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Abstract

Many factors affect eukaryotic gene expression. Transcription factors, histone
codes, DNA folding, and noncoding RNA modulate expression. Those factors
interact in large, broadly connected regulatory control networks. An engineer
following classical principles of control theory would design a simpler regulatory
network. Why are genomes overwired? Neutrality or enhanced robustness may
lead to the accumulation of additional factors that complicate network
architecture. Dynamics progresses like a ratchet. New factors get added.
Genomes adapt to the additional complexity. The newly added factors can no
longer be removed without significant loss of fitness. Alternatively, highly wired
genomes may be more malleable. In large networks, most genomic variants
tend to have a relatively small effect on gene expression and trait values. Many
small effects lead to a smooth gradient, in which traits may change steadily with
respect to underlying regulatory changes. A smooth gradient may provide a
continuous path from a starting point up to the highest peak of performance. A
potential path of increasing performance promotes adaptability and learning.
Genomes gain by the inductive process of natural selection, a trial and error
learning algorithm that discovers general solutions for adapting to
environmental challenge. Similarly, deeply and densely connected
computational networks gain by various inductive trial and error learning
procedures, in which the networks learn to reduce the errors in sequential trials.
Overwiring alters the geometry of induction by smoothing the gradient along the
inductive pathways of improving performance. Those overwiring benefits for
induction apply to both natural biological networks and artificial deep learning
networks.
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Introduction

What determines gene expression? The list keeps growing: tran-
scription factors, methylation, histone codes, DNA folding, intron
sequences, RNA splicing, noncoding RNA, and others'~.

Hundreds of genomic variants affect human traits, such as height’.
Consider pathways of influence. Numerous factors affect gene
expression. Many genes affect a trait. Vast wiring connectivity links
genomic influence to a trait.

An engineer following classic principles of control theory would
design a simpler system with fewer connections’. Genomes are
overwired. They have far more nodes and connections than classi-
cally engineered systems.

Why are genomes overwired? I discuss possible causes. I then con-
sider wiring density more broadly. What other sorts of systems tend
to be overwired?

Computational neural networks in artificial intelligence stand out.
Deeply, densely connected computational networks pervade mod-
ern life. New computational systems often outperform humans.

The recent computational concepts and methods comprise deep
learning. The learning simply means using data, or past experience,
to improve classification of inputs and adjustment of response.
The deep qualifier refers to the multiple layers of deep and dense
network connections’*.

That wiring depth, and the computational techniques to use vast
connectivity, triggered the revolutionary advances in performance.
I discuss genomic wiring in relation to deep learning. I suggest that
the inductive systems of biological adaptation and computational
learning gain in similar ways from diffusely and densely wired
networks.

Causes
Why do so many factors modulate gene expression? Why is the
regulatory network architecture for traits often complex?

Neutral accumulation

A noncoding RNA may, by chance, alter the expression of vari-
ous genes. Small modulations of expression may have relatively
little effect on fitness. If so, a novel noncoding RNA variant may be
effectively neutral. Nearly neutral variants accumulate by chance.

Many nearly neutral variants may accumulate over time. As each
variant spreads, it changes the genomic environment of gene regu-
lation. When the aggregate effect of many nearly neutral variants
becomes significant, natural selection will retune expression to
compensate.
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After compensation occurs, one cannot remove the layers of
accumulated modulating factors without causing deleterious
changes in gene expression. What began as neutral accumulation
becomes integral to genomic function. Wiring complexity increases
irreversibly.

Lynch’s neutral theory of genome architecture makes predictions’*.
Smaller population sizes increase chance fluctuations. Greater
fluctuations allow larger fitness effects to become nearly neutral.
Broader neutrality enhances the rate at which changes accumulate.
Smaller populations may tend toward overwiring.

By contrast, large populations more efficiently prune small effects
on fitness. Small modulations of gene expression accumulate more
slowly. Larger populations may not overwire as readily as smaller
populations.

If the fitness effects of modulation tend to be larger, nearly neutral
variants will be less common. Prokaryotes may tend to have rela-
tively large deleterious fitness effects of novel modulating factors,
because increased genome size and complexity may slow the speed
of cellular replication. Eukaryotic genomes may be less sensitive to
size and complexity because organismal replication is less strongly
coupled to speed of cell division.

Overall, prokaryotes tend to have larger populations and greater
sensitivity to genome size and complexity. Such characteristics
restrict the scope for neutral accumulation and overwiring. By
contrast, eukaryotes tend toward smaller populations and less
sensitivity to genome size and complexity. Those characteristics
favor neutral accumulation and overwiring. Stronger predictions
arise when one can compare closely related organisms that differ in
population size and genomic sensitivity.

Robustness and decay
Modulating factors combine to influence traits. The mechanism of
combination matters. Consider two alternatives.

First, suppose modulating factors add together to determine a trait.
Then, the more modulating factors, the greater the trait’s variance.
Put another way, the more things that cause fluctuations in gene
expression, the more variable the trait. In the classical summation
model, the variance contribution of each factor is ¢ Summing
n components yields a trait variance of nc, rising with the number
of components.

Second, suppose modulating factors average together to determine
a trait”. When averaging n components, we divide the effect of each
component by n. As the number of components rises, the effect of
each component declines. Averaging n components yields a trait
variance of 0%/n, declining with the number of components.

One can think about each additional modulating component as
perturbing trait expression. Robustness is decreased sensitivity to
perturbation. In the averaging model, the greater the number of
factors, the weaker the effect of each individual perturbing factor.
Thus, averaging reduces sensitivity to each perturbation, enhancing
robustness.
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If modulating factors average together, the benefits of enhanced
robustness can favor an increase in the number of factors’. Gener-
ally, if the effect of an additional factor causes a sufficient decline
in the average contribution of each factor, then natural selection can
favor a tendency for the number of factors to increase. Ultimately,
many factors of small effect modulate trait expression.

Under the averaging model, evolutionary dynamics follows an
interesting path. An additional modulating factor may be favored
because it reduces sensitivity to perturbation. Once the new fac-
tor is added and sensitivity is reduced, selective intensity against
perturbations weakens. Weaker selection allows the accumulation
of additional mutations with larger perturbing effects. That shift
in mutation-selection balance causes a decay in the average fitness
effect of each factor.

Dynamics progresses like a ratchet'"!'. New factors get added for
their enhanced robustness. All factors then decay. Taking away a
recently added factor exposes the increased deleterious effects of
the remaining factors. Exposure of those deleterious effects opposes
reversal. One cannot go back.

Gradient smoothing

Hundreds of genomic variants influence traits, such as human
height and weight. Most variants have small effects. Many small
effects smooth the gradient of trait values.

A smooth gradient means that a trait may potentially change stead-
ily, or monotonically, with respect to underlying genomic changes.
We may think of a smoothly increasing path from a starting point
up to the highest peak or down to the lowest valley.

Overwiring leads to many genomic variants of small effect, which
in turn smooths the gradient. Thus, we may say that overwiring
causes a smooth gradient. What about the converse? Do the benefits
of a smooth gradient favor overwiring? Consider three potential
benefits.

A smooth gradient enhances adjustability. A densely wired regula-
tory network has many different connections that can alter traits
by a small amount. Such overwired connectivity allows inputs to
modulate expression smoothly.

A smooth gradient promotes learning'”. Learning requires adjust-
ment in response to input and measurement of success. A system
learns as it steadily climbs the gradient of success by smoothly
adjusting expression in response to inputs.

A smooth gradient boosts evolutionary adaptability'*'*. Natural
selection is essentially a trial and error learning algorithm. The
advantages of densely overwired control for learning apply to evo-
lutionary adaptation by natural selection.

The smooth gradient benefits of adjustability, learning, and adapt-
ability can potentially favor overwiring.
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Deep learning

Systems can easily adjust, learn, and evolve if they have smooth
gradients. Many of the algorithmic tricks and underlying concepts
of machine learning and artificial intelligence come down to how
one smooths the gradient™®. A smooth gradient provides a steadily
improving path from the starting point to an improved target point.

Some biological networks may be densely wired because of the
benefits of gradient smoothing. Ideally, we could analyze how
network architecture and connectivity strengths affect gradients.
However, we do not yet know enough about the details of biologi-
cal networks. By contrast, the study of computational networks
has advanced greatly in recent years. Those advances in compu-
tational studies hint at some principles of networks and gradient
smoothing. Those principles provide clues about the design of
biological networks by natural selection.

Computational networks are loosely modeled after biological neu-
ral networks. A set of nodes takes inputs from the environment.
Each input node connects to another set of nodes. Each of those
intermediate nodes combines its inputs to produce an output that
connects to yet another set of nodes, and so on. The final nodes
classify the environmental state, possibly taking action based on
that classification.

A network learns by altering its parameters™. The parameters set
the connection strength between nodes, and how individual nodes
combine their many inputs to determine the strength of their output.
For example, the input to a network may be an image of a numeri-
cal digit. The input nodes are sensors that react to the image. Those
sensors initiate activations that pass through all of the connections
and layers of the network. The final layer provides a set of ten prob-
abilities, one probability for each of the digits 0, 1, ..., 9.

The network, when presented with an image of the digit 7, classi-
fies the image by returning a set of ten probabilities. The optimal
classification is a probability of one for 7 and zero for all other
digits. We can calculate an error distance between the optimal clas-
sification and the network’s guess. An error distance is a function
of the differences in the probabilities of the optimal and guessed
classification.

The error distance can be used to update the network’s parameters.
We find a set of small changes in the network parameters that would
have yielded a small reduction in the error distance. By following
this gradient of improving performance, the network may learn
from experience.

That learning approach works as long as there is a smooth path
of increasing performance. Improved performance means that the
adjustment process truly learns the general features of digit images
that enhance future classification. Performance does not improve
if adjustments focus on unusual features of the digit images used
to train the network. Those unusual features may not be present in
many other digit images.
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A deep neural network has many layers of nodes between initial
inputs and final outputs. Until recently, deep and densely connected
computational networks often learned slowly and then got stuck,
unable to learn from further information.

Getting stuck often means an unsmooth gradient. Initially, the sys-
tem learns. It uses past trials to adjust its parameters, yielding a
reduction in the error distance for future trials. Then the system gets
stuck. Parameter adjustments do not improve future performance.

Put another way, initially the system descended smoothly along the
error gradient, improving performance as the error became smaller.
Then the gradient flattened out, so that adjustments of the param-
eters either did not change future error or increased future error.

From that stuck location of parameters, there are no easily discov-
ered altered parameters that follow a smoothly continuing path
to a lower point on the error gradient. Other parameter combina-
tions with better performance often exist. But there is no smoothly
descending path on the error gradient from the current location to
those better combinations.

An improved learning system means a system that smooths the
gradient sufficiently, descending on the error gradient to the better
locations. The recent revolutionary increase in the performance
of deep learning networks arose from a variety of computational
adjustments. Many of those adjustments were discovered by trial
and error, simply finding that they worked well on real problems™®.

For example, limiting the connection strength between nodes
prevents dominance by a small set of pathways of connectivity.
It seems that broad, densely connected networks that retain
many pathways of connectivity have greater learning potential. In
essence, a deep, densely and broadly connected network provides
a robustly smoothed gradient.

Other adjustments include the functions by which individual
nodes combine inputs to determine output. No available theory
describes exactly how to construct such functions. Again, trial and
error has shown certain functions to work well. Most likely, those
successful functions enhance the breadth of pathways that can
adjust by small amounts in response to new information, again
smoothing the gradient.

Network architecture also affects performance. Architecture
includes the number of layers of nodes and the manner in which
nodes connect. Connections feed forward from inputs to outputs
or feed back from later nodes toward earlier nodes. The feature
detectors in the sensory input nodes set the initial representation of
environmental states. The network generalizes that low-level repre-
sentation as information passes through the network layers.

Presumably, architecture and representation ultimately contrib-
ute to performance through better gradient smoothing. In a sense,
better capacity to learn and better gradient smoothing are nearly
the same thing. But the emphasis on gradient smoothing can be
useful, because it calls attention to the mechanisms by which par-
ticular network properties may contribute to better performance.
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Over time, we may come to understand the mechanisms thatimprove
performance and smooth gradients in deep learning networks. We
can then consider how those advances in computational networks
may provide insight into genomic network architecture, sensory
representation, and the consequences for gradient smoothing.

We know that densely connected computational and biological
neural networks perform spectacularly at learning, and that densely
connected genomic networks perform spectacularly in terms of
adjustability and evolvability. We are still trying to understand why
(see Appendix for references).

Geometry of induction

The spectacular performance of large densely wired networks hints
at key underlying principles. I conclude by suggesting that large
networks are particularly good at smoothing gradients in a way
that facilitates induction. Before turning to induction, it is useful to
consider deductive principles.

Control theory deduces general principles of wiring to achieve
particular design goals®. For example, simple feedback often keeps
a system near a setpoint. The setpoint may be a fixed temperature
or a fixed concentration. Deviation of the output from the setpoint
is fed back to the system as an additional input to the controller. If
the feedback signal tells the system that it is below its setpoint, the
controller triggers increased output.

Many examples of genomic wiring follow simple feedback'>'".
Other classic control theory motifs also occur frequently in genomic
wiring pathways'®. The deductive theoretical principles of control
successfully predict key aspects of genomic wiring.

However, more complex challenges in engineering and in genomes
often seem to be solved by deeply, densely wired networks. I call
those networks overwired, in the sense that their connectivity pat-
terns are much deeper, denser and broader than predicted by classi-
cal deductive principles.

Overwired systems may have embedded within them feedback
loops and other classic wiring motifs. But those motifs no longer
act alone in a simply interpreted manner. Instead, they are enmeshed
within such a large web of diffuse connectivity that it is often dif-
ficult to trace their particular effects and functions.

Why do some systems wire simply along classical deductive
lines and other systems overwire? I have argued that overwired
systems smooth gradients to allow adjustability and adaptability.
Put another way, such networks can change in response to expe-
rience. A sequence of specific events can lead to improvement
of future performance. The networks somehow use their specific
experience to find general solutions to a challenge. The networks
inductively use specific examples to learn general solutions.

Inductive improvement often requires a smooth gradient.
Overwiring may be favored because it enhances the scope for small
changes in parameters to descend smoothly along a gradient of
decreasing error.
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The problem is essentially geometric. How do topological changes
in network architecture reshape the error gradient? How do par-
ticular bounds on connectivity parameters smooth the gradient?
How do particular nodal transformations of inputs into outputs
alter gradient shape? How do the input sensors and input repre-
sentations change the error gradient and consequent inductive
performance?

Inductive improvement occurs on various timescales. Over short
periods of time, an organism may adjust its response to the envi-
ronment by changing various parameters within its regulatory
network. Over long periods of time, natural selection reshapes the
design of the regulatory network. Both short-term adjustments
and long-term changes in design arise inductively. Biological sys-
tems do not deduce principles. They inductively arrive at abstract
representations of environmental challenges. They narrow the error
distance along the geometric path of inductive improvement.

Many biological regulatory networks are simple, following
closely along classical deductive design principles. In those cases,
inductive evolutionary processes discovered those simple deductive

Appendix

Many people have considered the analogies between computational,
neural, and evolutionary systems. John Holland at the University
of Michigan deeply influenced by own thinking. His 1975 book'’,
Adaptation in Natural and Artificial Systems, provided a focal point
at which early artificial intelligence converged with adaptation by
natural selection. Holland’s 1986 book™, Induction: Processes of
Inference, Learning, and Discovery, completed his broad framing
of the fundamental problems.

We now understand much more about the particular mechanisms
that smooth pathways of inductive progress in learning and evolu-
tion. The ideas of artificial intelligence, evolution, and neural com-
putation all have their own vast intellectual histories, with many
great contributors. I limit the discussion here to a few key references
that illuminate the synergies between disciplines and can provide a
start on tracing the intellectual history.

References

F1000Research 2017, 6:924 Last updated: 22 AUG 2017

principles. Other biological networks are overwired, apparently
tuned for inductive potential.

Final questions arise. What sorts of environmental challenges
favor classically deductive wiring? What sorts of challenges favor
inductive overwiring? What historical aspects of organismal
evolution constrain network design? How can we relate deep
learning solutions of engineering problems and genomic wir-
ing solutions of biological problems to a more general geometric
theory of induction?
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In my own work, I have considered some of the abstract ways in
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accumulates information®'*’. Richard Watson and his colleagues
have developed ideas more directly relevant to problems of wir-
ing in inductive systems®~°. Within the field of genomics, various
studies have considered how specific evolutionary processes have
shaped the wiring patterns of regulatory control pathways. Pastor-

Sattorras et al.” provide a good example of that genomic theory.

The smoothness of evolutionary pathways along gradients of bio-
logical fitness and the problems of getting stuck have been among
the most enduringly controversial issues in theoretical biology”’.
The topic is often discussed in terms of the Fisher-Wright contro-
versy”®. Gavrilet’s book provides a broad discussion of evolutionary
gradients””. The shape of the evolutionary gradient has also been
related to ways in which gene interactions evolve”, particularly
with respect to alternative wirings that are essentially neutral**'.
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v

David M. McCandlish
Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

| find the author’s revision satisfactory. | understand that the author is writing under several practical
constraints, and my assessment is that the new Appendix strikes a good balance between maintaining
accessibility in the main text and providing entry points into the literature for the reader who wants to learn
more.

With luck, this series of articles will inspire a new generation of biologists to tackle these important
problems.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 24 July 2017

doi:10.5256/f1000research.12874.r23733

?

David M. McCandlish
Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

The outsides of organisms are most often exquisitely, even ruthlessly, adaptive. Inside the organism’s
body, the situation is more heterogeneous. Both physiology and the function of macromolecular
complexes are in many instances technically stunning. On the other hand, the wiring diagram of the cell is
bedlam. Even based on our current — and likely quite incomplete — state of knowledge, regulatory
networks appear to be both more densely and more broadly interconnected than would seem necessary.
This is surely a puzzle of modern biology, and Frank has done us a service by cataloging the live
hypotheses and pointing us towards the possibility of a resolution wherein this “over-wiring” simply
reflects general principles of inductive inference.

My main criticism of this article is that it does not engage sufficiently strongly with either the contemporary
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or historical literature. On the contemporary side, it would seem appropriate to directly address the
ongoing efforts by several groups to formally link population genetics to general principles of inference (of
course, Frank has contributed substantially in this area himself by clarifying the relationship between
natural selection and information geometry, see e.g. Frank 2012 “Natural selection V. How to read the
fundamental equations of evolutionary change in terms of information theory”). These efforts have been
recently reviewed by Watson and Szathmary 2016 in a TREE piece “How can evolution learn?”, which hits
on many of the same themes as the latter half current manuscript. Watson’s work in this area seems
particularly relevant, and indeed he calls his theory “Evolutionary connectionism” (Watson et al. 2015). An
important insight from this series of papers is a possible relationship between the evolutionary problem of
evolvability and the statistical problem of overfitting. In particular, they suggest that pressure for
developmental simplicity can improve the ability of evolutionary systems to generalize in a manner similar
to how regularization, drop outs, or early stopping can prevent over-fitting in machine learning (e.g.
Kouvaris et al. 2017 “How evolution learns to generalize, using the principles of learning theory to
understand the evolution of developmental organisation”). The idea that the topology of regulatory
networks is a generic consequence of evolution by gene duplication (as in, e.g. the work of Ricard Solé),
and more generally by the expansion of gene families, also seems like it deserves a mention as at least a
possible proximal cause of over-wiring.

On the historical side, | think more could be done to link the current discussion with historical themes in
evolutionary thought. For instance, the discussion about many possible genomic changes with small
effects smoothing the gradient and allowing evolutionary optimization could be put in the context of Fisher
and Wright’s disagreements over the structure of fitness landscapes. Wright thought that the reality of
building a functional physiology would produce fithess landscapes with many local maxima, so that the
key question in evolution was to identify the population-genetic regimes where progress on such a
landscape is possible (Wright 1931, 1932). Fisher thought that in high dimensions, these local maxima
would largely turn into saddle points, and that in any case, environments were generally changing fast
enough that populations were usually chasing a moving optimum rather than adapting on a fixed fithess
landscape (Fisher 1930). Frank’s discussion of “getting stuck” in the current manuscript provides
additional nuance to this classical disagreement by emphasizing the possibility of extended,
high-dimensional plateaus that while strictly speaking are saddle points function in an evolutionary sense
more like local optima. The reader interested in resolving this puzzle should also be directed to some of
the stone-cold classics in this area such as Wagner and Altenberg 1996 and Stoltzfus 1999 (“On the
possibility of constructive neutral evolution”).

Is the topic of the opinion article discussed accurately in the context of the current literature?
Partly

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.
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| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Author Response ( F1000Research Advisory Board Member ) 05 Aug 2017
Steven Frank, Department of Ecology & Evolutionary Biology, University of California, Irvine, USA

| thank David McCandlish for his thoughtful comments and his broad knowledge of the literature. |
have added an Appendix that includes the suggested references plus a few others. | agree that
there is much prior work and relevant literature. In this series of articles, | am writing to a strict word
limit and in a way that can be read by the beginning student as well as the advanced professional.
In this case, | perhaps had limited my references too much. The Appendix should provide a start
for those who wish to follow up in the literature.

Competing Interests: No competing interests were disclosed.

Referee Report 03 July 2017

doi:10.5256/f1000research.12874.r23536

v

Sean Nee
Department of Ecosystem Science & Management, The Pennsylvania State University, University Park,
PA, USA

This is a stimulating, original and thought-provoking and, so, | recommend publication. | see nothing
incorrect, so no changes are requested by me as a referee.

Some thoughts provoked in my mind are as follows.

First: is engineering really as cut-and-dried as we suppose? A cursory reading of fly-by-wire disasters
suggests that the elegant theorems of classical control theory may not be as powerful as one would wish.
My impression is that engineers are acutely aware that new technologies such as "cyber physical"
systems’, which are most akin to biological systems, are necessitating a complete rethink of the
conceptual foundations of their subject matter. Even for more traditional technologies, it is not obvious to
me that engineering is as purely “deductive” a subject as we might like to think as we board an aircraft,
using the word “deductive” in a way that | may be misconstruing as Frank’s usage.

Second: to use Dawkin’s convenient metaphor, could a sighted watchmaker really design a “simpler”
immune system, for example, than a blind one? If so, is that to do with historical aspects of
evolution/population sizes/mutational spectra and so on? If so, what sort of science are we as biologists
looking to create: one that says, for example: genome duplication events and large population sizes are
responsible for ... what? This would be restricting our thinking about evolution to providing explanations of
the contrasting failings of different groups of creatures.

More interesting to me is what | believe Frank is suggesting: the blind watchmaker may have much to
teach the sighted ones. This is particularly so in the case of Artificial Intelligences. These are of great
interest as both biologists and engineers are only at the starting gate of understanding, and we are all
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dealing with the question of the design of systems which have a tiny number of component types —
“neurons”. | expect to see a unification of psychology and Al engineering in the near future.

Time will tell whether any notions that may have floated around in classical thinking about evolutionary
genetics will advance this program.

References
1. Lee E.A.: Cyber physical systems: Design challenges./n Object oriented real-time distributed
computing (isorc), 2008 11th ieee international symposium on, IEEE.2008. 363-369 Publisher Full Text

Is the topic of the opinion article discussed accurately in the context of the current literature?
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Are all factual statements correct and adequately supported by citations?
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Are arguments sufficiently supported by evidence from the published literature?
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Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes
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| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Steven Frank, Department of Ecology & Evolutionary Biology, University of California, Irvine, USA

I thank Sean Nee for his thoughtful comments that extend the scope of the discussion. This
exchange is included as part of the final publication of my article, so | confine my response to these
comments.

Italics quote from Nee’s review.

First: is engineering really as cut-and-dried as we suppose? ... it is not obvious to me that
engineering is as purely “deductive” a subject as we might like to think as we board an aircraft,
using the word “deductive” in a way that | may be misconstruing as Frank’s usage.

| certainly agree that engineering in practice works as much by trial and error as it does by an
abstractly pure deduction. | had intended the labeling of engineering design as "deductive"
primarily as a comparison with how evolutionary design by natural selection is relatively more
“inductive" in character.

Engineers do use deductive principles of control theory to aid in the design of control systems.
When novel deductive understanding of control principles arises, engineers readily alter their
approach to design, benefitting from the improved general insight. By contrast, natural selection is
essentially a purely inductive process. That inductive process cannot throw out a past design and
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start over, but must improve only by layering small inductive gain upon small inductive gain.

Second: to use Dawkin’s convenient metaphor, could a sighted watchmaker really design a
“simpler” immune system, for example, than a blind one? ... More interesting to me is what | believe
Frank is suggesting: the blind watchmaker may have much to teach the sighted ones. This is
particularly so in the case of Artificial Intelligences.

| meant the comparison in both of the ways that Nee discusses. A sighted watchmaker would make
a different immune system from a blind watchmaker. Whether that different immune system of the
sighted watchmaker would be simpler or better is hard to say. However, | suspect that it would be
simpler because humans tend to design systems that they can analyze and understand, whereas
blind induction does not care about the logic or the complexity of the mechanism.

| agree with the latter aspect in Nee's comments: that the blind watchmaker provides new insights
about design that the sighted watchmaker may consider. We are seeing this now in the great
advances in artificial intelligence: the goal of the sighted watchmaker has become to improve the
ways in which the blind watchmaker's trial and error induction proceeds.

Competing Interests: No competing interests were disclosed.
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