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ABSTRACT
Large-scale multiple testing with correlated and heavy-tailed data arises in a wide range of research areas
from genomics, medical imaging to finance. Conventional methods for estimating the false discovery
proportion (FDP) often ignore the effect of heavy-tailedness and the dependence structure among test
statistics, and thus may lead to inefficient or even inconsistent estimation. Also, the commonly imposed joint
normality assumption is arguably too stringent for many applications. To address these challenges, in this
article we propose a factor-adjusted robust multiple testing (FarmTest) procedure for large-scale simultane-
ous inference with control of the FDP. We demonstrate that robust factor adjustments are extremely impor-
tant in both controlling the FDP and improving the power. We identify general conditions under which the
proposed method produces consistent estimate of the FDP. As a byproduct that is of independent interest,
we establish an exponential-type deviation inequality for a robust U-type covariance estimator under the
spectral norm. Extensive numerical experiments demonstrate the advantage of the proposed method over
several state-of-the-art methods especially when the data are generated from heavy-tailed distributions.
The proposed procedures are implemented in the R-package FarmTest. Supplementary materials for this
article are available online.
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1. Introduction

Large-scale multiple testing problems with independent test
statistics have been extensively explored and is now well
understood in both practice and theory (Benjamini and
Hochberg 1995; Storey 2002; Genovese and Wasserman 2004;
Lehmann and Romano 2005). Yet, in practice, correlation effects
often exist across many observed test statistics. For instance,
in neuroscience studies, although the neuroimaging data may
appear very high dimensional (with millions of voxels), the
effect degrees of freedom are generally much smaller, due to
spatial correlation and spatial continuity (Medland et al. 2014).
In genomic studies, genes are usually correlated regulatorily or
functionally: multiple genes may belong to the same regulatory
pathway or there may exist gene-gene interactions. Ignoring
these dependence structures will cause loss of statistical power
or lead to inconsistent estimates.

To understand the effect of dependencies on multiple test-
ing problems, validity of standard multiple testing procedures
have been studied under weak dependencies, see Benjamini
and Yekutieli (2001), Storey (2003), Storey, Taylor, and Sieg-
mund (2004), Ferreira and Zwinderman (2006), Chi (2007),
Wu (2008), Clarke and Hall (2009), Blanchard and Roquain
(2009), and Liu and Shao (2014), among others. For example,
it has been shown that, the Benjamini-Hochberg procedure or
Storey’s procedure, is still able to control the false discovery
rate (FDR) or false discovery proportion (FDP), when only

CONTACT Wen-Xin Zhou wez243@ucsd.edu Department of Mathematics, University of California, San Diego, La Jolla, CA 92093.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

weak dependencies are present. Nevertheless, multiple testing
under general and strong dependence structures remains a chal-
lenge. Directly applying standard FDR controlling procedures
developed for independent test statistics in this case can lead
to inaccurate false discovery control and spurious outcomes.
Therefore, correlations must be accounted for in the inference
procedure; see, for example, Owen (2005), Efron (2007, 2010),
Leek and Storey (2008), Sun and Cai (2009), Friguet, Kloareg,
and Causeur (2009), Schwartzman and Lin (2011), Fan, Han,
and Gu (2012), Desai and Storey (2012), Wang et al. (2017), and
Fan and Han (2017) for an unavoidably incomplete overview.

In this article, we focus on the case where the dependence
structure can be characterized by latent factors, that is, there
exist a few unobserved variables that correlate with the outcome.
A multifactor model is an effective tool for modeling depen-
dence, with wide applications in genomics (Kustra, Shioda, and
Zhu 2006), neuroscience (Pournara and Wernish 2007), and
financial economics (Bai 2003). It relies on the identification
of a linear space of random vectors capturing the dependence
structure of the data. In Friguet, Kloareg, and Causeur (2009)
and Desai and Storey (2012), the authors assumed a strict factor
model with independent idiosyncratic errors, and used the EM
algorithm to estimate the factor loadings as well as the realized
factors. The FDP is then estimated by subtracting out the real-
ized common factors. Fan, Han, and Gu (2012) considered a
general setting for estimating the FDP, where the test statistics
follow a multivariate normal distribution with an arbitrary but

© 2019 American Statistical Association
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known covariance structure. Later, Fan and Han (2017) used the
POET estimator (Fan, Liao, and Mincheva 2013) to estimate
the unknown covariance matrix, and then proposed a fully
data-driven estimate of the FDP. Recently, Wang et al. (2017)
considered a more complex model with both observed primary
variables and unobserved latent factors.

All the methods above assume joint normality of factors and
noise, and thus methods based on least-squares regression, or
likelihood generally, can be applied. However, normality is really
an idealization of the complex random world. For example, the
distribution of the normalized gene expressions is often far from
normal, regardless of the normalization methods used (Purdom
and Holmes 2005). Heavy-tailed data also frequently appear
in many other scientific fields, such as financial engineering
(Cont 2001) and biomedical imaging (Eklund, Nichols, and
Knutsson 2016). In finance, the seminal papers by Mandelbrot
(1963) and Fama (1963) discussed the power law behavior of
asset returns, and Cont (2001) provided extensive evidence of
heavy-tailedness in financial returns. More recently, in func-
tional MRI studies, it has been observed by Eklund, Nichols,
and Knutsson (2016) that the parametric statistical methods
failed to produce valid cluster-wise inference, where the prin-
cipal cause is that the spatial autocorrelation functions do not
follow the assumed Gaussian shape. The heavy-tailedness issue
may further be amplified by high dimensionality in large-scale
inference. In the context of multiple testing, as the dimension
gets larger, more outliers are likely to appear, and this may lead
to significant false discoveries. It is, therefore, imperative to
develop inferential procedures that adjust dependence and are
robust to heavy-tailedness at the same time.

In this article, we investigate the problem of large-scale
multiple testing under dependence via an approximate factor
model, where the outcome variables are correlated with each
other through latent factors. To simultaneously incorporate the
dependencies and tackle with heavy-tailed data, we propose a
factor-adjusted robust multiple testing (FarmTest) procedure.
As we proceed, we gradually unveil the whole procedure in four
steps. First, we consider an oracle factor-adjusted procedure
given the knowledge of the factors and loadings, which provides
the key insights into the problem. Next, using the idea of
adaptive Huber regression (Zhou et al. 2018; Sun, Zhou, and
Fan 2017), we consider estimating the realized factors when the
loadings were known and provide a robust control of the FDP.
In the third part, we propose two robust covariance matrix
estimators, a U-statistic-based estimator and another one
based on element-wise robustification. We then apply spectral
decomposition to these estimators and use principal factors to
recover the factor loadings. The final part, which is provided in
Appendix A, gives a fully data-driven testing procedure based
on sample splitting: use part of the data for loading construction
and the other part for simultaneous inference.

First, we illustrate our methodology with a numerical exam-
ple that consists of observations Xi’s generated from a three-
factor model:

Xi = μ + Bf i + εi, i = 1, . . . , n,

where f i ∼ N (0, I3) and the entries of B are independent
and identically distributed (IID) from a uniform distribution,

U(−1, 1). The idiosyncratic errors, εi’s, are independently gen-
erated from the t3-distribution with 3 degrees of freedom. The
sample size n and dimension p are set to be 100 and 500,
respectively. We take the true means to be μj = 0.6 for 1 ≤ j ≤
0.25 × p and 0 otherwise. In Figure 1, we plot the histograms of
sample means, robust mean estimators, and their counterparts
with factor-adjustment. Details of robust mean estimation and
the related factor-adjusted procedure are specified in Sections 2
and 3. Due to the existence of latent factors and heavy-tailed
errors, there is a large overlap between sample means from the
null and alternative, which makes it difficult to distinguish them
from each other. With the help of either robustification or factor-
adjustment, the null and alternative are better separated as
shown in the figure. Furthermore, with both factor-adjustment
and robustification, the resulting estimators are tightly concen-
trated around the true means so that the signals are evidently
differentiated from the noise. This example demonstrates the
effectiveness of the factor-adjusted robust multiple testing pro-
cedure.

The rest of the article proceeds as follows. In Section 2,
we describe a generic factor-adjusted robust multiple testing
procedure under the approximate factor model. In Section 3,
we gradually unfold the proposed method, while we establish
its theoretical properties along the way. Section 4 is devoted to
simulated numerical studies. Section 5 analyzes an empirical
dataset. We conclude the article in Section 6. Proofs of the
main theorems and technical lemmas are provided in the online
supplement.

Notation. We adopt the following notations throughout the
article. For any d × d matrix A = (Ak�)1≤k,�≤d, we write
‖A‖max = max1≤k,�≤d |Ak�|, ‖A‖1 = max1≤�≤d

∑d
k=1 |Ak�|

and ‖A‖∞ = max1≤k≤d
∑d

�=1 |Ak�|. Moreover, we use ‖A‖ and
tr(A) = ∑d

k=1 Akk to denote the spectral norm and the trace of
A. When A is symmetric, we have ‖A‖ = max1≤k≤d |λk(A)|,
where λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A) are the eigenvalues of
A, and it holds ‖A‖ ≤ ‖A‖1/2

1 ‖A‖1/2∞ ≤ max{‖A‖1, ‖A‖∞} ≤
d1/2‖A‖. We use λmax(A) and λmin(A) to denote the maximum
and minimum eigenvalues of A, respectively.

2. FarmTest

In this section, we describe a generic factor-adjusted robust
multiple testing procedure under the approximate factor model.

2.1. Problem Setup

Let X = (X1, . . . , Xp)T be a p-dimensional random vector
with mean μ = (μ1, . . . , μp)T and covariance matrix � =
(σjk)1≤j,k≤p. We assume the dependence structure in X is
captured by a few latent factors such that X = μ + Bf + ε,
where B = (b1, . . . , bp)T ∈ Rp×K is the deterministic factor
loading matrix, f = (fi1, . . . , fiK)T ∈ RK is the zero-mean
latent random factor, and ε = (ε1, . . . , εp)T ∈ Rp consists of
idiosyncratic errors that are uncorrelated with f . Suppose we
observe n random samples X1, . . . , Xn from X, satisfying

Xi = μ + Bf i + εi, i = 1, . . . , n, (1)
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Figure 1. Histograms of four different mean estimators for simultaneous inference.

where f i’s and εi’s are IID samples of f and ε, respectively.
Assume that f and ε have covariance matrices �f and �ε =
(σε,jk)1≤j,k≤p. In addition, note that B and f i are not separately
identifiable as they both are unobserved. For an arbitrary K ×K
invertible matrix H, one can choose B∗ = BH and f ∗

i = H−1f i
such that B∗f ∗

i = Bf i. Since H contains K2 free parameters, we
impose the following conditions to make B and f identifiable:

�f = IK and BTB is diagonal, (2)

where the two conditions provide K(K + 1)/2 and K(K − 1)/2
restrictions, respectively. The choice of identification conditions
is not unique. We refer to Lawley and Maxwell (1971) and
Bai and Li (2012) for details of more identification strategies.
Model (1) with observable factors has no identification issue and
is studied elsewhere (Zhou et al. 2018).

In this article, we are interested in simultaneously testing the
following hypotheses:

H0j : μj = 0 versus H1j : μj 	= 0, for 1 ≤ j ≤ p, (3)

based on the observed data {Xi}n
i=1. Many existing works

(e.g., Friguet, Kloareg, and Causeur 2009; Fan, Han, and Gu
2012; Fan and Han 2017) in the literature assume multivariate
normality of the idiosyncratic errors. However, the Gaussian

assumption on the sampling distribution is often unrealistic in
many practical applications. For each feature, the measurements
across different subjects consist of samples from potentially
different distributions with quite different scales, and thus can
be highly skewed and heavy-tailed. In the big data regime, we
are often dealing with thousands or tens of thousands of features
simultaneously. Simply by chance, some variables exhibit heavy
and/or asymmetric tails. As a consequence, with the number of
variables grows, some outliers may turn out to be so dominant
that they can be mistakenly regarded as discoveries. Therefore,
it is imperative to develop robust alternatives that are insensitive
to outliers and data contaminations.

For each 1 ≤ j ≤ p, let Tj be a generic test statistic for testing
the individual hypothesis H0j. For a prespecified thresholding
level z > 0, we reject the jth null hypothesis whenever |Tj| ≥ z.
The number of total discoveries R(z) and the number of false
discoveries V(z) can be written as

R(z) =
p∑

j=1
I(|Tj| ≥ z) and V(z) =

∑
j∈H0

I(|Tj| ≥ z), (4)

respectively, whereH0 := {j : 1 ≤ j ≤ p, μj = 0} is the set of the
true nulls with cardinality p0 = |H0| = ∑p

j=1 I(μj = 0). We are
mainly interested in controlling the FDP, FDP(z) = V(z)/R(z)
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Figure 2. The Huber loss function �τ (·) with varying robustification parameters
and the quadratic loss function.

with the convention 0/0 = 0. We remark here that R(z) is
observable given the data, while V(z), which depends on the
set of true nulls, is an unobserved random quantity that needs
to be estimated. Comparing with FDR control, controlling FDP
is arguably more relevant as it is directly related to the current
experiment.

2.2. A Generic Procedure

We now propose a factor-adjusted robust multiple testing proce-
dure, which we call FarmTest. As the name suggests, this proce-
dure utilizes the dependence structure in X and is robust against
heavy tailedness of the error distributions. Recent studies in Fan,
Li, and Wang (2017) and Zhou et al. (2018) show that the Huber
estimator (Huber 1964) with a properly diverging robustifica-
tion parameter admits a sub-Gaussian-type deviation bound
for heavy-tailed data under mild moment conditions. This new
perspective motivates new methods, as described below. To
begin with, we revisit the Huber loss and the robustification
parameter.

Definition 1. The Huber loss �τ (·) (Huber 1964) is defined as

�τ (u) =
{

u2/2 if |u| ≤ τ ,
τ |u| − τ 2/2 if |u| > τ ,

where τ > 0 is refereed to as the robustification parameter that
trades bias for robustness.

We refer to the Huber loss in Definition 1 above as the adap-
tive Huber loss to recognize the adaptivity of the robustification
parameter τ . For any 1 ≤ j ≤ p, with a robustification parameter
τj > 0, we consider the following M-estimator of μj:

μ̂j = arg min
θ∈R

n∑
i=1

�τj(Xij − θ), (5)

where we suppress the dependence of μ̂j on τj for simplic-
ity. As shown in our theoretical results, the parameter τ plays
an important role in controlling the bias-robustness tradeoff.

FarmTest Procedure.
Input: Observed data Xi = (Xi1, . . . , Xip)T ∈ Rp for i = 1, . . . , n,
a prespecified level α ∈ (0, 1) and an integer K ≥ 1.
Procedure:
Step 1: Construct a robust covariance matrix estimator �̂ ∈
Rp×p based on observed data. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K be the
top K eigenvalues of �̂, and v̂1, v̂2, . . . , v̂K be the corresponding
eigenvectors. Define B̂ = (̃λ

1/2
1 v̂1, . . . , λ̃1/2

K v̂K) ∈ Rp×K , where
λ̃k = max(λ̂k, 0). Let b̂1, . . . , b̂p ∈ RK be the p rows of B̂, and
define

f̂ ∈ arg min
f ∈RK

p∑
j=1

�γ (X̄j − b̂
T
j f ), (7)

where γ = γ (n, p) > 0 is a robustification parameter.
Step 2: Construct factor-adjusted test statistics

Tj =
√

n
σ̂ε,jj

(μ̂j − b̂
T
j f̂ ), j = 1, . . . , p, (8)

where σ̂ε,jj = θ̂j − μ̂2
j − ‖b̂j‖2

2, θ̂j = arg min
θ≥μ̂2

j +‖b̂j‖2
2

∑n
i=1 �τjj

(X2
ij −θ), τjj’s are robustification parameters and μ̂j’s are defined

in (5). Here, we use the fact that E(X2
j ) = μ2

j + ‖bj‖2
2 + var(εj),

according to the identification condition.
Step 3: Calculate the critical value zα as

zα = inf{z ≥ 0 : FDPA(z) ≤ α}, (9)

where FDPA(z) = 2p
(−z)/R(z) denotes the approximate
FDP and R(z) is as in (4). Finally, for j = 1, . . . , p, reject H0j
whenever |Tj| ≥ zα .

To guarantee the asymptotic normality of μ̂j uniformly over
j = 1, . . . p, and to achieve optimal bias-robustness tradeoff,
we choose τ = τ(n, p) of the form C

√
n/log(np), where the

constant C > 0 can be selected via cross-validation. We refer to
Section 4.1 for details. Specifically, we show that

√
n (μ̂j − bT

j f̄ )
is asymptotically normal with mean μj and variance σε,jj (with
details given in Appendix B):

√
n (μ̂j − μj − bT

j f̄ )
= N (0, σε,jj) + oP(1) uniformly over j = 1, . . . , p. (6)

Here, μ̂j’s can be regarded as robust versions of the sample
averages X̄j = μj + bT

j f̄ + ε̄j, where X̄j = n−1 ∑n
i=1 Xij and

ε̄j = n−1 ∑n
i=1 εij.

Given a prespecified level α ∈ (0, 1), our testing procedure
consists of three steps: (i) robust estimation of the loading
vectors and factors; (ii) construction of factor-adjusted marginal
test statistics and their P-values; and (iii) computing the critical
value or threshold level with the estimated FDP controlled at α.
The detailed procedure is stated below.

We expect that the factor-adjusted test statistic Tj given in (8)
is close in distribution to standard normal for all j = 1, . . . , p.
Hence, according to the law of large numbers, the number of
false discoveries V(z) = ∑

j∈H0 I(|Tj| ≥ z) should be close to
2p0
(−z) for any z ≥ 0. The number of null hypotheses p0 is
typically unknown. In the high dimensional and sparse regime,
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where both p and p0 are large and p1 = p−p0 = o(p) is relatively
small, FDPA in (9) serves as a slightly conservative surrogate for
the asymptotic approximation 2p0
(−z)/R(z). If the propor-
tion π0 = p0/p is bounded away from 1 as p → ∞, FDPA tends
to overestimate the true FDP. The estimation of π0 has long
been known as an interesting problem. See, for example, Storey
(2002), Langaas and Lindqvist (2005), Meinshausen and Rice
(2006), Jin and Cai (2007) and Jin (2008), among others. There-
fore, a more adaptive method is to combine the above procedure
with, for example, Storey’s approach to calibrate the rejection
region for individual hypotheses. Let {Pj = 2
(−|Tj|)}p

j=1 be the
approximate P-values. For a predetermined η ∈ [0, 1), Storey
(2002) suggested to estimate π0 by

π̂0(η) = 1
(1 − η)p

p∑
j=1

I(Pj > η). (10)

The fundamental principle that underpins Storey’s procedure
is that most of the large P-values come from the true null
hypotheses and thus are uniformly distributed. For a sufficiently
large η, about (1 − η)π0 of the P-values are expected to lie
in (η, 1]. Therefore, the proportion of P-values that exceed η

should be close to (1 − η)π0. A value of η = 1/2 is used in the
SAM software (Storey and Tibshirani 2003); while it was shown
in Blanchard and Roquain (2009) that the choice η = α may
have better properties for dependent P-values.

Incorporating the above estimate of π0, a modified estimate
of FDP takes the form

FDPA(z; η) = 2p π̂0(η)
(−z)/R(z), z ≥ 0.

Finally, for any prespecified α ∈ (0, 1), we reject H0j whenever
|Tj| ≥ zα,η, where

zα,η = inf{z ≥ 0 : FDPA(z; η) ≤ α}. (11)

By definition, it is easy to see that zα,0 coincides with zα given
in (9).

3. Theoretical Properties

To fully understand the impact of factor-adjustment as well
as robust estimation, we successively investigate the theoretical
properties of the FarmTest through several steps, starting with
an oracle procedure that provides key insights into the problem.

3.1. An Oracle Procedure

First we consider an oracle procedure that serves as a heuristic
device. In this section, we assume the loading matrix B is known
and the factors {f i}n

i=1 are observable. In this case, it is natural
to use the factor-adjusted data: Y i = Xi − Bf i = μ + εi, which
has smaller component-wise variances (which are {σε,jj}p

j=1 and
assumed known for the moment) than those of Xi. Thus, instead
of using

√
n μ̂j given in (5), it is more efficient to construct

robust mean estimates using factor-adjusted data. This is essen-
tially the same as using the test statistic

T◦
j =

√
n

σε,jj
(μ̂j − bT

j f̄ ), (12)

whose distribution is close to the standard normal distribution
under the jth null hypothesis. Recall that p0 = |H0| is the
number of true null hypotheses. Then, for any z ≥ 0,

1
p0

V(z) = 1
p0

∑
j∈H0

I(|T◦
j | ≥ z).

Intuitively, the (conditional) law of large numbers suggests that
p−1

0 V(z) = 2
(−z) + oP(1). Hence, the FDP based on oracle
test statistics admits an asymptotic expression

AFDPorc(z) = 2p0
(−z)/R(z), z ≥ 0, (13)

where “AFDP" stands for the asymptotic FDP and a subscript
“orc” is added to highlight its role as an oracle.

Remark 1. For testing the individual hypothesis H0j, Fan and
Han (2017) considered the test statistic

√
nX̄j, where X̄j =

(1/n)
∑n

i=1 Xij. The empirical means, without factor adjust-
ments, are inefficient as elucidated in Section 1. In addition, they
are sensitive to the tails of error distributions (Catoni 2012). In
fact, with many collected variables, by chance only, some test
statistics

√
nX̄j can be so large in magnitude empirically that

they may be mistakenly regarded as discoveries.

We will show that AFDPorc(z) provides a valid asymptotic
approximation of the (unknown) true FDP using oracle statis-
tics {T◦

j } in high dimensions. The latter will be denoted as
FDPorc(z). Let Rε = (rε,jk)1≤j,k≤p be the correlation matrix of
ε = (ε1, . . . , εp)T, that is, Rε = D−1

ε �εD−1
ε , where D2

ε =
diag(σε,11, . . . , σε,pp). Moreover, write

ωn,p = √
n/ log(np). (14)

We impose the following moment and regularity assumptions.

Assumption 1. (i) p = p(n) → ∞ and log(p) = o(
√

n) as
n → ∞; (ii) X ∈ Rp follows the approximate factor model (1)
with f and ε being independent; (iii) E(f ) = 0, cov(f ) = IK
and ‖f ‖ψ2 ≤ Af for some Af > 0, where ‖ · ‖ψ2 denotes
the vector sub-Gaussian norm (Vershynin 2018); (iv) There
exist constants Cε , cε > 0 such that cε ≤ min1≤j≤p σ

1/2
ε,jj ≤

max1≤j≤p υj ≤ Cε , where υj := (Eε4
j )

1/4; (v) There exist
constants κ0 ∈ (0, 1) and κ1 > 0 such that max1≤j,k≤p |rε,jk| ≤
κ0 and p−2 ∑

1≤j,k≤p |rε,jk| = O(p−κ1) as p → ∞.

Part (iii) of Assumption 1 requires f ∈ RK to be a sub-
Gaussian random vector. Typical examples include: (1) Gaussian
and Bernoulli random vectors, (2) random vector that is uni-
formly distributed on the Euclidean sphere in RK with center at
the origin and radius

√
K, (3) random vector that is uniformly

distributed on the Euclidean ball centered at the origin with
radius

√
K, and (4) random vector that is uniformly distributed

on the unit cube [−1, 1]K . In all these cases, the constant Af is a
dimension-free constant. See Section 3.4 in Vershynin (2018) for
detailed discussions of multivariate sub-Gaussian distributions.
Part (v) is a technical condition on the covariance structure that
allows ε1, . . . , εp to be weakly dependent. It relaxes the sparsity
condition on the off-diagonal entries of �ε .
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Theorem 1. Suppose that Assumption 1 holds and p0 ≥ ap for
some constant a ∈ (0, 1). Let τj = ajωn,p with aj ≥ σ

1/2
jj for

j = 1, . . . , p, where ωn,p is given by (14). Then we have

p−1
0 V(z) = 2
(−z) + oP(1) (15)

p−1R(z) = 1
p

p∑
j=1

{



(
−z +

√
nμj√
σε,jj

)
+ 


(
−z −

√
nμj√
σε,jj

)}
+ oP(1) (16)

uniformly over z ≥ 0 as n, p → ∞. Consequently, for any z ≥ 0,

|FDPorc(z) − AFDPorc(z)| = oP(1) as n, p → ∞.

3.2. Robust Estimation of Loading Matrix

To realize the oracle procedure in practice, we need to estimate
the loading matrix B and the covariance matrix �, especially
its diagonal entries. Before proceeding, we first investigate how
these preliminary estimates affect FDP estimation. Assume at
the moment that f̄ is given, let b̃1, . . . , b̃p and σ̃11, . . . , σ̃pp be
generic estimates of b1, . . . , bp and σ11, . . . , σpp, respectively. In
view of (2), σε,jj can be naturally estimated by σ̃jj − ‖̃bj‖2

2. The
corresponding FDP and its asymptotic approximation are given
by

F̃DP(z)= Ṽ(z)/̃R(z) and ÃFDP(z)= 2p0
(−z)/̃R(z), z ≥ 0,

where Ṽ(z) = ∑
j∈H0 I(|T̃j| ≥ z), R̃(z) = ∑p

j=1 I(|T̃j| ≥ z)

and T̃j = (n/σ̃ε,jj)1/2(μ̂j − b̃T
j f̄ ) for j = 1, . . . , p. The following

proposition shows that to ensure consistent FDP approximation
or furthermore estimation, it suffices to establish the uniform
convergence results in (17) for the preliminary estimators of B
and {σjj}p

j=1. Later in Section 3.2.1 and 3.2.2, we propose two
types of robust estimators satisfying (17) when p = p(n) is
allowed to grow exponentially fast with n.

Proposition 1. Assume the conditions of Theorem 1 hold and
that the preliminary estimates {̃bj, σ̃jj}p

j=1 satisfy

max
1≤j≤p

‖̃bj − bj‖2 = oP
{(

log n
)−1/2

}
,

max
1≤j≤p

|̃σjj − σjj| = oP
{
(log n)−1/2} . (17)

Then, for any z ≥ 0, |F̃DP(z)−ÃFDP(z)| = oP(1) as n, p → ∞.

Next, we focus on estimating B under identification condi-
tion (2). Write B = (b̄1, . . . , b̄K) and assume without loss of gen-
erality that b̄1, . . . , b̄K ∈ Rp are ordered such that {‖b̄�‖2}K

�=1
is in a nonincreasing order. In this notation, we have � =∑K

�=1 b̄�b̄T
� + �ε , and b̄T

�1 b̄�2 = 0 for 1 ≤ �1 	= �2 ≤ K. Let
λ1, . . . , λp be the eigenvalues of � in a descending order, with
associated eigenvectors denoted by v1, . . . , vp ∈ Rp. By Weyl’s
theorem,

|λj − ‖b̄j‖2
2| ≤ ‖�ε‖ for 1 ≤ j ≤ K and |λj| ≤ ‖�ε‖ for j > K.

Moreover, under the pervasiveness condition (see Assump-
tion 2), the eigenvectors vj and b̄j/‖b̄j‖2 of � and BBT,

respectively, are close to each other for 1 ≤ j ≤ K. The estimation
of B thus depends heavily on estimating � along with its
eigenstructure.

In Sections 3.2.1 and 3.2.2, we propose two different robust
covariance matrix estimators that are also of independent inter-
est. The construction of B̂ then follows from Step 1 of the
FarmTest procedure described in Section 2.2.

3.2.1. U-type Covariance Estimation
First, we propose a U-type covariance matrix estimator, which
leads to estimates of the unobserved factors under condition (2).
Let ψτ (·) be the derivative of �τ (·) given by

ψτ (u) = min(|u|, τ) sign(u), u ∈ R.

Given n real-valued random variables X1, . . . , Xn from X with
mean μ, a fast and robust estimator of μ is given by μ̂τ =
(1/n)

∑n
i=1 ψτ (Xi). Minsker (2018) extended this univariate

estimation scheme to matrix settings based on the following
definition on matrix functionals.

Definition 2. Given a real-valued function f defined on R and
a symmetric A ∈ Rd×d with eigenvalue decomposition A =
U�UT such that � = diag(λ1, . . . , λd), f (A) is defined as
f (A) = Uf (�)UT, where f (�) = diag(f (λ1), . . . , f (λd)).

Suppose we observe n random samples X1, . . . , Xn from X
with mean μ and covariance matrix � = E{(X − μ)(X − μ)T}.
If μ were known, a robust estimator of � can be simply con-
structed by (1/n)

∑n
i=1 ψτ {(Xi −μ)(Xi −μ)T}. In practice, the

assumption of a known μ is often unrealistic. Instead, we suggest
to estimate � using the following U-statistic-based estimator:

�̂U(τ ) = 1(n
2
) ∑

1≤i<j≤n
ψτ

{
1
2
(Xi − Xj)(Xi − Xj)

T
}

.

Observe that (Xi − Xj)(Xi − Xj)T is a rank one matrix with
eigenvalue ‖Xi − Xj‖2

2 and eigenvector (Xi − Xj)/‖Xi − Xj‖2.
Therefore, by Definition 2, �̂U(τ ) can be equivalently written as

1(n
2
) ∑

1≤i<j≤n
ψτ

(
1
2
‖Xi − Xj‖2

2

)
(Xi − Xj)(Xi − Xj)T

‖Xi − Xj‖2
2

. (18)

This alternative expression makes it much easier to compute.
The following theorem provides an exponential-type deviation
inequality for �̂U(τ ), representing a useful complement to the
results in Minsker (2018). See, for example, Remark 8 therein.

Theorem 2. Let

v2 = 1
2

∥∥∥E{(X − μ)(X − μ)T}2 + tr(�)� + 2�2
∥∥∥. (19)

For any t > 0, the estimator �̂U = �̂U(τ ) with τ ≥
(v/2)(n/t)1/2 satisfies

P{‖�̂U − �‖ ≥ 4v(t/n)1/2} ≤ 2p exp(−t).

Given �̂U , we can construct an estimator of B following
Step 1 of the FarmTest procedure. Recall that b̂1, . . . , b̂p are the
p rows of B̂. To investigate the consistency of b̂j’s, let λ1, . . . , λK
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be the top K (nonzero) eigenvalues of BBT in a descending
order and v1, . . . , vK be the corresponding eigenvectors. Under
identification condition (2), we have λ� = ‖b�‖2

2 and v� =
b�/‖b�‖2 for � = 1, . . . , K.

Assumption 2 (Pervasiveness). There exist positive constants c1,
c2 and c3 such that c1p ≤ λ� −λ�+1 ≤ c2p for � = 1, . . . , K with
λK+1 := 0, and ‖�ε‖ ≤ c3 < λK .

Remark 2. The pervasiveness condition is required for high-
dimensional-spiked covariance model with the first several
eigenvalues well separated and significantly larger than the rest.
In particular, Assumption 2 requires the top K eigenvalues grow
linearly with the dimension p. The corresponding eigenvectors
can, therefore, be consistently estimated as long as sample size
diverges (Fan, Liao, and Mincheva 2013). This condition is
widely assumed in the literature (Stock and Watson 2002; Bai
and Ng 2002). The following proposition provides convergence
rates of the robust estimators {λ̂�, v̂�}K

�=1 under Assumption 2.
The proof, which is given in Appendix D, is based on Weyl’s
inequality and a useful variant of the Davis–Kahan theorem (Yu,
Wang, and Samworth 2015). We notice that some preceding
works (Onatski 2012; Shen et al. 2016; Wang and Fan 2017)
have provided similar results under a weaker pervasiveness
assumption which allows p/n → ∞ in any manner and the
spiked eigenvalues {λ�}K

�=1 are allowed to grow slower than p so
long as c� = p/(nλ�) is bounded.

Proposition 2. Under Assumption 2, we have

max
1≤�≤K

|λ̂� − λ�| ≤ ‖�̂U − �‖ + ‖�ε‖ and (20)

max
1≤�≤K

‖v̂� − v�‖2 ≤ Cp−1(‖�̂U − �‖ + ‖�ε‖), (21)

where C > 0 is a constant independent of (n, p).

We now show the properties of estimated loading vectors and
estimated residual variances {σ̂ε,jj}p

j=1 that are defined below (8).

Theorem 3. Suppose Assumption 1(iv) and Assumption 2 hold.
Let τ = v0ωn,p with v0 ≥ v/2 for v given in (19). Then, with
probability at least 1 − 2n−1,

max
1≤j≤p

‖b̂j − bj‖2 ≤ C1{v
√

log(np) (np)−1/2 + p−1/2} (22)

as long as n ≥ v2p−1 log(np). In addition, if n ≥ C2 log(np),
τj = ajωn,p, τjj = ajjωn,p with aj ≥ σ

1/2
jj , ajj ≥ var(X2

j )
1/2, we

have

max
1≤j≤p

|σ̂ε,jj − σε,jj| ≤ C3(vp−1/2w−1
n,p + p−1/2) (23)

with probability greater than 1 − C4n−1. Here, C1–C4 are posi-
tive constants that are independent of (n, p).

Remark 3. According to Theorem 3, the robustification param-
eters can be set as τj = ajωn,p and τjj = ajjωn,p, where wn,p is
given in (14). In practice, the constants aj and ajj can be chosen
by cross-validation.

3.2.2. Adaptive Huber Covariance Estimation
In this section, we adopt an estimator that was first considered
in Fan, Li, and Wang (2017). For every 1 ≤ j 	= k ≤ p, we define
the robust estimate σ̂jk of σjk = E(XjXk) − μjμk to be

σ̂jk = θ̂jk − μ̂jμ̂k with θ̂jk = arg min
θ∈R

n∑
i=1

�τjk(XijXik − θ),

(24)

where τjk > 0 is a robustification parameter and μ̂j is defined in
(5). This yields the adaptive Huber covariance estimator �̂H =
(σ̂jk)1≤j,k≤p. The dependence of �̂H on {τjk : 1 ≤ j ≤ k ≤ p}
and {τj}p

j=1 is assumed without displaying.

Theorem 4. Suppose Assumption 1(iv) and Assumption 2 hold.
Let τj = ajωn,p, τjk = ajkωn,p2 with aj ≥ σ

1/2
jj , ajk ≥ var(X2

j )
1/2

for 1 ≤ j, k ≤ p. Then, there exist positive constants C1–C3
independent of (n, p) such that as long as n ≥ C1 log(np),

max
1≤j≤p

‖b̂j − bj‖2 ≤ C2(ω
−1
n,p + p−1/2)

and max
1≤j≤p

|σ̂ε,jj − σε,jj| ≤ C3(ω
−1
n,p + p−1/2)

with probability greater than 1 − 4n−1, where wn,p is given
in (14).

3.3. Estimating Realized Factors

To make the oracle statistics T◦
j ’s given in (12) usable, it remains

to estimate f̄ . Since the loadings can be estimated in two differ-
ent ways, let us first assume B is given and treat it as an input
variable.

Averaging the approximate factor model (1), we have X̄ =
μ + Bf̄ + ε̄, where X̄ = (X̄1, . . . , X̄p)T = (1/n)

∑n
i=1 Xi and

ε̄ := (ε̄1, . . . , ε̄p)T = (1/n)
∑n

i=1 εi. This leads to

X̄j = bT
j f̄ + μj + ε̄j, j = 1, . . . , p. (25)

Among all {μj + ε̄j}p
j=1, we may regard μj + ε̄j with μj 	= 0

as outliers. Therefore, to achieve robustness, we estimate f̄ by
solving the following optimization problem:

f̂ (B) ∈ arg min
f ∈RK

p∑
j=1

�γ (X̄j − bT
j f ), (26)

where γ = γ (n, p) > 0 is a robustification parameter. Next, we
define robust variance estimators σ̂ε,jj’s by

σ̂ε,jj(B) = θ̂j − μ̂2
j − ‖bj‖2

2 with

θ̂j = arg min
θ ≥ μ̂2

j +‖bj‖2
2

n∑
i=1

�τjj(X2
ij − θ),

where τjj’s are robustification parameters and μ̂j’s are as in (5).
Plugging {̂σε,jj}p

j=1 and f̂ into (12), we obtain the following
factor-adjusted test statistics:

Tj(B) =
{

n
σ̂ε,jj(B)

}1/2
{μ̂j − bT

j f̂ (B)}, j = 1, . . . , p. (27)
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For a given threshold z ≥ 0, the corresponding FDP is defined as

FDP(z; B) = V(z; B)/R(z; B),

where V(z; B)= ∑
j∈H0 I{|Tj(B)| ≥ z} and R(z; B)= ∑

1≤j≤p
I{|Tj(B)| ≥ z}. Similarly to (13), we approximate FDP(z; B) by

AFDP(z; B) = 2p0
(−z)/R(z; B).

For any z ≥ 0, the approximate FDP AFDP(z; B) is computable
except p0, which can be either estimated (Storey 2002) or upper
bounded by p. Albeit being slightly conservative, the latter pro-
posal is accurate enough in the sparse setting.

Regarding the accuracy of AFDP(z; B) as an asymptotic
approximation of FDP(z; B), we need to account for the
statistical errors of {̂σε,jj(B)}p

j=1 and f̂ (B). To this end, we make
the following structural assumptions on μ and B.

Assumption 3. The idiosyncratic errors ε1, . . . , εp are mutually
independent, and there exist constants cl, cu > 0 such that
λmin(p−1BTB) ≥ cl and ‖B‖max ≤ cu.

Assumption 4 (Sparsity). There exist constants Cμ > 0 and
cμ ∈ (0, 1/2) such that ‖μ‖∞ = max1≤j≤p |μj| ≤ Cμ and
‖μ‖0 = ∑p

j=1 I(μj 	= 0) ≤ p1/2−cμ . Moreover, (n, p) satisfies
that n log(n) = o(p) as n, p → ∞.

The following proposition, which is of independent interest,
reveals an exponential-type deviation inequality for f̂ (B) with a
properly chosen γ > 0.

Proposition 3. Suppose that Assumption 3 holds. For any t > 0,
the estimator f̂ (B) given in (26) with γ = γ0(p/t)1/2 for γ0 ≥
σε := (p−1 ∑p

j=1 σε,jj)1/2 satisfies that with probability greater
than 1 − (2eK + 1)e−t ,

‖f̂ (B) − f̄ ‖2 ≤ C1γ0(Kt)1/2p−1/2 (28)

as long as p ≥ max{‖μ‖2
2/σ

2
ε , (‖μ‖1/σ ε)

2t, C2K2t}, where
C1, C2 > 0 are constants depending only on cl, cu in Assump-
tion 3.

The convergence in probability of FDP(z; B) to AFDP(z; B)

for any z ≥ 0 is investigated in the following theorem.

Theorem 5. Suppose that Assumptions 1 (i)–(iv), Assumptions 3
and 4 hold. Let τj = ajωn,p, τjj = ajjωn,p with aj ≥ σ

1/2
jj , ajj ≥

var(X2
j )

1/2 for j = 1, . . . , p, and γ = γ0{p/ log(n)}1/2 with γ0 ≥
σε . Then, for any z ≥ 0, |FDP(z; B) − AFDP(z; B)| = oP(1) as
n, p → ∞.

4. Simulation Studies

4.1. Selecting Robustification Parameters

The robustification parameter involved in the Huber loss plays
an important role in the proposed procedures both theoretically
and empirically. In this section, we describe the use of cross-
validation to calibrate robustification parameter in practice. To
highlight the main idea, we restrict our attention to the mean
estimation problem.

Table 1. Optimal rates for robustification parameters.

Estimator Parameter Optimal Rate

Robust estimator of μj τj in (5)
√

n/ log(np)

U-type covariance estimator τ in (18) p
√

n/ log(p)

Adaptive Huber covariance estimator τjk in (24)
√

n/ log(np2)

Robust estimator of f̄ γ in (26)
√

p/ log(n)

Suppose we observe n samples X1, . . . , Xn from X with mean
μ. For any given τ > 0, the Huber estimator is defined as
μ̂τ = arg minθ∈R

∑n
i=1 �τ (Xi − θ), or equivalently, the unique

solution of the equation
∑n

i=1 ψτ (Xi − θ) = 0. Our theoretical
analysis suggests that the theoretically optimal τ is of the form
Cσ ωn, where ωn is a specified function of n and Cσ > 0 is a
constant that scales with σ , the standard deviation of X. This
allows us to narrow down the search range by selecting Cσ

instead via the K-fold (K = 5 or 10) cross-validation as follows.
First, we randomly divide the sample into K subsets, I1, . . . , IK ,
with roughly equal sizes. The cross-validation criterion for a
given C > 0 can be defined as

CV(C) = 1
n

K∑
k=1

∑
i∈Ik

{Xi − μ̂(−k)
τC }2, (29)

where μ̂
(−k)
τC is the Huber estimator using data not in the kth

fold, namely

μ̂(−k)
τC = arg min

θ∈R

K∑
�=1,� 	=k

∑
i∈I�

�τC(Xi − θ),

and τC = Cωn. In practice, let C be a set of grid points for C. We
choose Cσ and, therefore, τ by Ĉσ = arg minC∈C CV(C) and
τ̂ = Ĉσ ωn.

The robustification parameters involved in the FarmTest pro-
cedure can be selected in a similar fashion by modifying the
loss function and the cross-validation criterion (29) accordingly.
The theoretical order ωn can be chosen as the rate that guaran-
tees optimal bias-robustness tradeoff. Based on the theoretical
results in Section 3, we summarize the optimal rates for various
robustification parameters in Table 1. Robust estimation of μj’s
and the adaptive Huber covariance estimator involve multiple
robustification parameters. If X1, . . . , Xp are homoscedastic, it
is reasonable to assume τj = τμ in (5) for all j = 1, . . . , p.
Then we can choose τμ by applying the cross-validation over
a small subset of the covariates X1, . . . , Xp. Similarly, we can set
τjk = τ� in (24) for all j, k and calibrate τ� by applying the cross-
validation over a subset of the entries.

4.2. Settings

In the simulation studies, we take (p1, p) = (25, 500) so that
π1 = p1/p = 0.05, n ∈ {100, 150, 200} and use t = 0.01 as the
threshold value for P-values. Moreover, we set the mean vector
μ = (μ1, . . . , μp)T to be μj = 0.5 for 1 ≤ j ≤ 25 and μj = 0
otherwise. We repeat 1000 replications in each of the scenarios
below. The robustifications parameters are selected by five-fold
cross-validation under the guidance of their theoretically opti-
mal orders. The data-generating processes are as follows.
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Model 1: Normal factor model. Consider a three-factor model
Xi = μ + Bf i + εi, i = 1, . . . , n, where f i ∼ N (0, I3), B =
(bj�)1≤j≤p,1≤�≤3 has IID entries bj�’s generated from the uniform
distribution U(−2, 2).

Model 2: Synthetic factor model. Consider a similar three-factor
model as in Model 1, except that f i’s and bj’s are generated inde-
pendently from N (0, �f ) and N (μB, �B), respectively, where
�f , μB and �B are calibrated from the daily returns of S&P 500’s
top 100 constituents (ranked by the market cap) between July 1,
2008 and June 29, 2012.

Model 3: Serial-dependent factor model. Consider a similar
three-factor model as in Model 1, except that f i’s are gen-
erated from a stationary VAR(1) model f i = �f i−1 + ξ i for
i = 1, . . . , n, with f 0 = 0 and ξ i’s IID drawn from N (0, I3).
The (j, k)th entry of � is set to be 0.5 when j = k and 0.4|j−k|
otherwise.

The idiosyncratic errors in these three models are generated
from one of the following four distributions. Let �ε be a sparse
matrix whose diagonal entries are 3 and off-diagonal entries are
drawn from IID 0.3 × Bernoulli(0.05);

1. multivariate normal distribution N (0, �ε);
2. multivariate t-distribution t3(0, �ε) with 3 degrees of free-

dom;
3. IID Gamma distribution with shape parameter 3 and scale

parameter 1; and
4. IID rescaled log-normal distribution a{exp(1 + 1.2Z) − b},

where Z ∼ N (0, 1) and a, b > 0 are chosen such that it has
mean zero and variance 3.

4.3. FDP Estimation

In our robust testing procedure, the covariance matrix is either
estimated by the entry-wise adaptive Huber method or by the
U-type robust covariance estimator. The corresponding tests are
labeled as FARM-H and FARM-U, respectively.

In this section, we compare FARM-H and FARM-U with
three existing nonrobust tests. The first one is a factor-adjusted
procedure using the sample mean and sample covariance
matrix, denoted by FAM. The second one is the PFA method,
short for principal factor approximation, proposed by Fan
and Han (2017). In contrast to FAM, PFA directly uses the
unadjusted test statistics and only accounts for the effect of latent
factors in FDP estimation. The third nonrobust procedure is the
Naive method, which completely ignores the factor dependence.

We first examine the accuracy of FDP estimation, which is
assessed by the median of the relative absolute error (RAE)
between the estimated FDP and FDPorc(t) :=

∑
j∈H0 I(Pj≤t)

max{1,
∑p

j=1 I(Pj≤t)} ,

where Pj = 2
(−|To
j |) and To

j are the oracle test statistics given
in (12). For a given threshold value t, RAE for kth simulation is
defined as

RAE(k) = |F̂DP(t, k) − FDPorc(t, k)|/FDPorc(t, k),
× k = 1, . . . , 1000,

where F̂DP(t, k) is the estimated FDP in the kth simulation
using one of the five competing methods and FDPorc(t, k) is

Table 2. Median relative absolute error between estimated and oracle FDP.

p = 500

εi n FARM-H FARM-U FAM PFA Naive

Model 1

Normal
100 0.8042 0.8063 0.7716 0.7487 1.789
150 0.7902 0.7925 0.7467 0.7790 1.599
200 0.7665 0.7743 0.7437 0.7363 1.538

t3

100 0.7047 0.7539 1.3894 1.4676 2.061
150 0.6817 0.6002 1.1542 1.2490 1.801
200 0.6780 0.5244 0.9954 1.1306 1.579

Gamma
100 0.7034 0.7419 1.4986 1.7028 3.299
150 0.6844 0.6869 1.4396 1.5263 2.844
200 0.6393 0.6446 1.3911 1.4563 2.041

LN
100 0.6943 0.7104 1.5629 1.7255 3.292
150 0.6487 0.6712 1.6128 1.7742 3.092
200 0.6137 0.6469 1.4476 1.4927 2.510

Model 2

Normal
100 0.6804 0.7079 0.6195 0.6318 1.676
150 0.6928 0.6873 0.6302 0.6136 1.573
200 0.6847 0.6798 0.6037 0.6225 1.558

t3

100 0.6438 0.6641 1.3939 1.4837 2.206
150 0.6258 0.6466 1.2324 1.2902 1.839
200 0.6002 0.6245 1.0368 1.0811 1.481

Gamma
100 0.6404 0.6493 1.6743 1.7517 3.129
150 0.5979 0.5991 1.3618 1.4405 2.657
200 0.5688 0.5746 1.0803 1.1595 2.035

LN
100 0.7369 0.7793 2.0022 2.0427 3.664
150 0.6021 0.6122 1.7935 1.8796 3.056
200 0.5557 0.5588 1.6304 1.8059 2.504

Model 3

Normal
100 0.7937 0.8038 0.7338 0.7651 1.991
150 0.7617 0.7750 0.7415 0.7565 1.888
200 0.7544 0.7581 0.7428 0.7440 1.858

t3

100 0.7589 0.7397 1.4302 1.6053 2.105
150 0.6981 0.7010 1.2980 1.3397 1.956
200 0.6596 0.6846 1.1812 1.1701 1.847

Gamma
100 0.7134 0.7391 1.7585 1.9981 3.945
150 0.6609 0.6744 1.5449 1.7437 3.039
200 0.6613 0.6625 1.4650 1.4869 2.295

LN
100 0.7505 0.7330 1.8019 1.9121 3.830
150 0.6658 0.7015 1.7063 1.7669 3.278
200 0.6297 0.6343 1.5944 1.6304 2.937

the oracle FDP in the kth experiment. The median of RAEs are
presented in Table 2. We see that, although the PFA and FAM
methods achieve the smallest estimation errors in the normal
case, FARM-H and FARM-U perform comparably well. In other
words, a high level of efficiency is achieved if the underlying
distribution is normal. The Naive method performs worst as it
ignores the impact of the latent factors. In heavy-tailed cases,
both FARM-H and FARM-U outperform the nonrobust com-
petitors by a wide margin, still with the Naive method being the
least favorable. In summary, the proposed methods achieve high
degree of robustness against heavy-tailed errors, while losing
little or no efficiency under normality.

4.4. Power Performance

In this section, we compare the powers of the five methods under
consideration. The empirical power is defined as the average
ratio between the number of correct rejections and p1. The
results are displayed in Table 3. In the normal case, FAM has
a higher power than PFA. This is because FAM adjusts the
effect of latent factors for each individual hypothesis so that
the signal-to-noise ratio is higher. Again, both FARM-H and
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Table 3. Empirical powers.

p = 500

εi n FARM-H FARM-U FAM PFA Naive

Model 1

Normal
100 0.853 0.849 0.872 0.863 0.585
150 0.877 0.870 0.890 0.882 0.624
200 0.909 0.907 0.924 0.915 0.671

t3

100 0.816 0.815 0.630 0.610 0.442
150 0.828 0.826 0.668 0.657 0.464
200 0.894 0.870 0.702 0.691 0.502

Gamma
100 0.816 0.813 0.658 0.639 0.281
150 0.830 0.825 0.684 0.663 0.391
200 0.889 0.873 0.712 0.707 0.433

LN
100 0.798 0.786 0.566 0.534 0.242
150 0.817 0.805 0.587 0.673 0.292
200 0.844 0.835 0.613 0.605 0.369

Model 2

Normal
100 0.801 0.799 0.864 0.855 0.584
150 0.856 0.846 0.880 0.870 0.621
200 0.904 0.900 0.911 0.904 0.659

t3

100 0.810 0.802 0.612 0.601 0.402
150 0.825 0.814 0.638 0.632 0.457
200 0.873 0.859 0.695 0.683 0.484

Gamma
100 0.804 0.798 0.527 0.509 0.216
150 0.821 0.819 0.594 0.557 0.289
200 0.885 0.875 0.638 0.606 0.379

LN
100 0.763 0.757 0.463 0.434 0.206
150 0.799 0.795 0.495 0.479 0.228
200 0.826 0.819 0.529 0.511 0.312

Model 3

Normal
100 0.837 0.832 0.848 0.833 0.535
150 0.856 0.848 0.864 0.857 0.594
200 0.875 0.871 0.902 0.896 0.628

t3

100 0.801 0.796 0.606 0.591 0.403
150 0.818 0.816 0.640 0.612 0.426
200 0.881 0.872 0.675 0.643 0.501

Gamma
100 0.792 0.785 0.385 0.329 0.205
150 0.818 0.809 0.472 0.435 0.281
200 0.874 0.867 0.581 0.565 0.367

LN
100 0.783 0.776 0.355 0.336 0.187
150 0.804 0.795 0.442 0.406 0.231
200 0.859 0.849 0.514 0.487 0.326
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Figure 3. Empirical power versus signal strength. The data are generated from
Model 1 with (n, p) = (200, 500) and t3-distributed noise.

FARM-U tests only pay a negligible price in power under nor-
mality. In heavy-tailed cases, however, these two robust methods
achieve much higher empirical powers than their nonrobust
counterparts. Moreover, to illustrate the relationship between
the empirical power and signal strength, Figure 3 displays the
empirical power versus signal strength ranging from 0.1 to 0.8
for Model 1 with (n, p) = (200, 500) and t3-distributed errors.

4.5. FDP/FDR Control

In this section, we compare the numerical performance of the
five tests in respect of FDP/FDR control. We take p = 500 and
let n gradually increase from 100 to 200. The empirical FDP is
defined as the average FDP based on 200 simulations. At the
prespecified level α = 0.05, Figure 4 displays the empirical FDP
versus the sample size under Model 1. In the normal case, all
the four factor-adjusted tests, FARM-H, FARM-U, FAM, and
PFA, have empirical FDPs controlled around or under α. For
heavy-tailed data, FARM-H and FARM-U manage to control
the empirical FDP under α for varying sample sizes; while
FAM and PFA lead to much higher empirical FDPs, indicating
more false discoveries. This phenomenon is in accord with our
intuition that outliers can sometimes be mistakenly regarded
as discoveries. The Naive method performs worst throughout
all models and settings. Due to limitations of space, numerical
results for Models 2 and 3 are given in Appendix E of the online
supplement.

5. Real Data Analysis

Oberthuer et al. (2006) analyzed the German Neuroblastoma
Trials NB90-NB2004 (diagnosed between 1989 and 2004) and
developed a gene expression based classifier. For 246 neurob-
lastoma patients, gene expressions over 10,707 probe sites were
measured. The binary response variable is the 3-year event-
free survival information of the patients (56 positive and 190
negative). We refer to Oberthuer et al. (2006) for a detailed
description of the dataset. In this study, we divide the data into
two groups, one with positive responses and the other with
negative responses, and test the equality of gene expression
levels at all the 10,707 probe sites simultaneously. To that end,
we generalize the proposed FarmTest to the two-sample case by
defining the following two-sample t-type statistics:

Tj = (μ̂1j − b̂
T
1j f̂ 1) − (μ̂2j − b̂

T
2j f̂ 2)

(σ̂1ε,jj/56 + σ̂2ε,jj/190)1/2 , j = 1, . . . , 10, 707,

where the subscripts 1 and 2 correspond to the positive and
negative groups, respectively. Specifically, μ̂1j and μ̂2j are the
robust mean estimators obtained from minimizing the empir-
ical Huber risk (5), and b̂1j, b̂2j, f̂ 1, and f̂ 2 are robust estimators
of the factors and loadings based on the U-type covariance
estimator. In addition, σ̂1ε,jj and σ̂2ε,jj are the variance estimators
defined in (27). As before, the robustification parameters are
selected via five-fold cross-validation with their theoretically
optimal orders taking into account.

We use the eigenvalue ratio method (Lam and Yao 2012; Ahn
and Horenstein 2013) to determine the number of factors. Let
λk(�̂) be the kth largest eigenvalue of �̂ and Kmax a prespecified
upper bound. The number of factors can then be estimated by

K̂ = arg max
1≤k≤Kmax

λk(�̂)/λk+1(�̂).

The eigenvalue ratio method suggests K = 4 for both positive
and negative groups. Figure 5 depicts scree plots of the top
20 eigenvalues for each group. The gene expressions in both
groups are highly correlated. As an evidence, the top four PCs
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Figure 4. Empirical FDP versus sample size for the five tests at level α = 0.05. The data are generated from Model 1 with p = 500 and sample size n ranging from 100 to
200 with a step size of 10. The panels from top to bottom correspond to the four error distributions in Section 4.2.
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Figure 5. Scree plots for positive and negative groups. The bars represent the proportion of variance explained by the top 20 principal components (PCs). The dots represent
the corresponding eigenvalues in descending order.

explain 42.6% and 33.3% of the total variance for the positive
and negative groups, respectively.

To demonstrate the importance of the factor-adjustment pro-
cedure, for each group, we plot the correlation matrices of the
first 100 gene expressions before and after adjusting the top 4
PCs; see Figure 6. The blue and red pixels in Figure 6 repre-
sent the pairs of gene expressions whose absolute correlations
are greater than 1/3. Therefore, after adjusting the top 4 PCs,
the number of off-diagonal entries with strong correlations is
significantly reduced in both groups. To be more specific, the
number drops from 1452 to 666 for the positive group and from
848 to 414 for the negative group.

Another stylized feature of the data is that distributions of
many gene expressions are heavy-tailed. To see this, we plot
histograms of the excess kurtosis of the gene expressions in
Figure 7. The left panel of the Figure 7 shows that 6518 gene

expressions have positive excess kurtosis with 420 of them
greater than 6. In other words, more than 60% of the gene
expressions in the positive group have tails heavier than the
normal distribution and about 4% are severely heavy tailed as
their tails are fatter than the t-distribution with 5 degrees of
freedom. Similarly, in the negative group, 9341 gene expressions
exhibit positive excess kurtosis with 671 of them greater than
6. Such a heavy-tailed feature indicates the necessity of using
robust methods to estimate the mean and covariance of the
data.

We apply four tests, the two-sample FARM-H and FARM-
U, the FAM test and the naive method, to this dataset. At
level α = 0.01, the two-sample FARM-H and FARM-U methods
identify, respectively, 3912 and 3855 probes with different gene
expressions, among which 3762 probes are identical. This shows
an approximately 97% similarity in the two methods. The FAM



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1891

−1

−0.33

0.33

1

Positive group before adjustment

−1

−0.33

0.33

1

Positive group after adjustment

−1

−0.33

0.33

1

Negative group before adjustment

−1

−0.33

0.33

1

Negative group after adjustment

Figure 6. Correlations among the first 100 genes before and after factor-adjustment. The pixel plots are the correlation matrices of the first 100 gene expressions. In the
plots, the blue pixels represent the entries with correlation greater than 1/3 and the red pixels represent the entries with correlation smaller than –1/3.

Positive group

Fr
eq

ue
nc

y

0 5 10 15 20

0
50

0
10

00
15

00
20

00
25

00

t5

Negative group

Fr
eq

ue
nc

y

0 5 10 15 20

0
10

00
20

00
30

00
40

00

t5

Figure 7. Histogram of excess kurtosises for the gene expressions in positive and negative groups. The dashed line at 6 is the excess kurtosis of t5-distribution.
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and naive methods discover 3509 and 3236 probes, respectively.
For this dataset, accounting for latent factor dependence indeed
leads to different statistical conclusions. This visible discrep-
ancy between the two robust methods and FAM highlights the
importance of robustness and reflects the difference in power of
detecting differently expressed probes. The effectiveness of fac-
tor adjustment is also highlighted in the discovery of significant
genes.

6. Discussion and Extensions

In this article, we have developed a FarmTest procedure for
large-scale simultaneous inference with dependent and heavy-
tailed data, the key of which lies in a robust estimate of the FDP.
The procedure has two attractive features: First, it incorporates
dependence information to construct marginal test statistics.
Intuitively, subtracting common factors out leads to higher
signal-to-noise ratios, and, therefore, makes the resulting FDP
control procedure more efficient and powerful. Second, to
achieve robustness against heavy-tailed errors that may also
be asymmetric, we used the adaptive Huber regression method
(Fan, Li, and Wang 2017; Zhou et al. 2018) to estimate the
realized factors, factor loadings and variances. We believe that
these two properties will have further applications to higher
criticism for detecting sparse signals with dependent and
non-Gaussian data; see Delaigle, Hall, and Jin (2011) for the
independent case.

In other situations, it may be more instructive to consider the
mixed effects regression modeling of the data (Friguet, Kloareg,
and Causeur 2009; Wang et al. 2017), that is, Xj = μj +βT

j Z +
bT

j f +εj for j = 1, . . . , p, where Z ∈ Rq is a vector of explanatory
variables (e.g., treatment-control, phenotype, health trait), β j’s
are q × 1 vectors of unknown slope coefficients, and f , bj’s, and
εj’s have the same meanings as in (1). Suppose we observe inde-
pendent samples (X1, Z1), . . . , (Xn, Zn) from (X, Z) satisfying

Xi = μ + �Zi + Bf i + εi, i = 1, . . . , n,

where � = (β1, . . . , βp)
T ∈ Rp×q. In this case, we have

E(Xi|Zi) = μ+�Zi and cov(Xi|Zi) = B�f BT +�ε . The main
issue in extending our methodology to such a mixed effects
model is the estimation of �. For this, we construct robust
estimators (μ̂j, β̂ j) of (μj, β j), defined as

(μ̂j, β̂ j) ∈ arg min
μ∈R, β j∈Rq

n∑
i=1

�τj(Xij − μ − βT
j Zi), 1 ≤ j ≤ p,

where τj’s are robustification parameters. Taking �̂= (β̂1, . . . ,
β̂p)

T, the FarmTest procedure in Section 2.2 can be directly
applied with {Xi}n

i=1 replaced by {Xi − �̂Zi}n
i=1. However,

because �̂ depends on {(Xi, Zi)}n
i=1, the adjusted data X1 −

�̂Z1, . . . , Xn − �̂Zn are no longer independent, which causes
the main difficulty of extending the established theory in
Section 3 to the current setting. One way to bypass this issue
and to facilitate the theoretical analysis is the use of sample
splitting as discussed in Appendix A of the online supplement.
The FarmTest procedure for mixed effects models was also
implemented in the R-package FarmTest (https://cran.r-project.
org/web/packages/FarmTest).

Supplementary Materials

The supplementary materials contain all the proofs of the theoretical results
in the main text, and provide additional numerical studies.
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