and

variance α/β2. Following the suggestion of ?, we let δ = 1, ξ equal the sample mean of
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the observations, κ = 1/R2, α = 2, g = 0.2, and h = 10/R2, where R is the range of the

observations. ? introduced an additional hierarchical model by allowing β to follow a gamma

distribution, in order to reduce the influence of β on the posterior distribution of the number

of components. Similar priors are used for the other two examples.

The runtime for KL, TRCOV, and DETCOV were 63, 1, and 2 seconds, respectively.

Note that TRCOV and DETCOV were much faster than KL. In this example, TRCOV and

DETCOV had the same labeling results.

Since there are only two components, we can easily make use of some parameter plots to

see where the labeling differences occurred. Figure 1 is the plot of σ1 − σ2 vs. µ1 − µ2 and

Figure 2 is the plot of σ1 − σ2 vs. π1. For better visual results, we also add the permuted

samples to the plots. From these plots, one can see that there are indeed relatively two tight

clusters. However, OC and KL did not accurately recover these two regions. (Based on

Figure 2, it appears that KL used the component proportions more heavily than the other

methods.) The TRCOV/DETCOV methods clustered the two groups more naturally.

For better comparison, in Table 1, we also report the average and root mean squared error

(RMSE) of the parameter estimates for each re-labeling algorithm. For completeness, we

include the order constraint labeling results based on three different component parameters

µ, σ, and π and denote them by OC-µ, OC-σ, and OC-π, respectively. (Note that the OC-µ

is the same as OC). Among three order constraint labeling methods, OC-σ performed well

(based on both bias and RMSE), but OC-µ and OC-π did poorly. OC-µ had small bias

for µ1 but large bias for all other parameters. OC-π had small bias for π1 but large bias

for all other parameters. The OC-σ did work well in this simulation study. This example

demonstrates both the power and danger of order constraint labeling. Similar discoveries

had been found in ?. In this example, KL didn’t perform as well as OC-σ. It had large bias

for the µ1 and µ2 and large RMSE for σ1 and σ2. From the Table 1, we can see that both of

our proposed methods TRCOV and DETCOV worked well and produced closer results to
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OC-σ than any other methods.

In Table 2, we report the performance of interval estimates, based on the percentage of

intervals that covered their corresponding true parameters and the average interval width.

From the table, we can see that all labeling methods had good coverage and exhibited

higher-than-nominal rates of coverage in general. Based on Table 2, we can see that no

single labeling method provided shorter intervals for all parameters. However, in general,

OC-σ, TRCOV and DETCOV provided shorter interval width than OC-µ, OC-σ, and KL

for most of parameters.
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Figure 1: Plots of σ1−σ2 vs. µ1−µ2 for the four labeling methods in Example 1. The black
points represent one set of labels and the gray points are the permuted samples.

Table 1: Average (RMSE) of Point Estimates Over 500 Repetitions

TRUE OC-µ OC-σ OC-π KL TRCOV DETCOV

µ1 : 0 -0.010(0.152) 0.057(0.200) 0.204(0.282) 0.119(0.247) 0.038(0.199) 0.059(0.204)

µ2 : 0.5 0.605(0.198) 0.538(0.202) 0.391(0.158) 0.476(0.195) 0.557(0.211) 0.536(0.201)

σ1 : 1 1.232(0.327) 1.089(0.177) 1.281(0.396) 1.180(0.322) 1.095(0.184) 1.110(0.204)

σ2 : 2 1.858(0.246) 2.001(0.139) 1.810(0.224) 1.910(0.181) 1.996(0.143) 1.981(0.156)

π1 : 0.3 0.413(0.140) 0.360(0.108) 0.281(0.057) 0.305(0.089) 0.362(0.109) 0.342(0.113)
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Figure 2: Plots of σ1 − σ2 vs. π1 for the four labeling methods in Example 1.

Table 2: Percent Coverage (average width) of Nominal 95% Interval Estimates Over 500
Repetitions

TRUE OC-µ OC-σ OC-π KL TRCOV DETCOV

µ1 : 0 0.982(0.891) 0.976(1.172) 0.988(1.798) 0.984(1.517) 0.972(1.057) 0.974(1.208)

µ2 : 0.5 0.978(1.025) 0.982(1.100) 0.986(0.926) 0.976(0.911) 0.970(1.089) 0.974(1.002)

σ1 : 1 0.988(1.405) 0.992(1.016) 0.992(1.803) 0.990(1.491) 0.992(1.043) 0.992(1.163)

σ2 : 2 0.984(1.313) 0.990(0.703) 0.938(0.911) 0.942(0.738) 0.990(0.730) 0.958(0.696)

π1 : 0.3 0.998(0.768) 0.992(0.699) 1.000(0.408) 0.992(0.494) 0.992(0.700) 0.992(0.615)

Example 2 (Acidity Data): We consider the acidity data set (??). The data are shown in

Figure 3. The observations are the logarithms of an acidity index measured in a sample of 155

lakes in north-central Wisconsin. This data set has been analyzed as a mixture of Gaussian

distributions by ???. Based on the result of ?, the posterior for three components was largest.

Hence, we fit this data set by a three-component normal mixture. We post processed the

20,000 Gibbs samples by the OC, KL, TRCOV, and DETCOV labeling methods. The

runtime for KL, TRCOV, and DETCOV were 45, 2, and 6 seconds, respectively.

It is difficult to use the similar graphic way in Example 1 to compare different labeling

methods when the number of components is larger than two (?). Here, we mainly provided
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Figure 3: Histogram of acidity data. The number of bins used is 20.

the trace plots and the marginal density plots to illustrate the success of DETCOV. Figure

4 and 5 are the trace plots and the estimated marginal posterior density plots, respectively,

for the original samples and the labeled samples by DETCOV. (The OC, KL, and TRCOV

methods had similar visual results to DETCOV for those plots.) From these figures, one can

see that the DETCOV method successfully removed the label switching in the raw output

of the Gibbs sampler.

Example 3 (Galaxy Data): The galaxy data (?) consists of the velocities (in thousands

of kilometers per second) of 82 distant galaxies diverging from our own galaxy. They are

sampled from six well-separated conic sections of the corona borealis. A histogram of the

82 data points is shown in Figure 6. This data set has been analyzed by many researchers

including, for example, ??????. ? also used this data set to explain the label switching

problem. We fit this data by six-component normal mixture. We post processed the 20,000

Gibbs samples by the OC, KL, TRCOV, and DETCOV labeling methods.

The runtime for KL, TRCOV, and DETCOV were 2487, 47, and 1161 seconds, respec-

tively. Hence, the TRCOV method is much faster than KL and DETCOV.

Figure 7 and 8 are the trace plots and the estimated marginal posterior density plots,
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respectively, for the original samples and the labeled samples by DETCOV. For the marginal

density plot, for comparison, we also add the OC labels. In this example, for trace plots,

there is no big visual difference for the four labeling methods. For marginal density plots,

the TRCOV methods had similar visual results to OC and the KL methods had similar

visual results to DETCOV. From Figure 7 and 8, one can see that the DETCOV method

successfully removed the label switching in the raw output of the Gibbs sampler. Based on

Figure 8, one can see that the DETCOV method removed the multimodality of the marginal

posterior densities of the means in the raw output, however the OC method did not remove

the label switching very well. Therefore, in this example, the DETCOV and KL methods

worked a little better than the OC and TRCOV methods.

Based on the above simulation study and the real data set application, one can see

that DETCOV usually works better than the OC, KL, and TRCOV methods. In addition,

TRCOV works better than the OC and comparable to KL but TRCOV runs much faster

than KL and DETCOV.

4 Summary

In this article, we proposed two new clustering related labeling methods. The first method

TRCOV uses the idea of K-means clustering to label the samples. This method can be

considered as an extension of the OC method. However, unlike the OC method, this method

can simultaneously incorporate different component parameters together and can be easily

extended to the high dimension case. In addition, as shown in Section ??, this labeling

method is computationally much faster than the KL and DETCOV methods. The second

method DETCOV is to label the samples by minimizing the volume of the labeled samples.

This method is invariant to the linear transformation of the parameters. Based on the

examples in Section ??, we can see that the DETCOV method successfully removed the

label switching in the raw output. Our simulations also have shown that the TRCOV and
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DETCOV methods can produce good point and interval estimates.

In addition, our proposed methods TRCOV and DETCOV might also be able to solve

label switching for frequentist mixtures since our methods only depend on the parameter

samples. For frequentist mixtures, if one wants to use bootstrap method to estimate the

variation of the parameter estimates, one needs to bootstrap the new data set and finds the

corresponding parametric estimates for, say, N times. Let {θ1, . . . ,θN} be the N bootstrap

samples, which have meaningless labels. Similar to the Bayesian mixtures, one needs to solve

the label switching problem for the N bootstrap samples before using them to estimate the

variation. For bootstrap method, the data sets x = (x1, . . . , xn) are different for different

θjs and thus the classification probabilities are not well defined, since they require to use

the same data set for all the parameter samples. Therefore, any labeling methods related

to the classification probabilities, such as the KL algorithm, can not be applied. As far as

we know, solving label switching for frequentist mixtures have not been well studied. This

requires further research.

However, like other relabeling algorithms, our proposed methods TRCOV and DETCOV

are not online algorithms. Users need to store all the samples before doing labeling. In

addition, if the number of components m is too large or the dimension of the data is large, the

DETCOV method might have numerical problems due to the calculation of C−1
<t> defined in

(??). If this problem occurs, one could use a ridge type estimator for C−1
<t>, say (C<t>+λI)−1

for some constant λ.

Based on the equivalence between the labeling and clustering if only one permutation of

each sample is allowed in each of the m! clusters, one can also apply other clustering methods

or criteria to do labeling.
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APPENDIX: PROOFS

Proof of Theorem ??: For simplicity, suppose that there are only two unknown component

parameters, such as component mean µ and component variance σ2, for each component.

Let θt = (ξT
t1, ξ

T
t2)

T , where ξt1 is the m component means and ξt2 is m component variance.

Suppose

M =
N∑

t=1

(θωt
t − θc)(θ

ωt
t − θc)

T =

 A B

B C

 ,

where A, B, and C are all m×m matrix. Let ξ̃t1 = a1 + b1ξt1, ξ̃t2 = a2 + b2ξt1 for all t and

θ̃c be the corresponding transformation of θc (See Theorem ??). Then

M̃ =
N∑

t=1

(θ̃
ωt

t − θ̃c)(θ̃
ωt

t − θ̃c)
T =

 b2
1A b1b2B

b1b2B b2
2C

 .

Based on some matrix algebra, we have

det(M) = det

 A B

B C

 = det(A) det(C −BA−1B).
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So

det(M̃) = det

 b2
1A b1b2B

b1b2B b2
2C


= det(b2

1A) det(b2
2C − b2

2BA−1B)

= b2m
1 b2m

2 det(A) det(C −BA−1B)

= b2m
1 b2m

2 det(M).

So for the linear transformation, the determinant of covariance criteria will not change, up

to a multiplication constant and thus the found labels will not change. �

Proof of Theorem ??: Let

θ̄ =
1

N

N∑
t=1

θωt
t .

Note that

det

(
N∑

t=1

(θωt
t − θc)(θ

ωt
t − θc)

T

)
= det

(
N∑

t=1

(θωt
t − θ̄)(θωt

t − θ̄)T + N(θ̄ − θc)(θ̄ − θc)
T

)

≥ det

(
N∑

t=1

(θωt
t − θ̄)(θωt

t − θ̄)T

)
,

since
(
θ̄ − θc)(θ̄ − θc)

T
)
≥ 0. So the minimum of (??) over θc occurs at the sample mean

of {θ1, . . . ,θN}. �

Proof of Theorem ??: Note that

C<t> = C − (θωt
t − θc)(θ

ωt
t − θc)

T = C1/2(I − utu
T
t )C1/2,
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where ut = C−1/2(θωt
t − θc). By some calculation, we can verify

(I − utu
T
t )−1 =

(
I +

1

1− uT
t ut

utu
T
t

)
.

So

C−1
<t> = C−1/2

(
I +

1

1− uT
t ut

utu
T
t

)
C−1/2 .

Let

vt = C
−1/2
<t> (θωt

t − θc)C
−1/2
<t> .

We have

C = C<t> + (θt − θc)(θt − θc)
T = C

1/2
<t>(I + vtv

T
t )C

1/2
<t>.

Note that

(I + vtv
T
t )−1 =

(
I − 1

1 + vT
t vt

vtv
T
t

)
So

C−1 = C
−1/2
<t>

(
I − 1

1 + vT
t vt

vtv
T
t

)
C
−1/2
<t> . �
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Figure 4: Trace plots of the Gibbs samples of component means for acidity data: (a) original
Gibbs samples; (b) labeled samples by DETCOV.
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Figure 5: Plots of estimated marginal posterior densities of component means for acidity
data based on: (a) original Gibbs samples; (b) labeled samples by DETCOV.
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Figure 6: Histogram plot of galaxy data. The number of bins used is 30.
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Figure 7: Trace plots of the Gibbs samples of component means for galaxy data: (a) original
Gibbs samples; (b) labeled samples by DETCOV.
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Figure 8: Plots of estimated marginal posterior densities of component means for galaxy data
based on: (a) original Gibbs samples; (b) labeled samples by DETCOV (line) and labeled
samples by OC (dash-dot).
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