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Artifacts Mitigation in Sensors for Spasticity Assessment

Çağrı Yalçın, Mathew Sam, Yifeng Bu, Moran Amit, Andrew J. Skalsky, Michael Yip,
Tse Nga Ng,* and Harinath Garudadri*

1. Introduction

About 75 million people worldwide are afflicted by neuromuscu-
lar disorders arising from stroke, cerebral palsy, spinal cord
injury, multiple sclerosis, Parkinson’s, etc. and live with a debili-
tating condition known as spasticity.[1] Spasticity results from
damages to the regions of brain and spinal cord that control vol-
untary movements. It is a chronic but nonprogressive disorder
that afflicts across all age groups. Spasticity is manifested as an
abnormal muscle stiffness that interferes with movement, gait,
and speech and causes great discomfort and pain.[2] A recent sur-
vey[3] of people with spasticity found that 72% reported lower
quality of life, 44% reported loss of independence, 44% reported

depression, 38% inability to work, etc.
Untreated symptoms[4–8] can become per-
manently disabling, causing severe bone/
joint deformities and reduction in joint
biomechanical range of motion that
lead to patients in costly assisted living
arrangements.

The evaluation of spasticity severity level
is a critical step in selecting appropriate
treatments for patients. To judge the sever-
ity of spasticity, clinicians perform standard-
ized maneuvers, such as limb extension and
flexion, as shown in Figure 1, to gauge the
muscular resistance to movement. The
current clinical benchmarks for assessing
spasticity are the Modified Ashworth Scale
(MAS) or Tardieu Scale, both of which are
based on the clinician’s subjective percep-
tion and limited in consistency and low
sensitivity[9–15] that preclude fine-tuning of
treatments.

Researchers are developing different sensors and bio-
mechanical tools to enable objective measurements on spastic
muscles. Surface electromyography[16–20] was shown to capture
involuntary muscle activations, but there are issues with envi-
ronmental noise and signal reproducibility due to variations
in electrode locations and skin conductivity. Biomechanical
devices are used to quantify a muscle’s resistance to being
stretched.[21,22] Motorized systems are developed to measure
the muscle response at specific maneuver speeds.[23–25]

Multimodal measurements[26–30] to simultaneously record elec-
tromyography, movement, and muscle torque are shown to cap-
ture the velocity-dependent characteristics of spastic muscles.
However, the prior approaches tend to place the instruments
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Spasticity is a pathological condition that can occur in people with neuromus-
cular disorders. Objective, repeatable metrics are needed for evaluation to
provide appropriate treatment and to monitor patient condition. Herein, an
instrumented bimodal glove with force and movement sensors for spasticity
assessment is presented. To mitigate noise artifacts, machine learning techni-
ques are used, specifically a multitask neural network, to calibrate the instru-
mented glove signals against the ground truth from sensors integrated in a
robotic arm. The motorized robotic arm system offers adjustable resistance to
simulate different levels of muscle stiffness in spasticity, and the sensors on the
robot provide ground-truth measurements of angular displacement and force
applied during flexion and extension maneuvers. The robotic sensor measure-
ments are used to train the instrumented glove data through multitask learning.
After processing through the neural network, the Pearson correlation coefficients
between the processed signals and the ground truth are above 0.92, demon-
strating successful signal calibration and noise mitigation.

FULL PAPER
www.advintellsyst.com

Adv. Intell. Syst. 2020, 2000106 2000106 (1 of 9) © 2020 The Authors. Published by Wiley-VCH GmbH

mailto:hgarudadri@eng.ucsd.edu
https://doi.org/10.1002/aisy.202000106
http://creativecommons.org/licenses/by/4.0/
mailto:tnn046@ucsd.edu
http://www.advintellsyst.com


on patients, requiring frequent adjustments to fit the tools to
different patient sizes.

To address the fitting issue, we developed an instrumented
glove to be worn by a physician while conducted assessment
maneuvers on patients. The glove only needs to fit the physician
user, so that our tool can be readily applied to different patients.
The instrumented glove record the force applied to move
the spastic muscle F and the maneuver velocity v through flexible
force-sensitive sensors[31–34] and an inertial motion unit (IMU),
respectively. These two parameters are measured to determine
the power P exerted to move the spastic muscle (P¼ F * v), as
a third parameter in spasticity evaluation.

In our previous work, the data from the sensors was compared
with clinical MAS scores.[35] Our intention was to treat physicians’
MAS ratings as the “ground truth.” But in our study with two
physicians and five individuals with cerebral palsy, there was only
27% agreement between the two physicians. To address the prob-
lem of “ground truth,” we developed a mock patient with arm
structure connected to a manually adjusted brake disk that was
used to provide specific resistance. In this system, the “ground
truth” power required to move patient arm and the power mea-
sured by the instrumented glove showed general agreement,
but the Pearson correlation coefficient was only r¼ 0.64.[35] We
identified the short comings in this system including difficulties
in setting desired resistance levels, multiple clock domains in the
electronic instrumentation, and limitations in the linear signal
processing algorithms to eliminate nonlinear artifacts.

To further improve our instrumented glove for spasticity
assessment, this article presents an approach to improve sensor
calibrations through supervised machine learning. This work
includes the development of 1) a robotic mock patient offering
the ability to dial in reproducible resistance, incorporated with
sensors to log “ground truth” of the force applied and angular

displacement of the maneuvers performed on the robot; and
2) a multitask neural network engine to mitigate sensing artifacts
of the glove and calibrate the measurements for estimating phys-
ical parameters associated with spastic muscles. The machine
learning approach enables to account for both sensor artifacts
and other nonlinear effects such as grip variation, estimating
accurate position from the accelerometer and gyroscope data
from the IMU sensor, and so on. We validated the system with
multiple users wearing the instrumented glove, performing flex-
ion and extension movements on the robotic arm at multiple
resistance levels, at multiple speeds, and on multiple days.
These data were used to train and test the multitask neural net-
work. The neural network removes artifacts in the sensor meas-
urements. After passing the sensor signal through the network,
we computed the Pearson correlation coefficients to compare the
correlation between the processed signals and the ground truth,
to quantify the effectiveness of this method.

2. Experimental Section

2.1. Instrumentation

2.1.1. Robotic Arm

Our instrumentation includes a new robotic “mock patient,”
which offers programmable resistance levels to simulate differ-
ent severity of spasticity. The robotic mock patient is built out of
laser-cut wood structures and stainless steel brackets.[36–38] The
plastic arm is connected to a motor (Pittman, ID33003) through a
gear train with a ratio of 1:15 to increase the motor torque. The
motor of the robotic arm produces programmable resistance;
namely, an increase in resistance requires the user to apply
higher force to move the arm. To calibrate the resistance level

Figure 1. a) Schematic and b) photograph of the robotic mock patient built out of laser-cut structures connected to a motor that adjusts the robotic arm
resistance, with an optical encoder to monitor angular displacement and a load cell to capture the force applied to move the robotic arm. c) Screenshot of
the customizable user interface to the robotic arm. d) The instrumented glove hardware consisting of force sensors attached on the palm side and an IMU
attached on the back. The user using the instrumented glove on the robotic arm, performing e) flexion and f ) extension movements.
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produced by the motor, we hung weights on the wrist of the
robotic arm, and we applied current to the motor in the opposite
direction and recorded the input needed to keep the arm fixed in
the horizontal position. We calibrated the robotic resistance by
applying 1–5 kg of mass, at 0.5 kg increments, to reach the resis-
tance range commonly seen in spastic muscles.[23,39,40]

The robotic arm has an optical encoder (USdigital, S1 optical
shaft encoder) to monitor the angular position of the arm shaft,
and a load cell (Transducer Techniques, ESP-10) to measure
the force applied on the arm, as shown in Figure 1a,b. The load
cell was calibrated by applying weights (1–5 kg) to the robotic arm
when it was held at horizontal position. The optical encoder
arrived with calibration already done by the manufacturer
and was used as is. The optical encoder, the load cell, and the
motor controller are connected to a controller board (National
Instrument, Multi Function I/O Device USB-6211) to acquire
the sensor data and control the motor. The custom user interface
is developed using LabVIEW and sets the motor output with
respect to the angular position of the robotic arm, during flexion
and extension movements (Figure 1c). The load cell and optical
encoder on the robotic arm provide the ground-truth readings of
the applied force and angular displacement, respectively, against
which the instrumented glove sensors would be compared with.

2.1.2. Instrumented Glove

The instrumented glove[34,35] in Figure 1d has force sensors
attached to the palmar side of the glove, and the sensors are
based on force-sensitive resistors (Tekscan, 4256E). The force
sensors have a total of 349 sensing elements in 18 sensing
regions where every element outputs an 8-bit value (0–255)
for a pressure range of 12 psi. As the sensor locations are known,
the sensor readings provide a spatial map of applied force.
The glove has also an inertial measurement unit (IMU) (motion
node) with accelerometer, magnetometer, and gyroscope
attached on the back side of the glove. The force sensors
measured the force applied to move the robot arm, and the
IMU captured the velocity of the movement.

2.2. Experimental Procedure

For each measurement trial, the user wore the instrumented
glove and performed the flexion and extension maneuvers on
the robotic arm of the mock patient system, as shown in
Figure 1e,f, respectively. The programmable mock patient deliv-
ers a variable resistance as a function of position. The force from
the robotic motor opposes the movement direction, and hence,
adds resistance to the user’s maneuvers. The robotic resistance is
essentially the opposing force to the user’s movement, as the
resistance mass is converted to force by multiplying the resis-
tance mass by the acceleration constant of gravity. The resistance
of the robotic arm is independently adjustable for flexion and
extension, as shown in Figure 2. The resistance is set to ramp
up at position x1, to reach the desired level at position x2 and
then held constant to position x3, and ramp back down by posi-
tion x4. The chart in Figure 2 shows the possible range for the
input parameters to the robotic arm, and the default column indi-
cates the settings we used for all the tests in this article.

Table 1 shows the experimental conditions tested in various
combinations. There were three individuals carrying the same
tests over 5 days. On each day, 20 test cases were performed,
by varying the robotic arm resistance by five levels, and with
the users moving at four different speeds. We defined a single
flexion or extension movement as one maneuver. For the differ-
ent movement speeds, the user tried to follow the sound cue
from a metronome to complete one maneuver per sound beat.
There were also trials where no sound cue was provided, and the
users were allowed to move at a random speed, but practically
close to range of 40–60 maneuvers min�1. Overall, we have
collected a total of 300 test cases, with simultaneous recordings
by the glove sensors and the robotic sensors, for the next step of
developing a neural network model to reduce noise and artifacts
in the instrumented glove system.

2.3. Supervised Machine-Learning Approach: Using Neural
Network Model to Remove Artifacts

Artificial Neural Networks are a family of machine learning algo-
rithms that are inspired by biological neurons in the human
brain. The idea behind neural networks is to have networks of
interconnected nodes (neurons) that learn to combine the input
information in a manner that helps with the prediction of its cor-
responding task. There are different types of neural network
layers. The ones used in this work are fully connected layers,[41]

Figure 2. Adjustable parameters of the robotic arm.

Table 1. Experimental conditions examined in this research.

Parameter Condition

Robotic arm resistance 1, 1.5, 2, 2.5, and 3 kg

Range of angular position 0�–65�

Approximate movement speed
following metronome cue

40, 50, 60 maneuvers per minute,
or without cue (random speed)

Recording time 20–30 s

User tests Three individual users, repeating
trials over 5 days
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as seen in a multilayer perceptron) and convolutional layers.[42]

Convolutional layers[42] are more suitable to images as the layers
learn convolutional kernels that extract useful spatial information
(like edges or corners) from the image.

Most neural networks attempt to solve individual problems,
for example, just predicting the angular displacement using
information from the IMU or predicting the resistance using
force sensors attached to the glove. In this work, we attempt
to use multitask learning, where we try to solve both these prob-
lems using the same network. The model will be more general-
izable as compared to training on individual tasks by sharing
information between these tasks.

To remove grip variations and other nonlinear artifacts affecting
the measurements recorded by the glove, we trained neural net-
work models specific to individual users. As both force and veloc-
ity measurements are taken during the same motion, and hence,
are likely to influence each other, we adopt a multitask model to
simultaneously process readings from the pressure sensors and
the IMU on the glove. A multitask learning approach was taken
as it has the following advantages: 1) Implicit data augmentation:
multitask learning[43] effectively increases the sample size that we
are using for training our model. As different tasks have different
noise patterns, amodel that learns two tasks simultaneously is able
to learn a more general representation. Learning just task A bears
the risk of overfitting to task A, whereas learning A and B jointly
enables the model to obtain a better representation through aver-
aging the noise patterns. 2) Attention focusing: if a task is very
noisy or data are limited and high-dimensional, it can be difficult
for a model to differentiate between relevant and irrelevant fea-
tures. Multitask Learning[43] can help the model focus its attention
on those features that actually matter as other tasks will provide
additional evidence for the relevance or irrelevance of those fea-
tures. 3) Regularization: multitask learning[43] models act as a reg-
ularizer by introducing inductive bias and reduce the risk of
overfitting.

2.3.1. Data Preparation

The data collected by the instrumented glove had 725-dimensional
feature vectors corresponding to measurements from the force
sensors and 27 feature vectors corresponding to the data from
the IMU. The data from the glove force sensors were represented
as an image of size 29� 25 that shows the spatial correlation
between individual force sensors. In this 29� 25 image, only a
16� 20 subsection (around the fingers) had usable information.
We cropped out this 16� 20 block and feed it to the convolutional
layers. The sensors around the fingers (16� 20 block) had the
most contact with the robotic arm, whereas the remaining sensors
on the hand did not always stay in contact with the arm depending
on the grip used by the user. Therefore, we decided to only keep
the region that was consistently in contact with the arm for pur-
poses of prediction.

2.3.2. Model Design

The input force data had spatial characteristics based on sensor
locations on the glove. We chose convolutional layers[42] to take
advantage of this spatial correlation with its translational

equivariance. Our data blocks do not belong to the same domain
as the images present in ImageNet or other large datasets.
Therefore, it would be improper to use pretrained weights from
architectures trained on ImageNet. Moreover, our blocks are
simpler in nature as compared with those in ImageNet, and
using a very deep network could lead to overfitting. We used trial
and error with different number of convolutional layers and
chose the best configuration which showed low loss on both
training and validation data for prediction of resistance and angu-
lar displacement. The entire network was built from scratch with
no use of pretrained weights. Moreover, we tried both sigmoid
and tanh activations, but the ReLU[44] activation unit showed
lower loss during training and validation.

The convolutional encoder block[42] consists of two convolu-
tional layers[42] with 128 filters with a kernel size of 3� 3, followed
by a maxpooling layer, followed by two more convolution layers
with each having 64 filters of size 3� 3, followed by global average
pooling.[45] All the nonlinearities used in this subnetwork are rec-
tified linear units (ReLU2).[44] When we pass the force sensor data
block (of shape batch size� 16� 20� 1) through the convolu-
tional encoder block, we obtain a batch size � 64-dimensional
vector which represents the force readings. This vector is consid-
ered as a feature vector representation of the force sensors which
will be combined with a similar representation of the IMU infor-
mation to make predictions regarding resistance and angular
displacement.

The data from the IMU are a batch-size� 27-dimensional
vector. As shown in Figure 3, the IMU data are passed through
the dense fully connected layers (dense1 and dense2) to create a
batch size� 64-dimensional feature vector representation of the
IMU (dense 2).

The vector representations of the IMU and the sensor read-
ings are concatenated (concat in Figure 3) and fed into further
fully connected layers. This is done to have a learned feature vec-
tor representation (dense4) that combines insights from both,
the force sensors and the IMU. This learned representation is
fed into two subnetworks, one which predicts resistance weight
and the other that predicts the angular displacement in a multi-
task fashion, as shown in Figure 3, as the outputs.

2.3.3. Training the Neural Network Model

The model was built in python 3.6 using Tensorflow 1.12. The
model currently uses 123 070 free parameters that can be trained.
The process flow of the model development and results compar-
ison is shown in Figure 4.

We trained the model with data for 4 days and tested it against
data from the fifth day. For example, training was done with the
data collected on days 2,3,4,5, and testing was done against data
collected on day 1. We rotated through the entire dataset and
carried out a fivefold cross validation to evaluate the models.
The model was trained using a mean squared error loss and
an Adam optimizer[46] with a learning rate of 0.00001.

We name the output of the neural network as “prediction”
which are the resulting values after passing through the network
to remove artifacts incurred during data acquisition. It is termed
prediction, to emphasize that the test data was not included in the
training for the neural network development. The prediction data
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will be compared with the ground-truth values from the sensors
on the robotic arm, to determine the effectiveness of the neural
network in tuning the glove signals to match the ground truth.

Finally, we calculated the power exerted to move the robotic
arm by determining the product of force and velocity
(P¼ F * v). The predicted force was computed by scaling the
predicted resistance by the gravity acceleration constant
g¼ 9.8m s�2. The predicted position is differentiated to compute
angular velocity and filtered with a 5 Hz cutoff low-pass filter.

The filtered angular velocity is scaled by the robotic arm length
(40 cm) to obtain the linear velocity.

3. Results

3.1. Sensor Recordings of Flexion/Extension Maneuvers

The flexion and extension maneuvers as recorded by the sensors
on the robotic arm and on the instrumented glove are shown in

Figure 3. Architecture of the multitask learning neural network. The inputs are 1) spatial force map from the force sensors and 2) motion parameters
from the IMU on the glove. A sequence of convolutional layers or dense layers extracts data from the sensors on the glove (region inside the orange box)
and convert them into vector representation. The vector representations of the IMU and the force readings are concatenated and fed into further dense
layers to yield outputs of resistance and angle.

Figure 4. The top pane shows training the multitask neural networkN and the bottom pane shows the use ofN in calibrating the system. The labels F, M,
P, and V correspond to force, motion, position, and velocity data, respectively. The subscripts m, g, and c refer to measured, ground truth, and corrected,
respectively. The index k denotes multidimensional data; k¼ 320 for the force sensor and k¼ 27 for the IMU. The index n corresponds to time, sampled at
100 samples per second.
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Figure 5. There was a common data acquisition clock from the one
control interface, with a sampling rate of 100Hz for all sensors.
The measurements showed periodic characteristics, where each
period corresponded to a cycle of a flexion followed by an exten-
sionmovement. In the robotic system, themotor produced a resis-
tance depending on the input voltage (Figure 5a), and the load cell
monitored the force applied to move the robotic arm (Figure 5b),
whereas the optical encoder tracked the angular displacement as
the robotic arm was rotated (Figure 5c). Simultaneously, the IMU
records the angular velocity of the movement (Figure 5d), and the
force sensors on the glove recorded the applied force (Figure 5e).
The arbitrary unit is the result of summing the output from all the
force sensor elements on the glove, and the arbitrary unit is con-
verted to a resistance or force unit by the manufacturer calibration
method (Tekscan) or by the neural network. Figure 5 shows a
zoomed-in view of two cycles in a typical recording. The full
recording for each trial usually lasted 20–30 s, as shown in
Figure 6.

3.2. Neural Network Processing

Figure 6 shows an example set of data collected when the user
moved at random speed to perform flexion and extension

maneuvers on the robotic arm set at a resistance of 2.5 kg.
The user was wearing the instrumented glove during the maneu-
vers, and thus, the force sensors on the glove tracked the applied
force to overcome the resistance of the robotic arm, as shown in
Figure 6a. There was general agreement between the glove force
sensors (the orange line) and the robotic load cell measurements
serving as the ground truth (the blue line). The recording by the
glove sensors changed in sync with the ground truth. However,
we also observe discrepancies between the glove measurements
and the ground truth, and to compensate for these nonlinear arti-
facts, the glove measurements were fed into the neural network
to yield a prediction output in Figure 6b.

During the flexion and extension movements, the angular dis-
placement of the robotic arm is monitored by the optical encoder
serving as the ground truth. The IMU on the instrumented glove
transverses the same angular displacement as the robotic arm.
Therefore, we obtained velocity measurements from the gyro-
scope of the IMU and calculated the time integral of the angular
velocity, to compute the angular displacement. In Figure 6c, the
integration result (orange line) was poor and noisy, not accept-
able for further analysis. Alternatively, we fed the IMU data into
the neural network to arrive at the prediction of angular displace-
ment in Figure 6d. The prediction from the neural network
comes close to the ground-truth values.

Figure 5. a) Motor control voltage to set resistance. b) Calibrated load cell for force measurement by the robotic arm. c) Optical Encoder to record angular
displacement of the robotic arm. d) Angular velocity recorded by the IMU on the instrumented glove. e) Sum of force sensor measurements recorded by
the glove. Each time frame is 10ms.
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At each time instance, the neural network takes in feature
vectors from the force sensors and the IMU on the glove and
produces prediction values. In Figure 7a, each dot shows the
value at each time instance, and the measured resistance as a
function of position are mapped out. The resistance is in the
direction opposite to the direction of motion. We defined the
resistance against extension to be positive in sign, and the reverse
(flexion) to be negative. The neural network predictions closely
follow the ground truth.

To quantify the correlation of the power between the predic-
tion and the ground truth, we computed the Pearson correlation
coefficients, as shown in Figure 7b. For this set of data, there
were 20 trials for each day done by the same user. Within each
day, the robotic resistance was set to vary between 1 and 3 kg,
whereas the user performed the maneuvers at four different
speeds, as shown in Table 1. The different movement speeds
widened the spread in the correlation coefficients, but within
our chosen speed range there is no obvious difference between

Figure 6. An example set of data collected at a resistance of 2.5 kg as the user moved at random speed. a) The resistance measured by the glove (orange),
versus the resistance as measured by the load cell that serves as ground truth (blue). b) After neural network processing, the predicted resistance (orange)
compared with the ground truth (blue). c) The angular velocity measured by the IMU gyroscope and integrated over time to yield angular displacement
(orange), versus the angular displacement as measured by the optical encoder that serves as the ground truth (blue). d) After neural network processing,
the predicted values (orange) compared with the ground truth (blue). Each time frame is 10ms.

Figure 7. a) Resistance versus position, for the same dataset as shown in Figure 6. b) The Pearson correlation coefficient between the predicted values
and the ground truth for various resistance settings across five different test days.
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maneuvers done following the metronome cue or without the
cue. After neural network processing to remove artifacts, the pre-
diction power was highly correlated to the ground truth, with
average Pearson correlation coefficient above 0.91 for one user.

Furthermore, we summarized the Pearson correlation coeffi-
cients in Figure 8 to compare the outcomes of applying individ-
ualized neural networks for three different users, running trials
across 5 days. The networks were able to remove artifacts in the
resistance and angular displacement recordings by the instru-
mented glove, as evident in the high correlation >0.9 between
these parameters and the ground truth values. Remarkably,
the angular displacement predictions reached 0.99 in correlation
for all three users. The power exerted to move the robotic arm
was determined from the product of the resistance force and
angular velocity (Figure 4), and the power values were also shown
to be well correlated >0.92 between the neural network predic-
tion results and the ground truth.

4. Discussions

A successful treatment for a patient that is suffering from mus-
cle spasticity can only be achieved if there is an objective moni-
toring of the disease. Subjective and inconsistent assessment
of spasticity has major implications on patient care, because
accurate assessment is needed to determine the dosage of med-
ication the patient receives and affect the therapy outcome.

Thus, this work aims to improve the tool for the assessment
of spasticity severity.

Our instrumented glove previously was calibrated without
using the neural networks, and the Pearson correlation coeffi-
cient between the glove measurement and the ground truth
was only 0.64.[35] The improvements in our current system orig-
inated from better artifacts removal by the neural network,
compensating for the nonlinear background contributions such
as user grip variations, movement speed, etc. We showed that the
supervised machine-learning technique presented here can be
applied to multiple types of sensors ranging from force to move-
ment sensors.

The robotic system also facilitated improved data collection, as
the mock-patient arm resistance were easily changeable by the
programmable motor and lessened the time and labor involved
in tuning the calibration settings. Hence, we were able to collect
hundreds of trials in a week to provide enough training data
for the neural network implementation. More data collection
to increase the pool of users will be carried out in the future, to
potentially create a neural network model that can be generalized
across multiple users.

5. Conclusions

As a biomechanical tool for monitoring spasticity, the instru-
mented glove demands better calibration approaches to remove
artifacts in the sensor measurements. Here, we used supervised
machine learning enabled by the development of a robotic arm
system, to demonstrate improvements in signal quality. The
robotic arm system is designed to offer programmable resistance
and is integrated with sensors that serve as the ground truths
for calibrating the instrumented glove. Through implementing
multitask learning neural networks, the processed signals of the
glove sensors showed high correlation to the ground-truth values.
The parameters of resistance, angular displacement, and power
were analyzed, and the Pearson correlation coefficients between
the processed signals and the ground truth are above 0.92, dem-
onstrating successful signal calibration and noise mitigation. This
instrumented glove with the improved calibration will be a better
recording tool for future assessments of spasticity in patients.
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neural network predictions to the ground truth. The parameters of
a) resistance, b) angular displacement, and c) power are measured by
three users (each represented by a different color) across five test days.
Each box-and-whisker symbol represents 20 test runs.
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