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Abstract

In this paper, we present a lineage of models that is used to
identify the additional knowledge required to perform two
tasks concurrently at an expert level. The underlying architec-
ture used for this modeling is EPIC-Soar, a combination of the
sensory and motor modules of EPIC, and the cognitive pro-
cessing of Soar. Within EPIC-Soar, we build models for the
Wickens’ task, a combination of tracking and choice-reaction
time tasks. A key product of the models is an identification of
the knowledge required to combine these two tasks: the execu-
tive process knowledge. We also demonstrate that it is possible
to leam some of this knowledge through experience. We
achieve performance comparable, in terms of error-rates and
reaction times, to human data and an EPIC model.

Introduction

Possibly the most persuasive reason to study dual-task acqui-
sition and performance is because it can give us insights into
the architecture of the mind. Such situations stress human
capabilities to the extent that the observed patterns of behav-
iors set constraints on the human information-processing
architecture, sometimes leading to detailed hypotheses about
the cognitive architecture (Meyer & Kieras, 1997a, 1997b).

Damos and Wickens (1980) reported a study that demon-
strated the existence and effect of timesharing skill on the
performance of a dual-task combination. This timesharing
skill is often referred to as the “executive process”. It is the
job of the executive to control or mediate the execution of
the tasks that need to be performed concurrently.

From a computational modeling perspective, we define the
“executive process” as the knowledge necessary to model
dual-task behaviors above and beyond that which is required
to do the two tasks individually. Two reasonable questions to
ask are, “What is the nature of the knowledge that describes
the executive process,” and, “How can this knowledge be
learned?”

The goal of our work is to begin to answer these difficult
questions for the class of simple perceptual-motor tasks. Our
approach is to first identify and classify the knowledge of the
executive process (which is presented here), and then to
develop plausible task-independent learning procedures for
acquiring the knowledge. Our early results suggest that some
of the knowledge required to orchestrate dual tasks can be
learned from failures through experience with knowledge
compilation mechanisms such as chunking.
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The Wickens’ Task

In our work, we use a task combination we call the Wickens'
Task (Martin-Emerson & Wickens, 1992). It consists of a
tracking and a choice-reaction time task. The task environ-
ment as shown in Figure 1 was used in a study of dual-task
performance for the purpose of evaluating the effect of verti-
cal separation on the tracking and choice task. The applica-
tion of this study is to the design of the heads-up displays
used in aviation.

The experimental setup included two displays: the track-
ing window and the information display. The tracking win-
dow contained a cursor and a target circle. In the tracking
task, the subject used a joystick to keep a cursor (which is
always moving) in the target circle. This task simulated a
pilot tracking a ground target when landing.

The choice-reaction task stimulus was presented in the
information display, where either a left or right arrow would
periodically appear. The stimulus duration was one second.
When the stimulus appeared, the subject was to press one of
two buttons beneath their middle and index fingers on the
left hand; left button for the left arrow, right button for the
right arrow. This task simulated warnings or other indica-
tions requiring some sort of immediate response that may
appear while a pilot is landing.

The task requirements were for the subject to keep the cur-
sor in the target, but to respond to the choice stimulus on the
information display as soon as possible. RMS tracking error,

Tracking Window

Vertical
Separation

Information Display

Figure 1: The Wickens' task environment.




reaction time data, and response correctness were gathered.
The tracking error was recorded only during the one-second
presentation of the choice stimulus and the one-second
immediately following the stimulus offset because it was
anticipated that tracking errors due to allocation of attention
to the choice task would occur during this period.

In the original study, several experimental variables were
manipulated, two in particular: the vertical separation
between the tracking and choice displays (separations ranged
from zero degrees (superimposed) to 35.2 degrees); the diffi-
culty of the tracking task (considered to be either “high” or
*“low”). For our work, we also varied the vertical separation,
but fixed the tracking difficulty at “high". This condition puts
the most stress on the model and, as a result, makes the
effects of changes to the model most evident.

The Architecture

Our approach to modeling behavior is to start with a set of
fixed assumptions that are realized in a computational archi-
tecture. For our work we have created a hybrid, which con-
sists of the sensor and motor modules of EPIC and the
cognitive module of Soar.

EPIC

EPIC (Executive Process-Interactive Control) (Meyer &
Kieras, in press) is an architecture whose primary goal is to
account for detailed human dual-task performance. It
extends the work begun with the Model Human Processor,
MHP (Card, Moran, & Newell, 1983).

Like MHP, EPIC consists of a collection of processor and
memories. There are three classes of processors: perceptual,
cognitive, and motor. However, EPIC is distinguished from
MHP in two very significant ways. First, the EPIC proces-
sors and memories are much more elaborate, each represent-
ing a synthesis of the most recent empirical evidence
describing psychological phenomena. Secondly, EPIC is a
system that can be programmed and executed. When per-
forming a task, these processors run asynchronously with
one another.

There are three perceptual processors, visual, auditory and
tactile, which receive inputs from simulated physical sen-
sors. The output of these processors is sent to the working
memory of the cognitive processor. The cognitive processor
consists of working memory, long-term memory, and pro-
duction memory, and a multi-match, multi-fire production
system. The cognitive processor has no learning mechanism.
On receiving input from the perceptual processors, it per-
forms the reasoning necessary for the task being modeled
and sends output commands to the motor processors, of
which there are three: ocular, vocal, and manual.

Every EPIC model requires an executive process, encoded
as productions, whose purpose is to coordinate the progress
of the other processes (tasks) in the model. The executive
process does not take part in accomplishing the tasks directly
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(such as sending motor commands in service of a task); it
only modulates the activity of the tasks.

Soar

Soar is a general architecture for building artificially intelli-
gent systems and for modeling human behavior (Rosen-
bloom, Laird, & Newell, 1993; Newell, 1990). Soar has been
used to model central human capabilities such as learning,
problem solving, planning, search, natural language and HCI
tasks. Soar is a goal-oniented architecture, where the primi-
tive deliberative act consists of the selection and application
of operators. Soar’s long-term knowledge is encoded as pro-
ductions, which carry out the basic functions of selecting and
applying operators. Soar’s sensory information and current
situational analysis are held in a declarative working mem-
ory, which is matched against production memory. Goals
automatically arise when the knowledge encoded as produc-
tions is insufficient to directly select or apply an operator. In
the subgoals, this basic processing recurs, so that produc-
tions in the subgoal will match to select and apply operators
in service of determining which operator to select or to apply
in the supergoal. Soar incorporates a single learning mecha-
nism called chunking which compiles the problem solving in
the subgoals into productions. In combination with various
problem solving methods, chunking has been found to be
sufficient for a wide variety of learning (Lewis, et al., 1990;
Miller and Laird, 1996).

EPIC-Soar

EPIC-Soar is an integration of the perceptual and motor pro-
cessor models of EPIC, and Soar. This is an attempt to get
the best of both worlds: the detailed predictions and explana-
tions of sensory and motor systems from EPIC (an ability
Soar does not possess), and the broader, cognitive problem
solving, planning, and learning capabilities of Soar (an abil-
ity EPIC does not possess).

To create the hybrid architecture, we performed a “mind
transplant”; EPIC’s cognitive processor was replaced with
Soar. EPIC and Soar remain independent programs which
communicate using socket connections. Soar now accepts
EPIC perceptual and motor processor messages as input to
its working memory, and returns motor processor commands
to EPIC as output. The cycle of interaction and information
exchange between the systems is as follows: EPIC sends per-
ceptual and motor messages to Soar and then waits; Soar
accepts the inputs, runs for one decision cycle, returns to
EPIC any motor commands that may have been generated
and then waits; EPIC accepts the motor commands and exe-
cutes them. This cycle repeats.

EPIC On The Wickens’ Task

EPIC has previously been used to produce a quantitatively
accurate model for the Wickens' task (Kieras, 1994). In the



EPIC system, the Wickens' Task is a simulation that runs
asynchronously to the other components (the perceptual,
cognitive, and motor processors) of the EPIC architecture.
The perceptual and motor processor interact with the simula-
tion to perceive the world and to effect changes to the world.
As can be seen in Figure 2, the EPIC model provides a good
match to the empirical data on both the reaction-time and
tracking error measures.

Applying EPIC-Soar to the Wickens’ Task

The production rules of the EPIC model realize a model of
expert dual-task performance. Many of these rules explicitly
control the coordination of the two tasks; they are the “exec-
utive process”. These executive process rules “micro-man-
age” the execution of the tasks, providing deliberate control
to intermix the component actions of the two tasks. Also,
EPIC does not attempt to explain why these executive pro-
cess rules exist or how they are learned.

Our intent is to replicate the EPIC results in EPIC-Soar
using a a less task-dependent executive and to explore ideas
of how expert executive process knowledge can be learned.

Before modeling the Wickens' Task within EPIC-Soar, we
needed to make some changes to both EPIC and Soar. Due to
limited space, we will give only a brief discussion of these
changes.

First, we found it necessary to add new motor and percep-
tual processor status messages to EPIC. These messages
allowed us to reduce the amount of knowledge needed to
perform the task and freed Soar from having to compute and
maintain information that is readily available from the pro-
cessors. These messages were not needed in the EPIC model
because of its use of explicit control of the tasks. The EPIC-
Soar approach on the other hand is one of minimal control,
relying on the state of the processors to guide behavior.

The changes to Soar were made to correct a problem with
the post-learning behavior of cognitive models (Wray, Laird,
& Chong, 1997). These changes provided an architectural
approach to producing the correct behavior and will be
included in future releases of Soar.

Identifying Executive Process Knowledge

The rest of this paper will present a lineage of six models
(one individual, two sequential, and three concurrent) that
were used to transition from novice behavior to expert
behavior for the Wickens' Task. Each model in the lineage
represents the addition of knowledge to the previous model.
We relied heavily on the existing EPIC expert model to guide
us in building of our own models.

Models Of The Individual Tasks

We first built models of the individual tasks. In Soar, a task is
encoded as the operators that must be selected and applied to
perform the functions of the task. Some of these operators
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will be primitive, and will be carried out directly as produc-
tions which change internal data structure or send motor
commands to EPIC. These operators map almost directly
onto the productions in EPIC which take 50 ms of simulated
time to execute. Soar productions are finer-grain than EPIC
or ACT-R (Anderson, 1993) productions, with multiple pro-
ductions contributing to the selection and application of an
operator. We adopted this approach in Soar so that the
knowledge for selecting an action can be learned and modi-
fied independent of the knowledge about performing the
action. This also makes it possible to have many different sit-
uations in which an operator is selected (because multiple
productions can suggest the same operator in different situa-
tions), and an operator can lead to different or even parallel
actions in different situations (because multiple productions
can be involved in performing the actions of an operator).

However, not all operators for a task are directly execut-
able, possibly because of insufficient learning. In these cases,
the operators automatically become goals which are solved
by selecting and applying additional operators. For the
Wickens’ task, the top-level set of operators include an oper-
ator for the tracking task (tracking-task), and the
choice task (choice-task).

tracking-task choice-task
track-target recognize-stim
walch-cursor verify-stim
find-response

send-response

Each of these operators has constituent suboperators listed
below. We had no independent empirical guidance for choos-
ing this structure, although the lower-level primitives are
consistent with some of the primitives used in the EPIC
model, and with earlier models in Soar (Wiesmeyer, 1992).

These operators are sufficient to perform each of these
tasks independently, using the EPIC perceptual and motor
processors, To generate “expert” behavior and knowledge,
each task was run independently using Soar’s learning mech-
anism, which built productions (chunks) that allow the tasks
to be performed without the subgoals. These expert versions
(the original operators plus the chunks) are used for the fol-
lowing studies.

Strategies for Dual-Task Behavior

At least two dual-task strategies can be used to have tasks
run simultaneously. The first is to have the tasks run sequen-
tially — do tracking, then stop tracking and switch to the
choice task when the stimulus has occurred; after the stimu-
lus has been responded to, resume tracking. A second strat-
egy is to run the tasks concurrently with their components
parts interleaved. This latter strategy seems most consistent
with the instruction as reported by Martin-Emerson & Wick-
ens (1992), “Subjects were instructed to execute a response
within the one-second stimulus display period and to divide
their attention equally between the two tasks”. This is also



the strategy Kieras (1994) found necessary to adopt. We
explored both strategies.

Sequential Strategy

The sequential strategy arises by selecting first the tracking-
task operator, and then interrupting it with the choice-task
operator whenever the choice stimulus appears, then resum-
ing tracking after a response is produced. We manually
added two rules to the EPIC-Soar model to achieve this strat-
egy: one rule prefers the tracking task when the stimulus is
absent; the other rule prefers the choice task when the stimu-
lus is present. Additionally, since the choice task assumes
that the eye is already fixated at the location where the stim-
ulus will appear, an extra rule was needed that would move
the eye to the choice stimulus when the vertical separation
was sufficient to cause detailed perceptual information of the
stimulus to be unavailable. This is the most basic sequential
strategy. We ran this model for 300 trials per visual separa-
tion condition. (All EPIC and EPIC-Soar models presented
in this paper were run at this level.) The average perfor-
mance on each condition is reported. The RT and RMS
tracking error results are plotted in Figure 2 and are labeled
Sequential.

It is possible to improve the RT match to EPIC of this
model by adding knowledge that allows the system to antici-
pate and prepare for the appearance of the stimulus. When a
command is sent to EPIC, it passes through the motor pro-
cessor in two phases, preparation then execution, both of
which take time to perform. However, the total elapsed time
of a command can be reduced if, at an earlier time, the com-
mand has been prepared for. In the Wickens’ task, while the
tracking task is taking place, we can prepare the eye to look
at the location where the choice stimulus will appear. Thus,
when the choice stimulus appears, the rule that fixates the
eye on the stimulus wilt be performed in a shorter time. We
manually added a production to generate a preparation for
eye movement throughout the tracking task. These results
are plotted as Sequential + prepare in Figure 2. Here we see
that preparing for the stimulus improves the RT match to the
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EPIC results. The tracking error under both conditions is
very high.

The poor prediction of tracking error is the most glaring
problem with this sequential strategy. However, there is a
straightforward explanation: tracking error is measured from
the beginning of the choice task until one second after the
choice task completes. Since no tracking was done in the
sequential model during the choice task, the error rate is
expected to be high. The model strongly suggests that it is
necessary for tracking to continue during the choice task; i.e.
for both tasks to run concurrently.

Concurrent Strategy

Allowing both tasks to run concurrently is easily done by
using the operator composition technique used in earlier
Soar work by Covrigaru (1992).

When two tasks are allowed to run concurrently, there is
the risk of two or more motor commands being simulta-
neously sent to the same modality. For example, in the Wick-
ens’ task, the model may attempt to respond to the choice
stimulus and at the same time attempt to move the joystick,
both of which use the manual motor system. In EPIC, this
condition is called a “jam” and both commands are ignored.

The original EPIC model avoided jams because of the
executive process, which orchestrated the intermixing of the
component actions of the two tasks so that jams did not arise.
In contrast, our general approach is to try to perform both
tasks concurrently as much as possible. When jams arise, the
system uses a task-independent recovery mechanism to learn
to avoid the jams in the future. Thus, the EPIC-Soar model
incrementally learns how to intermix the commands based
on failures and experience.

In more detail, when EPIC-Soar jams, a subgoal is auto-
matically created. Within the subgoal, domain-independent
operators reconstruct the situation that produced the jam.
This creates an internal situation model with which the sys-
tem can deliberately reason about which action it should
take. Within this subgoal, the rules that initially caused the
jam will refire. This time, the jam-repair mechanism exam-
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Figure 2: Comparison of the sequential strategy models to observed data and EPIC predictions.
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Figure 3: Comparison of the various concurrent strategy models to observed data and EPIC predictions.

ines the motor commands and using the task requirements
knowledge (that choice actions are preferred to tracking
actions) decides on which command should be sent. A rule is
learned so that the next time the state of the world puts the
system in the same situation where it could again simulta-
neously send both commands, this new knowledge “steps in”
and produces the preferred command, thus avoiding the jam
condition. This mechanism was able to build all the jam
avoidance knowledge necessary for this task. The key aspect
of this learning is that it transforms the general declarative
statement, that choice is to be preferred, into procedural
knowledge that applies at the exact point where it is needed,
i.e. avoiding a jam. Figure 3 shows the results of this
approach labeled Concurrent. This model has two qualitative
effects: tracking error has been significantly lowered com-
pared to Sequential + prepare; tracking error is now inde-
pendent of increasing vertical separation. This model is still
a poor predictor of tracking error.

To improve the model, we returned to the EPIC model and
observed that it included a production called track-fol-
low-it-express. The purpose of this rule was to track
as soon as possible after the choice response had been made.
The normal tracking rule fires when the manual motor pro-
cessor is free, However, during the completion of the choice
task, the tracking task can be initiated as soon as the motor
processor has finished preparing the choice response. This
allows the preparing of the tracking command to overlap
with the execution of the choice action. Figure 3 shows the
results of this approach labeled Concurrent + track_express.
With the addition of this rule, the tracking error is now closer
to the observed and EPIC data. Interestingly, it predicts bet-
ter performance; the error is independent of the separation.

To attain the upward slope of the tracking error, we again
returned to the EPIC model and found a group of rules which
explicitly disabled tracking when the eye was moving from
the cursor to the stimulus and to the cursor. The rationale is
that no data about the cursor should be available (based on
the EPIC visual perception model), so any attempt to track at
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this time will be in error. To obtain the same behavior,
instead of adding an equivalent production as was done
before, we instead modified our track rule such that it would
fire only if the eye was not moving. We hypothesize that our
original task encoding was incorrect, and that the tracking
task as originally defined should have this condition. The
Concurrent + track_express + disable_track traces in Figure
3 show our final results.

Analyzing The Executive Process Knowledge

In this section we review this knowledge and discuss possi-
ble mechanisms for its acquisition. Although this is a very
simple task, four classes of knowledge can be identified.

Task Requirements Knowledge

Subjects acquire this knowledge from listening to and inter-
preting task instructions, a complex process involving lan-
guage comprehension. Previous Soar research (Huffman,
1994; Lewis, Newell, & Polk,1989) has explored the acquisi-
tion of procedures from natural language instructions.

Strategic Knowledge

Two forms of strategic knowledge were used: opportunistic,
and pipelining. Opportunistic knowledge appeared in the
form of the rule that prepared the eye for movement to the
stimulus. Opportunistic prepares are beneficial only for com-
mands where there is some certainty that the action being
prepared for will need to be done. In the case of looking at
the stimulus, we know that it will always occur and, more
importantly, we know where it will always occur. On how
this knowledge may be acquired, we hypothesize that since
prepares are an architectural capability and can be used to
increase performance, then there may be a task-independent
learning procedure that creates prepare rules based on task
knowledge or observed regularities in the task environment.



The second form of strategic knowledge is call pipelining
knowledge. An example of this is the track-follow-
it-express rule. The source of this knowledge may be
attributed to the task inducements. Martin-Emerson & Wick-
ens (1992) reported that “subjects...were paid according to
the number of correct responses;...in order to elicit the best
possible tracking performance independent of the discrete
response task, the magnitude of the payment per correct
response was inversely proportional to the tracking error.”

Innate Knowledge

When building a cognitive model in Soar, one of the guide-
lines used to estimate the veracity of the model is to deter-
mine if there are any components (rules, operators, or
mechanisms) in the model that could not be learned by the
architecture. If this is the case, then the model makes the
claim that such components are innate meaning that the
knowledge exists a priori to performing the task and there-
fore is not learned during performance. The jam-repair
mechanism, like other mechanisms such as task instruction
acquisition, may be an example of innate knowledge.

Experiential Knowledge

This knowledge is acquired from experience in performing
the task. One instance of this knowledge is the rules that
were generated by the jam-repair mechanism. Strategic
knowledge could also be classed as experiential knowledge
though it depends on when the knowledge is acquired.

Summary

In this paper, we presented a lineage of six models that was
used to identify the additional knowledge required to per-
form two tasks concurrently at an expert level for the Wick-
ens’ Task. Each model in the lineage represents the addition
of knowledge to the previous model.

Most of the knowledge has been manually added and are
essentially Soar analogues of the EPIC productions, which
on its own is uninteresting. However, our larger goal is to
have a system that learns these rules. The merit of this work
then is that it takes the first small steps towards that goal: (1)
we have a hybrid learning and performance architecture; (2)
we have a expert performance model that is now situated in a
learning architecture; (3) we can identify the kinds of knowl-
edge needed to progress from novice to expert; (4) we can
now posit general task-independent learning procedures to
acquire this knowledge; and (5) we have demonstrated one
such task-independent acquisition procedure that learns how
to deal with some of the initial problems of concurrent per-
formance.

We are continuing to refine our model. When satisfied
with its performance, we will pursue a task-independent
learning mechanism to acquire experiential strategic knowl-
edge. We have yet to settle on a satisfactory hypothesis for
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the origin of this knowledge. To this end, we have begun a
fine-grained study of the conditions of the executive process
rules to explain the source of each.
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