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Abstract

A proposal is made for representing the knowledge learners
acquire from examples in terms of subgoals and methods.
Furthermore, it is suggested that test problems can also be
represented in terms of the subgoals and methods needed to
solve them. Manipulations of examples can influence the
particular subgoals and methods learned. Thus, transfer can be
predicted by the overlap in the leamned subgoals and methods
and those required to solve a novel problem. A subgoal is an
unknown entity, numerical or conceptual, that needs to be
found in order to achieve a higher-level goal of a problem. A
method is a series of steps for achieving a particular subgoal.
The experiment presented here suggests that elaborations in
example solutions that emphasize subgoals may be an
efficient way of helping a learner to recognize and achieve
those subgoals in a novel problem, that is, to improve
transfer. It is argued that conceptualizing problem-solving
knowledge in terms of subgoals and methods is a
psychologically plausible approach for predicting transfer and
has implications for teaching and design of examples.

Introduction

This paper makes two basic claims. One, people can learn
subgoals for solving problems in a particular domain from the
examples they study, and two, a person's success at solving a
novel problem is partly a function of whether he or she
possesses the necessary subgoals to solve that problem. A
subgoal is an unknown entity, numerical or conceptual, that
must be found in order to achieve a higher-level goal of a
problem. A method is a series of steps for achieving a
particular subgoal. No explicit mechanism is proposed here for
how subgoals are learned. Rather, the emphasis is on
identifying subgoals and methods and elucidating the conditions
under which they will be learned. This emphasis was chosen
since it seems important to gather empirical evidence in a
variety of domains concerning the factors that influence whether
subgoals and methods are learned and to integrate these findings
into the simple scheme proposed here, particularly if this
scheme can successfully predict transfer performance and
improve the design of examples. Initial experiments have
provided some support for the above approach for examining
transfer (Catrambone, 1991; Catrambone & Holyoak, 1990).
This paper explores one particular way of designing examples 10
increase the likelihood of conveying subgoals to learners:
Briefly labeling or elaborating the subgoals in examples. Work
in perceptual category learning has suggested that transfer is
improved when subjects are led to focus on useful distinctions
(categories) during training (e.g., Medin, Dewey, & Murphy,
1983). Subgoal learning may perhaps be viewed as a form of
category learning and thus, may also benefit from manipulations
that serve to highlight subgoals.
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It is argued that successful learners acquire useful subgoals
and methods for solving problems in a particular domain. The
meaning of "useful" is operationally defined as those subgoals
and methods that can be used to solve some corpus of target
problems. If a learner has learned a particular subgoal, then he
or she is more likely to recognize the need to find that subgoal
in a novel problem. Even if the method for achieving that
subgoal in the novel problem is new or requires a modification
of an already-learned method, the learner who recognizes the need
to achieve a particular subgoal will at least have some guidance
for recruiting useful background knowledge to achieve the
modification compared to a learner who does not possess the
subgoal. Thus, subgoals provide a control structure to guide
problem solving and transfer.

For example, consider a learner who studies a worked-out
physics mechanics problem involving a block resting on an
inclined plane. Perhaps the problem asks what the angle of
incline has to be in order for the block to start sliding down the
plane given that other things such as the block's mass and the
coefficient of friction were known. A leamner could memorize
the steps for solving this problem such as picking a coordinate
system with the x-axis parallel to the plane (rather than parallel
to the problem solver's perspective) and performing the
trigonometry for dealing with the angle of incline. However,
the learner might not realize that most of these steps collapse
into methods for achieving various subgoals. These subgoals
might include high-level ones such as finding the opposing
forces and equating them as well as lower-level subgoals such as
splitting the forces into those acting along the x- and y-axes.
Thus, when given a "simpler" problem such as determining how
hard one would have to push a block resting on a flat table in
order to just get the block to start moving, the learner could be
at a complete loss. Many of the steps from the example, such
as those involving the trigonometry, are no longer needed,
except in a trivial way. If the learner had learned only a series of
steps from the example, he or she would have little guidance in
determining which ones should be eliminated or adapted for the
new problem. Conversely, if the leammer did have his or her
knowledge organized hierarchically into a series of subgoals,
then the learner would be in a better position to separate the
steps into those that were necessary for the current subgoals
(such as equating the opposing forces) and those that might not
be necessary (such as choosing a coordinate system that is not
horizontal and vertical).

Prior work has demonstrated that when learners study one or
two worked-out example problems, such as algebra problems
dealing with two workers completing some task together, they
can solve isomorphic problems (Reed, Dempster, & Ettinger,
1985). For instance, subjects might study an example in which
the workers' rates are given and the goal is to determine how
long one of the workers works given that the other worker's
time is known. The difficulty emerges when learners are faced
with non-isomorphs, that is, problems requiring a modification
of the old procedure, For example, in Reed et al.'s study, a non-
isomorphic test problem might express one worker's rate in
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terms of the other worker's rate. Subjects typically had
difficulty solving non-isomorphs. Part of the difficulty appeared
to be that subjects formed subgoals such as "find the two
numbers associated with worker A and multiply them together"
rather than subgoals such as "find each worker's rate" and "find
each worker's time." In problems which did not have two
numbers associated with a worker, perhaps because the ratc was
a variable, subjects were often unable to solve the problem.

The poor transfer performance that is typically found in
studies may partly be due to a failure to identify the necessary
knowledge components that should be conveyed to leamers to
help them solve novel problems. It is claimed here that these
components can be viewed as subgoals. The goal of the current
experiment was to manipulate the subgoals conveyed to learners
via examples and examine transfer effects. Cognitive
architectures such as ACT* (Anderson, 1983), PUPS (Anderson
& Thompson, 1986), and SOAR (Laird, Newell, &
Rosenbloom, 1987) have mechanisms for predicting transfer.
For example, ACT* predicts transfer of procedures by measuring
overlap of old and new production rules (see also Singley &
Anderson, 1989). However, these models are quite complex and
many aspects of the models, such as chunking and
proceduralization, are not necessary to derive useful predictions
about learning from examples. Research utilizing the approach
advocated here should allow the development of a relatively
simple model to predict learning from examples as well as
provide constraints on more complete models of cognition.
This approach, if successful in terms of making useful
predictions, could be used by researchers and textbook writers
fairly easily as a practical guide for designing better examples
(to improve learning) and test items (to improve diagnosticity).

In some sense, the greatest value of the approach described
here may be its emphasis on the effort required by the teacher or
researcher to identify the useful subgoals and methods in a
domain. That is, assuming that examples do convey subgoals
and methods, it is necessary to first determine what the useful
ones are, and then to create examples to convey them. It is not
claimed that the useful subgoals and methods can be identified in
any algorithmic way. The approach advocated here for
determining subgoals and methods is to identify a target set of
problems that one wants students to be able to solve. Then
solutions to these problems should be written out. These
solutions are then analyzed in terms of the steps for achieving
certain unknowns, either numerical or conceptual, in a
hierarchical fashion. For example, in the physics problems
discussed earlier, a high-level subgoal would be to equate the
forces along the x-axis. This high-level subgoal will be
achieved by first satisfying a lower-level subgoal such as finding
the various forces acting along the x-axis. This subgoal can be
satisfied by first satisfying the subgoal of identifying all the
forces in the problem and breaking them into their x- and y-
components. This subgoal decomposition can continue until
one reaches the level of mathematical operations. It is a
judgment call as to how much decomposition one feels is
necessary to represent subgoals and methods at a useful level.
In any case, the subgoals and methods identified by the
researcher or teacher are at least open 1o inspection by others and
can be debated.

Experiment
The experiment presented here examined subjects' ability to
solve permutation and combination problems in probability.
This domain was chosen because prior work indicated that
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training and test problems. For example, Ross (1989;
Experiment 1B) had subjects study example probability
problems, such as ones involving permutations, and then solve
several test problems. The entities (e.g., computers, cars,
scientists) in the examples and test problems were manipulated.
For instance, Table la presents a permutation problem
involving the determination of the probability of scientists
choosing particular computers. The equation presented to
subjects in Ross (1989) in order to solve this example was
1/[n(n-1)...(n-r+1)]. Test problems included some subjects
finding the probability of students choosing particular cars while
other subjects had to find the probability of particular students
being assigned to particular cars (i.e., inanimate objects
“choosing” humans).

Corresponding roles are held by the humans and inanimate
objects in the example in Table la and the test problem
involving students choosing cars. That is, the mathematical
roles of the humans (scientists and students) and the inanimate
objects (computers and cars) are identical: the inanimate objects
provide the values for n and for r while the humans provide the
value only for r. The second type of test problem, however, has
reversed object correspondences: the humans provide the values
for n and r while the inanimate objects provide the value only
for r. Ross found that subjects were more successful solving
the first type of test problem than the second, presumably
because their problem solving was guided to some degree by an
object mapping approach. That is, if humans provide the value
of n in the examples, the subjects were likely to assign them
this role in test problems even if it was really an inanimate
object that should be providing the value of n.

Ross also had subjects study and solve combination
problems. An example combination problem might ask for the
probability of the seven hooks nearest the classroom door being
picked by the seven tallest students in a class (see Table 1b).
The equation presented to subjects in order to solve combination
problems of this sort was [h!(j-h)!1/j!, where h is the number of
objects (e.g., students) doing the choosing and j is the number
of objects in the pool from which objects are chosen (e.g.,
hooks). Again, Ross found that if the roles of the objects were
switched from the training examples to the test problems,
subjects would not solve the test problems correctly (that is,
they would switch the values for j and h).

While permutation and combination problems can be solved
using quite different equations, a further examination of these
problem types indicates that they are similar at a fundamental
level. Both types of problems can be analyzed by considering
the individual event probabilities that contribute to an overall
probability. For example, in the permutation problem
involving scientists choosing computers (Table 1a), the overall
probability can be calculated by explicitly considering each of
the individual probabilities. This approach is demonstrated in
the solution provided in Table 2c. The combination problem in
Table 1b involving students and coathooks can be analyzed in a
similar way:

Probability of one of the seven tallest students getting a hook
near door = 7/17

Probability of one of the remaining six tallest students getting a
hook near door = 6/16

Probability of one of the remaining five tallest students getting
a hook near door = 5/15, etc

Lx6 « *»lo___T7' ___ _overall probability
So, 17 16 11 17*16*..*11



Table 1
Permutation and Combination Problems

a.) The supply department at IBM has to make sure that scientists get computers. Today, they have 11 IBM computers and 8 IBM
scientists requesting computers. The scientists randomly choose their computer, but do so in alphabetical order. What is the
probability that the first 3 scientists alphabetically will get the lowest, second lowest, and third lowest serial numbers,
respectively, on their computers?

b.) The Happy House Nursery School has had 17 hooks put up in the hall for the coats of their 14 students, with each student using
one hook. The students are each randomly assigned a hook as they come in one morning. What is tha probability that the 7 hooks
closest to the classroom door are assigned to the 7 tallest students?

Table 2
Solution Types Used in Experiment for Problem in Table la

a.) Equation Solution
1
The equation needed for this problem is n*(n-1)°.."(n-r+1)_ |n this problem n = 11 and r = 3. So,

1 =-1_ = overall probability
11 *10* 9 990

b.) Equation+Elaboration Solution:
1

The equation needed for this problemis N “ (0 - 1) " .. * (0 -1 + 1) This equation allows one to determine the probability of the
above outcome occurring. In this problem n =11 and r = 3. The 11 represents the number of computers that are available to be
chosen while the 3 represents the number of choices that are being focused on in this problem. The equation divides the number of
ways the desired outcome could occur by the number of possible outcomes. So, inserting 11 and 3 into the equation, we find that

1 =—1_ - overall probability
11 10 * 9 990

c.) Subgoal Solution:
1

The equation needed for this problemis N “ (N - 1) * ... * (0 - T + 1)  |n this problem n = 11 and r = 3. However, another way of
approaching the problem is to think of it in the following way:

Probability of the first scientist (who comes first alphabetically) getting the computer with the lowest serial number = 1/11.
Probability of second scientist getting second lowest serial number = 1/10.
Probability of third scientist getting third lowest serial number = 1/9.

4«1 -1 __1

So, 11 10 9 990

= overall probability

d.) Numerator/Denominator-Subgoal Solution:
1

The equation needed for this problemis M * (0 - 1) * .. * (0 -1+ 1), |n this problem n = 11 and r = 3. However, another way of
approaching the problem is to think of it in the following way:

Of the 11 computers that the first scientist has to choose from, only 1 of them would be acceptable, since only 1 has the lowest
serial number. So, the probability of the first scientist getting the computer with the lowest serial number = 1/11.

Of the 10 remaining computers that the second scientist has to choose from, only 1 of them would be acceptable, since only 1 has the
lowest remaining serial number. So, the probability of the second scientist getting a computer with the lowest remaining serial
number = 1/10.

Of the 9 remaining computers that the third scientist has to choose from, only 1 of them would be acceptable, since only 1 of has the
lowest remaining serial number. So, the probability of the third scientist getting the computer with the lowest remaining serial
number = 1/9.

N

1. _1__ overall probability
So, 11 10 9

1
990
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The permutation problem solution presented in Table 2¢
might help learners form the subgoal of finding each event
probability (e.g., the probability of the first scientist getting the
computer with the lowest serial number, the probability of the
second scientist getting the computer with the second-lowest
serial number, etc). In particular, it should help learners form
the subgoal of finding the entity being chosen and using the
value associated with that entity as the starting value for the
denominator. Thus, subjects who study examples using this
solution approach are predicted to be more likely to be able to
find event probabilities in cases where the roles of the inanimate
objects and humans are different from the examples (see Table
3b) compared to subjects who study examples using only the
permutation equation (Table 2a). This latter group presumably
learns only to place numbers into an equation. Furthermore,
learners who study examples emphasizing each event probability
might be more likely to represent the event probabilities
correctly in combination problems for which the numerators are
no longer simply "1" (such as the combination problem in
Table 1b). That is, because these subjects are assumed to be
more likely to be able to focus on the individual event
probabilities, they may have a better chance of representing
them correctly compared to learners who do not have this focus.
However, this generalization may be too difficult for learners
when solving combination problems. Since the solution
presented in Table 2c¢ does not emphasize finding the numerator,
but rather just involves placing a "1" in each numerator,
subjects who study this solution type might not form the
subgoal of finding the numerator from the number of
"acceptable” outcomes. Subjects may require example solutions
that explicitly highlight how the numerator is chosen in the
permutation examples in order to form a subgoal for dealing
with the numerators. A solution approach that might
accomplish this is presented in Table 2d.

Another concern in this study was whether subjects might
misinterpret the combination problems as permutation
problems. If that were to happen, then subjects would be likely
to use "1" in the numerators of the probabilities for all
problems regardless of the examples they studied. In order to
investigate this issue, some subjects were given combination
problems that contained a clarification indicating that order did
not matter. Subjects who study examples demonstrating the
solution approach in Table 2d might outperform subjects who
study examples using the approach in Table 2c on combination
problems containing a clarification. This would occur because
the latter group will presumably not have the subgoal for
finding the number of acceptable outcomes to put in the
numerator for each probability and thus, they would be more
likely to simply use "1" in the numerator.

Method
Subjects. Subjects were 90 students from introductory
psychology classes at the Georgia Institute of Technology.

Materials and Procedure. All subjects studied three
isomorphic example problems dealing with permutations that
involved humans choosing objects (including the problem in
Table 1a). Two factors were manipulated. The first was the
type of solution provided to the examples subjects studied. The
examples either provided a solution using the permutation
equation (the Equation-Only group; see Table 2a for an
example), the permutation equation plus an elaboration of what
the numbers in the equation represented (the Equation-
Elaboration group; Table 2b), a subgoal-oriented solution that
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emphasized the rationale for the denominator in each probability
(the Denominator-Subgoal group; Table 2c), or a subgoal-
oriented solution that contained a rationale for the denominator
and numerator in each probability (the Numerator/Denominator-
Subgoal group; Table 2d).

The second factor manipulated was whether the test
combination problems contained a clarification about order. The
clarification consisted of the following sentences added on to the
end of the first and second combination problems (see Table 3c,
d), respectively: "It does not matter which of the particular
seven hooks closest to the door these students get, just as long
as it is any one of the seven closest” and "It does not matter
which of the particular six front seats the pitchers get, just as
long as it is any one of the six in the front."

After studying the examples subjects solved the four
problems in Table 3. Subjects could not refer back to the
examples when working on the problems. The first problem
was isomorphic to the examples (see Table 3a). The second
problem was a permutation problem isomorphic to the
examples but had humans playing the roles of »n and r and
objects playing only the role of r (Table 3b). The third and
fourth problems were combination problems. The solutions to
these problems involve both a numerator and denominator that
start at some value and then are decremented. The first
combination problem involves humans picking objects (Table
3c) while the second combination problem involves objects
picking humans (Table 3d).

Results and Discussion

Each problem was scored for whether a subject used the correct
starting number in the denominator and whether the denominator
was decremented appropriately. For instance, the solution to the
second permutation problem is 1/11 * 1/10. If subjects wrote
1/14 * 1/13, confusing the roles of the chairs and secretaries,
they would be scored as having the incorrect starting number of
the denominator but the correct number of decrements. For
combination problems, the numerator and denominator were
both scored for whether the correct starting number was used and
whether they were decremented appropriately. The frequencies
for the various categories listed above were analyzed using the
likelihood ratio chi-square test (G2; Bishop, Fienberg, &
Holland, 1975).

There was no significant difference in performance among the
groups on the first permutation problem that was isomorphic to
the training examples and had humans and objects playing the
same roles as in the examples (Equation-Only: 73%, Equation-
Elaboration: 83%, Denominator-Subgoal: 91%,and
Numerator/Denominator-Subgoal: 91%), G2(3)=3.77, p =.29.

The second permutation problem had objects picking
humans, a reversal from the training examples (see Table 3b).
The major error subjects made was to use the wrong starting
value for the denominator. Many subjects used 14 (the number
of chairs) as the starting point rather than 11 (the number of
secretaries). It was expected that the two subgoal groups would
be more likely to use the correct starting point for the
denominator than the equation groups. However, while the
subgoal groups tended to perform the best, the most striking
result was the poor performance of the Equation-Elaboration
group (Equation-Only: 32%, Equation-Elaboration: 13%,
Denominator-Subgoal: 48%, and Numerator/Denominator-
Subgoal: 41%), G2(3)=7.63, p =.054. It is not clear why the
Equation-Elaboration group did so poorly.



Table 3 -
Test Problems

a.) As part of a new management policy, the Campbell Company is allowing the 20 company-owned vacation cottages to be used for
vacations by their 14 plant managers. If the managers, in order of seniority, randomly choose a cottage from a list, what is the
probability that the manager with the most seniority gets the most lavish cottage, and the manager with the second most seniority
gets the second most lavish, and the manager with the third most seniority gets the third most lavish, and the manager with the
fourth most seniority gets the fourth most lavish cottage?

b.) The secretaries at city hall are supposed to get new chairs this week. Today, city hall received 14 new chairs and there are 11
secretaries requesting them. For inventory purposes, the property manager wants to assign the chairs in the order that they are
unpacked. So, starting with the chair that is unpacked first, he randomly chooses a secretary to receive it, and continues until all
the secretaries have chairs. What is the probability that the first 2 secretaries alphabetically will get the first and second chairs
that are unpacked, respectively?

¢.) The Happy House Nursery School has had 17 hooks put up in the hall for the coats of their 14 students, with each student using
one hook. The students each choose a hook at random as they come in one morning. What is the probability that the 7 tallest students
get the 7 hooks closest to the classroom door?

d.) The Nashville Gnats Baseball team has a bus that has 30 seats. There are 25 players that are going on a road trip to play in a
nearby town. To avoid arguments, the manager randomly chooses a player for each seat, starting with the seats in the front. What
is the probability that the 6 pitchers get the 6 front seats?

Table 4
Performance (Percent Correct) on Various Aspects of Combination Problems as a Function of
Examples Studied and Presence of Clarification

Group
Clarification No Clarification

&K Eq+ Denom NumvDenom m Eq+ Denom  Num/Denom

Only Elab Subgoal Subgoal Only Elab Subgoal Subgoal
(n=11) (n=12) (n=12)  (n=11) (n=11) (n=11) (n=11)  (n=11)
Problem
Combination Problem #1
(people choose objects)
Correct Start for Denominator 82 70 75 80 91 100 91 70
Correct Denominator Decrement 82 60 92 90 82 91 91 80
Correct Start for Numerator 0 0 25 40 9 0 20 10
Correct Numerator Decrement 0 0 33 40 0 0 18 10
Combination Problem #2
(objects choose people)
Correct Start for Denominator 27 30 33 36 27 36 9 27
Correct Denominator Decrement 82 70 92 64 82 B2 82 64
Correct Start for Numerator 0 0 33 46 9 0 9 9
Correct Numerator Decrement 0 0 33 36 9 0 9 9

The third and fourth problems were combination problems  instructional groups on the likelihood of choosing the correct
(see Tables 3c and d). It was hypothesized that subjects might  starting value for the denominator (see Table 4; Clarification:
interpret these combination problems as permutation problems  G2(3)= 49, p=.92, No-Clarification: (;2(3)= 5.29, p=.15). The
and, as a result, the subgoal manipulation would not have as  clarification also did not differentially affect performance on
strong an effect as it could. In order to investigate this decrementing the denominator (Clarification: 62(3)=4.04.

possibility, half of the subjects in each instructional group _ T T

received modified versions of the two combination problems 7 =.26, Nc_)-Clanl_icauon. G (.3) "'.91"’: '82.)' These _resulgs e

that included a clarification about order. If subjects needed the ~ 1Ot SurPrising since the clarification has little relationship to
choosing the denominator and decrementing it appropriately.

clarification in order to be more likely to interpret these Stbilcts wete itch 1655 sucesatinl chaoithd the cansil
problems correctly, then the instructional manipulation might J 5 SDRvs g che.co
numerator on the first combination problem. Unlike the

only produce an effect for subjects who receive the clarification. ) X s
yPp ’ examples, the numerator is not simply "1," rather it is a value

obiecs. Thus, a5 i the cxampies, humans provide ih valug  S&rng a 7 and decrementing o 1. Mot subjects simply used
; ! "1" as the numerator, as in the training examples. For non-

for the denominator. The presence of a clarification did not p . : . 3 ;
seem 1o differentially influence performance for the various 356clanﬁcalxon subjects, there was no significant difference in the



groups' success in choosing the correct starting value for the

numerator as a function of the examples they studied, 62(3) =
321, p =.36. However, for clarification subjects, the subgoal
groups outperformed the equation groups with the

Numerator/Denominator group performing the best, G2(3) =
1125, p = .01. This pattern of results is repeated for
decrementing the numerator,

Subjects were less likely to choose the correct starting value
for the denominator in the second combination problem,
presumably due to the switch in roles of humans and objects;
in this problem objects were picking humans. As in the prior
problem, though, the presence of a clarification did not seem to
differentially influence performance for the various instructional
groups on choosing the correct starting point for the

denominator (Clarification: 62(3) =.24, p = 97, No-
Clarification: 62(3) =258, p = .46). The clarification also
did not differentially affect performance on decrementing the
denominator (Clarification: G2(3) = 3.21, p = .36, No-
Clarification: G2(3) = 1.45, p = .69).

As in the first combination problem, subjects were not very
successful choosing the correct numerator. For non-clarification
subjects there was no significant difference in the groups'
success in choosing the correct starting value for the numerator,
G%(3)=1.80, p =.62. However, for clarification subjects, the
subgoal groups outperformed the equation groups with the
Numerator/Denominator group performing the best, G2(3) =
1203, p = .007. This pattern of results is repeated for
decrementing the numerator.

Conclusions

The results from this study are important because they suggest
that training subgoal recognition facilitates their flexible
application. This conclusion is supported by the fact that the
Numerator/Denominator-Subgoal group was the most likely to
recognize that the numerators of the individual event
probabilities in the combination problems were not simply 1
but rather were a value that represented the number of acceptable
outcomes. Even though these subjects had studied examples
that only used 1 in the numerators, they were sensitized to the
role this value played--presumably via the elaboration during
training--and were able to generalize when faced with novel
problems. This supports the claim that if useful subgoals can
be conveyed to learners then they will be able to solve novel
problems, that is, problems that involve modified or new
methods for achieving those subgoals.

General Discussion
The approach for predicting transfer described in this paper views
problem-solving knowledge in terms of subgoals and methods.
An important task then is to develop rules for predicting when
these subgoals and methods will be learned from examples and
to develop a more theoretically-guided motivation for the rules.
[t has been argued that the relatively simple scheme presented
here can account for transfer effects without considering the
additional complexities of a full model of cognition. Clearly
this simplicity is a virtue only if the approach is reasonably
accurate and can be applied fairly easily to a variety of domains
by different researchers and teachers. While full models of
cognition are extremely valuable, a simpler approach to
predicting transfer, if successful, can help improve instruction in
adirect way. The quality of examples and the diagnosticity of
tests can be improved if instructors and textbook writers become
sensitive to the subgoals and methods that students need to learn
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in a particular domain. The exercise of identifying these
components is valuable in its own right since it would make
researchers and instructors aware of the building blocks learners
need to acquire in order to solve novel problems successfully.
Examples can then be devised that convey the subgoals and
methods. Although converging evidence is certainly needed, the
present results are consistent with predictions that learners who
acquire a more hierarchical subgoal structure will be more
successful on novel problems than learners who learn a linear
series of steps.
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