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ABSTRACT OF THE DISSERTATION

Search for the Chiral Vortical Effect

Using Λ-p Correlations

at STAR

by

Brian Chan

Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Huan Z. Huang, Chair

The Quark Gluon Plasma (QGP), a state of matter in which deconfinement and chiral sym-

metry restoration occur, can be produced by ultra-relativistic heavy-ion collisions. This state

of matter is of great interest because in QGP, the colored quarks and gluons, fundamental en-

tities in matter whose interactions are governed by the Quantum ChromoDynamics (QCD),

can exist as a fluid over an extended volume much larger than the size of nuclei. The Chiral

Vortical Effect (CVE) is a QCD phenomenon related to the quark chirality arising from the

topological sector of the QCD and the large vorticity of the QGP created. The search for

quark chirality effects has been a major scientific objective at RHIC.

The Solenoid Tracker at RHIC (STAR) detector, located at the Relativistic Heavy-Ion Col-

lider (RHIC) in the Brookhaven National Laboratory (BNL), provides the experimental

capability needed to probe the QGP, with the particle tracking and identification abilities

built into the different parts of the detector. This thesis focuses on the search for the CVE

with STAR data from Au+Au collisions at
√
sNN = 27 GeV and 19.6 GeV, from Run 2018

and 2019, repsectively.

In order to search for the CVE, measurements of the correlations of the azimuthal angles

between baryons, Λ and protons, were made, in the form of observables γ112 ≡ ⟨cos(ϕα +

ϕβ − 2ΨRP )⟩ and γ132 ≡ ⟨cos(ϕα − 3ϕβ + 2ΨRP )⟩, in which mathematically the CVE ef-

fects would be made manifest. α and β represent the charge of the correlated particles,
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and to reduce the background, we take ∆γ ≡ γOS − γSS, where we subtract the measure-

ment of the correlation of pairs of same charge particles (SS) from that of opposite charge

particles (OS). The KFParticle package was used for the reconstruction of the Λ particles.

To have a better interpretation of the results, the observables κ112 ≡ ∆γ112/(v2 · ∆δ) and

κ132 ≡ ∆γ132/(v2 ·∆δ) were computed that allows for comparison across different systems.

Specifically, these observables were compared with data generated from the A Multi-Phase

Transport Model (AMPT) simulations.

In addition, the flow-related background was also something that needed to be dealt with

to get a clearer signal from the ∆γ112 and ∆γ132 observables. The Event Shape Selection

method was applied in order to project the events to zero flow, attempting to reduce the

flow-related background as much as possible. The Event Plane Detector (EPD) event plane

was used as well to reduce the non-flow backgrounds.

Our search yielded no definitive observation of the proposed CVE signal. We obtained an

upper limit on the CVE signal from Au+Au collisions at 19.6 GeV and 27 GeV energies.

Because of large statistical errors due to limited number of Λ per event, the obtained upper

limit is not very stringent. We will also discuss a possible effect due to the presence of baryon

annihilations and the future direction of CVE searches. Large statistical data sets will be

critical for those efforts.
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CHAPTER 1

Introduction

In the 1970s, T.D. Lee and G.C. Wick proposed the possibility of creating new physical

systems, one of which is the Quark Gluon Plasma (QGP), through heavy-ions collisions [1].

Since then, there have been different efforts to pursue this goal, starting from the Lawrence

Berkeley National Lab (LBNL) in the late 1970s and 1980s [2], to the present day heavy-ion

colliders, such as the Relativistic Heavy-Ion Collider (RHIC) at the Brookhaven National

Laboratory (BNL) that runs with beam energy spanning from a few GeV to 200 GeV [3],

and the Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN) that reaches the energy of 14 TeV [4]. There are a lot of topics of high interest

associated with the Quark Gluon Plasma, which is why there has been much effort poured

into creating this physical system. However, before diving into the specifics of the interest

associated with the QGP, we will first take a look at the details about these heavy-ion

collisions, from what they are, to how they are capable of creating the QGP that we are

interested in.

1.1 Basic Parameters and Understanding of the Collisions

The main characteristics that define the initial state of heavy-ion collisions are: the beam

energy, the heavy ion species used, and the impact parameter, b, which is the distance

between the centers of the colliding beams of nuclei. In relativistic heavy-ion collisions, the

colliding nuclei are Lorenz-contracted into dishes in the center-of-mass frame, and the impact

parameter determines how much overlap there is between the two beams (see Figure 1.1 for

a simplified example of what the collision could look like). The nucleons in the region where
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the two beams overlap are named participant nucleons, as they are the ones that interact

with each other, whereas those that are outside of the overlapping region are called spectator

nucleons. Figure 1.1 portrays a central collision, which is characterized by a small impact

parameter, and therefore a large overlapping area relative to the non-overlapping area. When

the impact parameter is large with respect to the radius of the nuclei, then there are much

fewer participant nucleons compared with spectator ones, and thus the collision is regarded

as a peripheral collision, in contrast to the central ones. However, the impact parameter is

not a direct observable in heavy-ion collision experiments. Instead, because the number of

produced particles is correlated to the number of participant nucleons, we are able to use

the number of produced particles, or what is called multiplicity, to determine how central

the collisions are.

Figure 1.1: This figure demonstrates a simplified picture of the two beams of nuclei colliding

relativistically, with the nuclei being Lorenz-contracted into dishes in the center-of-mass

frame. This is a central collision as the distance between the centers of the colliding beams

of nuclei is close to 0, and the overlapping region is large [5].

In collisions that are more central, a fireball is created from the participant nucleons, and the

energy density can be so high that the fire ball reaches a (locally) thermalized equilibrium

phase with partonic degrees of freedom and high temperature, and this material would be

what we theorize to be the Quark Gluon Plasma that we had set out to create with these

heavy-ion collisions. After it is created, it would expand rapidly and thus the temperature

would decrease, and the medium becomes a mixed phase of partonic and hadronic matter

after the temperature decreases past the critical temperature. As the temperature continues

to decrease, chemical freeze-out happens, and the hadron species are fixed. The next stage is
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then kinematic freeze-out as temperature continues to drop, and the hadrons stop interacting

elastically with each other. Figure 1.2 shows the evolution over time and space of a relativistic

heavy-ion collision [6].

Figure 1.2: A schematic light cone diagram of the evolution of a relativistic heavy-ion collision

over time and space. Tc represents the critical temperature, Tch the temperature at which the

chemical freeze-out occurs, and Tfo the temperature at which the kinetic freeze-out occurs

[6].

1.2 Quark Gluon Plasma

Equipped with an overview of relativistic heavy-ion collisions, we can look more into the

fireball as mentioned in the end of the previous section - the Quark Gluon Plasma. As

mentioned in a STAR review paper [7], it is important to define what the Quark Gluon

Plasma is in order to decipher whether or not it is actually formed in the heavy-ion collisions.

After taking over 20 years of understanding into account, the paper decides on the following

definition of the Quark Gluon Plasma that we will also use here on out: “we take the QGP

to be a (locally) thermally equilibrated state of matter in which quarks and gluons are

deconfined from hadrons, so that color degrees of freedom become manifest over nuclear,

rather than merely nucleonic, volumes.” This definition is significant, because according to

the theory of QCD, the confining properties manifests itself as heavy quark potential that
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increases linearly with distance, forcing quarks and gluons to be confined to a hadronic bag,

which is also the reason for observations of only color-less states [8]. The QGP is therefore

a state of matter at which the temperature is so high that such confining properties break

down, and the matter exists in a deconfined state. It is expected that with sufficiently

high temperature, as well as high density in nuclear matter, a transition will occur from

excited hadronic matter to Quark Gluon Plasma. The QGP is believed to have existed

in the first few microseconds after the Big Bang, and it could also exist in the cores of

neutron stars [9]. The production and detection of the Quark Gluon Plamsa itself would be

an accomplishment, but in addition to that, it will allow one to study fundamental aspects

of Quantum Chromodynamics (QCD) and confinement that are not possible in few-hadron

experiments - by making it possible to study QCD over large distance scales [7].

1.2.1 Predicted Signatures of the QGP

As it is impossible to directly detect the creation of the QGP, we have to find signatures

of it through measurements of physical quantities of the final state particles produced from

the heavy-ion collisions. However, given the complexity of heavy-ion collisions and hadron

formation, it is very difficult to have quantitative measurements that can unambiguously

point to the presence of the QGP within the system. Therefore, in order to point to the

existence of the QGP within the collisions detected by STAR, the collaboration had to

identify the most striking qualitative predictions of the theory that yielded results that were

quantitatively significant, and by making multiple of such observations, we are able to arrive

at a conclusion that unambiguously point to the existence of the QGP despite the complexity

of the system. Here will be a short summary of the various theoretical predictions as well

as RHIC experimental results that show support for them, and therefore the production of

the QGP within these heavy-ion collisions.

The theoretical understanding of the phase diagram related to the QGP (Figure 1.3) would

begin with QCD’s description of bulk thermally equilibrated strongly interacting matter. If

we take the limit where the deconfined quarks and gluons are non-interacting and that the

quarks are massless, then the Stefan-Boltzmann pressure, PSB, as a function of temperature
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T at zero chemical potential would be determined by the following equation that is dictated

by the degrees of freedom [10]:

PSB
T 4

= [2(N2
c − 1) +

7

2
NcNf ]

π2

90
(1.1)

where Nc is the number of colors, Nf is the number of quark flavors. However, in order

to model a more realistic situation, for example to incorporate effects of color interactions

among the constituents, or having non-zero quark masses and chemical potential, or to

model the transitions from hadrons to partons, we would need to make QCD calculations

on a space-time lattice, what is known as LQCD.

Figure 1.3: Phase diagram that illustrates the phase transitions between hadronic gas and

the Quark Gluon Plasma. It also includes information about the different energies that are

covered by the beam energy scan performed at RHIC and how it spans different parts of the

phase diagram that includes the predicted critical point of the phase transitions [11].
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Within the technical limits of this calculation to model reality, a few important predictions

were made that would prove important to detecting signatures of the QGP creation in heavy-

ion collisions. First, there is a predicted transition between a hadronic and QGP phase,

occurring at a temperature around 160 MeV for zero chemical potential. Second, as seen

in Figure 1.4, the ratio between the pressure and T 4 saturates at values substantially below

the Stefan-Boltzmann limit, which indicates substantial remaining interactions among the

quarks and gluons in the QGP phase. Third, there is a screening mass that arises from the

effective potential between a heavy quark-antiquark pair and deviates from the expectations

from perturbative QCD, as seen in Figure 1.5. This increasing screening mass leads to a

predicted suppression of charmonium production in relation to open charm.

Figure 1.4: This figure shows the ratio between Stefan-Boltzmann pressure, PSB, and tem-

perature, T 4, as computed in LQCD with different number of degrees of freedom as a function

of temperature. Specifically, the (2+1)-flavor corresponds to 2 light and 1 four-times-heavier

strange quark mass. The arrows on the right indicate the corresponding Stefan-Boltzmann

pressures for the various quark flavor assumptions [8].
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Figure 1.5: This figure shows the fit results for the screening mass µ(T )/T as a function of

temperature; the dotted lines represent the lowest order perturbative QCD prediction, which

is given by the equation µ(T ) = A ∗m0
e(T ) [12].

Fourth, the calculations at non-zero chemical potential also predicts the existance of a critical

point, which corresponds to the one seen in Figure 1.3. Fifth, this deconfinement transition

is also often accompanied by a chiral symmetry restoration transition (see Figure 1.6), which

is very important to the main analysis of this thesis as it is part of the fundamental physics

processes that give rise to the Chiral Magnetic Effect and the Chiral Vortical Effect. At

normal temperatures, the theory of QCD theorizes there to be an explicit symmetry breaking

due to quantum corrections in the QCD partition function, the axial anomoly, and that

dictates that the QCD mass for quarks stay nonzero as long as this chiral symmetry is broken

[8]. However, when temperatures rise above the critical temperature, then chiral symmetry

is restored, and the QCD mass of the quarks no longer have to be nonzero, which is a huge

contributing factor to the CME/CVE that we have set out to measure in this analysis. Other

than that, the reduction in the chiral condensate led to by this chiral symmetry restoration

also leads to variations in in-medium meson masses.
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Figure 1.6: This figure shows the lattice QCD calculations for two dynamical quark falvors.

It demonstrates the coincidence of the chiral symmetry restoration and deconfinement phase

transitions with both plots being a function of the bare coupling strength β used in the

computations. The left figure shows the deconfinement phase transitions, and the rapid

decrease of chiral condensate (Ψ̄Ψ) in the right figure shows the signature of chiral symmetry

restoration [8].

Another set of signatures that was predicted to be observed from the QGP comes from the

application of relativistic hydrodyanmics for the description of the hadronic fireballs that are

created in the heavy-ion collisions. The hydrodynamic evolution of the fireball is sensitive to

the equation of state of the flowing matter, which makes it sensitive to the possible crossing

of a phase or crossover transition during the system expansion and cooling. Therefore, the

hydrodynamic evolution would provide information on the material that is created by the

collisions. By measuring the momenta of the produced particles at the final state and the

correlations of such particles, we are able to make measurements on the transverse flows

to compare with model predictions in studying the equation of state of the potential QGP

that was formed in the collisions. In non-central collisions, there are azimuthally anisotropic
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pressure gradients due to the shape of the reaction zone, and that leads to a nontrivial

elliptic flow pattern that has to be measured using a Fourier decomposition of momentum

spectra relative to the event-by-event reaction plane. Now the azimuthal distribution of the

produced particles can be expanded with a Fourier series:

dN

dϕ
= 1 + 2v1 cos(ϕ−Ψ) + 2v2 cos(2(ϕ−Ψ)) + ... (1.2)

with ϕ being the azimuthal angle of the produced particle and Ψ as the reaction plane angle;

the second Fourier coefficient, v2 = ⟨cos(2(ϕ − Ψ))⟩, is the elliptic flow mentioned above,

which is the most significant term in representing the azimuthal anisotropy of hadrons in

momentum space [13]. The reaction plane is defined by the beam direction and the impact

parameter for that specific event. The important feature of elliptic flow is that it is “self-

quenching” - the pressure-driven expansion tends to reduce the spatial anisotropy that gives

rise to the azimuthally anisotropic pressure gradient that leads to elliptic flow [14, 15].

This can be seen in the hydrodynamic calculations illustrated in Figure 1.7. The increase

in the momentum anisotropy led to by the gradual decline in spatial eccentricity by the

pressure gradients demonstrate the self-quenching aspect of elliptic flow. This makes the

elliptic flow particularly sensitive to earlier collision stages, when the spatial anisotropy and

pressure gradient are the greatest. What this seems to illustrate is that when the fireball

transitions from the QGP to hadronic matter, the buildup of momentum anisotropy in the

flowing matter is stalled. This is more pronounced when we look at the computations of

pT -integrated elliptic flow as a function of produced hadron multiplicity shown in Figure

1.8. There is a dip under conditions where the phase transition occupies most of the early

collision stages. One thing to note is that these calculations are based on a fixed impact

parameter. Therefore, to confirm these predictions, measurements are made as a function of

collision energy.

9



Figure 1.7: This figure shows the time evolution of the spatial eccentricity ϵx and the mo-

mentum anisotropy ϵp for Au+Au collisions at RHIC with impact parameter (b) of 7fm - a

non-central collision. The dashed curves are calculations based on computations of pressure

as a function of energy density at vanishing net baryon density for the equation of state

of an ideal gas of massless partons. The solid curves are ones based on computations that

connect the equation of state of an ideal gas of massless partons, combined with a Hagedorn

resonance gas, with a first-order phase transition at Tc = 164 MeV, which is also what is

used to model hydrodynamics calculations at RHIC. The time scale depicted on this figure is

from initial attainment of local thermal equilibrium to the freezeout time in this calculation

[16].
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Figure 1.8: These figures illustrate the excitation function of the elliptic flow coefficient v2,

the left vertical axis, and the radial flow ⟨⟨v⊥⟩⟩/c, the right vertical axis. The left figure is for

Pb+Pb collisions with impact parameter (b) of 7fm, and the right figure is the side-on-side

U+U collisions at b = 0fm. The solid curves correspond to the equation of state that is

mentioned in Figure 1.7 for RHIC predictions, while the dashed curve is the second part

(equation of state of a Hagedorn resonance gas) that is combined with the dashed curve in

Figure 1.7 to give rise to the equation of state that the solid lines are based on. The soft

phase trasition stage in EOS Q leas to the dip in the elliptic flow [17]. The horizontal arrows

at the bottom of the plots reflect early projections of particle multiplicities for the various

facilities, but now it is shown that RHIC collisions produce multiplicities in the vicinity of

the predicted dip [7].

Another signature is jet quenching and parton energy loss. In heavy-ion collisions, the collid-

ing nuclei undergo hard-scattering, and partons from them could serve as colored probes for

the colored bulk matter that forms after the collision. These partons that travel through bulk

partonic matter could undergo significant energy loss, and this can be observed through the

parton’s subsequent fragmentation into hadrons, and these are what we call jets. Bjorken

first suggested that this could be due to elastic parton scattering, and while recent theo-

retical studies have demonstrated that this contribution is likely to be quite small, gluon
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radiation by passage through the matter could be sizable, and that could lead to energy

loss and a manifestation in the parton’s fragmentation into hadrons [18]. Specifically, these

jets would be softened and broadened if they are results of partons that travelled through

substantial lengths of matter containing a high density of partons. And this is what we call

jet quenching. It is important however to distinguish between parton energy loss through

the QGP from other possible sources of jet softening and broadening. There are various

theoretical evaluations of the non-Abelian radiative energy loss of partons in dense but finite

QCD matter, and they give approximately consistent results with some non-intuitive predic-

tions. The energy loss computed from these predictions are then embedded in a perturbative

QCD treatment of the hard parton scattering. There are effects here that could also lead to

the softening and broadening of final-state jets that we are looking for as a signature, but

in principle they could be calibrated by complementing RHIC A+A collision studies with

p+A or d+A collisions in which we do not predict to have QGP formation. While there are

certainly insufficiencies with these models, for example, the fact that they assume vacuum

fragmentation of the degraded parton and its spawned gluons that is questionable for the

soft radiated gluons and over the leading-parton momentum ranges which is what this as-

sumption is applied for in RHIC collisions, and with that also the implications of neglecting

final-state interaction effects for the hadronic fragmentation products that is assumed with

this vacuum fragmentation assumption, the basic qualitative prediction that substantial jet

quenching is a necessary result of QGP formation is most likely without question (even if the

quantitative calculations might not be the case). Therefore, the problem lies in determining

whether or not jet quenching is a sufficient quality for demonstrating the production of the

QGP. Now with the models we have, it seems like we can only indirectly infer the role of the

QGP from the magnitude of the gluon density needed to reproduce jet quenching in RHIC

collision matter, and therefore, what we have to examine is whether or not the extracted

gluon density is consistent with what one might expect for a QGP formed from RHIC col-

lisions. With the assumption that QGP formation in a RHIC collision being dominated by

gluon-gluon interactions in the saturation regime, saturation models have been developed to

predict the density of gluons. With experimental data of outgoing hadron multiplicities from
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RHIC collisions, these models will be able to predict the dependence of hadron multiplicity

on collision energy, rapidity, centrality and mass number. Then this information can be

used to compare with the jet quenching information that we mentioned previously, as well

as the information from measuring elliptic flow to give us information about the QGP that

potentially is created within the RHIC collisions.

The last signature to be discussed is related to quark recombination, which suggests a mech-

anism that allows quarks produced through different processes, specifically processes that

differ in their energy level and therefore on a certain level speed, to combine with each other

[19]. However, for QGP formation in RHIC, the expected recombination might be of a dif-

ferent kind, where there is coalescence of abundant thermal partons that provide another

hadron production mechanism that is active over a wide range of rapidity and transverse

momentum [20]. And if in our experimental data it shows the need for a substantial of

recombination of this kind in order to explain the hadron yields and flow, it might be taken

as a signature of QGP formation [21].

1.2.2 Experimental Probes of the QGP

Equipped with this overview of predicted signatures of QGP formation in RHIC heavy-ion

collisions, we will briefly summarize the different experimental observations made over years

of collecting data from the fireball generated by the heavy-ion collisions at RHIC that that

points to the formation of the QGP.

There are two main categories of results that will be discussed, the first category being

particles generated at a lower transverse momenta that reflect the properties of the bulk

of the matter produced in the collision, and the second being energetic particles that are

generated through hard scattering processes.

With regards to the first category of particles that reflect the bulk properties, we analyze the

hadron yields and spectra, which provide us with insight with regards to the bulk properties

of the matter created in the collisions. The reason for this is that after the chemical freeze-

out, particles only interact elastically, and the hadron species is fixed, so the information of

the system at chemical freeze-out can be obtained from the integrated yields of the different
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particle species within the framework of statistical thermal models. After the kinetic freeze-

out, the particles stop interacting elastically and so the spectra will remain the same, and thus

reflecting the properties of the medium at kinetic freeze-out. There are two contributions to

the transverse momentum distributions of the particles. One of them is random and can be

identified with the temperature of the system at kinetic freeze-out. The other contribution

is collective that comes from the matter density gradient from the center to the boundary of

the fireball created in heavy-ion collisions, and it is sensitive to the strength of the ineractions

amongst the particles in the collisions. At RHIC energies, this is expected to come from the

pre-hardronic phase. There are three features that were observed in Au+Au collisions at

STAR that point to the creation of the QGP in these collisions at RHIC. The first is that the

hadron yields suggest chemical equilibration across the u, d and s quark sectors. The second

and third have to do with the elliptic flow, where it seems that it attained the strength

expected for an ideal relativistic fluid thermalized very shorty after the collision, and at

intermediate pT the elliptic flow appears to arise from the flow of quarks in a pre-hadronic

stage of the matter.

Figure 1.9: This figure illustrates ratios of pT-integrated yields for different hadron species

measured in the central Au+Au collisions at
√
sNN = 200 GeV at the STAR experiment.

The horizontal bars represent the statistical model fits to the measured yield ratios [7].
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As seen in Figure 1.9, which compares STAR measurements to statistical model fits, the

fit to the ratio is excellent, which seems to suggest that the light flavors, u, d and s, have

reached chemical equilibrium at chemical freezeout, as the statistical models assume that

the system is in thermal and chemical equilibrium at that stage [22].

Figure 1.10: (a) This figure shows the STAR experimental results obtained from Au+Au

collisions at
√
sNN = 200 GeV of elliptic flow as a function of transverse momentum [23].

The dashed lines are hydrodynamics calculations [24], assuming early thermalization, ideal

fluid expansion, an equation of state consistent with LQCD calculations that include a phase

transition at Tc = 165 MeV, and a sharp kinetic freezeout at 130 MeV (EOS Q mentioned

in Figure 1.8). (b) Similar calculations as those in (a), but now also with EOS H - equation

of state for a hadron gas, and compared with STAR experimental results obtained from

Au+Au collisions at
√
sNN = 130 GeV [25]. This figure is taken from [7].

Figure 1.10 shows that the elliptic flow measured from STAR demonstrates a strong mass

dependence, and that the hydrodynamics calculations, also shown in the same figure, seem

to reproduce this mass dependence, as well as the absolute magnitude of the elliptic flow,

reasonably well - ±30%. Given that the parameters of the hydrodynamic calculations are

tuned for zero impact parameter, and that they assume ideal relativistic fluid flow, this

suggests that the elliptic flow measured from STAR does in fact attain the strength that is

expected for an ideal relativistic fluid. On top of that, the agreement seems to be optimized

when it assumes that the matter reaches local thermal equilibrium very early, seen also in
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Figure 1.10. Also, when the expanding matter is treated as a pure hadron gas - thus EOS H

in Figure 1.10, the mass-dependence of the elliptic flow is significantly underpredicted. This

implies that there is early thermalization, and it suggests that a “perfect liquid” [26] - very

strongly interacting matter with very short constituent mean free paths - dominate the early

stages of the collision. One possible interpretation of this observation is that thermalized,

strongly interacting QGP is what dominates in that region.

The second category of results has to do with energetic particles that are produced through

hard scattering processes. The interaction of these particles with the medium provides us

with a class of unique, penetrating probes that could reveal the properties of the matter that

is created in these heavy-ion collisions. Specifically, we will look at hadrons with transverse

momentum that is greater than 5 GeV/c, as they exhibit the power-law falloff in cross section

with increasing pT that is characteristic of perturbative QCD hard-scattering processes [27],

which shows that these hadrons are penetrating through the created matter. Figure 1.11

shows the ratio of inclusive charged hadron yields in Au+Au and d+Au collisions to that

of p+p collisions, corrected for trivial geometric effects by scaling according to ⟨Nbin⟩. This

ratio, RAB(pT ) is defined as follow:

RAB(pT ) =
dNAB/dηd

2pT
TABdσNN/dηd2pT

(1.3)

where the overlap integral TAB = ⟨Nbin⟩/σppinelastic. The surprising observation is that at large

pT , there is a suppression by a factor of around 5 relative to binary scaling expectations,

and this is not something that conventional nuclear effects could account for. The fact that

this suppression is not seen in d+Au collisions and only in Au+Au collisions also shows that

this suppression is not from nuclear effects in the initial state, but rather it is hard scattered

partons or their fragementation interacting with the dense medium generated in Au+Au

collisions [28, 29, 30, 31].
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Figure 1.11: The ratio of inclusive charged hadron yields in Au+Au and d+Au collisions to

that of p+p collisions from 4 different experiments [7]: (top left) BRAHMS [28], (top right)

PHENIX [29], (bottom left) PHOBOS [30] and (bottom right) STAR [31].

Another ratio that provides insight towards the existence of the QGP is the binary scaled

ratio of yields from central collisions relative to peripheral collisions, RCP (pT ). This ratio is

shown in Figure 1.12, and it can be seen that the suppression for central collisions is similar

to the previous ratio, around 5 times relative to the most peripheral collisions. Theoretical

calculations based on perturbative QCD that incorporates partonic energy loss in dense

matter as well as gluon saturation effects that suppress high pT yield are also shown in the

same figure. In order to describe this suppression, these models require an initial gluon

density that is around 50 times that of cold nuclear matter [32, 33]. This order of magnitude

of gluon density falls well into the regime that lattice QCD calculations predictions fall with

17



regards to the QGP phase.

Figure 1.12: This figure shows the binary-scaled yield ratio RCP (pT ) of central (0-5%) to

peripheral (40-60%, 60-80%) collisions for charged hadrons from Au+Au collisions at
√
sNN

= 200 GeV [34].

This short overview merely highlights a few of the observations that have been made over

the years that point to the formation of the QGP at these heavy-ion collisions at RHIC

that were detected by various experiments, and it is by no means a complete description of

all that has been measured in effort to search for signatures of the existence of the QGP.

However, it does show a very good set of evidence that points to the existence of the QGP,

which is the medium in which many interesting topics of physics is based on, including the

analyses covered in this thesis. However, before moving onto the analyses, we will first turn

to looking at the STAR detector that was built to make all these observations possible in

the first place.
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CHAPTER 2

The Experimental Set-Up: RHIC & STAR

2.1 The Relativistic Heavy Ion Collider (RHIC)

The Relativistic Heavy Ion Collider, known also as RHIC, located at the Brookhaven Na-

tional Laboratory in Upton, New York, is the world’s first accelerator facility that has the

ability to collide heavy and light ions, including polarized protons, deuterons, copper and

gold, at relativistic energies, varying from 7.7 to 200 GeV in the center-of-mass frame of

the colliding nucleon pairs. The collider needs to operate over long periods of time while

holding the beams at relativistic energies in order to accomplish this feat of colliding these

species of particles at these energy levels. However, to achieve this in an accelerator of lim-

ited physical size means that we would need very strong magnetic fields, which essentially

requires RHIC to use superconducting technology for its magnets, allowing for a minimiz-

ing of power consumption while allowing a much higher level of magnetic fields required to

maintain the energy levels of the colliding nuclei beams. Also, a unique part of the physics

research planned to be done at RHIC is to collide beams of different ion species at the same

energy per nucleon, which means that the beam rigidities would have to be different. This

implies that RHIC would need two separate rings operating at two different magnetic fields

to maintain the energies desires.

To describe the details of RHIC, we will follow the journey of the heavy ions from the be-

ginning of its acceleration to its end in collision through the different subsystems within the

RHIC complex (Figure 2.1) [35] [36]:

1. The Electron Beam Ion Source (EBIS): This is a new pre-injector system that was

developed and put into use since 2012. Its predecessor were two Tandem van de
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Graaff accelerators, and it has a much better performance than them. It is capable of

producing any type of ions, from deuterons to uranium, even including noble gases such

as helium and argon, with much lower operating costs; it is also easy to switch between

species, even pulse-to-pulse, when feeding the trap by injecting ions with unit charge

from external sources. There is also a precise control over the charge state produced,

which makes it possible to produce a distribution that peaks at intermediate charge

states with ions that have not been completely stripped of their electrons. There is

also good control over the pulse width on top of these controls, and the source is more

reliable [37]. The EBIS consists of an electron beam ionization source that is followed

by a radiofrequency quadrupole linac and an interdigital-H linac. It first starts with an

injection of ions of unit positive charge into the EBIS trap, and from there the EBIS

acts as a charge state multiplier, and produces the desired ions with desired charge to

the Booster Synchrotron.

2. The Linear Accelerator (Linac): This is specifically for experiments colliding beams of

protons as it is a 200-MeV Linac that supplies energetic protons that get transferred

to the Booster Synchrotron.

3. The Booster Synchrotron: After the heavy ions and protons are accelerated by linear

accelerators, they get sent to the Booster Synchrotron, which is a powerful circular

accelerator that provides the ions with more energy. The way that it accomplishes this

is by synchronizing the accelerating voltage with the circulation period of the particles

that are being accelerated. This subsystem pre-accelerates particles before they enter

the Alternating Gradient Synchrotron, which is done with its superior vacuum that

makes it possible to accelerate heavy ions, even uranium.

4. The Alternating Gradient Synchrotron (AGS): When the ions enter this subsystem

from the Booster, they are typically travelling at around 37% of the speed of light, and

they are accelerated as they circle around the AGS until they are travelling at around

0.997 the speed of light. This corresponds to having gold ions that are accelerated to

100 MeV per nucleon with a charge of +77 coming in from the Booster Synchrotron,
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to leaving the AGS with 8.86 GeV per nucleon with the same charge. The mechanism

of the AGS comes from the concept of alternating gradient focusing. The accelerator’s

240 magnets’ field gradients are successively alternated inward and outward, and so

the particles are focused in both the horizontal and vertical plane at the same time.

5. The AGS-to-RHIC Beamline: This beam line, as described by its name, takes the ion

beam from the AGS to the RHIC rings when the ion beam reaches its top speed. The

important aspect of this is that there is a fork in the road at the end of the line: a

switching magnet sends the ion bunches down one of the two beam lines, corresponding

to one of the two RHIC rings, as mentioned previously. This is also where the gold

ions are fully stripped of their electrons, to reach an electric charge of +79.

6. The RHIC magnetic rings: The rings are 2.4 miles long, and they have six interaction

points (where the two rings of the accelerating magnets cross, allowing the nucleons

to collide), which is also where the STAR detector - the detector that this analysis

obtained its data from - resides.
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Figure 2.1: A schematic drawing of the RHIC accelerator complex as shown on the official

website. The important subsystems are labelled, and they are, respectively, (1) the Electron

Beam Ion Source (EBIS), (2) the Linear Accelerator (Linac), (3) the Booster Synchrotron, (4)

the Alternating Gradient Synchrotron (AGS), (5) the AGS-to-RHIC Beamline, and finally,

(6) the RHIC magnetic rings [6].

There were originally 4 experimental detectors located at one of the six interaction points

of RHIC: PHENIX, PHOBOS, BRAHMS and STAR. PHOBOS, decommissioned in 2015,

had the largest pseudo-rapidity coverage, and was specialized in measuring bulk particle

multiplicities [38]. BRAHMS, decommissioned in 2006, aimed to study small-x physics us-

ing momentum spectroscopy [39]. PHENIX, which remained operational until recently in

2016, used a partical coverage detecotr system in a axial magnetic field that was generated

using superconductive technology to measure the direct probes of the collision [40]. Re-

cently, sPHENIX sprung up to become a new project at RHIC, which radically improved

the PHENIX detectors to bring them back into commission, and this new experiment is very
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close to getting off the ground and collecting data, and having the opportunity to investigate

exciting new physics. But until then, STAR remains to be the only active experimental de-

tector at RHIC. It specializes in tracking and identification of charged hadrons over a large

solid angle at mid-rapidity in a solenoidal magnetic field, hence the name Solenoid Tracker

at RHIC (STAR) [41]. Since this is the detector where the data that this analysis is based

on, we will explore it in a little more detail in the next section.

2.2 Solenoid Tracker at RHIC (STAR)

The Solenoid Tracker at RHIC (STAR) was constructed with the goal of finding signatures

of the QGP and to study its properties in relativistic heavy-ion collisions, and since such

collisions result in a large number of particles with very high momentum, STAR is designed

to measure hadron production across a large solid angle to have the ability of tracking the

large number of charged particles produced in these relativistic collisions. Figure 2.2 shows

a schematic side view of the STAR detector as provided by the official STAR website.

Figure 2.2: Layout of the STAR Detector as provided on the official STAR website [42]
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The central subsystem of this STAR detector is the Time Projection Chamber (TPC) [43].

This instrument is a cylindrical detector that tracks and identifies particles through their

ionization energy loss as they pass through it. As mentioned previously, STAR is located at

one of the interaction points where the two beams meet, and so the beam crossing point is at

the center of the TPC, and the coordinate system that is used here has the direction of the

beam being the z-direction (STAR uses a right-handed Cartesian system as its coordination

system; the y axis is perpendicular to the axis of the solenoid with positive y in the opposite

direction of gravity, as much as that is possible) [44]. Surrounding the TPC is the Time-of-

Flight detector, which allows particle identification at STAR to go above 1 GeV/c, which is

the limit on the momentum of particles that could be identified by the TPC [45]. Surrounding

the TOF detector is STAR’s E-M Calorimeter, which includes the Barrel Electromagnetic

Calorimeter (BEMC), the Barrel Shower Maximum Detector (BSMD) [46], and the End-cap

Electromagnetic Calorimeter (EEMC), which is located only on one side of STAR [47]. This

system can measure the transverse momentum of photons, electrons and electro-magnetically

decaying hadrons. The BEMC is in turn surrounded by the STAR magnet coils that provides

a uniform magnetic field of 0.5T along the beam line [48].

Other than these larger sub-systems, there are a few others that aid in beam monitoring

and triggering. The first of such sub-systems is the Beam Beam Counters (BBC) that are

located around 3.5m away from the center of STAR on both sides and monitor event rates

in p+p collisions by providing triggers, monitoring overall luminosity as well as measuring

the relative luminosity for different proton spin orientations [49]. The second of these sub-

systems is a pair of Zero Degree Calorimeter (ZDC) detectors that are located along the beam

pipe on both sides of STAR, with the functionality of monitoring small-angle scattering of

neutral particles, for example spectator neutrons [50]. Thirdly, there is the Vertex Position

Detectors (VPD) that are located at 5.6m on both sides of the center of the solenoid, and they

provide the start time of the collisions, which is essential for Time-of-Flight measurements

[45]. Last but definitely not least, a relatively new detector, the Event Plane Detector was

added in 2018 [51] to measure the forward-going charged particles generated in heavy-ion

collisions, which would in turn allow us to extract information about the event plane of the
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collision.

Because the TPC, TOF and EPD detectors are specifically important for particle tracking

and identification as well as event plane reconstructions, which are crucial parts of the

analysis in this thesis, we will go into a little more detail about these detectors in the

following subsections.

2.2.1 Time Projection Chamber (TPC)

RHIC accelerates heavy ions up to a very high energy, with massive heavy ions like Au+Au

collisions, and so each collision could produce many primary particles. On top of that,

these primary particles decay and scatter, which leads to a high flux of secondary particles.

All these particles, as much as possible, would need to be tracked in order to accomplish

the physics goals of STAR. The Time Projection Chamber, being STAR’s primary tracking

device [52], is a very important detector that needs to have capabilities to track all these

particles that are generated through various mechanisms from the heavy-ion collisions that

occur in RHIC. The primary functionalities of the TPC include recording the tracks of par-

ticles, measuring their momenta, and identifying the particles by measuring their ionization

energy loss (dE/dx). The acceptance of the TPC covers [-1.5, 1.5] units of pseudo-rapidity

through the full azimuthal angle over the full range of multiplicities. The limit of the mo-

mentum of particles that can be identified is [100 MeV/c, 1 GeV/c], and the momentum of

particles that can be measured goes up to 30 GeV/c.

Figure 2.3 is a schematic diagram of the TPC. It is an empty volume of gas in a well defined,

uniform, electric field of around 135 V/cm. The volume of gas is filled with P10gas (10%

methane, 90% argon) kept at 2 mbar above atmospheric pressure. The reason for using this

particular type of gas is that it has a fast drift velocity that peaks at a low electric field. This

is important because it is best to operate on the peak of the velocity curve, as that allows

the drift velocity to be stable - relatively insensitive to small variations in temperature and

pressure. So by having a gas in which the drift velocity peaks at a low electric field, that

allows for a simpler field cage design.
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Figure 2.3: A schematic diagram of the STAR TPC [53]

As the primary ionizing particles traverse through the gas volume, they generate electrons

from the gas, which then, because of the electric field present, drift to the readout end caps

at the ends of the TPC. With the information from these secondary electrons, we are able

to reconstruct the trajectories of these primary ionizing particles. The uniform electric field

which is required to drift the electrons is defined by a thin conductive Central Membrane at

the center of the TPC. It is very important for the electric field to be uniform because track

reconstruction precision is sub-millimeter and electron drift paths are up to 2.1m (half the

length of the TPC).

So how is this uniform and stable electric field established in the TPC? It is defined by

establishing the correct boundary conditions with the parallel disks of the central membrane,

the end-caps and the concentric field cage cylinders. The central membrane is operated

at 28kV and the end caps are grounded. The field cage cylinders provide a series of equi-

potential rings that divide the space between the central membrane and the anode planes into
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182 equally spaced segments. The rings are biased by resistor chains of 183 precision 2MΩ

resistors that provide a uniform gradient between the central membrane and the grounded

end caps.

The readout system is based on Multi-Wire Proportional Chambers (MWPC) with readout

pads. The original design of the read out planes is as follows: modular units are arranged in

a circular manner with 12 sectors, and they are mounted on aluminum support wheels. Each

of these sectors consists of four components: a pad plane and three wire planes. Because

of the different needs when comparing the inner radius and the outer, these sectors are

further divided into the outer and inner radius sub-sectors (see Figure 2.4 for a schematic

diagram of one full sector broken down into the outer and inner sub-sectors). The outer

radius sub-sectors have continuous pad coverage to optimize the dE/dx resolution, so that

the full track ionization signal can be collected, which will then improve statistics on the

dE/dxmeasurement. It also improves tracking resolution because of anti-correlation of errors

between pad rows. On the outer radius sub-sectors, the pads are arranged on a rectangular

grid that is phased with the anode wires so that a wire lies over the center of the pads. It is

designed in such a way that places most of the signal on 3 pads which gives good centroid

determination at minimum gas gain, and that allows for a good signal to noise ratio while not

seriously compromising two-track resolution. The inner sub-sectors are in the region where

the track density is highest, and so they needed to be optimized for good two-hit resolution.

Therefore, the inner sub-sectors use smaller pads, and the induced surface charge width is

also reduced to less than the electron cloud diffusion. The shorter pad length is the most

important improvement in two track resolution because it is important for lower momentum

tracks which cross the pad row at angles far from perpendicular as well as for the tracks

that have a large dip angle, as the shorter pads give shorter projective widths in both the

direction along the pad row and the drift direction. However, because of the smaller pads

used, there is a compromise in continuous pad coverage.
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Figure 2.4: Schematic diagram of a full sector of the anode pad plane [53]

However, there have been upgrades to the TPC over the years, and the most significant one

being the upgrade to the inner sectors of the TPC that was implemented for data taking

starting from 2019. This upgrade replaced all 24 inner sectors in the STAR TPC with sectors

with 40 pad-row readouts, a significant increase from the 13 pad-row readouts of the sectors

that are being replaced [54]. This increases the number of pads from 1750 to 3440, and the

sizes of each pad is also increased, helping to cover a much larger portion of area compared

to the 20% that was achieved previously. With this level of increase in detectors, an upgrade

to the electronics was also necessary, from the preamp, to the digitizer ASIC, front end

electronic cards, readout boards, and finally the data acquisition system [54]. All these

upgrades lead to better momentum resolution - from the previous lower limit of 150 MeV/c

to the current 60 MeV/c, better dE/dx resolution, as well as increasing the acceptance of

the TPC from the old [-1.0, 1.0] units of pseudo-rapidity to [-1.5, 1.5] [55].

Now that we have discussed the different components that play a part in forming the overall

functionality of the TPC, we can look into how the TPC actually tracks particles. The

trajectories of the particles passing through the TPC is reconstructed by finding ionization
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clusters along the track, and they are found separately in x, y and z space. The x and y

coordinates of a cluster are determined by the charge measured on adjacent pads in a single

pad row. In order to do this, it is assumed that the signal distribution on the pads - the pad

response function - is Gaussian, and then the signal is fitted to find the coordinate. However,

there are some limitations. First, this Gaussian approximation doesn’t quite match the tails

of the true pad response function, so there would be an x-dependant bias. Second, the accu-

racy of this algorithm decreases at large crossing angles. The z coordinate of a point inside

the TPC is determined by measuring the time of drift of a cluster of secondary electrons

from the point of origin to the anodes on the endcap and dividing that time by the average

drift velocity.

The tracking software performs two tasks - The first one is to associate space points to form

tracks, and the other being fitting the points on a track with a track-model to extract infor-

mation about the track, such as the momentum of the particle. The model is a helix to the

first order, while taking into account second order effects such as the energy lost in the gas

which causes the particle to traverse through a trajectory slightly off of the helix. In order

to measure the transverse momentum of a track, the track is fitted with a circle through the

x and y coordinates of the vertex and the points along the track; the total momentum is

calculated using this radius of curvature and the angle between the track and the z axis of

the TPC.

Another important feature of tracking is to determine the primary vertex of an event, which

can help to improve the momentum resolution of the tracks, and also to separate the sec-

ondary particles from primary ones - something that is very important in the process of

identifying strange particles produced in heavy ion collisions. The method to determine the

primary vertex is by considering all the tracks reconstructed in the TPC, and then extrap-

olating them back to the origin, averaging those positions and we get the primary vertex

position. A resolution of 350µm is achieved when there are more than 1000 tracks.

Particle identification is also very important to the analyses done at STAR, and energy lost

in the TPC gas is a valuable tool for accomplishing this. It is much easier to do so for

low momentum particles, but as particle energy rises, then the energy loss becomes less
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mass-dependent as thus not as useful for particle identification. The limit is at velocities

around 0.7c, above which it becomes difficult to determine the particle species. The ion-

ization energy loss (dE/dx) for the tracks is extracted from the energy loss measured from

the maximum of 45 pad rows. Because of the short length over which the particle energy

loss is measured, the most probable energy is measured by calculating the truncated mean

of 70% of the clusters, rather than the average value [56]. Figure 2.5 shows a typical plot

of measured dE/dx as a function of track momentum, with the solid lines being predictions

from the Bischel function for different particle species [57]. The typical resolution of dE/dx

in Au+Au collisions is 8%.

The tracking efficiency depends on the acceptance of the detector (for TPC it is 94%), the

detection efficiency of the electrons (which is essentially 100% except for rare dead channels),

as well as the two-hit separation capability of the system, which is difficult to do a simple

calculation to estimate effects on the data, though simulations are possible.

Figure 2.5: The distribution of ionization energy loss of various particle species through the

TPC as a function of their momenta [56].
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2.2.2 Time-of-Flight Detector (TOF)

As mentioned in the TPC section, the TPC is well suited for identifying particles with low

momenta, but not so much for high-momentum particles because of the poorer correlation be-

tween energy loss and mass. So in order to improve this aspect of STAR, a small-acceptance

Time-Of-Flight (TOF) system was added. This detector has a highly-segmented cylindri-

cal detector that surrounds the TPC and it consists of an arragement of 120 trays, each

of them is 2.4m long, 21.3cm wide, and 8.5cm deep. The TOF detector has 32 Multigap

Resistive Plate Chamber (MRPC) modules along the z direction, which was inspired by a

similar system built for the ALICE experiment at CERN [58] [45]. These modules essen-

tially are stacks of resistive plates arranged in parallel, and these plates are used to quench

the streamers so that they do not initiate a spark breakdown, and the intermediate plates

create a series of gas gaps. The outermost glass plate is then connected to HV. With a gas

mixture containing a certain quantity of freon, the chamber works in avalanche mode - when

a charged particle passes through these gaps, the initial ionization processes are amplified

under the high electric field across the gaps and these electrical signals are captured by the

electrodes. Since the resistive plates are semiconductors that are not electrically grounded,

they have zero inner electric field and are transparent to induced signals. The signals that

are collected on the electrodes are the analogue sum of the induced signals by each of the

gas gaps. Then using the energy deposited into the glass plates, the TOF detector is able to

record the time when the particle reached it, and by matching that information about the

particle track with a TPC-recorded track, the velocity of the particle can be inferred. This

allows the TOF detector to identify the species of the particles that have higher momentum

than the upper limit of the capabilities of the TPC detector. This is better than the previous

technology that used shaped scintilators coupling to fast photon multiplier tubes (PMTs)

because of the high cost of the PMT-solution (it would require around 25000 fast PMTs and

they would have to be insensitive to magnetic fields) [59].

The TOF detector is made up of 2 subsystems, one being the Vertex Position Detector

(VPD) - the “start” detector - and the other the 32 Time-Of-Flight Multigap Resistive Plate

Chamber (MRPC) modules, the “stop” detector. The MRPC modules are stacks of resistive
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plates with gas gaps in between, allowing charged particles to induce avalanches as they

pass through. These subsystems are based on conventional scintillator/phototube technol-

ogy and includes custom high-performance front end electronics and common digitization

in CAMAC. Shown in Figure 2.6, it is the cross section view of the MRPC as well as the

readout pad array. With the VPD detecting the common start of the event, and the MRPC

modules detecting the time that the track hits the TOF detector, then the time of flight

(hence the name) of the track can be computed, and matching it with the TPC recorded

track hits, we are able to identify the particle species of a given track.

Figure 2.6: The cross section of the MRPC module of TOF, as well as a drawing of the

readout pad array [56].

Figure 2.7 shows the detection of particles by the TOF detector, showing the inverse velocity

of the particles and its relation to the rigidity of the particles - the ratio between momentum

32



and charge of the particles.

Figure 2.7: TOF recorded values of 1/β of particles vs. their rigidity. The curves represent

the expected mean values for the various particle species as labelled [60].

2.2.3 Event Plane Detector (EPD)

With these heavy-ion collisions, one very crucial component to our analysis is the under-

standing of the initial geometry of each of the collision, or event, as that allows us to map

out the particles of interest with respect to all other particles within the event. This informa-

tion is often extracted by calculating the “event planes” - an estimation of the true reaction

plane of the collision event - through information about the azimuthal angles and transverse

momenta of the primordial particles involved in that event [13]. The Event Plane Detector

(EPD) is a detector that was added with the purpose of measuring the forward-going charged

particles emitted in a heavy-ion collision event, which would provide us with information to

extract the event plane from these particles [51]. It measures them at angles 0.7° < θ < 13.5°,

or in pseudorapidity, η ≡ − ln[tan(θ/2)], 2.14 < |η| < 5.09, relative to the initial directions of

the beams. The EPD detector consists of two wheels, and each wheel has 12 “supersectors”

which covers 30° in the azimuth. Each of these supersectors is then divided into 31 tiles that
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send signals through optical fibers to silicon photomultipliers (SiPMs). After that, these

signals are amplified and sent to the STAR digitizing and acquisition system (DAQ) [61].

An illustration of one of the two wheels can be seen in Figure 2.8.

Figure 2.8: An illustration of one of the two EPD wheels, which shows the 12 supersectors

along with the 31 tiles on each of them, and the signal flow that proceeds from the tiles

through the optical fibers into the STAR DAQ [51]

As this detector was built for the very specific reason of measuring the event plane, it

leads to specific characteristics of the detection of particles that differ from the previous

detectors mentioned. First, since it is not necessary to know the particle species in order to

use the particle in event plane reconstruction, there is no particle identification capabilities

built into this detector. Second, simulations from the EPD working group showed that the

magnetic field bending of particle tracks does not affect the determination of the event plane

significantly, therefore, the EPD also does not have tracking abilities, but simply records one

hit for each particle. Third, since event planes are determined by Fourier decomposition of

the azimuthal dependence of particle yields [13], the EPD was designed to be azimuthally
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symmetric.

With this detector upgrade, it allows us to have more information in extracting the event

plane in our analysis, and we will be using information from the EPD in order to extract

the event plane in the analysis described in this thesis.
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CHAPTER 3

Introduction to the CME/ CVE

3.1 Chiral Magnetic Effect

In QCD, the confinement of color, which implies that colored particles cannot be observed

in isolation, is not included in the perturbation theory, therefore it is theorized that the

mechanism has to be from non-perturbative dynamics, which many believe to originate in

the topological sector of QCD.

Therefore, in order to find observable manifestations of the topological structure of the

theory, one direction has been to investigate the Chiral Magnetic Effect (CME). To discuss

CME, we will first set the stage by considering the quark-gluon plasma (QGP) with restored

chiral symmetry for light quarks. With chiral symmetry restored, the quarks essentially

become massless, which also means that any chirality these quarks posses will be sustained

rather than fluctuate like they would if chiral symmetry was broken. For each specific flavor

of these chiral fermions, one can introduce the corresponding vector current Jµ and axial

current Jµ5 :

Jµ = ⟨Ψ̄γµΨ⟩, Jµ5 = ⟨Ψ̄γµγ5Ψ⟩ (3.1)

The thermodynamics states of this QGP can then be specified with the vector chemical po-

tential µ (related to the vector number density J0) as well as the axial chemical potential µ5

(for the axial number density J0
5 ), on top of temperature T. The quantity µ5 characterizes

the imbalance of right-handed and left-handed fermions in the system, and the QGP with

nonzero µ5 is a chiral medium, which may be created locally in heavy-ion collisions.

One way that we have used to probe properties of matter has been to apply external elec-

tromagnetic fields and examine how the matter responds to it. One example of that is to
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see how an electric current can be generated in the presence of an external electric field for

a conductor through Ohm’s law:

J⃗ = σE⃗ (3.2)

with σ being the electric conductivity characterizing the vector charge transport property of

matter. However, this is not very interesting because QGP has electrically charged quarks

freely flowing in the medium and therefore it obviously is a conductor. The interesting ques-

tion therefore becomes: Can a vector current be generated that is similar to that in the

electric field case if we use an external magnetic field to probe QGP instead? Normally this

is not possible because of symmetry: J⃗ is parity odd and B⃗ is parity even. However, the

symmetry argument breaks down if the medium, and in this case, the QGP, itself is chiral,

an example being a chiral QGP with nonzero µ5 whose parity mirror image has an opposite

µ5, which is what we just discussed above. And if this is the case, CME will then predict

the generation of a vector current analogous to Eq.(3.2), with J⃗ = σ5B⃗, where σ5 = Qe
2π2µ5

is a chiral magnetic conductivity.

This generation of a vector current in the presence of chirality imbalance was first dis-

cussed by Vilenkin [62]. One important feature that is theorized regarding the QGP is

that axial symmetry is broken, and therefore the chiral charge is not conserved, what is

called chiral anomaly, which gives rise to a chirality imbalance within the QGP. With gauge

theories, gauge fields have topologically non-trivial configurations. Associated with these

configurations of gauge fields are tunneling between different states that are related by topo-

logically non-trivial gauge transformations [63]. These different states are characterized by

the Chern-Simons topological charge [64], and the transition between these different states

is what induces the anomalous processes, like the parity symmetry breaking processes that

lead to chiral anomaly. In large energy density substances, like the QGP, vacuum transitions

arise between these states, and gives rise to chirality imbalance. This imbalance is then

transferred to the quarks, leading to an imbalance of right-handed and left-handed quarks,

which is represented by the Chern-Simons topological charge [65]. Along with chiral symme-

try restoration that the QGP reaches since the material reaches above the temperature that

QCD predicts the restoration to happen, this allows for a sustained imbalance in chirality.
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Figure 3.1: An illustration of the gluon field, which is periodic in one direction and oscillator-

like in all other directions in functional space. And the instanton is a large fluctuation that

corresponds to quantum tunneling from one minimum to another in this gluon field, whereas

the sphaleron is a solution that is static, unstable, and doesn’t involve quantum tunneling

[65]. One can picture it as the instanton being a transition that occurs from one valley to a

neighboring one in the figure, passing through underneath the peak, whereas the sphaleron

is a transition that goes from a valley to the neighboring peak, and back down to another

valley. It is theorized that these vacuum transitions lead to the chirality imbalance that

exists in the QGP, and that is then transferred to the quarks, which with chiral symmetry

restoration have zero QCD mass, and hence sustains the chirality imbalance, a necessary

condition for the CME. Figure is taken from [65].

Another important feature of the QGP is that it reaches above the temperature, seemingly

coincidentally, similar to the temperature at which chiral symmetry restoration happens,

deconfinement of color charge also is predicted to occur. The quark chirality may be main-

tained in the QGP phase with restored chiral symmetry, and that is how we reach the current

that the CME effect induces in the QGP [63].

There is yet another way to have an intuitive understanding of the Chiral Magnetic Ef-

fect. Suppose a magnetic field is applied to the QGP, then a spin polarization effect arises,

which is that the quarks’ spins prefer to be aligned along the magnetic field’s direction.

The momentum of the quarks will be correlated with the orientation of their spin - for
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right-handed quarks, their momentum will be parallel to their spin direction, whereas for

left-handed quarks, it would be anti-parallel. Therefore, if there is chirality imbalance, that

would mean that there is a net correlation between spin and momentum (suppose we have

more right-handed quarks, then the momentum of the system would preferably be parallel

to the direction of spin).

Therefore, with the spin polarization effect, we have:

⟨s⃗⟩ ∝ QeB⃗ (3.3)

And then, since there is a net correlation between spin and momentum if there is chirality

imbalance (which means µ5 ̸= 0):

⟨p⃗⟩ ∝ µ5⟨s⃗⟩ ∝ µ5QeB⃗ (3.4)

And therefore, with that net momentum of quarks, we get a vector current:

⟨J⃗⟩ ∝ ⟨p⃗⟩ ∝ µ5QeB⃗ (3.5)

However, even though we are able to show that there is a current that arises from this

chirality imbalance within a magnetic field, it is actually, as mentioned previously, still not

sufficient for fully explaining and accounting for the CME. One way to see the impact of

chiral anomaly is through the following derivation. Suppose we assume a CME-induced

electric current:

J⃗ = Qeσ5B⃗ (3.6)

And we use an arbitrarily small auxiliary electric field that is parallel to the magnetic field in

order to probe the existence of such a current by examining the energy changing rate of the

system. The usual way to compute with electrodynamics would be to compute the power

that’s done by this electric field (work per unit time):

P =

∫
x⃗

J⃗ · E⃗ =

∫
x⃗

Qeσ5B⃗ · E⃗ (3.7)

A different way to do this for a system of chiral fermions would be to use the implication of

chiral anomaly to see that there is a generation of axial charge with a rate of

dQ5

dt
=

∫
x⃗

CAE⃗ · B⃗, CA =
(Qe)2

2π2
(3.8)
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So with a nonzero axial chemical potential, it implies that there is an energy cost for creating

each unit of axial charge, so the energy changing rate through anomaly counting would be

µ5dQ5/dt. So with equations 3.7 and 3.8, we get∫
x⃗

Qeσ5B⃗ · E⃗ =

∫
x⃗

µ5CAE⃗ · B⃗ (3.9)

which means σ5 = µ5CA

Qe
= µ5Qe

2π2 , and so it becomes fixed by the chiral anomaly. Therefore,

these anomaly-induced currents, which are protected by topology, are currents that are non-

disipative [66], which is what allows for the CME currents to be sustained. That wraps up

the necessary and sufficient conditions for the CME. This is also the reason for the interest

in searching for the CME in QGP, as that will allow us to gain a deeper understanding of

properties of the QGP related to intrinsic nature of the QCD.

Figure 3.2: This figure demonstrates in a simple way what we have discussed in the text

about how CME arises through the presence of a magnetic field, chirality imbalance, as well

as chiral anomaly. [67]

3.2 Chiral Vortical Effect

A similar effect, called the Chiral Vortical Effect (CVE), can take place in a drop of chiral

fermions that is rotating as a whole, and that rotation can be quantified by the quantity

vorticity, defined as ω = 1
2
∆⃗× v⃗, where v⃗ is the flow velocity field. With this kind of system,
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we can draw an analogy with the CME, which is what we call the CVE: with the flow velocity

being analogous to the magnetic vector potential, which leads to vorticity being analogous

to the magnetic field as B⃗ = ∆⃗× A⃗.

One way that we can see the legitmacy of this analogy is by considering this example:

Suppose a charge particle moves in a circle perpendicular to a constant magnetic field. Then

what that leads to, quantum mechanically speaking, is that it will pick up a phase factor

eiQeΦB/h̄, where ΦB is the magnetic flux through the area enclosed by the circular path.

Now if that charge particle instead moves in the same circle, but perpendicular to a constant

vorticity field ω instead, it then picks up a phase factor of eiL/h̄, where L is the corresponding

angular momentum. Therefore, we can see that the two cases parallel each other quite well,

and it has been hypothesized that a similar effect to the CME could arise in a vorticity field.

And so, suppose we have a chiral medium with nonzero µ5, and it has a vorticity field ω⃗,

then it could generate a vector current that is driven by µω⃗:

J⃗ =
1

π
µ5µω⃗ (3.10)

One way to picture this effect (see Figure 3.3) is by imagining the follow scenario. Suppose

we have a global rotation, then the fermions would experience an effective interaction of

the form ∼ ω⃗ · S⃗ in their local rest frame, with S⃗ being the spin of the fermions. And so,

just like in the CME, the quarks’ spins would prefer to be aligned along the magnetic field’s

direction, here we have a spin polarization effect where the spin of the fermions would prefer

to be aligned with the vorticity’s direction; however, unliked the CME, this effect is not

affected by the charge of the fermions. So if then we also have chirality imbalance and chiral

anomaly, a.k.a. µ5 and µ are both nonzero, we will have a vector current that is proportional

to (µ5µ)ω⃗, with the sign being dependent on whether µ5 and µ are positive or negative.
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Figure 3.3: This figure demonstrates the CVE, in the specific case where there are more

right-handed particles than left-handed ones (thus µ5 >0), as well as more quarks than

antiquarks (µ >0). [67]

3.3 Studying CVE in Heavy-Ion Collisions

3.3.1 Vorticity in Heavy-Ion Collisions

Specifically, in this analysis, what we are concerned with is investigating the Chiral Voritcal

Effect (CVE) in heavy-ion collisions that take place at the Relativisitc Heavy Ion Collider

(RHIC). In order for this effect to take place, it requires global rotation of the Quark Gluon

Plasma (QGP) in the heavy-ion collisions to create the vorticity. Now in a general non-central

collision, where the two bunches of ions collide only partially, there would be a nonzero global

angular momentum [68]. Even though the majority of the angular momentum is carried away

by the spectator nucleons, recent simulations [69] show that a considerable fraction of the

angular momentum that remains in the QGP in the collisions and is more or less conserved as

time goes on, which means that the vortical effects from this global angular momentum could

last for a while, advantageous for studying the CVE in heavy-ion collisions. This angular

momentum that is studied in the simulations also points approximately in the out-of-plane

direction, and that is important because if we then have a signal from this vortical effect -
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such as a CVE induced current, it would also be along this direction, which could be picked

up by the detectors that are placed coaxially around the ion beams.

3.3.2 Initial Conditions

Other than vorticity, the other important elements to give rise to the CVE would be the

presence of nonzero initial vector and axial charge densities. Fortunately, in heavy-ion colli-

sions, these initial charge densities naturally arise from fluctuations.

The axial charge density could be generated from: the topological fluctuations of the glu-

onic sector (via instanton and sphaleron transitions), the chromomagnetic flux tubes with

nonzero local E⃗ · B⃗ in the initial glasma, as well as simple fluctuations in the quark sector.

The vector charge density could arise from “deposition” in the collision zone by the initial

colliding nuclei which possess large baryonic, electric, and isospin charges [67].

3.3.3 CME in Heavy-Ion Collisions

Given the magnetic field, B⃗, and the initial axial charge, µ5, there will be an induced CME

current along the direction of the magnetic field, and the sign will be dependent on the axial

charge. This current will then transport the positive and negative charges to opposite ends

of the Quark Gluon Plasma fireball, and that will form a dipole moment that depends on

the non-uniform charge distribution in the QGP.

This can be included into the hadron production at freeze-out through a nontrivial electric

charge potential of the form ∼ µe sin(ϕs −ΨRP ), with ϕs being the spatial azimuthal angle,

and ΨRP being the reaction plane angle. This effect can be shown through the Cooper-Frye

procedure for the produced final hadron’s spectra:

dN±

dϕ
∝

∫
source

e−p
µuµe±(µe/Tf ) sin(ϕs−ΨRP ) (3.11)

Here we suppressed other kinetic variables and focused on the azimuthal angle distribution,

and for simplicity we have chosen to use the Boltzmann approximation with the freeze-out

temperature Tf . The strong radial flow (hidden in the flow velocity field uµ) will collimate

the azimuthal angle of the emitted hadron’s momentum with the spatial angle of the local
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emission cell in the source, and so the out-of-plane dipole in the chemical potential will

“translate” into a charge-dependent dipole term in the emitted hadron distributions. Using

the parametrization of the particle azimuthal distribution in a form [70]:

dN±

dϕ
∝ 1 + 2v±,1 cos(ϕ−ΨRP ) + 2v±,2 cos[2(ϕ−ΨRP )] + ...

+ 2a±,1 sin(ϕ−ΨRP ) + 2a±,2 sin[2(ϕ−ΨRP )] + ...

(3.12)

where the coefficients v account for flow harmonics, specifically v1 accounts for directed flow

and v2 accounts for elliptic flow; the coefficients a account for the charge separation effect, as

we see that a+ = −a− ∝ µ5|B⃗|. Though this seems to lend itself to an easy way to investigate

the charge separation effect, one thing that we need to note is that µ5 arises from fluctuations

and take on different signs for different events, and actually it is equally probable for it to be

positive or negative, which means that directly measuring this observable would only lead to

a result of 0 as it averages itself out over a large number of events. And that is what STAR

has observed as seen in Figure 3.4, that there is no significant charge dependence across the

centrality intervals [71].

Figure 3.4: Measurement of ⟨sin(ϕ−ΨRP )⟩ for Au+Au collisions at
√
sNN = 200 GeV [71].
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One way to deal with this issue is by making it into a parity even observable, so that it would

not average out to zero across the events, by measuring ⟨a1,αa1,β⟩, with α and β representing

electric charges - positive or negative. The con of doing this is that this observable is

vulnerable to background effects that could potentially dominate the measurement. Voloshin

proposed a method to suppress these background effects by subtracting the desired out-of-

plane correlation from the in-plane correlation [70], and it is the γ112 correlator:

γ112 ≡ ⟨cos(ϕα + ϕβ − 2ΨRP )⟩

= ⟨cos(ϕα −ΨRP ) cos(ϕβ −ΨRP )⟩ − ⟨sin(ϕα −ΨRP ) sin(ϕβ −ΨRP )⟩

= [⟨v1,αv1,β⟩+BIN ]− [⟨a1,αa1,β⟩+BOUT ]

(3.13)

With this correlator, we first note that the signal, ⟨a1,αa1,β⟩, is now a parity even observ-

able that does not average out to zero. Then, with ⟨v1,αv1,β⟩, we have a reference to the

directed flow, which we expect to be theoretically the same for same-charge (α = β) and

opposite-charge (α = −β) particle correlations. This is the opposite for ⟨a1,αa1,β⟩, where it

is expected to be positive for same-charge correlation and negative for opposite-charge cor-

relation. Therefore, if we subtract the opposite-charge γ correlator by the same-charge one,

then the directed flow term would mostly vanish, while the charge separation effect remains,

along with the background influences that is expected to cancel out to a large extent. The

other interesting thing to note with regards to this background is its correlation with elliptic

flow, that calculations from [70] and [67] have demonstrated. That will be a key piece of

information for one of the methods developed and used in this analysis, called the event

shape selection method that will be introduced later in this thesis.

3.3.4 CVE in Heavy-Ion Collisions

As mentioned before, the CVE is very similar to the CME. With nonzero average rotation

ω⃗ of the QGP, and nonzero background vector charge density, specifically for this analysis

a nonzero baryon density, the CVE current can be generated by the initial axial charge,

and that leads to a separation of quarks and anti-quarks across the reaction plane, thus

resulting in baryonic charge separation, analogous to the electric charge separation of the
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CME. While the similarity in the two effects is very helpful in understanding the effects,

it leads to complications because the two effects could simultaneously exist and difficult to

separate out. Therefore, in order to ensure that we are investigating the CVE in this study,

we specifically chose Λ/Λ̄ as it has baryonic charge while no electric charge.

One advantage of studying CVE is that it has been found that the vorticity of QGP is

sustained [72], and that makes it theoretically easier to detect effects that arise from the

vorticity of the fireball.
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CHAPTER 4

Data Set and Reconstruction of Particles

4.1 Information on Data Set

This analysis focuses on the search for the CVE through investigating the correlation among

the azimuthal angles of Λ/Λ̄ particles, p/p̄ and the event plane angle. This investigation was

carried out using the minimum bias triggered data collected by STAR in 2018, with Au+Au

collisions at
√
sNN = 27 GeV, as well as in 2019 Au+Au collisions at

√
sNN = 19.6 GeV. The

trigger ID set is listed in Table 4.1.

Table 4.1: Triggers Used in Analysis

(a)
√
sNN = 27 GeV

Trigger Label Offline Trigger ID

minbias 610001

minbias 610011

minbias 610021

minbias 610031

minbias 610041

minbias 610051

(b)
√
sNN = 19.6 GeV

Trigger Label Offline Trigger ID

minbias 640001

minbias 640011

minbias 640021

minbias 640031

minbias 640041

minbias 640051

4.2 Run-by-Run Quality Checks

In the data collection system of STAR, we call each collision as an event, and with a period

of time collecting these events, we call them runs. While the most optimal would be that the
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system does not change from event to event, from run to run, that clearly is not possible in

the actual data taking process, and the machine and environment changes as time progresses.

Therefore, it is necessary for us to do some quality assurance checkes on these runs and events

in order to make sure that the analysis that is performed is not influenced by the changes in

environment. In this section we will discuss the criteria that we used in this analysis to check

the runs. The committee that is responsible for determining the criteria for computations of

the centrality of collisions also provides a bad run list with their own criteria, but we look at

some further checks to make sure that the runs we ultimately include in the analysis satisfy

our standards. There are nine criteria that we looked at in order to determine whether each

run is usable - whether or not a run falls within reasonable conditions and thus can be used

in our analysis. For each of these criteria, we looked at the runs and compared them with

their neighboring runs and determined whether or not that they were outliers, see Figure

4.1. It is important to not look at outliers as a whole because sometimes there are systematic

shifts in the environment, that actually is acceptable and the data do not need to be thrown

out, one example being the reference multiplicity distribution that we see in the top right

of Figure 4.1, where after a certain run the entire distribution shifted upwards because of

changes in the system. The data points that are colored red represent the runs that were

marked as bad runs and removed from the analysis.
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Figure 4.1: The nine criteria that were used in determination of the quality of the runs and

whether or not they were included in this analysis. The red data points correspond to the

runs that were removed (these runs are the same runs in all nine plots, not just the runs that

were removed by the criterion that the plot represents). The black data points correspond to

the runs that were ultimately included in the analysis and passed our quality checks. These

plots correspond to the data collected by STAR in 2018, with Au+Au collisions at
√
sNN =

27 GeV.

Figure 4.1 corresponds to the data collected by STAR in 2018, with Au+Au collisions at
√
sNN = 27 GeV, and a similar procedure was performed to the data collectd in 2019 Au+Au

collisions at
√
sNN = 19.6 GeV to determine the bad runs for that data set. The full list of

runs that were marked as “bad” and removed from the analysis can be found in Appendix

A.
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4.3 Event Characterization and Selection

4.3.1 Event Selection Criteria

There are also various criteria to eliminate events that were created in less than ideal sce-

narios. The first criterion is a selection in the x-y plane, to lower the chances that collisions

between a projectile ion and the wall of the beam pipe, or with residual gas in the vacuum

would make it into the analysis. Therefore, a cut on the radial component of the primary

vertex, vr, is applied, requiring it to be less than or equal to 2cm. Also, in order to have

reasonably consistent detector acceptance for the event sample, due to finite length of the

detectors, for this data set there is a cut on the z component of the primary vertex, vz,

requiring it to be within the range of -70 to 70cm. See Figure 4.2 for plots demonstrating

the distribution of the vertices of the events used in the analysis. These cuts are the same

for both the 27 GeV and 19.6 GeV data sets. After these event-level cuts, there are ap-

proximately 4.12× 108 events for 19.6 GeV Au+Au collisions, and 5.16× 108 events for 27

GeV.
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Figure 4.2: The transverse components and z component of the primary vertex of the collision

events to demonstrate the cuts that were applied on the event level. The top two plots are

for Au+Au 19.6 GeV collisions, and the bottom two are for 27 GeV.

4.3.2 Centrality

Centrality is a crucial characteristic used to classify events in nuclear collisions. It repre-

sents the degree of overlap between the two colliding beams in a particle accelerator. The

significance of centrality arises from the substantial differences that can be observed in the

nuclear matter produced during heavy ion collisions, depending on whether the collisions

are central or peripheral. Hence, it is essential to differentiate between measurements based

on these distinct collision types. Since the STAR detector, along with other detectors at

RHIC, cannot directly observe the microscopic geometry of each collision event, the Glauber

model [73] was developed. This model utilizes Monte Carlo simulations to indirectly extract

information about the collision geometry from the data collected by our detectors.

The Glauber model is based on the concept of representing the nucleus as an assembly
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of uncorrelated nucleons, sampled from experimentally derived density distributions. This

approach simplifies the scenario by eliminating potential complexities arising from corre-

lations. In this model, two nuclei undergo collisions with random impact parameters (b),

drawn from the distribution dσ/db = 2πb, and the collision outcomes are projected onto

the x-y plane. The simplification arises from the treatment of nucleus-nucleus collisions as a

sequence of independent binary nucleon-nucleon collisions. This means that nucleons move

along straight-line trajectories, and the inelastic nucleon-nucleon cross-section is assumed to

be independent of the number of collisions a nucleon has experienced prior. The determi-

nation of whether a collision occurs is based on comparing the distance between nucleons

to various functions. The choice of function depends on the specific version of the Glauber

model employed and can be related to either the inelastic collision cross-section or the Gaus-

sian overlap function. An example of this, colored to represent nucleons that are and are

not part of the simulated collisions, is shown in Figure 4.3.

Figure 4.3: This is a Glauber Monte Carlo event, simulated as a Au+Au collision at
√
sNN

= 200 GeV. The impact parameter (b) of this simulated collision is 6 fm, a quantity that

is randomly drawn from the distribution dσ/db = 2πb. The left is a view in the transverse

plane, and the right is a view from the beam pipe [73].
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However, the Glauber model, because it depends on the nucleon-nucleon inelastic cross sec-

tion and the geometry of the interacting nuclei, it will depend on the number of participant

and number of collisions. However, these numbers are not directly measurable from RHIC

heavy-ion collisions. This means that the Glauber model would have to map a measured

distribution to the corresponding distribution obtained from phenomenological Glauber cal-

culations by connecting the mean values from the same centrality class in these two distribu-

tions. This mapping will be heavily dependant on the specifics of the experiment as well as

the collision system. Therefore, each year, for each type of collision system at STAR, there is

a Centrality Group that focuses on defining the proper definitions for the Centrality classes,

and that is also what is referenced in the analysis in this thesis as the results are shown split

by centrality. Figure 4.4 demonstrates the basic assumption of this split in centrality bins

- that the impact parameter is monotonically related to particle multiplicity, in both the

mid and forward rapidity. This means for peripheral events, where the impact parameter is

large, we expect low multiplicity at mid-rapidity and a high number of spectator nucleons,

whereas for central events, with small impact parameters, we would see large multiplicities

in the mid-rapidity and a small number of spectator nucleons.
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Figure 4.4: A cartoon demonstration of how the multiplicity is related to Glauber model

quantities like the impact parameter, b, and the number of participants. Note that this is

simply an illustration and does not show actual measurements [73].

For this specific analysis, the collision systems of interest are the 27 GeV Au+Au collisions

and the 19.6 GeV Au+Au collisions. The Centrality classes are provided as a software

package class named StRefMultCorr, and is used in this analysis. The computed values of

the number of participants, Npart, can be found in Table 4.2, and these values will be used

to better visualize the results of this thesis’ analysis later.
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Table 4.2: Npart of Centrality Classes

(a)
√
sNN = 27 GeV

Centrality Npart systematic error

0-5% 343.3 2.01

5-10% 299.3 6.19

10-20% 233.6 8.98

20-30% 165.5 10.71

30-40% 114.0 11.28

40-50% 75.0 10.33

50-60% 46.7 9.19

60-70% 26.8 7.76

70-80% 13.8 5.83

(b)
√
sNN = 19.6 GeV

Centrality Npart systematic error

0-5% 338.0 2.29

5-10% 289.2 6.00

10-20% 224.9 8.62

20-30% 158.1 10.48

30-40% 108.0 10.64

40-50% 70.85 10.09

50-60% 43.88 8.71

60-70% 25.46 6.78

70-80% 13.84 4.99

With the definition of the centrality classes with the aforementioned software package class

named StRefMultCorr developed by STAR, and the centrality definitions generated accord-

ing to the Glauber model for each collision energy and type, the following figure shows the

distribution of events across the centralities for the two collisions that are of interest in this

thesis:
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(a)

(b)

Figure 4.5: Plot (a) shows the distribution of events across the centrality classes for 19.6

GeV Au+Au collisions, and Plot (b) is for 27 GeV Au+Au collisions. This is weighted by

the event weight that is generated from the StRefMultCorr class. For reference, Table 4.3

shows the conversion between centrality classes and cnetrality bins used here.
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For some of the plots later in this thesis, as well as the figures above, instead of using the

centrality classes for label, we also use the centrality bin interchangeably as sometimes that

is an easier depiction. So for reference the following is a conversion between the centrality

class and centrality bin, Table 4.3:

Table 4.3: Centrality Classes and Centrality Bins

Centrality Centrality Bin

0-5% 9

5-10% 8

10-20% 7

20-30% 6

30-40% 5

40-50% 4

50-60% 3

60-70% 2

70-80% 1

4.4 Λ(Λ̄) Baryon Reconstruction

Since the decay length of Λ(Λ̄) Baryon particles (m = 1115.683 ± 0.006 MeV, τ = 2.632 ±

0.020 ×10−10s [74]) is short, and they do not have electrical charge, it is difficult to directly

detect them in STAR. However, it is possible to choose the decay channel where they decay

into charged particles with longer half-lives to reconstruct them. The decay channel that

was chosen is:

Λ → pπ− (4.1)

Λ̄ → p̄π+ (4.2)

with a branching ratio of 63.9 ± 0.5% [74]. These particles will be reconstructed by the Time

Projection Chamber (TPC), and thus possible to be used to reconstruct the Λ(Λ̄) Baryon
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particles of interest. The method to choose the proper daughter particles to reconstruct the

parent particles includes basic quality cuts on each of the tracks, and then using what we

understand about the decay topology (see Figure 4.6) to determine topological cuts to ensure

that the daughter particles’ tracks coincided with one another, thus having the possibility

of being the decay daughters of the Λ(Λ̄) Baryon particles of interest. See Table 4.4 for a

summary of the track quality cuts, and Table 4.5 for the centrality-dependent topological

cuts.

Figure 4.6: This diagram demonstrates the topology of the decay of a general neutral particle

into two daughters, and thus can be illustrative for our specific case of Λ(Λ̄) Baryon particles

decaying into pπ− and p̄π+. DCA is short-hand for Distance of Closest Approach, which is

the closest distance of any two given points, or a track to a point, or any two tracks [75].
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Table 4.4: Track Quality Cuts for Daughter Tracks for Λ → pπ− / Λ̄ → p̄π+

Track Cuts Values

# of TPC Hits Used in Fit/ Max. # of Possible TPC Hits ≥ 0.52

# of TPC Hits Used in Fit >15

|Nσ| for p/p̄ <4.0

|Nσ| for π−/π+ <4.0

pT of π−/π+ >0.15 GeV/c

pT of p/p̄ >0.2 GeV/c , <2.0 GeV/c

Table 4.5: Centrality-Dependent Topology Cuts for Λ → pπ− / Λ̄ → p̄π+

Centrality
DCA from p/p̄ DCA from π−/π+ DCA from p/p̄ Decay Length of

to Primary Vertex to Primary Vertex to π−/π+ Λ/Λ̄

0-20% >0.4 cm >1.5 cm <0.9 cm >4.0 cm

20-40% >0.3 cm >1.3 cm <1.0 cm >3.5 cm

40-60% >0.2 cm >1.0 cm <1.1 cm >3.0 cm

60-80% >0.1 cm >0.8 cm <1.2 cm >2.5 cm

4.4.1 Background Estimation

Even with these cuts there will be background to this reconstruction. Therefore, it is impor-

tant to find a way to model the background and to estimate the background contribution.

The method that we use in this analysis is by creating fake Λ(Λ̄) baryons by rotating the

π+/π− track by 180°. Basically, by identifying a π+/π− track using the same criteria, then

rotating the track by 180°, and then matching this rotated track with a p/p̄ track and select

based on the same topological criteria, we would reconstruct Λ(Λ̄) baryons that are certainly

not real. Then, by looking at the invariant mass distribution of these baryons, it would help
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model the background of the reconstructed baryons.

What we can understand for the invariant mass distribution of the rotated backgrounds is

that it is a smooth distribution without any peaks, especially under the peak of the invariant

mass distribution of the invariant mass distribution of the reconstructed baryons. This piece

of information is important because that allows us to model the background of the recon-

structed baryons with a polynomial function. Hence we have the models, with an example

in Figure 4.7, where the red line represents the polynomial fit to identify the background

underneath the signal peak. Then we varied the mass cuts, represented by the blue vertical

lines, a little to try to get the best ratio between real signal to background, and settled on

a mass cut of (1.113 ≤ m ≤ 1.119) GeV/c2.

Figure 4.7: An example distribution of Λ Mass; The red line represents the polynomial fit

to determine the background; the blue lines represent the mass cuts for optimal signal to

background ratios while maintaining sufficient statistics.

With this mass cut, then the purity statistics (the signal to total statistics ratios) were

computed, and are used in the analysis to correct the background effects. Figure 4.8 shows

the purity statistics of Λ/Λ̄ particles for 27 GeV Au+Au collisions.
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Figure 4.8: The purity statistics of Λ/Λ̄ particles for 27 GeV Au+Au collisions. The black

data points represent Λ and red data points represent Λ̄.

4.4.2 KFParticle

The traditional method to reconstruct particles have some serious shortcomings. First, the

information about the errors of daughter particle trajectories is not taken into account, and

that could affect the reconstruction accuracy of the mother particle. For example, for this

analysis, it would mean that the error information of the daughter p and π tracks was not

taken into account in the reconstruction of the Λ particle. Second, the method that involves

finding a point of closest approach in a nonhomogeneous magnetic field is not time efficient.

Third, even though there are other methods that reconstruct these short-lived particles,

such as the secondary vertex, or the point at which the particle decayed, by fitting with the

Kalman filter method [76][77], these methods all have their own downsides that would be

great to be addressed for future methods to reconstruct short-lived particles. And that is

what the KF Particle package has been developed for [78][79].
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The KF Particle package is based on the Kalman filter mathematics, with the state vector

of the particle that includes eight parameters: the three coordinates of the particle, three

components of its momentum, its energy, and when its production point is known, the time

between production and decay points measured in a distance normalized by the momentum

of the particle [80]. The daughter and mother particles are described with the same set of

parameters and are treated in exactly the same way. The daughter particles are added to the

mother particle in a way that allows the addition to be absolutely independent. The package

itself is geometry independent and allows reconstruction of decay chains. It is implemented

in single precision and is fully SIMDized [80].

With this information, the KF Particle Pacakge is able to fully reconstruct a particle’s decay

vertex, momentum and energy. On top of that, the covariance matrix is estimated together

with the state vector, so that not only the parameters are obtained but also their accuracy

and the quality of reconstruction based on χ2. The package also allows for the users to

set constraints on the particle state vector, specifically on the mass and production point

of the particle. This is significant because the mass constraints allow for improvements in

the information of the mass and momentum of the found particle. The production point

constraints could help with identifying the point from which the particle is coming, for

example a collision point. These pieces of information are very important for decay chain

reconstructions [80]. The package also sophisticated methods to compute the point of closest

approach between a particle and a vertex, as well as between two particles, as well as methods

to apply nonlinear mass constraints to decay reconstruction trees to improve on the resolution

of the mass of the reconstructed particles.

One way that the χ2 criteria are used in order to improve the final reconstruction results

is the distinguishing between secondary and primary particles. Primary particles are those

that were produced directly in the heavy-ion collisions, when the nuclei collide. Secondary

particles are the decay products of short-live particles that were produced from the collisions.

Therefore, it is quite important to properly distinguish between primary and secondary tracks

when going through this reconstruction process. χ2 criterion is used here to place a constraint

on the distance of the closest approach between the track examined and a primary vertex,
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normalized on their total error. It defines the probability that this particular track intersects

the primary vertex within the errors, with the assumption that parameters of the track are

distributed according to the Gaussian distribution, while χ2 is distributed according to the

χ2-distribution with two degrees of freedom. And this is true for when the Kalman filter is

used, and all the tracks are extrapolated to the primary vertex point in order to compute

the χ2 criterion.

After these tracks are sorted into primary and secondary tracks, as well as positively and

negatively charged tracks, the reconstruction of the short-lived mother particles can begin.

The scheme is outlined in the block-diagram shown in Figure 4.9. The short-lived particles

that have a lifetime large enough to be separated from the primary vertex are reconstructed

from one positive and one negative secondary track, and the Λ/Λ̄ particles that are of interest

in this analysis are created through that scheme. The positive and negative secondary tracks

are combined according to their PID hypothesis into the particle candidates decaying by the

corresponding channels. However, there are combinations of these tracks that produce a

candidate that are simply not real particles, and those are the backgrounds to our physical

signals. Various cuts based on fit quality and decay topology are employed in order to

suppress this background. The first cut is one on the χ2
fit/NDF criterion that is calculated

by the KF Particle mathematics in the candidate fit. This criterion essentially shows whether

or not the pair of secondary tracks currently used to combine into the particle candidate have

trajectories that intersect within their errors. A second cut is on the χ2
topo/NDF criterion.

This cut constrains the production point of the candidate reconstructed to be near the

primary vertex region. The third cut is on the distance from the decay point of the candidate

to the primary vertex normalized on the error. However, because strange particles and

hypernuclei have a larger lifetime and that separates them from the primary vertex, only

the first and third cuts are applied, selecting the candidates that are constructed more than

several σ away from the primary vertex region. These cuts are optimized with respect to

the signal to background ratio [81]. The reconstructed candidates that pass these cuts are

then the ones that are used in the analysis.
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Figure 4.9: This is a block-diagram of the scheme used to reconstruct short-lived particles

emplyed in the KF Particle Finder package [80]. The cuts on χ2
fit and χ2

topo are given in

terms of the number of degrees of freedom.
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4.4.3 Background Estimation

With the better reconstruction algorithm of KFParticle, we are able to reconstruct Λ/Λ̄

particles with a much higher purity. Figure 4.10 shows examples of the new distributions for

these baryons. Because of the event shape engineering method that we will use as described

later in this thesis, and that we’ll be using the event handle pair-pion q22, where q is the

flow vector as defined by Eq. 5.36, 5.37 and 5.38 for all pion pairs, we’ll divide the baryon

distributions based on binning on this event handle as well.
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Figure 4.10: Figures (a)-(h) are for 19.6 GeV Au+Au collisions, and Figures (i)-(p) are

for 27 GeV Au+Au collisions. These figures are examples of the mass distribution of the

reconstructed baryons for demonstration purposes. All these plots correspond to centrality

bin 5, which is 20-30%, and for the event handle pair-pion q22 between the values 0.9 and 1.0.

These plots are example plots for how the background estimation for the signals are done.

The plots on the left column demonstrate how the signal was extracted (specifically the mass

range that was selected for the signal), and the right column demonstrate the mass range

for the background estimation of the signal. The red curve represents the estimation of the

background under the signal curve, which is how we compute the percent purity for each of

the centrality - pair-pion q22 bins for background corrections in this analysis.

As we see in Figure 4.10, as compared with Figure 4.7 using the topological reconstruction

method, the KFParticle algorithm does a much better job of eliminating background and

keeping the sample pure, while also maintaining a good number of signal. As for how this
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information is used, we see in Figure 4.10, the left column corresponds to the selection of the

baryons that are used in our signal calculation. This sample includes a certain number of

falsely-reconstructed baryons, which are represented under the red curve. The estimate how

the percent of the signal that is from actual baryons compared to the total number of baryons

reconstructed is what we call purity. Having this information, along with what we get in the

right column, which represent the mass ranges that we used in order to select for baryons

that were reconstructed that we know are not real baryons, but we use those to compute

our observable as well, in order to have an estimate on the background for our observable.

So with our signalmeasured, purity, and signalbackground, we can arrive at the following relation

in order to extract the real signal, signalreal:

signalmeasured = purity ∗ signalreal + (1− purity) ∗ signalbackground (4.3)

signalreal = (signalmeasured − (1− purity) ∗ signalbackground)/purity (4.4)

Therefore, we compute our purity statistics in order to help us make this estimated correction

for falsely reconstructed baryons that are under the signal curve. Figures 4.11 and 4.12 show

the purity statistics as a function of our event handle pair-pion q22 bins, and Figures 4.13 and

4.14 show the statistics as a function of event handle single-pion q22 bins.
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Figure 4.11: For 19.6 GeV Au+Au collisions, binned by pair-pion q22. The black data points

correspond to Λ purity statistics, whereas the red ones correspond to Λ̄ particles. As can be

seen from the plots, there is not a strong dependence on the event handler, and the purity

is very good - over 90% of reconstructed baryons are estimated to be true baryons for all

centralities and all event handler bins.
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Figure 4.12: For 27 GeV Au+Au collisions, binned by pair-pion q22. The black data points

correspond to Λ purity statistics, whereas the red ones correspond to Λ̄ particles. As can be

seen from the plots, there is not a strong dependence on the event handler, and the purity

is very good - over 94% of reconstructed baryons are estimated to be true baryons for all

centralities and all event handler bins.
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Figure 4.13: For 19.6 GeV Au+Au collisions, binned by single-pion q22. The black data points

correspond to Λ purity statistics, whereas the red ones correspond to Λ̄ particles. As can be

seen from the plots, there is not a strong dependence on the event handler, and the purity

is very good - over 90% of reconstructed baryons are estimated to be true baryons for all

centralities and all event handler bins.
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Figure 4.14: For 27 GeV Au+Au collisions, binned by single-pion q22. The black data points

correspond to Λ purity statistics, whereas the red ones correspond to Λ̄ particles. As can be

seen from the plots, there is not a strong dependence on the event handler, and the purity

is very good - over 94% of reconstructed baryons are estimated to be true baryons for all

centralities and all event handler bins.
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4.4.4 Efficiency Correction

The previous section takes care of the false positives - cases in which the tracks passed

through the reconstruction cuts to reconstruct a particle that is not a real Λ/Λ̄. However,

there are also cases in which a real Λ/Λ̄ does not get reconstructed because the cuts removed

their daughter particles from consideration. This section will be interested in addressing

this false negative case. The detectors that are employed in STAR have sensitivities that

depend on the momentum of the particles that are being detected. Because of this, we

are interested in understanding how the efficiency of reconstructing Λ/Λ̄ depends on its

transverse momentum.

In order to do this, we need to rely on simulations. We use a data set with real data collected,

and then embed randomly generated Λ/Λ̄ tracks into the data along with the decay products

of these generated baryon particles, and then we feed this data through the reconstruction

algorithm and see how many of these embedded tracks are actually reconstructed for each

transverse momentum bin. The results are seen in Figure 4.15. These statistics will be

included in the final analysis to correct the results of interest.
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Figure 4.15: The left figures are the efficiency results for Λ, and the right ones are for Λ̄.

The first row corresponds to 19.6 GeV Au+Au collisions; the second row corresponds to

27 GeV Au+Au collisions. % Reconstructed refers to the reconstruction efficiency, which is

calculated as (# Reconstructed / # Total Embedded) for each pT bin.

4.5 Primary Protons

In this section we will discuss the selection criteria used for identifying primary p/p̄ tracks,

as well as the efficiency corrections for the cuts used in this analysis.

4.5.1 Selection Criteria

Table 4.6 lists the selection criteria used for identifying these tracks that will be used in the

correlations with the Λ/Λ̄ particles to search for the CVE.
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Table 4.6: Track Quality Cuts for Identifying Primary p/p̄ Tracks

Track Cuts Values

TPC Hits Used in Fit/ Max. Possible TPC Hits ≥ 0.52

TPC Hits Used in Fit >15

TPC Hits Used in dE/dx Measurements >15

|Nσproton| <2.0

pT >0.4 GeV/c

|p⃗| <2.0 GeV/c

Mass2 >0.8 (GeV/c2)2 , <1.0 (GeV/c2)2

Require TOF Hit True

| TOF y Local | <1.8cm

DCA from Primary Vertex <1cm

4.5.2 Efficiency Correction

For the primary p/p̄ particles, there are two efficiencies that are important: the efficiency

of reconstruction from TPC, as well as that from TOF. The idea behind computing the

estimate of the efficiency of reconstruction from TPC is similar to that of the computation

of efficiency of reconstruction of Λ/Λ̄ particles that was described above: the STAR collab-

oration produces a data set that includes embedded Monte Carlo tracks of p/p̄ particles,

so by using that data set, feeding through the algorithm that selects the primary protons

that are used in this analysis, we can calculate the percentage of particles that are identified

compared with the total number that was embedded. The efficiency determination for TOF

is a little trickier as there is not direct way of estimating, as there is no particle identification

built into TOF. Therefore, an estimate is used by comparing the number of particles that

passed all the TPC cuts and enters the TOF cuts, with the number of particles that pass

the TOF cuts, and that is used as an estimate for the efficiency of TOF identification of

the p/p̄ particles. These two efficiencies are both computed as a function of the transverse
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momentum of the p/p̄ particles, and their effects are combined as a product into one function

that is depicted in Figure 4.16. As can be seen, there is not a very strong dependence on

transverse momentum in the range that was selected for this analysis, but the statistics will

still be used in correcting the final result for the observables.
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Figure 4.16: The product of the efficiency of identification from the TPC and the efficiency of

identification from TOF of protons and antiprotons across the nine centralities, as a function

of their transverse momentum. (a) 19.6 GeV Au+Au; (b) 27 GeV Au+Au.
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4.6 Verification of Baryons with Elliptic Flow Comparisons

In order to have an understanding of the validity of the reconstructed Λ, we decided to

compute the elliptic flow of these particles and compare that with the published results from

STAR in 2016 [82]. There are definitely differences between the methods of reconstruction

and criteria for selection, for example, the use of KFParticle to reconstruct the Λ baryons and

the difference in the event plane reconstruction (different sizes of η gaps). However, despite

the differences, we expect the elliptic flow of these particles to be roughly the same, and if

that is what we see in our calculations, it gives us more confidence on the reconstruction and

selection procedures.

And indeed that is what we see: we see that though there are some differences, the elliptic

flow between the particles reconstructed in this set of data to be roughly the same as the

beam energy scan I data that the analysis of [82] was performed on. The results can be seen

in the following figures:
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Figure 4.16: These figures compare the elliptic flow of Λ particles from the data sets of

interest in this analysis, with that of the study done in 2016 [82]. We see that in general the

results agree with each other, sufficient to claim validity for the reconstruction and selection

of these particles.

4.7 A Multi-Phase Transport Model for Heavy Ion Collisions

Many models have been developed in order to understand the experimental results that we

have been able to obtain from RHIC. A Multi-Phase Transport Model (AMPT) is a sophis-
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ticated one that combines many previously developed ones to try to accurately describe the

evolution of the heavy-ion collisions at RHIC, and is one of the models used in this analysis

to compare results in order to better understand the potential Chiral Vortical Effects that

may or may not be present in the collision.

There are thermal models that were developed in the past that are based on the assumption

of global thermal and chemical equilibrium [83][84][85][86]. There are also hydrodynamic

models that are based only on the assumption of local thermal equilibrium [87, 88, 89, 90,

24, 91, 92]; these models are useful for understanding the collective behavior of low transverse

momentum particles, such as elliptic flow v2. There are also transport models [93, 94, 95,

96, 97, 98, 99, 100, 101] that treat non-equilibrium dynamics explicitly, and they have been

very successful in accounting for the yield of various particles and their ratios. Because these

transport models treat chemical and thermal freeze-out dynamically, they are also useful for

studying the Hanbury-Brown-Twiss interferometry of hadrons. Approaches based on the

perturbative quantum chromodynamics (pQCD) using parton distribution functions in the

colliding nuclei have been used to model hard processes that involve large momentum transfer

[102][103]. The classical Yang-Mills theory has been developed in order to address the evo-

lution of parton distribution functions in nuclei at ultra-relativistic energies [104][105][106]

as well as to study the hadron rapidity distribution and its centrality dependance at RHIC

[107][108][109]. These different scenarios and conditions have also been studied in the pQCD

based final-state saturation model [110][111][112].

There have been studies that show that thermalization could be achieved if we have colli-

sions of very large nuclei or if the collisions occur at extremely high energy, even though the

initial distribution of these gluons is very far from thermal equilibrium, and that the strong

coupling constant decreases at high energies and at the saturation scale is asymptotically

small [113]. However, the Quark Gluon Plasma that is created in the heavy ion collisions at

RHIC, because of finite volume and energy, may not achieve full thermal or chemical equi-

librium. Therefore, in order to address this kind of non-equilibrium, many-body dynamics,

the model, A Multi-Phase Transport (AMPT) model [114], was developed to include both

initial partonic and hadronic interactions, as well as the transition between these two phases
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of matter [115, 116, 117, 118, 119, 120, 121, 122, 123]. The AMPT model is constructed to

describe nuclear collisions ranging from p + A to A + A systems at center-of-mass energies

from about
√
sNN = 5 GeV up to 5500 GeV at LHC, where strings and minijets dominate

the initial energy production and effects from final-state interactions are important.

The following figures (Fig. 4.17) show the two different modes of the AMPT model, as well

as the key components that are necessary in order to model what was previously mentioned,

and will be described in more details:

Figure 4.17: The left figure illustrates the scheme for the default AMPT model, and the

right is that for the model with string melting. [114]

The AMPT model obtain information from the HIJING model for the determination of the

initial conditions. These include the spatial and momentum distribution of minijet partons

and soft string excitations [124, 125, 126, 127]. The HIJING model models the radial den-

sity profiles of the two colliding nuclei as having Woods-Saxon shapes, while the multiple

scatterings among incoming nucleons are treated in the eikonal formalism. There are two

components then that factor into particle production from the colliding nucleons, a hard

and a soft one. The determination of this characterization is based on a momentum transfer

threshold, above which is taken care of by the hard component, and below being taken care
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of by the soft one. The hard component evaluates these processes with the pQCD using

the parton distribution function in a nucleus, and these processes lead to the production of

energetic minijet partons that are treated with the PYTHIA program. On the other hand,

the processes that have a lower momentum transfer are treated by taking into account non-

perturbative processes, and modeled by the formation of strings, which are then assumed

to decay independently according to the Lund JETSET fragmentation model [114]. Now

even though the partonic part in the default AMPT model only includes minijets from the

HIJING model, its energy density can be very high in the heavy ion collisions at RHIC.

So if the excited strings were just kept in the high energy density region [128], that would

underestimate the partonic effect in these collisions. This is the reason for having the string

melting mode of the AMPT model, as this extends the AMPT model to include the string

melting mechanism and models this effect in the high energy density regions. This string

melting mechanism [120][121][123] essentially has all the excited strings (but not projectile

and target nucleons without any interactions) be converted into partons according to the

flavor and spin structures of their valence quarks.

In the transport approach, interactions among partons are described by equations of mo-

tion for their Wigner distribution functions, which describe semi-classically their density

distributions in phase space. These equations can be approximately written as Boltzmann

equations. Zhang’s parton cascade (ZPC) is then used to describe scatterings among partons

to solve the Boltzmann equations [96]. This model includes only two-body scatterings with

cross sections obtained from the pQCD with screening masses. There are then two modes

of the AMPT model that combine partons into hadrons. With the default AMPT model

[115, 116, 117, 118, 122], partons are recombined with their parent strings when they stop

interacting because minijets are allowed to coexist with the remaining part of their parent

nucleons, and then the resulting strings are converted to hadrons using the Lund string frag-

mentation model [129][130][131]. The second mode is the AMPT model with string melting

[120][121][123]. This model uses a quark coalescence model (similar to the ALCOR model

[132]) to combine partons into hadrons by converting the hadrons into their valence quarks

and antiquarks. Then the hadronization is modelled by combining the two nearest partons
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into a meson and three nearest quarks (antiquarks) into a baryon (antibaryon). However,

because the invariant mass of combined partons forms a continuous spectrum instead of a

discrete one, it is generally impossible to conserve 4-momentum when partons are coalesced

into a hadron. Therefore, the current model chooses to conserve the three-momentum during

coalescence and determine the hadron species according to the flavor and invariant mass of

coalescing partons [114]. The resulting hadrons are given an additional formation time of

0.7fm/c in their rest frame before they are allowed to scatter with other hadrons during the

hadron cascade. Therefore, because partons freeze out dynamically at different times in the

parton cascade, they coalesce and form hadrons at different times as well, which can lead to

the appearance of a phase during hadronization where partons and hadrons coexist.

Scatterings among the resulting hadrons are described by the ART hadronic transport model

[100][101], a hadronic cascade model. This relativistic transport model was originally de-

veloped for heavy ion collisions at Alternating Gradient Synchrotron (AGS) energies, and

includes baryon-baryon, baryon-meson, and meson-meson elastic and inelastic scatterings.

It treats the isospin degrees of freedom for most particle species and their interactions ex-

plicity, so it is suitable for studying those effects in heavy ion collisions [133], and it also

includes mean-field potentials for nucleons and kaons, and therefore used for studying the

effect due to the hadronic euqation of state. However, for high energy heavy ion collisions at

RHIC, the potentials are turned off because their effects are much less important. The ART

model was extended in AMPT to include additional reaction channels that are important

at high energies, like the formation and decay of K∗ resonance and antibaryon resonances,

and baryon-antibaryon production from mesons and their inverse reactions of annihilation.

With parameters, such as those in the string fragmentation, fixed by the experimental data

from heavy ion collisions at the CERN Super Proton Synchrotron (SPS), the AMPT model

has been able to describe reasonably many of the experimental observations at RHIC.

The final results from the AMPT model are obtained after the hadronic interactions are

terminated at a cutoff time, tcut. This cutoff time is determined to be the point at which

the observables of interest are considered stable, in other words, that further hadronic inter-

actions afterwards would not significantly affect them [114].
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CHAPTER 5

Chiral Vortical Effect Analysis Results

5.1 γ112 and γ132 Correlators to search for the CVE

As mentioned in Section 4, we will be using the γ112 Correlator (Eq. 5.1) to extract the CVE

signal from Λ/Λ̄− p/p̄ Correlations. The following is the definition of the γ112 Correlator.

γ112 ≡ ⟨cos(ϕα + ϕβ − 2ΨRP )⟩

= ⟨cos(ϕα −ΨRP ) cos(ϕβ −ΨRP )⟩ − ⟨sin(ϕα −ΨRP ) sin(ϕβ −ΨRP )⟩

= [⟨v1,αv1,β⟩+BIN ]− [⟨a1,αa1,β⟩+BOUT ]

(5.1)

As seen in the definition, there are background effects, BIN and BOUT , that exist in this

correlator, as we try to build an observable for CME/ CVE signals that do not simply vanish

because of the isotropically distributed reaction plane. In order to attempt to remove these,

we recognize that we can take the difference between γ112,OS and γ112,SS, which corresponds

to the correlators calculated with opposite sign particles and with same sign particles, and

here the sign could represent electric charge - for CME - or baryonic charge - for CVE,

which is what is done in this analysis. This is because from our theoretical understanding,

we would cancel out most of the background and simply be left with information about

⟨a1,αa1,β⟩ because this is the term whose sign is flipped when comparing opposite and same

Baryonic-charge results. However, experimentally, it is not as simple due to more complicated

background effects to this observable that are not strictly constant between the opposite sign
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observable and same sign one. More realistically, what we get is the following:

∆γ112 ≡ γOS112 − γSS112

= (a21,+ + a21,−)/2− a1,+a1,− +BG

= 2a21 +BG

(5.2)

where 2a21 is the shorthand for the CME/CVE signal, and BG represents the background

contributions that we still have to take care of. That will be a main challenge that we are

trying to address both in the analysis of this thesis, but also looking towards the future of

our search for CME and CVE signals in QGP.

One way that we have developed to have an estimate on the background effects is by using

another correlator to do so, namely the γ132 Correlator. The definition of the correlator is

as follows:

γ132 ≡ ⟨cos(ϕα − 3ϕβ + 2ΨRP )⟩ (5.3)

In order to understand how this correlator can model the background for γ112, we can

expand them into their cumulants, which can demonstrate the true correlation between two

quantities, as it removes the trivial mean quantities from the correlation [134]. The cumulant

is definted as follows:

⟨⟨a · b⟩⟩ = ⟨a · b⟩ − ⟨a⟩ · ⟨b⟩ (5.4)

If we were to expand these two correlators into cumulants, what we get are:

γ112 ≡ ⟨cos(ϕα + ϕβ − 2ΨRP )⟩ = ⟨cos(ϕβ − ϕα − 2ϕβ + 2ΨRP )⟩

= ⟨cos(ϕβ − ϕα) cos(2ϕβ − 2ΨRP )⟩

+ ⟨sin(ϕβ − ϕα) sin(2ϕβ − 2ΨRP )⟩

= ⟨⟨cos(ϕβ − ϕα) cos(2ϕβ − 2ΨRP )⟩⟩

+ ⟨cos(ϕβ − ϕα)⟩⟨cos(2ϕβ − 2ΨRP )⟩

+ ⟨⟨sin(ϕβ − ϕα) sin(2ϕβ − 2ΨRP )⟩⟩

+ ⟨sin(ϕβ − ϕα)⟩⟨sin(2ϕβ − 2ΨRP )⟩

(5.5)
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= δ · v2

+ ⟨⟨cos(ϕβ − ϕα) cos(2ϕβ − 2ΨRP )⟩⟩

+ ⟨⟨sin(ϕβ − ϕα) sin(2ϕβ − 2ΨRP )⟩⟩

(5.6)

From Eq. 5.5 to Eq. 5.6, we used the cumulants Eq. 5.4, as well as the definitions for

δ = ⟨cos(ϕβ − ϕα)⟩ and v2 = ⟨cos(2ϕβ − 2ΨRP )⟩. It is then similar for γ132:

γ132 ≡ ⟨cos(ϕα − 3ϕβ + 2ΨRP )⟩ = ⟨cos(ϕβ − ϕα + 2ϕβ − 2ΨRP )⟩

= ⟨cos(ϕβ − ϕα) cos(2ϕβ − 2ΨRP )⟩

− ⟨sin(ϕβ − ϕα) sin(2ϕβ − 2ΨRP )⟩

= ⟨⟨cos(ϕβ − ϕα) cos(2ϕβ − 2ΨRP )⟩⟩

+ ⟨cos(ϕβ − ϕα)⟩⟨cos(2ϕβ − 2ΨRP )⟩

− ⟨⟨sin(ϕβ − ϕα) sin(2ϕβ − 2ΨRP )⟩⟩

− ⟨sin(ϕβ − ϕα)⟩⟨sin(2ϕβ − 2ΨRP )⟩

(5.7)

= δ · v2

+ ⟨⟨cos(ϕβ − ϕα) cos(2ϕβ − 2ΨRP )⟩⟩

− ⟨⟨sin(ϕβ − ϕα) sin(2ϕβ − 2ΨRP )⟩⟩

(5.8)

We see here that the only difference between the correlators when we expand them by their

cumulants is that for γ112, the two cumulants are added together whereas for γ132, they are

canceled out by one another. so if κ132 ≡ ∆γ132/(∆δ · v2) ≈ 1, then we see that those two

terms essentially cancel each other out for γ132, while it is not the case for γ112. And since

δ ·v2 does not include CVE effects, we see that γ132 can serve as some kind of baseline model

for the background of γ112 (though still it does not completely model it).

5.1.1 Flow Normalized Correlator κ112 and κ132

Since there is significant flow-related background that contributes to the γ112 correlator, and

that is system dependent, in order to compare our observable between different systems, say

data collected from RHIC by STAR and simulation data from the AMPT model, we need
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to have a correlator that is normalized with respect to flow. That is what the κ correlators

are.

One way to decompose the γ correlators into flow-related background and the rest of the

signal has been to introduce a pure signal correlator H and using the two particle correlator

δ ≡ ⟨cos (ϕa − ϕb)⟩, and we get the following, if we subtract the same-sign correlator from

the opposite-sign one [135]:

∆γ112 ≡ ⟨cos (ϕa + ϕb − 2Ψ2)⟩OS−SS = κ112v2∆F −∆H (5.9)

∆δ ≡ ⟨cos (ϕa − ϕb)⟩OS−SS = ∆F +∆H (5.10)

where F represents the strength of various flow-dependent effects, for example the transverse

momentum conservation and the local charge conservation effects, which are flow-dependent;

H represents the strength of flow-independent effects, most notably the CME/CVE effects

that are of interest. ∆F and ∆H simply refer to the strengths of the same-charge pairs

being subtracted from the opposite-charge pairs. Note that although Eq. 5.9 is specificially

for ∆γ112, the same decomposition can be done for ∆γ132 and we would get a relationship

between ∆γ132 and κ132. The same holds true for the following as well.

So with Eq. 5.9 and 5.10, we can obtain the following:

κ112 =
∆γ112 +∆H

v2(∆δ −∆H)
(5.11)

and if we take the pure background scenario, which means that ∆H is 0, then we get our

new observable:

κ112 =
∆γ112

v2∆δ
(5.12)

Since this correlator is normalized with respect to the flow-related effects in the system, we

can compare this correlator across multiple systems to get a better understanding of the

signal effects in our data from the Au+Au heavy-ion collisions system.
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5.2 Data Analysis Details

5.2.1 Reaction Plane Reconstruction

As seen in the previous section, it is extremely important to have an understanding of the

reaction plane of the heavy-ion collision event because the hypothesis is that there should

be charge separation with respect to the reaction plane. However, as one could imagine, this

is not something that we could detect with our detectors, but instead, we detect the final

particles and use them to reconstruct the reaction plane, and measure, what we call, the

event plane, which is a best-estimation for the actual reaction plane of the event.

The method that we have adopted for this analysis is from [13], where the main idea is to use

the elliptic flow that is significantly present in Au+Au collisions to estimate the event plane.

Here we have the event flow vector Qn and the event plane angle Ψn, which correspond to

the n-th harmonic of the distribution, defined as follows:

Qn cos (nΨn) = Xn =
∑
i

wi cos (nϕi) (5.13)

Qn sin (nΨn) = Yn =
∑
i

wi sin (nϕi) (5.14)

Ψn = (arctan

∑
iwi sin (nϕi)∑
iwi cos (nϕi)

)/n (5.15)

where in these equations, the sums are over the i particles that are used in the event plane

determination, and the wi are weights, and in this particular analysis the weights are the

transverse momentum of the particles that are used.

When choosing the particles to reconstruct the event plane, it is very important to choose

particles that are not the ones that have been used for the analysis itself, if not it will

lead to self-correlations that will lead to an exaggeration of the observable being measured.

Therefore, if we use the particle tracks from the TPC, it is very important to exclude the

particles that were used to reconstruct the Λ/Λ̄ particles, or the primary p/p̄ particles used

for correlations. This effect is taken care of more easily with the change to using EPD for

reconstruction of the event plane, because it records a different set of particles that are not

used in the analysis. Therefore, for the final results of this analysis, we use both the first
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order and second order event planes reconstructed from the EPD recorded tracks, which

corresponds to n = 1 and 2 in the above equations.

Now with this understanding, we need to modify our expression for γ112 (and by extension,

γ132) because we do not know the actual reaction plane, and only have our first and second

order event planes to best estimate the actual reaction plane. We will use the azimuthal

angle correlation between two particles, a and b, since it uses the second order event plane,

rather than the true reaction plane:

⟨cos (ϕa + ϕb −Ψ2)⟩ = ⟨cos (ϕa + ϕb − 2ΨRP + 2ΨRP −Ψ2)⟩

= ⟨cos (ϕa −ΨRP ) cos (ϕb −ΨRP )− sin (ϕa −ΨRP ) sin (ϕb −ΨRP )⟩

(⟨cos (2ΨRP − 2Ψ2)⟩ − ⟨sin (2ΨRP − 2Ψ2)⟩)

= (⟨cos (ϕa −ΨRP )⟩⟨cos (ϕb −ΨRP )⟩

− ⟨sin (ϕa −ΨRP )⟩⟨sin (ϕb −ΨRP )⟩)× ⟨cos (2ΨRP − 2Ψ2)⟩

= (v1,av1,b − a1,aa1,b)⟨cos (2ΨRP − 2Ψ2)⟩

(5.16)

where in the first step we used a simple mathematical trick, the second step is based on

trigonometric identities, the third step is the approximation with distributing the averages,

as well as realizing that the sin () term averages out to zero because it is an odd function

averaged over isotropic angles, and finally we invoke the definitions of v1 and a1 in the last

step. Given this, and given that we had already discussed previously that

γ112 ≈ (v1,av1,b − a1,aa1,b) (5.17)

then now we have a new relationship, with

γ112 ≈ ⟨cos (ϕa + ϕb −Ψ2)⟩
⟨cos (2ΨRP − 2Ψ2)⟩

(5.18)

where ⟨cos (2ΨRP − 2Ψ2)⟩ is essentially a representation of the resolution of the event plane

that we have computed to estimate the reaction plane - this being that the closer the second

order event plane is to the reaction plane, the closer this quantity would be to 1, acting as

an estimation of the spread of the reconstructed event plane.
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According to [13], it is possible to compute the event plane resolution, as we call it here,

analytically. To begin, we start with the distribution of m(Ψm −ΨRP ):

dP

d(m(Ψm −ΨRP ))
=

∫
v′mdv

′
m

2πσ2
exp (−v

2
m + v′2m − 2vmv

′
m cos (m(Ψm −ΨRP ))

2σ2
) (5.19)

where the parameter σ to second order in flow is common for all m, has the relationship of

σ2 = 1
2N

⟨w2⟩
⟨w⟩2 . Then, if we evaluate Eq. 5.19 analytically according to [136][137], and define

χm ≡ vm
σ

= vm
√
2N , the event plane resolution can be expressed as

⟨cos (km(Ψm −Ψr))⟩ =
√
π

2
√
2
χm exp (−χ

2
m

4
)[I k−1

2
(
χ2
m

4
) + I k+1

2
(
χ2
m

4
)] (5.20)

with Iv being the modified Bessel function of order v.

To make use of this, there are two ways: one way is through numerical approximations that

will allow us to compute the event plane resolution - which is what we call computing the

full event plane resolution, or another way would be slightly simpler, using event planes of

two different windows, or sub-events, which we call the sub event plane resolution.

For the numerical solution to the equation as an approximation, we are able to get the

following for the most needed cases of k = 1,2:

⟨cos (m(Ψm −ΨRP ))⟩ = 0.626657χm − 0.09694χ3
m + 0.02754χ4

m − 0.002283χ5
m (5.21)

⟨cos (2m(Ψm −ΨRP ))⟩ = 0.25χm − 0.011414χ3
m − 0.034726χ4

m + 0.006815χ5
m (5.22)

For the sub event plane resolution method, we first recognize that the correlation between

flow angles of independent set of particles, say set (a) and set (b), has the following relation:

⟨cos (n(Ψa
n −Ψb

n))⟩ = ⟨cos (n(Ψa
n −ΨRP ))⟩⟨cos (n(Ψb

n −ΨRP ))⟩ (5.23)

with the assumption that there are no other correlations other than the ones that are from

flow (or that the other correlations can be neglected). Therefore, with this relation, we are

able to conclude that if we know the correlation between two equal multiplicity sub-events,

thus we can expect the resolution of each of the sub-events are roughly the same, then the

resolution would be:

⟨cos (n(Ψa
m −ΨRP ))⟩ =

√
⟨cos (n(Ψa

m −Ψb
m))⟩ (5.24)
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Now if we would like to use all the particles to construct the event plane using this sub event

plane method, then we can note that because χm = vm
σ

being proportional to
√
N , we can

reduce the relationship to:

⟨cos (n(Ψm −ΨRP ))⟩ =
√
2⟨cos (n(Ψa

m −ΨRP ))⟩ (5.25)

We will be mainly using the sub event plane method for our event plane calcuations, using

the EPD recorded track information, however, there will also be full event plane resolution

calculations used to verify results.

The following figures show the event plane resolution that was calculated acorrding to the

sub event plane method, for the TPC, 1st and 2nd order EPD event planes.
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Figure 5.1: These figures show the event plane resolutions calculated according to the sub

event plane methods for TPC, 1st and 2nd order EPD event planes. Black - TPC; Blue -

1st order EPD; Red - 2nd order EPD. Unfortunately, with selections of events that have to

have at least one baryon reconstructed, the more peripheral centralities are biased so that

the EPD EP resolution is too low, also they have very few statistics, therefore the most

peripheral centrality will be removed from the final results of this analysis (which is also

why the 75% red data point is missing). (a) is 19.6 GeV Au+Au collisions, while (b) is 27

GeV Au+Au collisions.
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5.2.2 Detector Acceptance Correction

Another important factor to take into consideration is that there is a finite acceptance of

the detector system due to various imperfections in the detectors. What this means is that

while the reaction plane in heavy-ion collisions should be randomly distributed, that is not

the case in terms of the recorded reaction plane - there will be differences of acceptance

because of the detector imperfections, leading to non-uniform distributions across the event

plane angles, as well as other azimuthal angles that we record for different particle tracks.

Figure 5.2 shows some examples of this.
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Figure 5.2: These plots are examples of Event Planes that exhibit detector acceptance

differences, thus leading to a non-uniform distribution. They are taken from Centrality 30-

40%, with the top two being TPC event planes and bottom two are first order EPD event

planes.

One way to deal with this is by making corrections to the event plane angle itself, and

flattening the event plane distribution [138]. Starting with the raw event plane distribution,

dN
dψ

, we can expand it in a Fourier series:

dN

dψ
=
a0
2

+
∑
n

(an cosnψ + bn sinnψ) (5.26)
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where the coefficients are defined as:

an =
1

π

∫ π

−π

dN

dψ
cos (nψ)dψ, n = 0, 1, 2...

bn =
1

π

∫ π

−π

dN

dψ
sin (nψ)dψ, n = 1, 2, 3...

(5.27)

Now in order to flatten the event plane distribution, what we want is to shift the raw event

plane angles ψ to flattened event plane angles ψ′, that will lead to a a uniform distribution

of event plane angles:
dN

dψ′ =
dN

dψ

dψ

dψ′ =
N

2π
=
a0
2

(5.28)

We can achieve this by generating the flattened event plane angles by adding a correction

term ∆ψ to it, and thus we get:

ψ′ = ψ +∆ψ = ψ +
∑
n

(An cosnψ +Bn sinnψ) (5.29)

dψ′

dψ
= 1 +

∑
n

(−nAn cosnψ + nBn sinnψ) (5.30)

Then from Eq. 5.28 and 5.30, we get

dN

dψ
=
dN

dψ′
dψ′

dψ
=
a0
2
(1 +

∑
n

(−nAn cosnψ + nBn sinnψ)) (5.31)

Comparing Eq. 5.26 and Eq. 5.31, we see that the coefficients are

An = − 2

n

bn
a0

= − 2

n
⟨sinnψ⟩

Bn = − 2

n

an
a0

= − 2

n
⟨cosnψ⟩

(5.32)

which means that our final flattened event plane angles are

ψ′ = ψ +
∑
n

2

n
(−⟨sinnψ⟩ cosnψ + ⟨cosnψ⟩ sinnψ) (5.33)

n here would be what we refer to the order to which we correct the event plane to. For this

specific analysis, we correct the event plane, as well as the azimuthal angles of the particles

of interest, Λ/Λ̄ and p/p̄, up to the 10th order, and we see that the angles are flattened after

this correction.
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The following figure demonstrates the results of this flattening on the event planes of interest

in this analysis. We see that each of them are flattened to very close to being uniform

distributions, and the detector effects are sufficiently wiped out.
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Figure 5.3: These six plots are examples of Event Planes based on TPC tracks. The first

two rows correspond to the sub event plane method, and the last row corresponds to the full

event plane method.
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Figure 5.4: These plots are examples of Event Planes based on EPD tracks. They correspond

to the 1st order EPD event planes, and all of these are according to the sub event plane

method.
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Figure 5.5: These plots are examples of Event Planes based on EPD tracks. They correspond

to the 2nd order EPD event planes, and all of these are according to the sub event plane

method.

5.2.3 Systematic Uncertainty Estimation

There are different sources that can contribute to systematic uncertainties in the determina-

tion of the final results of this analysis, and this section will demonstrate how we attempted

to address and estimate those uncertainties. These effects range from event level cuts to

reconstruction variations to particle identification.
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Because of the obvious limitation to the detector having finite length in the z-direction, for

events with primary vertices that happen too far from the center of the detector, it is difficult

to have a high level of confidence of the resulting tracks being properly recorded. Therefore,

there is a cut on the z distance from the center of the STAR detector in place, however, that

could potentially introduce arbitrary effects for our final measurements. Therefore, the first

systematic cut would be to vary the original z-component of the primary vertex cut, chang-

ing it from -70cm ≤ Vz ≤ 70cm to -70cm ≤ Vz ≤ 0cm. Another effect related to limitations

of detection of particles has to do with the fact that the more hits that a particles has on the

TPC affects the confidence of the determination of the particle information, for example, the

momentum and the particle identification. Therefore we have a cut on the quantity nHitsFit

that represents our confidence on the identification of the particle, however, such a cut is also

subjective and based on wisdom passed down, and could potentially lead to biases as well.

Therefore another systematic cut would be to tighten such a cut for the daughter particles

identified to reconstruct the Λ/Λ̄ particles to see the effect on the final observable.

The other set of systematic cuts have mostly to do with how pure we want to be able to

reconstruct the Λ/Λ̄ particles as well as identifying the primary protons for the correlations

to obtain the γ112 and γ132 observables. For this set of cuts, we restrict the confidence of the

particle identification to a higher level: for the daughters, we now reject everything that is

less than 3σ confidence, while for the primary proton we reject everything that is less than

1.5σ confidence. Another set of cuts have to do with the distance of closest approach (DCA)

of these particles from the primary vertex. We increase the strictness of the daughters of the

baryons, for the proton to reject all protons within 1.0cm, and for all pions within 2.0cm,

and for the reconstructed baryons we reject all that are 2.0cm away from the primary vertex.

Last but not least, we increase the cut on the lower bound on the transverse momentum of

the primary proton used for the correlations to 0.5 GeV/c.

The following table summarizes these cuts, as well as the label of the systematic uncertainty

estimator that will be used to reference these cuts later.
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Table 5.1: Systematic Uncertainty Estimation

Label Systematic Cut

sys 1 -70 ≤ z-component of Primary Vertex ≤ 0

sys 2 nHitsFit of Daughters > 20

sys 3 nSigma of Daughters ≤ 2

sys 4 DCA of Daughters - protons > 1.0cm; pions > 2.0cm

sys 5 0 ≤ z-component of Primary Vertex ≤ 70

sys 6 pT of primary proton > 0.5GeV/c

sys 7 nSigma of primary proton < 1.0

The following plots demonstrate the distribution of the baseline cuts for these different

quantities, as well as red lines to demonstrate the systematic cut.
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Figure 5.6: Systematic Cut on the z-component of the primary vertex of events. sys 1 - the

events that fall on the left of 0; sys 5 - the events that fall on the right of 0.
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(a) 19.6 GeV
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Figure 5.7: Systematic Cut on nHitsFit of daughters of reconstructed baryons. sys 2 - the

events that fall on the right of the red line.
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Figure 5.8: Systematic Cut on nSigma of daughters of reconstructed baryons. sys 3 - the

events that fall on the left of the red line.
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(b) 27 GeV
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Figure 5.9: Systematic Cut on distance of closest approach of daughters of reconstructed

baryons. sys 4 and sys 5 - the events that fall on the right of the red line. (a) and (b)

correspond to proton cuts; (c) and (d) correspond to pion cuts.
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Figure 5.10: Systematic Cut on transverse momentum of daughters of reconstructed baryons.

sys 6 - the events that fall on the right of the red line.
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Figure 5.11: Systematic Cut on nSigma of primary protons. sys 7 - the events that fall on

the left of the red line.
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With these cuts, we perform the analysis and measure our observables the exact same way as

we do the default values, with the exception of this extra systematic cut. Then, we compute

the systematic error by using the following equation:

SystematicUncertainty =

√√√√ 7∑
i=1

(

√
(Od −Oi)2 − |e2d − e2i |√

12
)2 (5.34)

with Od and ed being the default value for the observable and the error on that value

respectively, and Oi and ei being the value and error of the observable with the systematic

cut i in place. i ranges from 1 to 7, corresponding to the 7 different systematic cut values. For

each of the systematic cuts, one standard deviation of the systematic uncertainty is computed

as the value within the summation. Then, they are all added together in quadrature. This

will be the method through which we compute the systematic uncertainty of the observables.

5.3 Ensemble Results

In this section, we will present the results of the correlators mentioned previously in this

thesis for the search for CVE through Λ-p azimuthal angle correlations. The following are

the ∆γ112 and ∆γ132 results for 19.6 GeV and 27 GeV Au+Au collisions:
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(a) 19.6 GeV Au+Au Collisions ∆γ with 1st order EPD event plane

(b) 19.6 GeV Au+Au Collisions ∆γ with 2nd order EPD event plane

111



(c) 27 GeV Au+Au Collisions ∆γ with 1st order EPD event plane

(d) 27 GeV Au+Au Collisions ∆γ with 2nd order EPD event plane

Figure 5.12: Ensemble results for ∆γ using Λ-p pairs.
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These are the ∆γ112 and ∆γ132 results from AMPT for the two energies:

(a) AMPT 19.6 GeV Au+Au Collisions ∆γ

(b) AMPT 27 GeV Au+Au Collisions ∆γ

Figure 5.13: AMPT results for ∆γ using Λ-p pairs.
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These are the κ112 and κ132 results, comparing collected data with AMPT data:

(a) 19.6 GeV Au+Au Collisions κ with 1st order EPD event plane

(b) 19.6 GeV Au+Au Collisions κ with 2nd order EPD event plane
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(c) 27 GeV Au+Au Collisions κ with 1st order EPD event plane

(d) 27 GeV Au+Au Collisions κ with 2nd order EPD event plane

Figure 5.14: Ensemble results for κ using Λ-p pairs.
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(a) AMPT 19.6 GeV Au+Au Collisions κ

(b) AMPT 27 GeV Au+Au Collisions κ

Figure 5.15: AMPT results for κ using Λ-p pairs.
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From the above results, there are a few points to note: First, for the data from heavy-ion

collisions, it seems that for most of the results that ∆γ112 and ∆γ132 are equivalent to each

other, and both are essentially consistent with zero; Second, for the AMPT results, it is clear

that there is significant difference between ∆γ112 and ∆γ132 results, and while κ132 is as we

would predict mathematically consistent with 1 - the case with only background described by

v2 ·δ, κ112 is actually less than κ132 in magnitude and consistent with 0 instead. These seem to

suggest that ∆γ112 is not purely equivalent to the background that ∆γ132 represents, but the

effects seem to lower their values; and that there might be some interesting physics leading to

the two results being equivalent to each other in heavy-ion collisions, a qualitatively different

result than that from AMPT.

5.4 Event Shape Selection Method

As previously discussed when introducing the γ112 correlator, the background contributions

are intended to be removed by ensuring that BIN and BOUT are roughly similar. However,

even after subtracting same sign results from opposite sign results, the directed flow con-

tributions are not entirely canceled out, indicating some contamination from background

effects. One possible source of this contamination is elliptic flow, v2.

For example, due to elliptic flow, there may be a higher number of clusters flying along

the reaction plane compared to those flying out of it, unrelated to the CME or CVE. As

an extreme example, say we consider two ρ mesons traveling in opposite directions, but

both within the reaction plane, and that would give us an elliptic flow of v2 = 1. Now if the

daughter pions of these mesons are highly boosted, potentially because of the high transverse

momentum of the parents, and they essentially follow the exact directions of their parents,

then there would be no out-of-plane charge separation, and yet ∆γ112 of this event would

still equal to 1, signaling to us that there is CME. Therefore, in the scenario of this analysis,

we can see that if there is general elliptic flow, then these clusters of Λ-p can in a sense

decay into particles of opposite charges, they will move in opposite directions relative to the

reaction plane, leading to charge separation across it. This spurious effect can contribute
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to the measured signal, making it challenging to isolate the genuine CME/CVE signal from

flow-related backgrounds [139].

To address this issue, various scenarios have been considered where elliptic flow is cou-

pled with transverse momentum conservation (TMC) or local charge conservation (LCC)

[140][135][141].

To mitigate flow-related backgrounds, the event-shape-selection (ESS) approach was devel-

oped. This method involves selecting spherical events, where the particles of interest carry

no elliptic flow [139]. The authors of Ref. [139] outlined three key components for a valid

ESE approach:

1. The need for a direct handle on the event shape that accurately reflects the ellipticity of

the particles of interest in each event.

2. When this handle is turned to zero-flow mode, the flow background must vanish. To

check this requirement, the AMPT model is utilized, which contains only backgrounds and

no signals.

3. The alteration of this handle should not introduce additional artificial background beyond

our control. To validate this, a simple Monte Carlo simulation is employed.

By adhering to these requirements, the ESE approach offers a promising avenue to address

and potentially remove the influence of elliptic flow-related backgrounds from CME mea-

surements in heavy-ion collisions.

First we will discuss the choosing of the handle that will properly reflect the ellipticity of the

particles of interest. A straightforward idea would be to project to strictly spherical events,

which means having no eccentricity, with v2 being on average 0 for all particles, regardless

of them being primordial, decay products or parent particles. However, since the particle

emission pattern may have event-by-event fluctuations, it is possible to have on average

an almost-zero v2 despite the individual events having finite eccentricity. Such an effect is

demonstrated by Figure 5.16.
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Figure 5.16: A schematic diagram of the event shape selection that attempts to project the

entire event to spherical events. We see that this method is based on the particle emission

pattern in the transverse plane, and therefore it could be possible that both v2 and q2 of

the particles of interest fluctuate towards zero and yet there is a finite eccentricity in the

overlapping region.

An early method that was used categorized events directly using “observed v2” [142]. What

this “observed v2” would entail is to define an event-by-event v2 variable that describes the

ellipticity of the event. By requiring it to be zero, it seems like we would be able to choose

the spherical events with zero flow effects.

vobserve2,ebye ≡ ⟨cos [2(ϕA −ΨB
EP )]⟩ (5.35)

We first have to eliminate self-correlation, and we do so by splitting the events into two sub-

events, which we denote by A and B, as seen in the equation above. However, the problem

with this is that zero “observed v2” doesn’t necessarily mean that particles in A have zero

v2. We see that in Figure 5.17, where an interesting, non-monotonic relationship between

“observed v2” and v2 of particles in A was found, and the minimum of v2 of particles in

A was strictly above zero. This means that using “observed v2” as the handle seems to

have failed at actually projecting the particles in A to a spherical event. Another troubling

correlation we see here is that the true event plane resolution RB strongly depends on the

“observed v2” and could even become negative. This means that we would not even be able

to correct “observed v2” with the true event plane resolution to retrieve the true v2 values

of the particles in A.
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Figure 5.17: Top Panel: True v2 of particles of interest in sub-event A. Bottom Panel:

Reaction plane calculated from sub-event B, used to correct results from sub-event A, to

avoid self-correlation. x-axis is the variable proposed, vobserve2,ebye that describes the ellipticity

of the event. As seen in this figure, unfortunately such an event does not truly describe

the ellipticity of the particles of interest, and especially even when it is required to be 0, it

does not coincide with the particles of interest exhibiting a spherical nature. The correlation

between RB and the event handle is also troubling. This plot is taken from [139].

So instead, the magnitude of the flow vector, denoted as q, reconstructed from a sub-event,

seems to be a better candidate for the handle on event shape, because by definition it has

no explicit contributions from the other sub-event or the reaction plane. The definition of q

can be found as follows:

q⃗2 = (q2,x, q2,y) (5.36)

q2,x ≡
1√
N

N∑
i

cos(2ϕi) (5.37)

q2,y ≡
1√
N

N∑
i

sin(2ϕi) (5.38)
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There are different ideas with regards to how to construct q2. One was to construct it

from a sub-event that does not include the particles of interest (POI) - the particles used in

computations for the observables that we are trying to reduce the background in. However,

there are issues with such definitions because the correlation between q2 and v
POI
2 is typically

weak, which leads to the scenario of a sizable positive vPOI2 even when q2 = 0. Then we

have to extrapolate over a significant region of unmeasured vPOI2 that introduces substantial

statistical and systematic uncertainties - for example, fitting the data with a linear fit versus

a quadratic fit yields fits that fit the data substatially well, but with drastically different

conclusions about what the value is after using the Event Shape Selection method, also

with significantly different statistical errors [143] [144]. Taking into account the potential of

longitudinal flow-plane decorrelations, we see the importance of maintaining that the POI

and the sub-event used for constructing q2 to be within the same rapidity region [145, 146,

147, 148, 149]. So if we construct flow vector q with the POI, it seems to model the true

ellipticity, as it was shown in the paper that as v2 values approach zero, so did q, as shown

in Fig. 5.18.

Figure 5.18: In the bottom panel, it is clear that the true elliptic flow vA2 and the corrected

elliptic flow vobserve2 as functions of q are in a higher level of agreement. This plot is taken

from Ref. [139].
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Now, the other candidate is q2 and that is an even better candidate. First, q2 = 0 is equivalent

to q = 0, so they have the same capability of selecting spherical sub-events in terms of the

second harmonic. Then q2 is a better handle than q because of the following two reasons

and is depicted in Fig. 5.19: The first reason is that the relationship between the elliptic

flow variables v2 and q2 at low q2 values is close to being a linear relationship, which means

that we can more reliably project our γ correlators to zero q2 in order to remove v2-related

backgrounds; the second reason for q2 being a better handle lies in the distributions of these

respective variables shown in the top panels of Fig. 5.18 and 5.19. The distribution for q

has lower statistics towards lower q, as it peaks around unity, and so the projection of γ

correlators towards q = 0 would become unstable. This is however not the case for q2, as

the distribution is shifted in phase space towards zero. Therefore, q2 would be the handle

for us to use in order to reflect the ellipticity of the particles of interest in the events.

Figure 5.19: In the bottom panel, it is clear that the true elliptic flow vA2 and the corrected

elliptic flow vobserve2 as functions of q are in a higher level of agreement. This plot is taken

from Ref. [139].
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Now that we’ve discussed the handle to use for properly reflecting the ellipticity of the particle

of interest, we need to check and see that when this handle is turned to zero-flow mode, that

the flow background actually vanishes. In order to check this, we turn to the AMPT model

mentioned previously, because this model contains only background and no CME signals.

So using the handle q2, the authors of the paper looked at our γ112 correlator and found that

the background contributions were eliminated when the correlator was projected to zero q2,

see Fig. 5.20. This demonstrates the second key factor for a good event shape selection

method. However, one caveat is that in extreme scenarios, this can still be invalidated.

Suppose we have an in-plane-going resonance decaying into a positive and negative particle,

one travelling at 45°and another at -45°, then this would be a charge separation event that

contributes to ∆γ while having no contribution to q, and so its effect will not be eliminated

even as we extrapolate our results to q2 = 0. This means that the background from such

flowing resonance will not completely vanish [150]. Despite this, given the performance of

such a method in AMPT, we conclude that such an effect from extreme scenarios is negligible.
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Figure 5.20: This figure shows in (a) Npart × γ112 and (b) Npart∆γ
112 as a function of q2.

The full symbols represent results obtained with the true reaction plane, whereas the open

symbols are for the reconstructed event plane corrected for the event plane resolution. In

the lower panel, the solid line is a second-order polynomial fit of the full data points, and

the dashed line is for the open data points. This plot is taken from Ref. [139].

The last key factor to have a good event shape selection method is that when we alter

the handle, it would not introduce artificial background in a way that we cannot model or

control. This is something that warrants further study, in order to truly understand how the

adjustment of the event shape handler might potentially introduce artificial background, or

if it truly restores the ensemble average of the signal. The final piece to this event shape

handler that we have to take into account is this: if we look at the expansion of q22,

q22 =
1

N

[( N∑
i=1

sin 2φi

)2

+

( N∑
i=1

cos 2φi

)2]
= 1 +

1

N

∑
i ̸=j

cos[2(φi − φj)], (5.39)
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we can estimate the event average of q22 to be:

⟨q22⟩ ≈ 1 +Nv22{2}. (5.40)

where v2{2} is the ensemble average of elliptic flow obtained from two-particle correlations.

Eq 5.39 and 5.40 show that there is a connection between the event shape handler and v2{2}

that warrants a correction to normalization for q22. Therefore, we will redefine q22 as:

q22 =

(∑N
i=1 sin 2φi

)2
+
(∑N

i=1 cos 2φi
)2

N(1 +Nv22{2})
. (5.41)

This will be the event shape handler definition that is used in the rest of this analysis.

5.4.1 Application of ESE on Λ-p CVE Observables

For this sepcific analysis, the POI are pairs of Λ-p, which are not abundant in the products

of the heavy-ion collisions in this study, especially in peripheral events.
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(a) Distribution of Λ Multiplicity
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(b) Distribution of Λ̄ Multiplicity
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(c) Distribution of p Multiplicity
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(d) Distribution of p̄ Multiplicity
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Figure 5.21: Distribution of Λ/p Multiplicities for Au+Au 19.6 GeV.
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(a) Distribution of Λ Multiplicity
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(b) Distribution of Λ̄ Multiplicity
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(c) Distribution of p Multiplicity
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(d) Distribution of p̄ Multiplicity
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Figure 5.22: Distribution of Λ/p Multiplicities for Au+Au 27 GeV.

Therefore, it introduces serious uncertainties in constructing the event shape handler q22 as

well as when extrapolating to zero elliptic flow of the POI. In order to address this, we keep
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in mind that we need to, as mentioned above, for the sake of taking into account potential

longitudinal flow-plane decorrelations, maintain the POI and particles used to construct the

event shape handler to be within the same rapidity region, in a similar kinematics region.

Thus we have chosen to use pions to model the event shape for the POIs in this study.

5.4.2 4 Approaches of ESE

The idea behind constructing q2 with POI was that hopefully it, as well as v2, would reflect

the initial geometry of the collision system. However, upon further examination, we realized

that the anisotropy of pairs of particles might be more relevant to the background in our

correlators, because these observables are correlations of pairs of particles and not quantities

based on single particles. Also, the background caused by local charge conservations would

mean that the primordial particles that contribute to the background would really contribute

as if they had hypothetical parent particles that they were decay products of.

Therefore, instead of simply relying on the single POI to construct q2 and v2, we also con-

struct them based on pairs of them as follows:

v2,pair = ⟨cos(2φpair − 2ΨRP)⟩, (5.42)

q22,pair =

(∑Npair

i=1 sin 2φpair
i

)2
+
(∑Npair

i=1 cos 2φpair
i

)2
Npair(1 +Npairv22,pair{2})

, (5.43)

where φpair is the azimuthal of the pairs of POI, which originate from the sum of their

momentum.

In our paper [151], we performed model studies with a toy model [152] based on Pythia6

[153], as well as the EBE-AVFD model [154, 155, 156] that has both the dynamical CME

transport for light quarks, and the capability to effectively handle background mechanisms

like flowing resonances, and TMC and LCC effects that were described earlier. These model

studies were performed based on the decay of ρ mesons into pairs of pions, and they showed

the varying levels of effectiveness of these recipes. This gives reason to look into the different

recipes for this analysis as well, and see if their performances would differ based on the

different combinations of particles used for the construction of the event shape handler and

elliptic flow observable.
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With the full exploration of the event shape handlers used for ESE, now we are ready to

discuss the procedure of the analysis using ESE. First, we group all our events according to

the event shape handler and compute ∆γ112 and ∆γ132 for all the Λ-p pairs, as well as the

elliptic flow variable for all for pion pairs, for each of the groups of events. Then we use that

information to reveal the dependence of ∆γ112 on the elliptic flow computed, and project it

to the zero-flow limit. This will be done for all four combinations of single and pair POI

constructed q22 and v2.

5.4.3 Methodology

In this section, we will outline the key steps to implementing the ESE approach to reduce

the background for this analysis. All the figures used to depict the methodology used in this

section are from the 19.6 GeV Au+Au collision, Centrality Bin 5, 30-40%.

First, we bin the correlators of interest, γ112 and γ132, by the event shape handler:
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(c) γ112 (q22,single) 2
nd Order EPD EP
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Figure 5.23: Correlators of interest, γ112 and γ132, binned by the event shape handlers used

to control the flow background.
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Then, we bin the elliptic flow by the event shape handler as well:

(a) v2,single (q22,single) 1
st Order EPD EP
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(g) v2,pair (q
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st Order EPD EP
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Figure 5.24: v2 binned by the event shape handlers.
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With these values, we then correct them by the resolution of the 1st and 2nd order EPD

event planes, which are also binned by the event shape handlers:

(a) 1st Order EPD EP Resolution (q22,single)
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(c) 2nd Order EPD EP Resolution (q22,single)
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Figure 5.25: Event Plane resolutions binned by event shape handler. The red line depicts

the range of the event shape handler considered in the ESE approach, but the fit values were

not used. The specific binned values were used in the event plane resolution correction.
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After correcting by the resolution, we find the relationship between the correlators of interest

on the elliptic flow observables based on the event shape handlers:
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(e) ∆γ112{v2,single, q22,pair} 1st Order EPD EP
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Figure 5.26: ∆γ112 and γ132 event shape selection method for the 4 recipes, projecting to

zero flow, based on the first order EPD event plane.
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(a) ∆γ112{v2,single, q22,single} 2nd Order EPD EP
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(g) ∆γ112{v2,pair, q22,pair} 2nd Order EPD EP

2, pairv
0 0.05 0.1 0.15

11
2

γ∆

0.04−

0.02−

0

0.02

0.04

30 - 40 % Au+Au, 19.6 GeV

112
γ∆

ESE signal(Q2) = -1.088874e-03 +/- 1.999703e-03
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Figure 5.27: ∆γ112 and γ132 event shape selection method for the 4 recipes, projecting to

zero flow, based on the second order EPD event plane.

With the event shape selection method, we attempted to suppress the flow background to

our CVE measurements. The next section will discuss those results.

5.5 Summary of Results for the Search for the CVE

In the following figures, the final results of this analysis will be portrayed. They will include

figures of the ∆γ112 and ∆γ132, both the ensemble average and the 4 recipes of event shape

selection, as a function of Centrality, for both first and second order EPD event planes, for

both data sets of interest. There is also a fit for the results at Centrality 20-50%, which will

be used as our final result for the search of the CVE.
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(a) ∆γ112 with 1st Order EPD EP with fit for ensemble results.

(b) ∆γ112 with 1st Order EPD EP with fit for ESS results.
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(c) ∆γ132 with 1st Order EPD EP with fit for ensemble results.

(d) ∆γ132 with 1st Order EPD EP with fit for ESS results.
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(e) ∆γ112 with 2nd Order EPD EP with fit for ensemble results.

(f) ∆γ112 with 2nd Order EPD EP with fit for ESS results.
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(g) ∆γ132 with 2nd Order EPD EP with fit for ensemble results.

(h) ∆γ132 with 2nd Order EPD EP with fit for ESS results.

Figure 5.28: ∆γ112 and ∆γ132 for Λ-p Correlations for Au+Au 19.6 GeV collisions.
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(a) ∆γ112 with 1st Order EPD EP with fit for ensemble results.

(b) ∆γ112 with 1st Order EPD EP with fit for ESS results.
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(c) ∆γ132 with 1st Order EPD EP with fit for ensemble results.

(d) ∆γ132 with 1st Order EPD EP with fit for ESS results.
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(e) ∆γ112 with 2nd Order EPD EP with fit for ensemble results.

(f) ∆γ112 with 2nd Order EPD EP with fit for ESS results.
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(g) ∆γ132 with 2nd Order EPD EP with fit for ensemble results.

(h) ∆γ132 with 2nd Order EPD EP with fit for ESS results.

Figure 5.29: ∆γ112 and ∆γ132 for Λ-p Correlations for Au+Au 27 GeV collisions.
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Summarizing all the results for the search of the CVE in the QGP, we get Figure 5.30,

including the results for Centrality 20-50% for all the different combinations covered in this

thesis, as well as Table 5.2, which summarizes the upper bound on the CVE signal that

we’ve found in this analysis (computed as the central value +1.96× σ):

Figure 5.30: Summary results for ∆γ112 and ∆γ132 for
√
sNN = 19.6 GeV and 27 GeV for

1st and 2nd order EPD event plane.

Table 5.2: Upper Bound of CVE Signal As Represented By Npart∆γ
112

Event Plane Option 19.6 GeV 27 GeV

1st Order EPD EP 0.195 0.551

2nd Order EPD EP 0.250 0.406

As we can see from these results, the all inclusive data points are mostly consistent with 0

results, whereas the event shape selection method seems to bring the values closer to negative
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values. Despite that, it is probably the most reasonable conclusion to make that these values

are all mostly consistent with zero, and the error bars are too large, meaning the statistics

are too low, for us to make any definitive conclusion on the search for the CVE in the QGP

with Λ-p azimuthal correlations.
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CHAPTER 6

Conclusion and Future Perspectives

In this thesis, we carried out a search for the Chiral Vortical Effect (CVE) in the Quark

Gluon Plasma (QGP) created in the heavy-ion collisions at the Relativistic Heavy-Ion Col-

lider (RHIC) at the Brookhaven National Laboratory (BNL) located in New York, United

States. Specifically, we looked at the azimuthal correlations between between the same-sign

baryon number (Λ-p and Λ̄-p̄) and the opposite-sign baryon number (Λ̄-p and Λ-p̄) pairs to

calculate the observables ∆γ112 and ∆γ132 that gave insight into the existence of the CVE.

With the limited statistics of the data sets that we have analyzed, we have not observed a

definitive reaction plane dependent baryon number separation signal ∆γ112 that were pre-

dicted to arise from the CVE. We presented an upper bound on the possible CVE signal as

represented by Npart∆γ112. In this thesis, we have established an analysis approach in heavy-

ion collisions to search for the CVE and also explored the Event Shape Selection method

to suppress background. Because of the yield of Λ hyperons and the detection efficiency, a

significantly large data set will be critical for future definitive search of the CVE in heavy-ion

collisions. In addition, the current research also points to an important baryon annihilation

effect which could bias the opposite-sign - same-sign pair subtraction scheme used for back-

ground subtraction. We will briefly discuss the observed feature of baryon annihilations in

the next section.

6.1 Baryon Annihilation Effect on ∆γ Correlation

One interesting phenomenon that has been observed is that Au+Au collisions at the RHIC

energies of the BES yield a baryon-rich environment, and the baryons that are created within
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the reaction plane get absorbed more than the ones that travel perpendicular to it. This

would mean that the elliptic flow background, described previously, that we predicted to

create fake signals, actually potentially because of the absorption, could lead to a depletion

of signal instead.

The following figure is an example of looking at pairs of Λ-p and taking the ratio of them

versus mixed events, and seeing the depletion in the number of pairs nearer the region where

they are kinematically similar in phase space:

(a) Λp̄ and Λ̄p

(b) Λp and Λ̄p̄

Figure 6.1: Distribution of the ratio of number of Λ-p pairs in same event data to mixed

event data as a function of ∆q, the invariant vector used here to measure how close these

tracks are in the kinematic phase space. This is data from the 2018 27 GeV Au+Au data

set.
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In this figure, we use ∆q as our kinematic observable to look at how close the Λ-p tracks are

to each other in the kinematic phase space, with the following definition of ∆q:

∆q ≡
√

|p⃗Λ/Λ̄ − p⃗p/p̄|2 − (EΛ/Λ̄ − Ep/p̄)2 (6.1)

We see in Figure 6.1a, in the region where the two baryons are of opposite charge, that

there is a significant depletion of those pairs of particles compared with the mixed event

data. We also see in Figure 6.1b that this effect does not exist. This seems to be evidence

for the Baryon annihilation effect proposed here. Suppose that were true, then we see from

the AMPT results, Figure 5.15, that while κ132 is as expected to be around 1, given that

γ132 simply models the background from elliptic flow, κ112 is actually consistently lower than

κ132. Comparing that with the ensemble results from heavy-ion collision data, Figure 5.14,

we see that in collision data κ112 and κ132 are actually more or less equivalent, and both are

0.

Suppose this hypothesis of the baryon annihilation is true. Could it be that it serves as a

negative background for both correlators, which is why κ132 is brought down to zero, but

while κ112 should have been brought down to negative values, because CVE exists, κ112 has

the CVE added on top of the background, and therefore is equivalent to zero?

One way to test this hypothesis would be to isolate the correlators based on the phase space,

and compare the different regions to further understand the baryon annihilation effect, and

devise a scheme to minimize it. Unfortunately, with the data that we have now, isolating

such a phase space will not yield any significant result, but simply have error bars too large

to make any conclusion from it.

6.2 Conclusion

In summary, we have measured upper limits for the Chiral Vortical Effect (CVE) using Λ-p

pairs from heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) detected by

the Solenoid Tracker at RHIC (STAR) detector. We found the upper limit values to be the

following table:
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Table 6.1: Upper Bound of CVE Signal As Represented By Npart∆γ112

Event Plane Option 19.6 GeV 27 GeV

1st Order EPD EP 0.195 0.551

2nd Order EPD EP 0.250 0.406

According to simulations done [157], we see that even though theoretically the CVE would

be stronger than the CME, they are in the same order of magnitude. Analyses from STAR

data have set limits on the CME in the 10−4 range, and given Npart is around 110, the limit

we are setting here is still around 10−3. This implies potentially that we would need to

reduce the error bars 10-fold, thus requiring 100 times the statistics, before we would be

able to see a signal for the CVE. Thus the main limitation of further pursuing this analysis

is on the statistics that we were able to get. Also, as briefly discussed above, the Baryon

Annihilation Effect would also benefit greatly with more statistics, allowing us to look at

different regions in the kinematic phase space to try to address the effect’s impact on the

measurement of the CVE.

Because of that, we look forward to future experiments when we would be able to collect

significantly more data, and resume this analysis and reach a more conclusive statement on

the existence of the CVE in the QGP. And there is hope in the horizon! As we move into the

next two years, STAR will be collecting data from the
√
sNN = 200 GeV system that would

potentially yield the amount of statistics that we need for furthering this analysis, and we

look forward to the new data that will be collected.
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APPENDIX A

List of Bad Runs

19.6GeV Au+Au 2018 Production:

20057007, 20057025, 20057026, 20057050, 20058001, 20058002, 20058003, 20058004, 20058005,

20060012, 20060022, 20060025, 20060060, 20060061, 20060062, 20062010, 20062011, 20062012,

20062036, 20063011, 20063034, 20063035, 20063036, 20063039, 20064008, 20064009, 20064011,

20064012, 20064040, 20065018, 20067014, 20067023, 20067024, 20067029, 20067030, 20067045,

20067046, 20069030, 20069032, 20069054, 20070042, 20070043, 20070044, 20070047, 20071001,

20071004, 20071005, 20071006, 20071027, 20071037, 20072034, 20072035, 20072036, 20072039,

20072041, 20072045, 20072047, 20073071, 20073072, 20073076, 20074001, 20074003, 20074004,

20074005, 20074007, 20074008, 20074009, 20074012, 20074014, 20074017, 20074018, 20074020,

20074021, 20074026, 20074027, 20074029, 20074032, 20074033, 20074034, 20074044, 20074045,

20075001, 20075002, 20075006, 20075007, 20075009, 20075011, 20075013, 20081002, 20081014,

20082060, 20082065, 20083024, 20086012, 20087007, 20089008, 20090024, 20091011, 20092054,

20062007, 20062009, 20065017, 20065056, 20065060, 20066001, 20066008, 20066015, 20066019,

20066023, 20066026, 20066066, 20066067, 20066068, 20066073, 20066078, 20067001, 20067004,

20067009, 20067012, 20067015, 20067016, 20067019, 20067028, 20067038, 20067041, 20067047,

20068001, 20068004, 20068008, 20068012, 20068019, 20068026, 20068034, 20068051, 20068055,

20068058, 20068060, 20068064, 20069001, 20069004, 20069007, 20069010, 20069020, 20069023,

20069026, 20069031, 20069033, 20069042, 20069050, 20069053, 20069057, 20069060, 20070002,

20070005, 20070010, 20070013, 20070016, 20070019, 20070041, 20070045, 20071003, 20071007,

20071010, 20071013, 20071016, 20071019, 20071024, 20071029, 20071036, 20071041, 20071044,

20071047, 20071050, 20071053, 20071056, 20071059, 20071063, 20072002, 20072005, 20072009,

20072012, 20072016, 20072037, 20072038, 20072046, 20072050, 20072055, 20073002, 20073006,
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20073013, 20073017, 20073022, 20073025, 20073074, 20074002, 20074006, 20074010, 20074011,

20074016, 20074019, 20074023, 20074030, 20074043, 20074046, 20075004, 20075008, 20075014,

20075010, 20075015, 20075020, 20075025, 20075031, 20075035, 20075039, 20075043, 20075048,

20075054, 20075057, 20075060, 20075066, 20076001, 20076004, 20076007, 20076010, 20076013,

20076017, 20076021, 20076025, 20076028, 20076031, 20076034, 20076037, 20076040, 20076045,

20076048, 20076051, 20076054, 20076059, 20077002, 20077005, 20077008, 20077011, 20077014,

20077017, 20077018, 20078001, 20078007, 20078013, 20078016, 20078019, 20078022, 20078028,

20078032, 20078035, 20078040, 20078043, 20078046, 20078051, 20078054, 20078057, 20078060,

20078063, 20078067, 20079006, 20079009, 20079013, 20079017, 20079020, 20079023, 20079044,

20080006, 20080009, 20080012, 20080016, 20080020, 20081001, 20081004, 20081007, 20081012,

20081015, 20081018, 20081025, 20082002, 20082005, 20082010, 20082013, 20082016, 20082019,

20082024, 20082029, 20082034, 20082038, 20082047, 20082050, 20082053, 20082056, 20082059,

20082063, 20082066, 20083001, 20083004, 20083019, 20083022, 20083025, 20083029, 20083032,

20083074, 20083077, 20083079,20084001, 20084002, 20084005, 20084009, 20084013, 20084016,

20084022, 20085006, 20085009, 20085017, 20086002, 20086005, 20086056, 20086011, 20086015,

20087008, 20087012, 20087021, 20088005, 20088009, 20088012, 20088030, 20088033, 20088037,

20089003, 20089006, 20089009, 20089012, 20089015, 20089018, 20089028, 20090002, 20090005,

20090008, 20090011, 20090014, 20090017, 20090021, 20090031, 20090048, 20091003, 20091006,

20091009, 20091012, 20091016, 20091019, 20091020, 20092005, 20092012, 20092015, 20092018,

20092021, 20092024, 20092027, 20092030, 20092033, 20092038, 20092053, 20092057, 20093001,

20093005, 20093010, 20093016, 20093025, 20093035

27GeV Au+Au 2018 Production:

19130085, 19131009, 19131010, 19131012, 19132063, 19133009, 19133010, 19133012, 19133013,

19133014, 19133018, 19134010, 19134011, 19135011, 19135013, 19135014, 19136016, 19137003,

19137022, 19137047, 19137050, 19137051, 19137052, 19137053, 19137056, 19137057, 19138008,

19138009, 19138014, 19139022, 19139023, 19139024, 19139026, 19139027, 19139028, 19139032,

19139033, 19139034, 19139037, 19140009, 19140014, 19141008, 19142005, 19142048, 19143008,

19143009, 19143010, 19143011, 19143012, 19143013, 19143014, 19143015, 19143016, 19143017,
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19146016, 19147007, 19147008, 19147009, 19147010, 19147014, 19147015, 19147016, 19156002,

19156032, 19156044, 19156045, 19156046, 19157013, 19158003, 19158007, 19158009, 19158010,

19158011, 19158013, 19158014, 19158015, 19158017, 19158018, 19158019, 19160018, 19162002,

19162005, 19165015, 19165020, 19165021, 19167042

156



Bibliography

[1] T. D. Lee and G. C. Wick. “Vacuum stability and vacuum excitation in a spin-0 field

theory”. In: Phys. Rev. D 9 (8 Apr. 1974), pp. 2291–2316. doi: 10.1103/PhysRevD.

9.2291. url: https://link.aps.org/doi/10.1103/PhysRevD.9.2291.

[2] Judy Goldhaber. BEVALAC had 40-year record of historic discoveries. Oct. 1992.

url: https : / / www2 . lbl . gov / Science - Articles / Archive / Bevalac - nine -

lives.html.

[3] The physics of RHIC. url: https://www.bnl.gov/rhic/physics.php.
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