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Article

High-resolution mapping of cancer cell networks
using co-functional interactions
Evan A Boyle1 , Jonathan K Pritchard1,2,3 & William J Greenleaf1,4,*

Abstract

Powerful new technologies for perturbing genetic elements have
recently expanded the study of genetic interactions in model
systems ranging from yeast to human cell lines. However, technical
artifacts can confound signal across genetic screens and limit the
immense potential of parallel screening approaches. To address
this problem, we devised a novel PCA-based method for correcting
genome-wide screening data, bolstering the sensitivity and speci-
ficity of detection for genetic interactions. Applying this strategy to
a set of 436 whole genome CRISPR screens, we report more than
1.5 million pairs of correlated “co-functional” genes that provide
finer-scale information about cell compartments, biological path-
ways, and protein complexes than traditional gene sets. Lastly, we
employed a gene community detection approach to implicate core
genes for cancer growth and compress signal from functionally
related genes in the same community into a single score. This work
establishes new algorithms for probing cancer cell networks and
motivates the acquisition of further CRISPR screen data across
diverse genotypes and cell types to further resolve complex cellular
processes.
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Introduction

Understanding the complex biological underpinnings of human

disease has long been a goal of network biologists (Barabási &

Oltvai, 2004; Barabási et al, 2011). Because genes vary in their role

and importance across diverse cell types, it has become increasingly

clear that characterizing tissue- and cell type-specific regulation of

chromatin accessibility (Roadmap Epigenomics Consortium et al,

2015; Breeze et al, 2016), chromosome looping (Javierre et al, 2016;

Mumbach et al, 2017), and gene expression (GTEx Consortium et al,

2017) will be central to developing a coherent understanding of

disease etiology. Differences in biological pathway importance

across tissues are especially vexing when modeling diseases such as

cancer that specifically exploit tissue-specific pathways and prefer-

entially acquire mutations to regulate them. Set against these chal-

lenges, the advent of new genetic perturbation systems scalable to

the size of the human genome offers an unprecedented opportunity

for the study of cancer cell networks and associated tissue-specific

signaling paradigms that do not exist in single-celled model organ-

isms like yeast (Gilmore, 2006; Fontana et al, 2010).

Genome-wide CRISPR screens (Shalem et al, 2014; Wang et al,

2014) have already enabled insights into cell trafficking (Gilbert

et al, 2014), drug mechanism of action (Shalem et al, 2014; Wang

et al, 2014; Doench et al, 2016), and infectious disease (Park et al,

2017; Gavory et al, 2018). Yet, while these methods allow every

gene to be perturbed and scored for its effect on a phenotype of

interest, this score does not provide direct insight into the logic of

the biological pathways involved in mediating the phenotype.

Instead, these screens report one-dimensional vectors of values:

Each gene falls on a single spectrum from dis-enriched to enriched.

Determining the cellular logic that integrates effects across genes

requires either specialized experimental design or extensive post-

processing of high-throughput screen data. Presently, there are three

prominent strategies for functionally characterizing genes genome-

wide based on observations from high-throughput screens: First, hit

genes are frequently enriched in curated gene sets that reflect

known biological processes or cellular components; second, combi-

nations of genetic perturbations can yield non-additive effects that

describe how information flows through sets of genes; and lastly,

pairs of genes that exhibit correlated effects across diverse cell lines

or conditions often lie in the same cell pathways. Enrichment in

curated gene sets can clarify the biological processes involved by

implicating cell pathways or compartments, but interpreting enrich-

ments can be extremely difficult (Rhee et al, 2008; Timmons et al,

2015) and new experimental methods have facilitated the pursuit of

the other strategies.

Combinatorial sgRNA platforms (Bassik et al, 2013; Kampmann

et al, 2015) disrupt multiple genes per cell to identify epistatic inter-

actions that can unmask gene logic. These platforms are the
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successors of double-knockout array technology used in yeast to

identify genetic interactions for 90% of all genes (Tong et al, 2004;

Costanzo et al, 2010, 2016). While these methods have the power to

directly test hypothesized genetic interactions, technological

constraints have limited individual combinatorial sgRNA studies to

measuring interactions for only a small fraction of all pairs of

human genes (Ogasawara et al, 2015; Wong et al, 2016; Han et al,

2017; Shen et al, 2017; Horlbeck et al, 2018). Ascertaining appropri-

ate gene pairs for such phenotyping is not trivial, especially for

synthetic interactions where neither genetic perturbation exhibits an

effect on its own, although algorithms to overcome this challenge

are under development (Medina & Goodin, 2008; preprint: Deshpande

et al, 2017). Interpretation of measured interactions is also compli-

cated by the fact that the extent to which genetic interactions persist

across cell types or samples is unknown.

Parallel screening designs approach the identification of interact-

ing genes in a fundamentally different manner. All genes of interest,

potentially comprising the entire genome, are screened in a diverse

panel of cell lines, and the perturbation effect sizes across these cell

lines are recorded as a gene perturbation profile for every gene

(Fig 1A and B). The distinct genetic and epigenetic features of each

cell line modify its susceptibility to disruption of pathways, orga-

nelles, or even individual protein complexes. In general, two genes

that have correlated gene perturbation scores across many cell lines

are inferred to be functionally related, with greater correlation

implying greater shared function, an observation first made in yeast

(Fraser & Plotkin, 2007). More recently, data from only 6 cell lines

sufficed to verify essential gene pathways (Hart et al, 2015);

however, a larger panel of 14 parallel AML line CRISPR screens

allowed more systematic validation of cancer metabolic and signal-

ing pathways (Wang et al, 2017). The publication of hundreds of

CRISPR screens in cell lines drawn from diverse cell lineage and

mutational backgrounds has invited even broader surveys of co-

essentiality (Meyers et al, 2017; Data ref: Meyers et al, 2017). One

study has dissected the composition of essential protein complexes

(Pan et al, 2018), another has leveraged the natural occurrence of

gene activating mutations to ascertain likely genetic interactions

(Rauscher et al, 2018), and other work accessible as a preprint has

focused on the organization of cancer growth pathways (preprint:

Kim et al, 2018). In all these cases, interactions identified from

correlated gene profiles operated on multiple levels of cellular regu-

lation, validating parallel screening as a powerful tool for recon-

structing cell networks.

While effective, parallel screening approaches require more

substantial post-processing of results than combinatorial screens.

Studies involving parallel screens are straightforward to design, but

technical variation in how the screens are performed as well as copy

number variation across cell backgrounds can confound the results

(Zhang & Lu, 2009; Aguirre et al, 2016). Recent work has shown

that copy number variation can underlie the strongest hits in

CRISPR-knockout screens, and multiple groups have proposed

corrective algorithms to confront this problem (Pommier, 2006;

Meyers et al, 2017; Data ref: Meyers et al, 2017; preprint: Wu et al,

2018). Additional heuristics aimed at increasing the quality of

genetic interactions identified from parallel genetic screens have

included discarding entire screens with noisy effect sizes, setting an

effect size threshold for correlating genes, and capping the number

of interactions per gene (Wang et al, 2017; preprint: Kim et al,

2018; Pan et al, 2018); however, reliance on these heuristics

prevents truly unbiased genome-wide analyses (McFarland et al,

2018). Furthermore, as the scale and diversity of published genetic

screens grow, so will the need for new statistical techniques that

can correct for technical variation while preserving even small

levels of true signal.

In this work, we develop a flexible, unsupervised approach for

removing confounding from parallel genome-wide CRISPR screens.

We apply this approach to the 436 CRISPR screens of Project

Achilles and compute corrected gene profiles for all reported genes.

We identify more than 1.5 million pairs of significantly correlated

co-functional genes, substantially more than reported by other stud-

ies. Finally, we detect functionally delineated gene communities and

characterize their specificity with respect to cell lineage and muta-

tional backgrounds. Using these gene communities, we provide new

insight into cancer cell network topology including scores for each

gene’s potential to drive a pathway important for cancer prolifera-

tion.

Results

Correcting for technical confounding found in parallel genetic
screen data

We first downloaded CRISPR screen gene summary data corrected

for copy number confounding from the Project Achilles data deposi-

tory (Meyers et al, 2017; Data ref: Meyers et al, 2017) and matched

RNA-Seq and mutation data from the Cancer Cell Line Encyclopedia

(CCLE) website (Barretina et al, 2012). The results of the CRISPR

screens form a matrix, where each row in the matrix serves as a

gene essentiality profile that summarizes the knockout phenotype of

the gene across the 436 cell lines (the columns of the matrix). As

reported by others, the degree to which two gene essentiality pro-

files (rows) are correlated reflects their functional relationship. This

functional relationship can reflect many gene–gene relationships,

including membership in the same metabolic pathway or protein

complex, and depends on the mutations present in the cell lines

tested (Fig 1A and B; Wang et al, 2017; Pan et al, 2018).

Because technical factors in the dataset could drastically skew

Pearson’s correlation values, we explored a large set of control

genes expected to have little to no phenotype in the context of

cancer proliferation: olfactory receptors [as classified by the

HUGO Gene Nomenclature Committee (HGNC)]. Some olfactory

receptors shared identical sgRNAs, and in these cases, we

retained only one olfactory receptor to avoid duplicate gene pro-

files. Within this set, all pairwise correlations were calculated

under the expectation that strong effect sizes would indicate tech-

nical confounding. Under a model of uniformly null phenotypes,

we would expect correlations to be tightly distributed around 0.

In fact, olfactory receptors often exhibited profiles that were

highly correlated across genetic backgrounds, strongly suggesting

the presence of technical confounding.

To investigate the unanticipated signal of essentiality in olfactory

receptors, we evaluated the covariance of the knockout growth

phenotypes across cell lines using principal components analysis

(PCA). We performed PCA on the matrix of growth defects from

each olfactory receptor (row) and cell line background (column;
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Fig 1C). The resulting principal components describe how likely

each cell line is to exhibit essentiality among olfactory receptors. If

the essentiality measurement of each olfactory receptor was being

driven by gene function or chromosomal locus, these profiles—a

single number per cell line—would be expected to be poorly predic-

tive genome-wide. However, we found that the top five principal

components explained significantly more variance than expected by

permutation testing, with over half of the variance explained by the

first principal component alone (Fig EV1A). We repeated this

approach with a curated set of nonessential genes in place of olfac-

tory receptors and reproduced the loadings on the first principal

component, demonstrating that signatures are robust to choice of

control gene set (R = 0.92, Fig EV1B).

The loadings on the first principal component, which again

explained most of the variance in olfactory receptor scores, were

highly correlated with the variance in effect size estimates for olfac-

tory receptor genes for each cell line (R = �0.89, Fig EV1C). One

possibility is that regressing on the variance of each cell line acts as

a technical correction, re-centering and scaling the effect sizes in a

manner similar to that performed in a similar study (Rauscher et al,

2018) and recommended in a recent article (McFarland et al, 2018).

In this case, our scaling would roughly equalize variance in biologi-

cal effect sizes among negative control genes. Alternatively, some-

thing that would be well captured by a single number per cell line

such as cell health or sensitivity to double-strand breaks would also

be consistent with prior work investigating CRISPR screen

specificity and could produce the same relationship with variance in

cell line effect sizes (Morgens et al, 2017; Rosenbluh et al, 2017). In

this case, one might expect mutational status in certain genes to

predict the loading on cell line signatures, but the presence of

coding or loss-of-function mutations in all recorded genes was not

associated with principal component loadings (Wilcoxon rank-sum

test, q < 0.1 for all genes). In any case, re-centering and scaling is

not likely to underlie the four other orthogonal candidate signatures

of confounding.

To produce an improved dataset, we first subtracted all five

candidate signatures of confounding from each gene’s essentiality

profile (Fig 1C). Using these corrected gene essentiality profiles, we

again computed the correlation of all pairs of genes. In many cases,

as seen for peroxisome genes, learned relationships before and after

correction appeared unchanged, but in others, as seen for spliceo-

some scaffold proteins, previously unremarkable sets of genes

appeared tightly related (Fig 2A and B). Pairs of olfactory receptors

that were persistently correlated after correction were often in very

close physical proximity on chromosome arms. As observed previ-

ously (Meyers et al, 2017; Data ref: Meyers et al, 2017), physical

proximity often increases the rate of correlation even after CERES

copy number correction (Fig EV1D), suggesting either that there are

differences in local toxicity to dsDNA breaks or that copy number

variation confounding persists at short physical distances.

Putting aside potential confounding due to physically proximal

genetic perturbations, we observe other clear advantages to working
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Figure 1. Detecting co-functional interactions from parallel genetic perturbation screens.

A, B Diversity in (A) mutational background and (B) pathway activity produce correlated gene essentiality profiles of knockout effect sizes for members of the same
pathway. Cell lines with inactivating mutations in or downregulation of biological pathways are impervious to gene knockout. Discrete and continuous differences
across cell lines can thus be summarized by a correlation coefficient.

C Nonspecific sources of variation across cell lines can be removed by learning principal components from a set of control genes that should not contain biological
signal and subtracting these components from the raw gene profiles.
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with corrected gene essentiality profiles. By creating cell line profiles

from all gene knockout effects and comparing the correlations for

every pair of cell lines before and after correction, we observed

marked boosts in accuracy for predicting shared primary tissue

(AUC increased from 0.667 to 0.841) and for predicting secondary

tissue (AUC increased from 0.637 to 0.788; Figs 2C and EV1E). At

the same time, the median cell line profile correlation dropped from

~0.85 to nearly 0 following correction (Fig EV1F), suggesting that

mean effect sizes per gene are lost in the correction process,

although this does not affect calling of correlated gene pairs.

Identification of over 1 million co-functional interactions from
corrected gene essentiality profiles

To detect gene pairs with significantly correlated gene essentiality

profiles, or “co-functional” genes, we derived P-values for the
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Figure 2. Constructing a set of co-functional genes from all pairs of human genes.

A Demonstration of co-functional gene calls before and after correction for three example gene sets: olfactory receptors that exhibit nonspecific interactions in the raw data,
peroxisome genes that show persistent co-functionality before and after correction, and spliceosome complex members that show correlation only after correction.

B Correlation for two small nuclear ribonucleoproteins, SNRPD1 and SNRPD3, that required for splicing, before and after correction of effect sizes from 436 cell lines. Fit
lines are from linear regression.

C Area under the receiver operating characteristic (ROC) curve for using cell line profiles to determine whether two cell lines share the same primary tissue of origin.
Cell line profiles (the vector of effect sizes across all genes for each cell line) are more correlated among cancers of the same type following correction.

D The distribution of pairwise correlations of corrected gene essentiality profiles genome-wide is greatly skewed to more positive values compared to pairs of olfactory
receptors. Significance thresholds indicated with triangles.

E Highly expressed essential genes regularly have on the order of one thousand co-functional interactions.
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observed correlations from an empirical null distribution. To build

the distribution, we used the pairs of olfactory receptors described

above as a background set, assuming that these receptors would not

affect cancer growth. Correlations across all pairs of olfactory recep-

tors were roughly normally distributed and centered at zero.

Observed correlations across corrected gene essentiality profiles

genome-wide for all other genes greatly exceeded expectation from

the null model (Fig 2D). Thus, we assigned p-values for every

observed correlation, whether positive or negative, using a normal

distribution fit to the correlations of pairs of olfactory receptors.

Across all 17,634 genes tested, 1,528,726 co-functional interactions,

equal to 0.98% of all possible pairs of genes, met a false discovery

rate of 10%. A similar procedure on raw gene essentiality profiles

yielded only 30,761 interactions. Downsampling of the number of

cell lines included in the analysis shows that more cell lines tighten

the null distribution and increase power to discover co-functional

interactions (Fig EV1G).

We immediately noted that highly expressed essential genes

(Hart et al, 2014) generally possessed hundreds of co-functional

interactions (Fig 2E). One might expect universally essential genes

to lack identifiable co-functional gene partners, but this was rarely

the case. Furthermore, we confirmed past reports (Barretina et al,

2012; Hart et al, 2015; Wang et al, 2015) that genes that are

either highly or invariantly expressed across tissues on average

possess greater knockout effects (Fig 3A). Remarkably, this holds

true not only across cell types, but even in the context of expres-

sion data from a panel of lymphoblastoid cell lines (LCLs; Fig 3B;

Pickrell et al, 2010), suggesting that broad mechanisms of gene

regulation and not tissue specificity are responsible for the trend.

As reported previously (Wang et al, 2015, 2017; Pan et al, 2018),

differences in essentiality across genes thus appear quantitative

and not strictly binary in each cell line. To facilitate exploration

of our co-functional gene dataset, we have developed a shiny app

that visualizes all genes co-functional to the query gene with

added functionality for overlaying interactions from STRING,

published CRISPR screens, or custom files containing scores per

gene.

Gene co-functionality captures variation in drug susceptibility
across cancer cell lines

Past analyses (Hart et al, 2015; Wang et al, 2017) explored cell

signaling in a restricted number of cancer cell lines (Fig 4A).

With 436 samples, a much broader view of the diversity of

signaling is possible, including differences across diverse cell

types of origin. For MAPK and p53 pathways, the profiles of

many genes hew closely to the TP53 status of the cancer,

producing two well-separated clusters with predictable effect

sizes across cell lines (Fig 4B). Excluding a handful of outliers,

TP53 loss-of-function mutants (Barretina et al, 2012) do not

respond to TP53 or MDM2 knockout or treatment with Nutlin-3,

an anti-MDM2 drug. TP53 wild-type cells, in contrast, grow

following TP53 knockout, die following MDM2 knockout, and

exhibit slowed growth following treatment with Nutlin-3. These

observations suggest that negative regulation of TP53 is robust

across cancer types, at least for its strongest co-functional genes.

For example, two proposed drug targets, the deubiquitinase USP7

(Gavory et al, 2018) and phosphatase PPM1D (Ogasawara et al,

2015), consistently mirror TP53-knockout phenotypes, proving

themselves robust to cell lineage and mutations in other biologi-

cal pathways.

The essentiality of BRAF and its co-functional gene partners

paints a similar picture (Fig 4C), primarily with respect to mela-

noma cell lines. The knockout effects of genes co-functional to BRAF

depend considerably on BRAF V600E status, with BRAF V600E lines

especially sensitive to BRAF, MAP2K1, and MAPK1 knockout, which

another group independently reported (preprint: Kim et al, 2018).

Thus, there is strong evidence that genes co-functional to central

cancer growth genes mediate their essentiality through their

involvement in those genes’ pathways.

Incorporating drug–gene associations into gene networks

By correlating the maximal activities of anticancer compounds in

each cell line to the gene profiles derived from knockout effects, it is

possible to test for drug–gene associations and then combine drugs

and genes into a single network (Figs 4D and EV2). To explore

examples of drug–gene interactions, we examine interactions with

genes encoding the four ErbB proteins, well-characterized receptor

tyrosine kinases (RTKs) that act upstream of PI3-K and MAPK path-

ways and complex with each other to mediate growth signaling

(Medina & Goodin, 2008). ErbB family members are highly drug-

gable and have been targeted by erlotinib, an anti-EGFR drug, and

lapatinib, a dual anti-HER2, anti-EGFR drug. We observe that lapa-

tinib-sensitive cell lines are sensitive to knockout ErbB family

members (EGFR, ERBB2/HER2, and ERBB3/HER3), whereas erlo-

tinib-sensitive lines are associated with sensitivity to EGFR and no

other ErbB member.

For each drug compound, we tested the enrichment of KEGG

terms among drug–gene associations. The most enriched term for

each drug tended to confirm known biology (Fig 4E): Nutlin-3

upregulates p53 signaling, PLX4720 treats melanoma, and sora-

fenib modulates MAPK signaling. AZD6244 targets MAPK signal-

ing pathways important for melanoma, explaining the extreme

enrichment for “melanoma” genes. Enrichment for SNARE

proteins for lapatinib associations suggests that RTK receptor
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trafficking is influencing the drug–gene network. Interestingly, L-

685458, a gamma-secretase inhibitor, was most enriched for

proteasome genes. There is debate in the literature whether

gamma-secretase inhibitors, including L-685458, mediate their

cancer-killing effects via gamma-secretase or by the proteasome

(Clementz & Osipo, 2009). Cancer models often lack growth

phenotypes when treated with gamma-secretase inhibitors,

suggesting that these inhibitors hit multiple pathways such as the

proteasome. In this panel, it is thus plausible that proteasomal

inhibition is the most important factor.
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D Illustration of the top five drug–gene associations for each of the drugs in (A) plus their strongest co-functional genes. Beige edges represent positive correlations,

gray negative.
E Top KEGG pathway enriched for the top correlated genes of each drug shown.
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Enrichment of co-functional genes in curated gene set databases

To evaluate the extent to which co-functional genes reflect distinct

kinds of functional relationships, we calculated the global enrich-

ment of co-functional gene relationships across gene sets main-

tained by the Molecular Signatures Database (Subramanian et al,

2005). Curated gene sets consistently contained more co-functional

pairs of genes than expected by chance: twofold enrichment for

genes annotated with the same biological process or molecular func-

tion, more than threefold for cellular component, and fourfold for

KEGG pathways (Fig 5A; Ashburner et al, 2000; The Gene Ontology

Consortium, 2017). With respect to reconstituting curated gene sets,

our co-functional gene dataset exhibits lower enrichment than

protein mass spectrometry but contains over 100 times more poten-

tial interactions (Rolland et al, 2014). Approximately one-third of

biological process and 60% of cellular component terms were
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Figure 5. Comparison of gene co-functionality to diverse gene annotation databases.

A Pairs of genes annotated with the same Gene Ontology term (BP = biological process, MF = molecular function, CC = cellular component) or Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway are enriched for co-functional interactions. Pairs of genes with annotated interactions from STRING, especially high-confidence
(> 500) interactions, are also enriched. Pairs of genes belonging to the same protein complex as curated in the Comprehensive Resource of Mammalian Protein
Complex (CORUM) core complex database exhibit the greatest enrichment.

B Percent of gene sets containing at least 5 pairs of co-functional genes and, among those, the fraction that are enriched for co-functional interactions above degree-
matched random graphs.

C Rates of co-functional gene calls for gene pairs binned by their path length in the STRING experimentally derived PPI network. “Inf” (infinite) refers to genes that lie
in separate components.

D Co-functional call rates among CORUM protein complex edges split by complex size. The binomial expectation for the number of edges called as co-functional is
shown in gray. Co-functionality rates per complex are bimodal and greater for large protein complexes.

E Extension of (D) to larger protein complexes, with the number of edges expressed as the fraction of all possible edges in the complex, equal to ð n
2
Þ. The area of each

point reflects the number of multiple protein complexes with the same complex size and edge density. Complexes with fewer co-functional genes than expected
according to the average rate are shown below the dashed line. The 90% binomial confidence interval for random co-functionality calls given the average rate is
shown in gray. Large complexes again exhibit more co-functional interactions.

F Reconstruction of the Mediator complex from gene co-functionality, shown in a force-directed graph. Subunits in the same domain (head, middle, tail, or CDK
effector) of the complex are more likely to be co-functional than subunits in different domains. The area of each gene node corresponds to its loading on the first
principal component of the corrected gene essentiality profile matrix.

G Mediator subunit knockout effect sizes in each cell line can be summarized by a “Mediator score”, the first principal component score for each cell line, plotted
against the knockout phenotype of specific genes (first four facets) or a pool of all genes in the complex (bottom row).
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enriched above levels seen for matched random networks (Fig 5B,

see Materials and Methods). We also performed gene set enrichment

on genes with no co-functional gene edges and found that underrep-

resented pathways were mostly limited to genes involved in lineage-

specific (e.g., muscle) development and differentiation (Fig EV3A).

Despite these blind spots, we conclude that many diverse biological

pathways, not simply pathways typically associated with essential-

ity, contribute to gene co-functionality.

Co-functional gene edges overrepresented among protein–
protein interactions

Relative to curated gene sets, reported protein–protein interactions

exhibited greater enrichment of co-functional genes. This was true

for large-scale repositories of experimental data, as curated by the

STRING consortium (Szklarczyk et al, 2015) (14-fold among inter-

actions above 500 confidence), and for well-studied protein

complexes, as curated in the CORUM core complex resource (Ruepp

et al, 2010) (almost 30-fold for proteins in the same complex). In

fact, we validated the majority (53.9%) of gene pairs in CORUM

core complexes (N = 48,408) as co-functional genes (binomial test

P < 1e-300).

We next explored how STRING interactions related to our set of

co-functional genes in more detail. 13% of co-functional interactions

were present in the STRING database of protein–protein interac-

tions, compared to 3% of all pairs of genes. The probability of a

STRING interaction being called varied depending on the type of

annotation and in accordance with its confidence (Fig EV3B). 11%

of low-confidence (score 1–150) experimentally derived STRING

interactions were among our co-functional interactions, compared

to 88% of high-confidence (score 900-1000) STRING interactions.

Likewise, only 4% of low-confidence co-expression transferred

STRING interactions were among our co-functional interactions,

compared to 72% of high-confidence STRING interactions. Nonethe-

less, all categories were enriched for co-functional genes above the

global average of 0.98%.

Interestingly, we find only a small fraction (~2%) of co-func-

tional genes to be negatively correlated. Among pairs of genes in

STRING with detailed functional annotations, 32% of the highest

confidence (> 900) activating interactions were called, in contrast to

7.8% of highest confidence inhibiting interactions (Fig EV3C). High-

confidence (score > 700) activation, catalysis, reaction, and binding

interactions were overwhelmingly positively correlated (99.4%,

99.3%, 99.4%, and 99.5% of correlations above zero, respectively,

Fig EV3D). While the statistically significant correlations among

inhibiting interactions might be expected to be broadly negative,

this was not the case: Only 1.8% of all correlations were negative.

We found that 61% of STRING interactions annotated as inhibiting

were also annotated as activating or catalyzing and could predomi-

nantly operate in a cooperative rather than inhibitory manner, but

even among pairs of genes exclusively annotated as sharing an inhi-

bitory relationship, only 36% were negatively correlated. This

dearth of anti-correlated co-functional genes is consistent with the

observation by Wang et al (2017) that anti-correlated co-essential

genes are less often detected. Thus, pooled CRISPR-knockout

screens, even with diverse panels of cell lines, may have low sensi-

tivity for detecting inhibitory relationships across pairs of genes, or

negative regulation more broadly.

Because our reported number of co-functional interactions

exceed the estimated number of human gene pairs that physically

interact (Stumpf et al, 2008; Venkatesan et al, 2009) by as much as

10-fold, we explored the potential underpinnings of co-functionality

signal in greater detail. In total, only 12% of co-functional genes are

annotated by any co-expression/experimental study, suggesting that

physical interactions among proteins and gene co-regulation explain

a minority of co-functional interactions. To evaluate the extent to

which co-functional genes could be linked indirectly by cascades

through the human interactome, we calculated the rate of gene co-

functionality as a function of the path length dictated by the STRING

database. Pairs of genes separated by 2–4 experimentally derived

STRING edges had consistently higher rates of co-functionality

compared to pairs of genes in separate components of the network.

Among STRING interactions of confidence > 700, genes with one

intermediate gene, or path length 2, were enriched 30-fold (Fig 5C).

The functional pathways we identify are likely mediated in part by

intervening protein interactors, in additional to metabolic pathways

and direct physical interactions.

Characterizing co-functionality among members of
protein complexes

Across CORUM core complexes, we also observe that the number of

co-functional interactions per complex deviates far from expected

assuming independent draws from a binomial distribution. In fact,

oftentimes all or none of a protein complex’s members were labeled

co-functional (Fig 5D and E). Complex size also played a role, as

60% of core complexes with 5 or fewer members contained no co-

functional genes, whereas 95% of complexes with more than five

members exceeded the average rate of co-functional interaction

calls. Protein complex essentiality appears to explain some of this

bimodality: Co-functionality is rarely detected among CORUM core

complex members that only weakly affect growth, whereas CORUM

core complexes that strongly affect growth form nearly complete

graphs of co-functionality (Fig EV3E), as seen for mitochondrial and

cytosolic ribosomes, the proteasome, U2 snRNP, and RNA poly-

merase II complexes.

Although the rate at which we identified the members of a

protein complex co-functional varied according to the knockout

growth phenotype, we identified other factors that guided which

of a complex’s members were co-essential and which were not.

The Mediator complex, a transcriptional coactivator that has been

previously examined using a similar parallel screening analytical

approach (Pan et al, 2018), serves as an example. Although

knockout of every Mediator complex member is associated with

impaired growth, we called fewer than half of the pairs of genes

comprising the Mediator complex co-functional (Fig 5F). The

network of co-functional gene edges describing the members of

the Mediator complex in fact mirrors the three-dimensional struc-

ture and function of the complex; gene knockouts cluster by their

topology, divided into head, middle, tail, and effector module

(Yin & Wang, 2014). We also summarized cell lines by running

PCA on the matrix of cell lines by Mediator complex members

and assigning the first PC score of each cell line as its “Mediator

score”. This score integrates the 30 Mediator member knockout

effect sizes into a single number reflecting the growth defect asso-

ciated with Mediator loss of function. The Mediator score can
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predict the effect of knocking out arbitrary Mediator complex

members (Fig 5G) but does so independently of protein domain-

specific effects.

Gene communities in the cancer cell network offer insight into
cancer proliferative processes

To examine the distribution of co-functionality genome-wide and

nominate candidate core genes for cancer growth, we performed

community detection to partition all genes into separate communi-

ties (Fortunato, 2010). Every gene was assigned to one of 2,857

separate communities, including 2,978 singleton genes with no co-

functional genes and 562 small communities with fewer than 8

genes. Because singleton and very small gene communities harbor

few edges and are better suited to gene- and not community-centric

approaches, we focused on the 326 communities with at least 8 gene

members (Fig 6A).

We first enumerated the 719 COSMIC census genes in each

community (Forbes et al, 2017) and found that over one-third of

gene communities (126/326) contained at least one census gene,

illustrating the extreme diversity of pathways that cancers can

manipulate to maximize cellular proliferation. However, certain

gene communities possessed many more census genes than

expected, including communities containing TP53, EGFR, KRAS, and

BRAF. Finally, over half of the clusters (206/326) were significantly

enriched for at least one Biological Process term or KEGG pathway

at a false discovery rate of 10%.

The largest community we identified was densely connected

(12% of all pairs connected) and encompassed numerous core

essential processes identified by KEGG, including the spliceosome,

the ribosome, the proteasome, cell cycle, RNA polymerase, and

mismatch repair (Fig 6B). A smaller, slightly denser cluster (13% of

all pairs connected) contained genes required for mitochondrial

function and aerobic respiration. Genes lacking any pathway anno-

tations for the most part were not enriched in any gene communities

but were significantly dis-enriched in these core growth communi-

ties (Fig EV4).

Gene communities varied substantially in the breadth of their

encapsulated functions. Some communities derived from specific

cancer pathways, such as the community containing EGFR, which

simultaneously captured signaling from related ErbB proteins and

the role of cell adhesion and tissue migration in EGFR-dependent

transformation (Fig 6C) (Lindsey & Langhans, 2015). Other clusters

reflected very specific cell functions or compartments, as in the case

of the peroxisome.

In the peroxisome community, 34 Gene Ontology terms were

statistically enriched, ranging in size from 12 to 415 genes. Enriched

gene sets primarily derived from peroxisomal transport and fatty

acid metabolism. Although these are not conceptually similar path-

ways, they both relate to the core function of peroxisomes, which

are variably essential across the cancer cell lines. In the context of

cancer proliferation, abstracting fatty acid metabolism away from

peroxisomal transport genes, as done in the Gene Ontology data-

base, may ignore the reality that these processes are functionally

inseparable.

Another community (Fig 6D) contains the genes underlying

hereditary multiple osteochondromas, a rare Mendelian disorder.

These genes, EXT1 and EXT2, are known to act in the
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Figure 6. Gene communities and network topology in cancer cell
networks.

A Consolidation of genes into > 200 communities using de novo
community detection. COSMIC census genes frequently cluster in the
same gene communities beyond expected by chance (in gold) but are
otherwise widely dispersed throughout the network (in green). Nodes
representing communities are sized by number of constituent genes. The
largest community contains over 1,000 core essential genes (labeled
“Transcription & translation”). Select gene communities are labeled by
enriched annotations and/or prominent cancer-associated genes.

B Distribution of gene communities by mean knockout effect size of
community members and co-functional edge density. “Respiration” and
“Transcription & translation” from (A) are both broadly essential and
densely connected.

C, D Depictions of the EGFR and EXT1 gene communities. Size of the gene
nodes reflects loading on the first principal component among
community members. Gene symbols that are members of selected
enriched gene ontology terms are labeled.
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polymerization of the glycosaminoglycan heparan sulfate, a known

cofactor for FGF signaling (Ornitz & Itoh, 2015). How EXT1 loss

leads to cancer is poorly understood (Bovée, 2008); nonetheless,

eight other known aminoglycan synthesis genes participate in the

same gene community. Also present are fibroblast growth signaling

genes FGFR1, FRS2, and NDST1. GRB2 and PTPN11 are not in the

same gene community but are linked to gene community members

by additional co-functional interactions. One possibility is that every

member of the aminoglycan synthesis pathway influences cancer

proliferation by ultimately making heparan sulfate available to

upregulate FGF pathways. If true, the number of genes that could

potentially modify cancer proliferation via FGF signaling is much

larger than currently appreciated, expanding from EXT1 and EXT2

to all aminoglycan synthesis genes.

Gene network centrality adds another layer to gene function

We next examined the network topology within and across gene

communities. Because core growth genes would dominate strength

or degree calculations for most genes, we quantified the centrality of

every gene using the closeness of each gene within its prescribed

community. The closeness of a gene is the reciprocal of the sum of

the shortest distance via co-functional gene edges from that gene to

every other gene in the network. By calculating this metric within

communities, we obtain a local centrality measure that gives insight

into a diverse range of gene functions.

As a measure of centrality in the cell network, closeness added

information not captured by other gene properties such as essential-

ity or expression. Overall, COSMIC census genes did not differ in

closeness compared to other genes (Wilcoxon rank-sum P > 0.05),

nor did they differ substantially in their average knockout growth

phenotype. However, genes annotated as germline cancer genes

scored much higher in closeness than somatic cancer genes (Fig 7A,

Wilcoxon rank-sum P = 7e-9). In fact, gene closeness surpassed

gene expression level or knockout growth phenotype in accuracy for

ascertaining somatic from germline cancer genes (Fig 7B). Closeness

was slightly greater for genes suspected to be subject to strong puri-

fying selection via population genetic data (high pLI genes; Lek

et al, 2016), but high RNA expression level was more predictive of

high pLI status than closeness (Fig EV5A). We also observed that

genes linked to unfavorable prognoses in cancer patients exhibited

greater closeness in gene communities, but that genes linked to

favorable prognoses did not (Fig 7C; Uhlen et al, 2017). In all, we

linked high closeness genes to oncogenes and germline cancer

processes, complementing broad patterns of high expression and

essentiality for cancer drivers.

To summarize cancers by gene community activity, we again

performed principal components analysis—this time separately for

each gene community (see Materials and Methods)—and recorded

the first PC score for each cell line. This score reduces the dimen-

sionality of the gene profiles from the size of the gene community

down to a single number, which we term the community score. One

benefit of scoring communities as opposed to individual genes is

that the shared function of a gene community can be ascertained

while avoiding the measurement noise or alternate signals associ-

ated with individual gene knockouts.

We first explored how community score varied by cell lineage

and confirmed that cancer cell lineages dependent on particular

growth pathways were associated with extreme scores for the corre-

sponding gene communities. For example, it was often possible to

classify the lineage of glioblastoma, neuroblastoma, small-cell lung

cancer, melanoma, and pancreatic- and kidney-derived cancers by
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Figure 7. Topology and cell type specificity of cancer networks.

A Boxplot of closeness for genes annotated as germline cancer genes, somatic
cancer genes, or both. Significant by Wilcoxon rank-sum test. Upper
comparison *P = 7e-9; lower comparison *P = 7e-4.

B ROC curve showing how centrality (measured by closeness in the gene
community) separates germline from somatic cancer genes in the COSMIC
gene census more accurately than either growth knockout phenotype or
expression.

C Genes associated with unfavorable prognoses as found in the Human
Protein Atlas Pathology database have greater closeness within gene
communities, left. The same is not true for genes associated with favorable
prognoses, right.

D NF1 gene community knockout phenotypes and the NF1 aggregate
community score calculated from the first principal component of member
genes shows that perturbation of the community by CRISPR knockout
almost always occurs in NF1-WT glioblastoma cell lines but only rarely in
other cancers. P < 0.05 for all within-glioma comparisons.

E KRAS community scores demonstrate that dependence on constitutively
active (mutant) KRAS drives community organization, independent of
tissue, but is uniformly present across pancreatic cancers.

Data information: (A, C, D) Boxes reflect IQR, and lines reflect 1.5 times the IQR.
There are no replicates. Data annotations of cell type are as described in the
Meyers et al data depository (Meyers et al 2017; Data ref: Meyers et al 2017).
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virtue of their especially extreme community scores (Fig EV5B),

analogous to others’ findings (preprint: Kim et al, 2018). Interest-

ingly, we found that communities associated with cell lineage iden-

tity (see Materials and Methods) were three times more likely to be

enriched for COSMIC census genes than gene communities with no

associations (Fisher’s exact test P = 2e-8), consistent with the inter-

pretation that cancers from different cell lineages target different

growth pathways to maximize growth.

Diversity of cell line panel expands the scope of detectable cell
signaling paradigms

In some cases, cell lines of a specific lineage and mutational back-

ground were required to uncover cancer-relevant growth pathways.

The gene community containing the tumor suppressors NF1 and

SPRED1 illustrates this phenomenon (Fig EV5C). In the germline,

one NF1 loss-of-function allele causes the Mendelian disorder neuro-

fibromatosis type 1 (Gutmann et al, 2017). Similarly, loss of func-

tion of SPRED1 causes Legius syndrome, which can be confused

clinically with neurofibromatosis type 1 (both genes act upstream of

RAS signaling). In the panel of cell lines from Project Achilles,

glioma cell lines consistently exhibit the largest effect sizes for

community members NF1, SPRED1, and SOS1. Yet, even among

glioma cell lines, only those that lack a preexisting NF1 loss-of-func-

tion event exhibit large differences in sensitivity to gene knockout of

community members (Fig 7D). The differences across these genes

are well summarized by NF1 community scores, where glioma cell

lines with intact NF1 consistently score above glioma cell lines with

NF1 loss of function (Wilcoxon rank-sum P = 0.005). In the case of

non-glioma cell lines, NF1 community scores rarely deviate from

the mean and do not vary by NF1 mutation status (Wilcoxon rank-

sum P > 0.05).

While extreme community scores often occur in distinct cell

lineages, sensitivity to perturbation of gene communities can often

be accessed across multiple lineages. For example, perturbations

of the KRAS gene community are strongly associated with strong

fitness effects in pancreatic and colorectal cancers, but also exhibit

apparent effects in cell lines derived from other lineages. In

general, extreme KRAS community scores indicate the presence of

mutant, constitutively active KRAS (Fig 7E), with pancreatic and

colorectal cancers very likely to acquire such mutations due to

inherent tissue-specific cancer biology. In the Project Achilles

panel, all pancreatic cancers harbor KRAS-activating mutations,

while ovarian cancers infrequently do. This difference in muta-

tional status explains the difference in KRAS community scores

between pancreatic and ovarian cancers more accurately than cell

lineage and stands in contrast to the NF1 gene community exam-

ple where both a specific lineage and mutational status were

important characteristics.

Discussion

This work demonstrates the power of unsupervised statistical tech-

niques for correcting gene profiles constructed from parallel screen-

ing datasets. We show that technical confounding is pervasive

across CRISPR-knockout screens, but that highly active sgRNA

libraries and extensive data preprocessing steps can expand the

quantity and quality of interactions called from correlated gene pro-

files, whether or not interactions are mediated directly by protein–

protein interactions (Fig 8). When screening for hit genes that

modify a phenotype of interest, it is already considered best practice

for sgRNA libraries to contain “safe-targeting” sgRNAs that target

non-genic regions to correct for the toxic effects of DNA cleavage

(Morgens et al, 2017). We provide evidence that sgRNA off-target

effects can cause both false-positive and false-negative interactions,

and, by exploiting a set of control genes with a very low prior of

having an effect on the screen phenotype, we can correct these

confounding signatures. In the future, more comprehensive sets of

control sgRNAs may further improve modeling of confounding

across genomic regions of variable copy number, sequence content,

and chromatin accessibility.

Although some biological pathways can be readily detected using

a relatively small number of genetic screens for cancer growth, a

comprehensive mapping of cell networks will require much more

diverse panels of screens. In multiple cases, we detected certain

pathways that were active only in specific cell lineages or muta-

tional backgrounds. Among screens currently available, inhibitory

relationships among genes are only rarely detected. Finally, gene

knockouts that lack a growth phenotype in the available cell lines

cannot be incorporated into cell networks at all. These findings

argue for collecting screen data (a) for samples of cells with diverse

mutational and cell lineage backgrounds and (b) across diverse

screening conditions. The use of activating (CRISPRa) screens might

also improve detection of antagonistic gene pairs. Parallel screens in

the same cell lines for cancer phenotypes other than growth, such

as invasiveness or cell size, would complement existing data on

proliferation, but screening other phenotypes, such as phagocytosis

or sensitivity to oxidative stress, offers a way to improve the rich-

ness of sparse gene profiles. As more screening data become avail-

able that differ by screening phenotype, laboratory, manner of

perturbation (CRISPRi/a, base editing, inducible systems), and

sgRNA library, quality control for parallel screening techniques will

become increasingly critical.

Ligand-receptor

Modification

Metabolism

Co-complex

Regulation

Figure 8. Co-functional gene relationships.

Co-functionality learned from correlations among gene profiles broadly extends

to gene–gene relationships from physical interactions like ligand–receptor

interactions, co-complex formation, or post-translational modification to

conceptual relationships like gene regulation and shared metabolic pathways.
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Maps of cancer cell networks drawn using co-functional interac-

tions are assuredly detailed, but parallel screening approaches come

with distinct limitations. First, the co-functional interactions we

report obscure the distinction between direct and indirect interac-

tions as well as the directionality of information flow in signaling

processes. De novo methods to call gene communities might cluster

genes into a smaller set of modules, but the manner by which genes

in the same module work together remains difficult to infer. One

open question specific to the field of parallel screening is whether

interactions identified by double-knockout screens, particularly

synthetic interactions, can be predicted from co-functional interac-

tions identified in data collected from other cell lines. Also unknown

is the extent to which gene communities learned from one pheno-

type are the same communities underlying other phenotypes. Yet,

information theoretic models and orthogonal genome-wide profiling

data (e.g., RNA-Seq, ATAC-seq) promise to expand what can be

learned from genome-wide perturbation data. Regardless, engineer-

ing additional pre- and post-processing computational methods for

genome-wide perturbation data are likely to advance progress

toward a comprehensive understanding of cell network logic.

Materials and Methods

Calling co-functional interactions from CRISPR screening data

Project Achilles gene-level effect sizes (version 18Q2), the lists of

217 highly expressed genes and 927 nonessential genes from Hart

et al, and sgRNA sequences were downloaded from Meyers et al’s

data depository (Meyers et al, 2017a; Data ref: Meyers et al, 2017b)

for further processing.

To correct cell line-specific Cas9 toxicity, nonspecific cell line

signatures were generated from olfactory receptor gene essentiality

profiles. The HGNC olfactory receptor gene list was downloaded

from the HGNC website (https://www.genenames.org/cgi-bin/ge

nefamilies/set/141). The full list of olfactory receptor gene symbols

was intersected with gene symbols present in the gene-level statis-

tics. Some sgRNA sequences were not unique among olfactory

receptors; in these cases, one olfactory receptor was selected at

random and any olfactory receptors with duplicate sgRNA were

discarded. The resulting matrix of 250 olfactory receptors by 436 cell

lines was transposed and subjected to PCA using the prcomp func-

tion in R. The same procedure was applied to 100 permutations of

the same matrix by shuffling effect sizes within columns (cell lines).

For the first five PCs, the proportion of variance explained per PC

for the true matrix exceeded that of all permutations and were

deemed signatures of nonspecific toxicity.

Gene essentiality profiles were projected onto the principal

components identified as nonspecific and converted back to the

original dimension via matrix multiplication, and the difference of

matrices was taken as a set of corrected gene essentiality profiles.

In contrast to the original, frequently positively correlated gene

essentiality profiles, correlations among corrected gene essentiality

profiles for olfactory receptors resembled a normal distribution

centered at zero. To establish a null distribution, the above steps

were repeated with fivefold cross-validation and the mean squared

correlation of olfactory receptor gene pairs across all folds was

calculated as the standard deviation, with mean 0 (Fig 2D). This

process was repeated with curated nonessential genes and yielded a

22% narrower standard deviation. P-values were assigned to all

human gene pairs using this normal distribution via the pnorm func-

tion in R, and hits at a 10% FDR were identified as co-functional

interactions.

Using the same correlation cutoff for gene essentiality profiles,

co-essential gene hits were compared to co-functional genes within

three sets of genes: Gene Ontology “spliceosomal complex assem-

bly” genes (a category with surprisingly few correlated gene essen-

tiality profiles), Gene Ontology “peroxisomal transport” genes (a

well-circumscribed set of co-essential genes), and olfactory receptor

genes with co-functional degree of 12 or greater. In general, the

number of co-functional interactions, or degree, varied considerably

across all genes. Highly expressed essential genes were confirmed

as being greatly enriched among genes with very high degree

(Fig 2E).

Predicting shared lineage and primary disease from cell
line signatures

Cell line profiles were taken from the transpose of the corrected

gene essentiality profile matrix, and pairs of cell lines were labeled

as deriving or not deriving from the same cell lineage. This created

436 choose 2 observations of 0 (different primary tissue) and 1

(same primary tissue). The same was done for secondary tissue.

ROC plots and AUC values on using correlation between cell line

profiles to detect lineage or primary disease identity were calculated

using the ROCR R package. The higher the accuracy, the better gene

profiles are able to expose differences across cell types in biological

pathway dependence.

TP53 and BRAF co-functionality heatmaps

Germline-filtered mutation data, such as for TP53 and BRAF, and

drug sensitivity data were downloaded from the CCLE portal

(https://portals.broadinstitute.org/ccle/data). For TP53, all cell

lines with a protein-coding or splice mutation were labeled loss-of-

function mutants. For BRAF, cell lines with a V600E protein change

were labeled V600E lines. Binarized drug sensitivity to either

Nutlin-3 or PLX4720 followed from k-means clustering on the Amax

values with k set to 2 to separate two groups of resistant and

sensitive.

The top 9 genes co-functional to either TP53 or BRAF were visu-

alized in the heatmap using the R package ComplexHeatmap.

Corrected gene essentiality profiles (rows) were divided by their

corresponding standard deviation to normalize the heat scale. The

distance metric for genes (rows) was magnitude of Pearson’s corre-

lation. For cell lines (columns), signed Pearson’s correlation was

used. Accompanying scatterplots show the unnormalized gene

knockout effect sizes with a linear fit trend line.

Drug–gene network and associations

The reported Amax values were used as measures of drug efficacy

for all cell lines. Drug phenotypes were then correlated with gene

knockout effect sizes for all drugs across all genes. For network

visualization (Fig 4D), the four genes with the largest magnitude

correlation in either direction were selected. For drug–gene
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association analysis (Fig 4E), the 30 most correlated gene profiles

were taken for KEGG pathway enrichment for each compound. Only

compounds with at least one enriched pathway were visualized.

Gene set enrichment comparisons

Curated gene sets derived from Gene Ontology and the Kyoto Ency-

clopedia of Genes and Genomes were downloaded from the MSigDB

website, version 6.1 (https://software.broadinstitute.org/gsea/

msigdb/). All pairs of human genes were assessed for co-annotation

by any ontology term. Aggregate enrichment of functional genes for

these co-annotated gene pairs (Fig 5A) was calculated as

log2 ðefc=ecÞ=ðef=eÞð Þ

where efc is the number of gene pairs that are both co-functional

and co-annotated, ec is the number of gene pairs that are co-anno-

tated, ef is the number of gene pairs that are co-functional, and e is

the number of total gene pairs.

Several gene sets consist primarily of essential genes with large

numbers of co-functional gene edges. Under these conditions, it is

possible for a small number of genes or pathways with a large

enrichment of co-functional gene edges to underlie a genome-wide

enrichment, even if most pathways contain few or no co-functional

genes. To estimate the number of gene sets contributing to the

aggregate enrichment, we first filtered out gene sets with under 5

co-functional gene edges. These low-signal, sparsely connected gene

sets are in some cases statistically enriched but would have limited

use in interpreting or modeling of genome-wide networks. The

remaining gene sets spanned slightly under half of GO biological

process and molecular function gene sets and approximately 70% of

GO cellular component and KEGG pathway sets.

Genes in the dataset were then placed into one of 100 bins based

on their degree in the co-functional gene network. For each gene

set, new, random gene sets were constructed such that each gene

was replaced by a random gene from the same degree bin. The

number of edges in the corresponding random subgraphs of the

genome-wide network was calculated to serve as an empirical null

distribution. If the random gene sets never reached the number of

edges seen in a true gene set, a P-value of 0.5/(# permutations) was

assigned to the gene set. Significantly enriched gene sets were called

at a false discovery rate of 5%. We found that over 75% of the

remaining GO biological process and molecular function terms

exhibited more edges than expected, and more than 90% of the

remaining GO cellular component and KEGG pathways.

Genetic interaction and protein complex comparisons

Protein–protein and genetic interaction data were downloaded from

the STRING v10.5 website (detailed and action files, https://string-db.

org/cgi/download.pl). Distances between gene pairs were calculated

using the distances function from the igraph R package. The rate at

which co-functional interactions were called per path length was calcu-

lated as (# co-functional interactions) divided by (# total gene pairs).

CORUM core complexes were downloaded from the CORUM

website (http://mips.helmholtz-muenchen.de/corum/#download).

A dataset of protein complex edges was created by enumerating all

pairs of genes that were members of the same human protein

complex. Among all such edges, 53.9% were called as co-functional.

The expected binomial distribution per complex (Fig 5D and E) was

calculated using the dbinom function in R, and 90% confidence

intervals were calculated using qbinom.

To calculate Mediator gene loadings and cell line PC scores,

PCA was performed on the corrected gene essentiality profiles of

Mediator complex members across 436 cell lines with the prcomp

function in R. With genes as features, the mean effect size of

each gene was subtracted to estimate the covariance across

genes. All loadings for the first principal component were posi-

tive, meaning all Mediator complex members covaried in the

same direction, and the magnitude of the loading was taken as

the relative weight for estimating the function of the entire

complex.

Community-centric analysis of the cancer cell network

Co-functional gene edges were analyzed using the igraph package in

R. Distances between two genes a and b were weighted by 1 � abs

(cor(gene a, gene b)), and the edge width was scaled to abs(cor(-

gene a, gene b)). Communities were called using the cluster_in-

fomap function. The edge density of each community was

calculated by constructing a subgraph from the community

members and calling the edge_density function. In order to prevent

core essential genes from influencing measures of centrality, close-

ness was calculated for each gene locally by calling the closeness

function on the community subgraphs. The gene community

network plot (Fig 6A) was visualized by creating a new graph of

communities as nodes. Node area was made proportional to the

number of genes in the community by scaling the size parameter to

the square root of the number of genes. For gene communities with

greater than 100 genes, the community was discarded if more than

50% of the community’s genes laid on the same chromosome.

Edges were drawn between communities if the edge frequency

between them surpassed the genome-wide average of 0.98% with

width scaled to edge frequency.

Communities were annotated both by the number of members

that were COSMIC cancer census genes (https://cancer.sanger.ac.

uk/census) and by the enrichment in KEGG and Gene Ontology

gene sets as determined by the ClusterProfiler R package. Enrich-

ment of COSMIC census genes was determined by binomial test

with probability of success equal to the total number of COSMIC

census genes divided by the number of genes in the network and a

false discovery rate cutoff of 10%. Enrichment of uncharacterized

genes in gene clusters was determined similarly (Fig EV4), where

an uncharacterized gene was defined as any gene lacking a Gene

Ontology biological process annotation. To understand which

biological processes were sparsely connected and poorly repre-

sented (Fig EV3A), communities with fewer than 8 members were

analyzed using gene set enrichment.

The importance of the local closeness measure was first evaluated

using the Human Protein Atlas pathology data (https://www.proteina

tlas.org/about/download). For both favorable and unfavorable prog-

noses, genes were divided into four tiers: prognostic for 0, 1, 2, or 3+

cancer types. The Wilcoxon rank-sum test was used to compare local

closeness across tiers (Fig 7C). How probability of loss-of-function

intolerance (pLI) scores varied by closeness was also tested (http://

exac.broadinstitute.org/downloads, file “fordist_cleaned_exac_r03_
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march16_z_pli_rec_null_data.txt”), but was weakly predictive

compared to gene expression (Fig EV4A).

Gene community scores

Gene communities were processed by performing PCA on the

transpose of the corrected gene essentiality profile matrix and

recording the first principal component, as performed on the Medi-

ator complex. Cell lines were scored by their first principal compo-

nent score. Cell lines with large scores are interpreted as the

drivers of the gene community. To examine cancer lineage and

mutation status contributions to the NF1 gene community (Fig 7D),

community scores were aggregated by whether the cell lineage

was glioma and whether the cell line possessed a non-silent muta-

tion in NF1. To examine cancer lineage and mutation status contri-

bution to the KRAS gene community (Fig 7E), community scores

were aggregated by every lineage with more than 5 samples and

whether the cell line possessed a missense mutation in KRAS.

Significance of cell lineage contributions across all communities

(Fig EV5B) was determined by permuting cell lineage labels and

calculating mean community scores per cell lineage to generate a

null distribution. Cell lineages that had more extreme scores than

expected were called at a 5% FDR cutoff. The gene communities

with the thirty most significant associations were visualized.

Co-functional interaction examples

The chromosome idiogram in the gene regulation example was

downloaded from the Human Genome Idiogram Vector Art library

(https://github.com/RCollins13/HumanIdiogramLibrary). The chro-

mosome 17 idiogram ai file was chosen for illustration.

Data availability

Co-functional interactions are available at: https://greenleaf.shinya

pps.io/cofunctional_app_18Q4. The Shiny app code and full co-

functional interaction dataset with gene community information can

be downloaded from FigShare: https://figshare.com/s/35a82ed1e

48d0ec4e9e4.

Expanded View for this article is available online.
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