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Abstract An important aspect of understanding the behavior of applications with
respect to their performance, overhead, and scalability characteristics is knowledge of
their execution control flow. High level knowledge of which functions or constructs
were executed after which other constructs allows reasoning about temporal applica-
tion characteristics such as cache reuse. This paper describes an approach to capture
and visualize the execution control flow of OpenMP applications in a compact way.
Our approach does not require a full trace of program execution events but is instead
based on a straightforward extension to the summary data already collected by an
existing profiling tool. In multithreaded applications each thread may define its own
independent flow of control, complicating both the recording as well as the visual-
ization of the execution dynamics. Our approach allows for the full flexibility with
respect to independent threads. However, the most common usage models of OpenMP
have threads operate in a largely uniform way, synchronizing frequently at sequence
points and diverging only to operate on different data items in worksharing constructs.
Our approach accounts for this by offering a simplified representation of the execution
control flow for threads with similar behavior.
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1 Introduction

An important aspect of understanding the behavior of a parallel application is
knowledge about its control flow. In the context of this paper we define the con-
trol flow as the sequence in which an application executes blocks of code, where a
block of code might be as big as a function body or as small as individual state-
ments. Typically, as we will discuss later, in our approach the individual elements
of the control flow representations are the source code regions corresponding to
whole OpenMP constructs such as parallel regions, critical sections, functions, or
user-defined regions. A user can add individual statements to the control flow represen-
tation by manually instrumenting them, but typically the user-defined regions would
be larger and at least contain several statements representing significant CPU time
consumption.

To motivate the benefit of knowing the control flow of an application, consider
the following simple example. Assume our application calls two functions foo()
and bar() as show in Fig. 1a. The gprof output corresponding to an execution of
this application is shown in Fig. 1c. Now consider the alternative version in Fig. 1b.
Analyzing these two applications with gprof gives precisely the same profile, even
though the control flow with respect to the functions foo() and bar() is different.
In the first example bar() is always called after foo() (20 times) while in the
second case foo() is the predecessor of bar() in the control flow only once (at the
beginning of the loop), while it is its own predecessor 19 times. This is visualized in
Fig. 1d, e, respectively.

Knowledge about the control flow can be important with respect to performance
considerations related to data locality and reuse. If foo() and bar() work on the
same data items, version A keeps data in cache which can be beneficial over version
B, which iterates over all data items twice. Evidently the control flow information is
not retained in the gprof profiles, as in both cases the functions have been called
the same number of times and in both cases bar() as well as foo() have been
called from main(). Hence, analyzing the callgraph cannot uncover the control flow
information.

One approach to recover the control flow is to perform a full trace of all enter and
exit events of all interesting functions, constructs or other source code regions and
to visually analyze this trace with tools like Vampir [1], Intel Trace Analyzer [2] or
Paraver [3]. However, with raw trace visualization it can be cumbersome to visualize
the essential parts of the control flow as the number of events is often overwhelming.
In this paper, we discuss an approach that shows that full tracing is not necessary
and that the control flow information can be uncovered using a simple extension of a
profiling tool.

The rest of this paper is organized as follows: the next section introduces the pro-
filing tool that we extended to extract the control flow information and describes the
necessary extensions. Section 3 then discusses the visualization of the control flow
for OpenMP constructs and presents example control flows of applications from the
NAS parallel benchmark suite. In Sect. 4 we describe related work and in Sect. 5 we
conclude and outline directions for future work.

123



268 Int J Parallel Prog (2009) 37:266–276

20 1 1 

19 

   )(oof
20 

   )(rab
20 

(a) (b)

(c)

(d) (e) 19 19 

)(oof
20 

)(rab
20 

1 1 1 

Fig. 1 A simple example demonstrating that differences in the control flow are not reflected in runtime
profiles delivered by tools such as gprof. a Control flow example, version A. b Control flow example,
version B. c gprof profile, versions A and B. d Control flow of version A. e Control flow of version B

2 The OpenMP Profiler ompP

ompP is a profiling tool for OpenMP applications designed for Unix-like systems.
Since it is independent of the OpenMP compiler and runtime system, it works with
any OS/compiler combination. ompP differs from other profiling tools like gprof or
OProfile [4] in primarily two ways. First, ompP is a measurement based profiler and
does not use program counter sampling. The instrumented application invokes ompP
monitoring routines that enable a direct observation of program execution events (like
entering or exiting a critical section). The direct measurement approach can poten-
tially lead to higher overheads when events are generated very frequently, but this can
be avoided by instrumenting such constructs selectively. An advantage of the direct
approach is that the results are not subject to sampling inaccuracy and hence they can
also be used for correctness testing in certain contexts.

The second difference lies in the way of data collection and representation. While
general profilers work on the level of functions, ompP collects and displays perfor-
mance data in the user model of the execution of OpenMP events [5]. For example, the
data reported for critical section contain not only the execution time but also list the
time to enter and exit the critical construct (enterT and exitT, respectively) as well
as the accumulated time each threads spends inside the critical construct (bodyT) and
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Fig. 2 Profiling data delivered by ompP for a critical section

Fig. 3 Example callgraph view of ompP

the number of times each thread enters the construct (execC). An example profile for
a critical section is given in Fig. 2.

Profiling data in a similar style is delivered for each OpenMP construct, the col-
umns (execution times and counts) depending on the particular construct. Furthermore,
ompP supports the query of hardware performance counters through PAPI [6] and the
measured counter values appear as additional columns in the profiles. In addition to
OpenMP constructs that are instrumented automatically using Opari [7], a user can
mark arbitrary source code regions such as functions or program phases using a manual
instrumentation mechanism. Function calls are automatically instrumented on com-
pilers that support this feature (e.g., -finstrument-functions for the GNU
compilers).

Profiling data are displayed by ompP both as flat profiles and as callgraph profiles,
giving both inclusive and exclusive times in the latter case. The callgraph profiles are
based on the callgraph that is recorded by ompP. An example callgraph is shown in
Fig. 3. The callgraph is largely similar to the callgraphs given by other tools, such
as callgrind [8], with the exception that the nodes are not only functions but also
OpenMP constructs and user-defined regions, and the (runtime) nesting of those con-
structs is shown in the callgraph view. The callgraph that ompP records is the union
of the callgraph of each thread. That is, each node reported has been executed by at
least one thread.

2.1 Data Collection to Reconstruct the Control Flow Graph (CFG)

As discussed in the introduction, the callgraph does not contain enough information
to reconstruct the CFG. However, a full trace is not necessary either. It is sufficient
to keep a record that lists all predecessor nodes and how often the predecessors have
been executed for each callgraph node. A predecessor node is either the parent node
in the callgraph or a sibling node on the same level. A child node is not considered
a predecessor node because the parent–child relationship is already covered by the
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Fig. 4 Illustration of the data collection process to reconstruct the control flow graph

callgraph representation. An example of this is shown in Fig. 4. The callgraph (lower
part of Fig. 4) shows all possible predecessor nodes of node A in the CFG. They are
the siblings B and C , and the parent node P . The numbers next to the nodes in Fig. 4
indicate the predecessor nodes and counts after one iteration of the outer loop (left
hand side) and at the end of the program execution (right hand side), respectively.

Implementing this scheme in ompP was straightforward. ompP already keeps a
pointer to the current node of the callgraph (for each thread) and this scheme is
extended by keeping a previous node pointer as indicated above. Again this infor-
mation is kept on a per-thread basis, since each thread can have its own independent
callgraph as well as flow of control.

The previous pointer always lags the current pointer one transition. Prior to a parent
→ child transition, the current pointer points to the parent while the previous pointer
either points to the parent’s parent or to a child of the parent. The latter case happens
when in the previous step a child was entered and exited. In the first case, after the
parent → child transition the current pointer points to the child and the previous pointer
points to the parent. In the latter case the current pointer is similarly updated, while
the prior pointer remains unchanged. This ensures that the previous nodes of siblings
are correctly handled.

With current and previous pointers in place, upon entering a node, information
about the previous node is added to the list of previous nodes with an execution count
of 1, or, if the node is already present in the predecessor list, its count is incremented.

3 Visualizing the CFG of OpenMP Applications

The data generated by ompP’s control flow analysis can be displayed in two forms.
The first form visualizes the control flow of the whole application, the second is a
layer-by-layer approach. The full CFG is useful for smaller applications, but for larger
codes it can quickly become too large to comprehend and cause problems for auto-
matic layout mechanisms. An example of an application’s full control flow is shown
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Fig. 5 An example of a full control flow display for a simple application

in Fig. 5. The code corresponds to the callgraph of Fig. 3 where the critical section’s
body contains work for exactly one second.

Rounded boxes represent source code regions—that is, regions corresponding to
OpenMP constructs, user-defined regions or automatically instrumented functions.
Solid horizontal edges represent the control flow. An edge label like i |n is interpreted
as thread i has executed that edge n times. Instead of drawing each thread’s control
flow separately, threads with similar behavior are grouped together. For example the
edge label 0–3|5 means that threads 0, 1, 2, and 3 combined executed that edge 5 times
in total. This greatly reduces the complexity of the control flow graph and makes it
easier to understand.

For each node the box contains the most important information. This includes the
type of the region (such as CRITICAL), the source code location (file name and line
number) and performance data. Due to space limitations the included performance
data do not list the full profile but only the most important aspects for the particular
construct. This information includes the total exclusive execution time (summed over
all threads).

Another example of the visualization of the execution control flow of an appli-
cation is shown in Fig. 6. This example is the IS benchmark from the NAS parallel
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Fig. 6 The execution control flow of the IS application from the NAS parallel benchmarks with color or
greyscale coding indicating the exclusive time spent in each construct

benchmarks (size C) executed with two threads. Color or greyscale coding is used to
give the user visual cues as to which regions are the most time consuming ones. The
scale on the left can be used to correlate colors with actual values.

Dotted vertical lines represent control flow edges from parent to child (with respect
to the callgraph). The important difference in interpreting these two types of edges is
that a solid edge from A to B means that B was executed after A finished execution
while a dotted line from C to D means that D is executed (or called) in the context of
C (i.e., C is still “active”).

The graphs shown in Figs. 5 and 7 are created with the Graph::Easy tool [9],
which takes a textual description of the graph and generates the graph in HTML,
SVG, or even ASCII format. For graphs that are not overly complicated the automated
layout engine of Graph::Easy does a very good job. However, for bigger graphs
a full control flow graph can be unwieldy and it is advisable to do a layer-by-layer
visualization.

An example of the layer-by-layer visualization is shown in Fig. 7. Here each graph
only shows a single layer of the callgraph, i.e., a parent node and all its child nodes.
Since the predecessor nodes of each node are only its siblings or the parent node, this
view is sufficient to cover the local view of the control flow graph. The horizontal and
vertical edges have the same meaning as in the previous case. To indicate which nodes
have child nodes, the text box contains a plus (+) sign. Clicking on such a node brings
up the control flow graph of the child node while a hat (ˆ) symbol takes the user to
the parent node to allow an interactive exploration of the CFG.

The example in Fig. 7 is derived from an execution of the CG benchmark of the
OpenMP version of the NAS parallel benchmarks [10] (class C) on a dual-core Intel
processor node (3.0 GHz, 2 GB of main memory). The application is automatically
instrumented with Opari and the initialization phase and the iteration loop have been
additionally instrumented manually.

As shown in Fig. 7a, the application spends 20.1 s in the initialization phase and
then executes 75 iterations of the main iteration loop with a total of 364.5 s of exe-
cution time. Fig. 7b shows the control flow of the initialization phase, while Fig. 7c
is the control flow of the main iteration loop. The initialization proceeds in a series
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(a)

(b)

(c)

(d)

Fig. 7 Four layers of the control flow graph of the CG application of the NAS parallel benchmarks (class
C). a Toplevel control flow. b Control flow of the “initialization” phase. c Control flow of the iteration
phase. d Most time is spent in the region R00017

of parallel constructs and parallel loops.1 Significant time is only spent in the regions
R00017 and R00027.

Figure 7c shows the control flow of the iteration loop. We see a nested loop around
the R00017 parallel region which is executed 1,875 times in total and represents by
far the most time consuming region. Region R00017 is called in the initialization as
well as in the iteration phase. Drilling down to this parallel region in Fig. 7d, we see
that it contains four loops (R00018, R00019, R00020, R00021) of which the first
one is the most time consuming.

1 A parallel loop is one of OpenMP’s combined parallel-worksharing constructs.
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Note that in Fig. 7a–c the edges are only executed by the master thread (thread 0),
Since the application executes sequentially in the phases outside of parallel regions
(only the master thread is active). Only after a parallel region is entered, a thread team
(with two threads in this case) is created and several threads show up in the control
flow graph as in Fig. 7d.

Figure 8 shows a case where the control flow diverges due to a master construct
in OpenMP; this example is from the NAS LU benchmark. The parallel region is
executed by four threads in this example and contains four parallel loops executed by
each thread. Threads 1–3 transition directly between the loops while thread 0 executes
a master construct after each loop. Source code investigation reveals that the this code
contains timing routines.

4 Related Work

Control flow graphs are an important topic in the area of code analysis, generation,
and optimization. In that context, CFGs are usually constructed based on a compiler’s
intermediate representation (IR) and are defined as directed multi-graphs with nodes
being basic blocks (single entry, single exit) and nodes representing branches that a
program execution may take (multithreading is hence not directly an issue). The dif-
ference from the CFGs in our work is primarily twofold. First, the nodes in our graphs
are generally not basic blocks but they are usually larger regions of code containing
whole functions. Secondly, the nodes in our graphs record transitions that have actu-
ally happened during the execution and also contain a count that shows how often the
transition occurred.

Dragon [11] is a performance tool from the OpenUH compiler suite. It can display
static as well as dynamic performance data such as the callgraph and control flow
graph. The static information is collected from OpenUH’s analysis of the source code,
while the dynamic information is based on the feedback guided optimization phase
of the compiler. In contrast to our approach, the displays are based on the compiler’s
intermediate representation of source code. The elements of our visualization are the
constructs of the user’s model of execution to contribute to a high-level understanding
of the program execution characteristics.

5 Conclusion

We have presented an approach to visualize the control flow graph of OpenMP appli-
cations. We have extended an existing profiling tool to collect the data required for the
visualization and used a versatile automated layout tool to generate the graph images.

We believe that the CFG represents valuable information to anyone trying to under-
stand the performance characteristics of an application. Naturally, the author of a code
might be very well aware already of their application’s control flow and benefit little
from the insight ompP’s control flow graph can offer. For someone working on a for-
eign code and especially for big and unfamiliar applications, we believe the CFG view
is very helpful to get an understanding of the application’s behavior, to understand the
observed performance behavior and to identify tuning opportunities.
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Future work is planned in several directions. First, ompP cannot currently handle
nested parallelism but adding support for this is planned for a future release. Visual-
izing nested parallelism will pose new challenges when displaying the control flow
graph as well. Secondly, we plan to develop an integrated viewer for the profiling data
delivered by ompP, eliminating the need for an external graph layout mechanism.
Among other graphical displays such as overhead graphs this viewer will also be able
to display the control flow graph. We plan to support both the full CFG display as well
as the layered approach in an interactive way, i.e., navigating between the nodes of the
control flow graph and call graph and linking this information to the detailed profiling
data as well as the source code.
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