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Abstract

Generative Pedestrian Behavior Modeling for Autonomous Vehicle Testing in Urban

Roads.

by

Golam Md Muktadir

The adoption of autonomous vehicles in urban areas necessitates thorough safety

validation and assurance, particularly in response to the complex behaviors of pedes-

trians. Current testing methods involve simulations that create challenging and risky

scenarios for autonomous driving systems. However, these simulations are overly sim-

plistic and do not reflect the diverse and complex nature of real-world pedestrian behav-

iors and situations. This inadequacy hinders effective safety validation and reporting.

To address this gap, this work aims to systematically define pedestrian behaviors on

the road, highlighting the need for more realistic simulation models. It identifies key

pedestrian types and proposes a pedestrian behavior ontology to improve simulation

efficacy and facilitate better communication among stakeholders in the autonomous

vehicle industry.

Modeling rich and diverse pedestrian behaviors and scenarios is challenging and

requires integrating various methods. This work introduces a multi-state pedestrian

model, where each state captures specific behaviors, including essential micro-behaviors

like stopping in the middle of the road. Scenario-based testing often fails to produce

xiii



long-tail (rare) pedestrian and traffic scenarios. To address this, the work proposes

RePed, a novel method to reproduce and adapt long-tail scenarios in simulations. Addi-

tionally, it introduces HyGenPed, a system to procedurally generate diverse pedestrian

routes in polymorphic crosswalk areas, enhancing real-world diversity in simulations.

In summary, the work outlines a clear approach for defining and modeling real-

world pedestrian behaviors and scenarios for simulation-based testing of autonomous

vehicles, aiming to make test results more interpretable, reliable, and communicable. It

presents innovative methods to achieve these goals.
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Part I

Why Pedestrian Behavior Modeling
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Chapter 1

Introduction

Courageous or cautious pedestrians are dangerous
Pedestrian safety is a major concern in urban planning, [7, 94, 177]. The pedestrian

safety research in urban planning identifies how pedestrians use the road space and

interact with other traffic participants and objects—the pedestrian behavior models.

Based on the behavior models, the research aims to reduce pedestrian-vehicle interac-

tions, conflicts, and accidents. This reduction is often achieved by regulating vehicle

traffic, designing corridors and sidewalks, and traffic calming measures such as speed

humps and signals. However, even with the advancement of research and development

of pedestrian safety measures, the number of pedestrian accidents and fatalities has

been consistently increasing every year, both in developed and under-developed coun-

tries. According to the Traffic Safety Facts published by the National Highway Traffic

Safety Association (NHTSA) for years 2020 and 2021, pedestrian fatalities increased
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from 6,565 to 7,388, a 12.5 percent increase, and pedestrian injuries rose from 54,771

to 60,577, an 11 percent increase, [167, 172]. Often, safer design choices reduce the

severity of accidents in exchange for an increased number of accidents. For example,

in [95], researchers found that urban arterial roads, designed to reduce city street traf-

fic, contributed to a 15 percent increase in total crashes. Accidents spiked because the

streets are designed to be wide and straight to increase sight distance. The assumption

is that sight distance will give human drivers more opportunities to perceive danger-

ous situations early and safely avoid them. However, because of the wide and straight

roads, drivers can drive at much higher speed which offsets the benefit of higher sight

distance and leads to more accidents.

It is challenging to reduce pedestrian accidents because the road scene has two

human participants: the human driver and the human pedestrian. Accidents happen due

to mistakes made by either party. Human drivers often get angry and drive aggressively

which is a leading cause of fatal accidents. Section [1.1] elaborates on human driving

behavior responsible for pedestrian accidents. Pedestrians also contribute significantly

to the accidents. About 31 percent of the pedestrians in fatal accidents were intoxicated

with BACs of 0.08 g/dL or higher according to the 2021 NHTSA traffic safety report,

[166]. Section [1.2] sheds light on the diversity of pedestrians involved in accidents.

This work is based on the assumption that artificial intelligence can become a better

driver on city streets, as many accidents happen due to human drivers’ negligence, per-

ception, or incompetence. Autonomous vehicles do not drink, sleep, play with phones,
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or grow angry and impatient. They have eyes on their back and remember to check the

side mirrors. Moreover, they are not opportunists who speed on empty streets at night.

Section [1.3] explains how autonomous driving can ameliorate pedestrian safety.

While autonomous vehicles have a great potential to reduce accidents on the road

and save human lives, there are several challenges in their adoption and safety valida-

tion. Safety standards are in a nascent stage and public sentiment is against driverless

cars. Section [1.4] contains a synopsis of the challenges. This dissertation aims to

provide clear directions to identify and tackle the challenges and introduces several

novel methods to deal with some of the challenges. Section [1.5] describe the research

questions and work summary.

1.1 Limitations of the Human Driving

To understand how autonomous driving can bring value to city dwellers, one needs

to understand the limitations of human drivers that driverless vehicles can remove. Lim-

itations of the human driver belongs to two categories: (a) emotional limitations and

(b) perception limitations. Emotional limitations stem from emotional states such as

anger, distraction, and aggression. An expert driver can make mistakes based on their

emotional state. Perception limitations originate from physical and cognitive capabil-

ities and the external world. Human drivers may have nyctalopia (night blindness),

disability, or weather can be adverse, leading to poor perception of the surroundings

and inevitable accidents. With both limitations at work, it is often difficult for human
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drivers to deal with risky situations.

1.1.1 How pedestrian accidents happen due to human driver emo-

tions

The AAA Foundation for Traffic Safety developed the Traffic Safety Culture Index

[1] based on a survey of drivers’ emotional states (e.g., distracted, aggressive, and safe).

According to the 2022 index [1], only 41% are Safe Drivers. Only distracted are 15%,

only aggressive are 22.7%, and both distracted and aggressive are alarmingly 17%.

Pedestrians cross the roads daily where 59% of drivers are dangerous.

The National Highway Traffic Safety Administration (NHTSA) publishes reports

on accident data. According to the NHTSA, aggressive driving causes 66% of traffic

fatalities. Table 1.1 summarizes the emotional states of human drivers from the litera-

ture and statistical reports. As physically impaired drivers comprise only 1.3% of the

total, human drivers’ emotional state and perception capacity are the main determinant

of how dangerous they are on the road.

1.1.2 How pedestrian accidents happen due to human driver per-

ception

Time of the day, weather conditions, and road structure all impact human perception

of their surroundings. In 2021, more than 80% of all US pedestrian fatalities on these

roads happened in dark lighting conditions, a figure that has been consistently increas-
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Human Driver Behavior Statistics

Distracted Driving

Writing a text/email message on a cell phone 27%, [1]

Holding and talking on a phone 38%, [1]

Reading a text/email on a cell phone 37%, [1]

Using a hands-free technology to talk/text/email 59%, [1]

Aggressive Driving

Driving more than 10 mph over the speed limit on residential street 35%, [1]

Running red lights 25%, [1]

Risky lange change 22%, [1]

Traffic fatalities are caused by aggressive driving 66%,

NHTSA

Drowsy and Impaired Driving

Exhausted and extremely drowsy 18%, [1]

Driving drunk 7%, [1]

Driving under impairing drugs 3%, [1]

Risky lange change 22%, [1]

Top Frustrations Triggered by Others’ Driving Behavior

Distracted Driving 63%, [231]

Getting cur off 49%, [231]

Tailgating 49%, [231]

Not using turn signals 51%, [231]

Traffic jams 46%, [231]

Speeding 34%, [231]

Table 1.1: Frequent Human Behavior while Driving
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ing over the last ten years (see figure 1.1). In addition, about 79 percent of accidents

happen due to poor light conditions (see figure 1.1), and 71 percent of accidents occur

between 6 p.m. and 9 p.m., ((see figure 1.3).

Though intersections are complicated to understand, most pedestrian accidents do

not take place at intersections at all. A staggering 77 percent of accidents happened at

midblocks of roads in 2021, (see figure 1.2).

Based on this data, one can argue that being unable to see or anticipate pedestrians

on the road is a significant limitation of human drivers in different conditions.

Figure 1.1: Pedestrian Fatalities in USA, 2012-2021, Dark vs Daylight. Data Source:

Fatality Analysis Reporting System (FARS).
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Figure 1.2: Pedestrian Fatalities in USA, 2012-2021, Intersection vs Midblock vs Non-

Road. Data Source: Fatality Analysis Reporting System (FARS).

Figure 1.3: Pedestrian Fatalities in USA, 2012-2021, Nighttime vs Daytime. Data

Source: Fatality Analysis Reporting System (FARS).
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1.2 How Pedestrians contribute to Accidents

Pedestrians show extreme diversity in behavior, and many have physical and mental

impairments. Pedestrians can cross the road while talking on the phone, being intoxi-

cated or impaired.

Figure 1.4 shows that running across the roads is one of the major causes of fatal

accidents. Similarly, they can dart out from occlusions, which is equally dangerous.

While jaywalking and not yielding the right-of-way are the most common behaviors in

fatal accidents, an astonishing 13 percent of fatal accidents involve pedestrians engaged

in activities other than crossing. They can work, play, stand, or lie down on the road,

which contributed to over eight thousand pedestrian accidents.

They can work, play, stand, or lie down on the road.

Figure 1.4: Pedestrian Fatalities in USA, 2012-2021, behavior on road. Data Source:

Fatality Analysis Reporting System (FARS).

Figure 1.5 shows that over 57 percent of pedestrian deaths involved some form of
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impairment between 2012 and 2021 in the USA. Many pedestrians cross under the

influence of alcohol, drugs, or medication. Many deaths involve angry or depressed

pedestrians. Surprisingly, there were 169 accidents where the pedestrian passed out in

the middle of the road. Some pedestrians are deaf or blind, so they cannot perceive the

world using all the senses. Pedestrian movement capabilities and perception are often

significantly limited by these impairments, leading to behavior that is very different

from the average pedestrian.

Pedestrians can pass out while crossing.

Figure 1.5: Pedestrian Fatalities in USA, 2012-2021, distribution of physical and men-

tal impairments. Data Source: Fatality Analysis Reporting System (FARS).
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1.3 AV’s potential in increasing Pedestrian Safety

To understand how Autonomous Driving has high potential to improve pedestrian

safety, one needs to know how autonomous vehicles perceive road scenarios and drive

through traffic and how they are different from human drivers. The substantial benefits

come from the fact that autonomous vehicles (a) can theoretically better perceive the

world due to different kinds of sensors that can be tested and replaced, and (b) do not

exhibit emotional instability.

Figure 1.6: Three components of Autonomous Driving Systems. The perception com-

ponent senses the surroundings, detects objects and traffic participants, and creates a

detailed local map. It uses several types of sensors such as camera, LiDAR, and radar.

The planning components process the maps over a short period, predict how the sce-

nario may evolve, and what the autonomous vehicle should do next. The tracking

component tries to execute the plan and reports the realization of the plan.

Autonomous driving systems have three logical components: Perception, Planning,

and Tracking, (see figure 1.6). The Perception component is responsible for object
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detection and identification such as identifying the lanes on the road. It tries to estimate

the local 3-D map of the surroundings. The Planning component takes a sequence

of historical data from the Perception component to understand the dynamics of the

world and plan the AV’s behavior and trajectory. The Tracking component executes

the trajectory plan for the autonomous vehicle and reports any differences between the

planned and realized trajectories.

The perception component is equipped with sensors that can see the surround-

ings better than humans in different weather and traffic conditions. Typically, an au-

tonomous vehicle has an array of cameras to capture a 360° view by combining multi-

ple images, permitting the AV to look at everything around it. It does not need to change

its direction of gaze to collect information from different directions. Therefore the AV

has access to information faster. In [143], researchers showed that the state-of-the-art

AI model can anticipate crashes earlier than humans because humans change their gaze

to collect information sequentially. Thus, having an array of cameras ensures faster

access to information around a vehicle. One can argue that assisting human drivers

with a 360° view will enable them to perform as well as the AI. However, humans must

still change their gaze to see different images sequentially and process all the informa-

tion. There is a limitation on how much cognitive load human brains can take, [127].

Autonomous vehicles can simultaneously process multiple streams of images by ex-

tending their computing power to handle more cognitive load. Access to and capability

of processing image streams simultaneously makes AV perception systems superior to
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humans. Other sensors such as LiDAR and radar can detect and localize objects and

pedestrians in adverse weather conditions such as low lighting, snow, and rain.

All these different types of sensors work together to understand the surroundings.

With a better understanding, the planning can produce a safer vehicle driving plan.

After the object and road detection, the AV predicts the future trajectories of moving

objects and traffic participants and plans its trajectory. Assuming the AV can perfectly

plan a safe trajectory and avoid accidents, the execution is not impacted by exhaustion,

distraction, aggression, or anger. Because it has no other purpose in life, it always

does what it is supposed to do. As most fatal pedestrian accidents happen at night,

autonomous vehicles are well-suited to replace human drivers at night, making roads

safer.

1.4 Self-driving vs Pedestrians

There are several challenges to advancing the adoption of self-driving vehicles in

urban streets. The overshadowing challenge is the rippling effect of accidents caused

by any specific make and model on the entire autonomous vehicle industry. Mistakes

made by one self-driving company lead to public reactions and negative sentiment about

driverless vehicles. People get scared easily when a driver is missing. Accidents and

errors involving pedestrians have a severe impact on the adoption of AV technology.

The Safe Street Rebel Group in San Francisco, California, started ConeSF: A Cam-

paign to Rein In Robotaxis in which they place traffic cones for the purpose of stalling
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autonomous vehicles, [228, 175]. Their main concern is pedestrian safety. The Cruise

driverless car ban, [226], and recall were caused by a grisly pedestrian accident in 2023,

[170]. Similarly Waymo expansion halted, [230], due to a collision with cyclist that

resulted in non-life-threatening injuries, [216]. Recently, a crowd vandalized, broke,

and set a Waymo driverless car on fire in Chinatown, San Francisco, [164], which can

be correlated with recent Cruise accidents. Even Tesla, without recent accidents with

pedestrians or cyclists, experienced arson of two of their autonomous vehicles in San

Francisco on February 26, 2024, [217].

People get scared easily when a driver is missing.
In the Cruise accident on October 2, 2023 [170], a human driver collided with a

pedestrian and threw the pedestrian into the Cruise AV’s path. The Cruise AV initially

stopped, but soon, it started to pull over dragging the pedestrian 20 feet before making

a full stop. When an accident is inevitable, the aim is to reduce the impact of the

accident (post-collision response). In this scenario, the generic pull-over maneuver is

not the desired post-collision response, [170] according to the NHTSA investigation.

In another accident, a Tesla AV killed a 52-year-old man who was fixing a flat tire on

the left shoulder of an expressway [146]. Both scenarios are so rare that most human

drivers never face them. The adverse public reaction to the Cruise accident included

the following:

• “Scary thing to think about is, what if Cruise couldn’t find an adequate pull over

spot within 20 feet? The nightmare of being dragged by this oblivious robot
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while it stupidly looks for an open curb.”

• “...should be criminally charged for fraud...”

• “No human would have done that, especially after they collided with a human.”

• “This cruise car crap treat there [sic] employees like crap...”

The commentators assumed a human driver is perfect. They invented and shared

reasons why the Cruise AV dragged the pedestrian. However, there are many incidents

where human drivers made the same mistakes [136], and no one shared their concerns

about human driving. The conclusion is that AVs need to be a much better drivers than

humans to be acceptable.

Pedestrians challenge the planning and maneuvering algorithms of AVs in many

different ways. As AV companies share the repercussions of failures, they must also

share the testing knowledge and methodologies against pedestrians. The concern is that

such scenarios are the rarest and, therefore, cannot be automatically learned using real-

world data, which is the everyday recipe for autonomous driving. However, the AV can

learn how to deal with such situations if one can create such incidents in a simulation.

This work aims to encourage and unravel the essential methodologies and pedestrian

behaviors with transparency and collaboration.
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1.5 Summary

The driving force behind this work is the fact that over 77 percent of pedestrian fa-

tal accidents happen during jaywalking in the midblock of roads. Additionally, over 79

percent of deaths happen in dark lighting conditions. 31 percent of dead pedestrians are

intoxicated. So, pedestrian accidents happen due to pedestrian behaviors, impairments,

and dangerous scenarios during crossing. Unfortunately, existing literature on pedes-

trian crossing behavior is minimal. Most work addresses crossings at intersections and

pedestrian crossing decisions, or generalized pedestrian trajectories that do not capture

irrational and accidental behavior. Therefore, this work sets out to model rational and

irrational pedestrian behavior under different traffic conditions.

The dissertation addresses three broad research questions (RQs):

• RQ #1: How do pedestrians behave while crossing the road? The answer is

crucial to finding research gaps in pedestrian behavior modeling and developing

safe driverless vehicles.

• RQ #2: How to model the diverse and rich pedestrian behaviors and sce-

narios for simulation-based testing of autonomous vehicles? The answer is

crucial to assess the effectiveness of different methods of modeling pedestrian

behaviors and identifying the research gaps. To answer the question effectively,

we address the following questions:

– RQ #2.1: How would simulation-based testing methods use the simulation
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models to serve the test goals?

– RQ #2.2: Can one method capture all the behaviors and facilitate the re-

quirements of a simulation model given the current data sources?

– RQ #2.3: How to produce realistic long-tail scenarios that have an ex-

tremely low probability of emergence through scenario search-based algo-

rithms?

• RQ #3: How to interpret pedestrian behavior in the generated scenarios?

The answer is crucial to understand what kind of pedestrian behavior and scenar-

ios the AV can deal with.

Chapter [3] illustrates the ontology that describes how pedestrians in different

physical and mental states and different situations behave while crossing the road.

The ontology is the culmination of all the research work presented in this disserta-

tion. Chapter [4] illustrates key personality types of pedestrians gleaned from pedes-

trian crossing videos from different sources. It aims to enlighten the reader about the

diversity in pedestrian behavior and the scope of research on simulation models for

pedestrians. The findings in this study led to the rest of the work presented in the

dissertation. Chapter [5] discusses the properties and challenges of the ideal model re-

quired for simulation-based testing of autonomous driving against pedestrians. It gives

a high-level overview of gaps in the existing literature and a clear path to developing

rich pedestrian behaviors on the road.
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Chapter [6] is the first contribution that established the ground for this research

work. This work proposes an adversarial jaywalker with different states while cross-

ing. In each state, it can show unpredictable and adversarial behaviors to confuse the

vehicle drivers. It identifies the critical issues with existing methodologies and hints at

the possible solutions. Chapter [7] addresses the gap in simulation models to produce

rare pedestrian scenarios. It proposes a hybrid method of pedestrian behavior modeling

that connects various existing methods to formulate a rich generative model and uses

real-world rare scenarios to produce a variety of new scenarios through a novel behav-

ior augmentation method. Chapter [8] proposes a novel generative method in route

planning for pedestrian crossings to cover the shared space on the road that pedestri-

ans can use while crossing. The technique allows pedestrians to adapt to the dynamic

nature of available space for crossing in any traffic situation.
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Part II

Research Contributions
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Chapter 2

Research Gaps and Goals

2.1 Four Serious Gaps

This work identifies and builds upon four serious gaps in pedestrian behavior mod-

eling for simulation-based testing of autonomous driving:

• Gap #1: Evidence of pedestrian behaviors is spread over different sources and

there is no curated information. The lack of curated information makes it hard

to find research gaps and opportunities. Existing literature revolves around the

same set of behaviors without addressing a broad range of behaviors essential for

testing. For example, there is a score of research in gap-acceptance to explain

when a pedestrian decides to cross the road from a sidewalk. However, there are

few research that model when a pedestrian makes a stop in the middle of the road.

• Gap #2: The requirements of a pedestrian simulation model are not defined.
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Because of this gap, existing literature does not focus on generating rare and

dangerous pedestrian behavior. In addition, literature needs to address jaywalking

behavior and its diversity while crossing. The simulation models need to show

both rational and irrational behaviors and allow control over how the models act

to produce specific kinds of behaviors based on the test goals.

• Gap #3: Interpretable modeling is necessary for different stakeholders. One

can produce numerous critical scenarios in simulation. However, without inter-

pretability, it cannot be guaranteed whether the test methods cover the diversity

of pedestrian behaviors. For example, if the simulation model cannot retreat in

the middle of the road, millions of generated scenarios will not have a single

scenario where the pedestrian retreats. Without interpretability, one cannot cat-

egorize the emerging scenarios into behaviors to make sure the test results align

with stakeholder concerns. Interpretability is needed for vehicle companies, reg-

ulatory bodies, and the general public.

• Gap #4: There is no method for rare mid-block crossing. The crossing models

either focus on crosswalks or very rational and collision avoidance behaviors in

the mid-block. For example, the rolling-gap models make a safe decision when

the pedestrian needs to cross multiple lanes of traffic. No model captures the

behavior where the pedestrian overlooks the traffic in further lanes and takes a

huge risk in crossing. Research in long-tail pedestrian scenarios is hindered by

this gap.
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2.2 Goals for the Gaps

Based on the gaps, this research pursues two goals:

• Understanding the Pedestrian: This goal addresses Gap #1, #2. The objective

is to identify unique pedestrian types, behaviors, and dangerous situations on the

road which supports formulating a rich behavior set for simulation models. This

work proposes:

– Pedestrian Behavior Ontology: The behavior ontology aims to develop a

representative set of behaviors and maneuvers that pedestrians exhibit on

the road using all sorts of data sources such as autonomous vehicle datasets

(e.g., InD [14], PSI 2.0 [186]), car dashcam compilations, traffic images,

and accident reports. The ontology defines what to model and test against.

It identifies unique microscopic behaviors and how their interplay describes

different types of pedestrians.

– The Dangerous Pedestrian Archetypes: Each pedestrian archetype is a

unique combination of behaviors and physical and mental attributes. Archetypes

directly address public concerns and are communicable. Often long-tail

dangerous situations emerge due to archetype characteristics. Archetypes

greatly help in testing against long-tail scenarios and making scenarios in-

terpretable.

– Expressive Generative Behavior Modeling: The purpose of this work is
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to define how to develop pedestrian models for simulation-based testing.

It specifically targets coverage-based testing methods that require testing

against various scenarios and unpredictability with a fine-grained control

on how the simulation models can act in simulation.

• Hybrid Modeling for Simulation-based Testing: To address Gap #3, #4, this

work focuses on hybrid modeling for pedestrian behaviors and scenarios. A hy-

brid modeling approach that can incorporate existing modeling methods and tap

all sorts of data sources. Using the same method to model all sorts of pedestrian

behaviors and produce important and rare scenarios is not easy. This research

aims to develop novel methods to create rich and interpretable pedestrian mod-

els. The proposed methods are:

– Adversarial Jaywalker Model: This work proposes a novel multi-state

pedestrian model that captures different sets of behaviors in different states.

It makes the state behaviors configurable giving the testing methods fine-

grained control on which behaviors can act during the simulation. It allows

the integration of different methods for different behaviors making the re-

sulting model highly expressive and extendable.

– RePed: RePed can capture long-tail pedestrian scenarios and reproduce

them in simulation in such a way that the vehicle under test cannot escape

the desired events. It adapts the pedestrian in the scenario to the changing

behavior of the ego vehicle and road structures. In addition, it can augment
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the scenarios by changing pedestrian behaviors. The generated scenarios

are interpretable as RePed identifies and encodes the behavior patterns in

its scenario representation.

– HyGenPed: HyGenPed addresses pedestrian route diversity and offers a

generative method that can cover polymorphic and dynamic crossing areas

on the road in a very efficient manner. It can quickly generate a set of

routes that reflects real-world route patterns and cover the shared road space

available to pedestrians. It is also integrated with the multi-state jaywalker

model which generates diverse trajectories by adding behaviors.
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Chapter 3

Pedestrian Behavior Ontology

Different pedestrians show different kinds of behavior while crossing the road. In

addition, the behavior of the same pedestrian may change due to external influences

such as the weather or the presence of other traffic participants, or internal influences

such as intoxication and age. Pedestrian behavior can be broken down into microscopic

behaviors such as running and impulsive stopping, and physical constraints such as ac-

celeration and speed. These micro-behaviors and physical constraints are interrelated.

Their plausible compositions create the diversity of pedestrian behavior on the road.

The archetypes in Chapter [4] hint at such compositions. The goal of the ontology is

to identify such micro-behaviors and physical constraints and plausible compositions

to represent real-world pedestrians.
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3.1 Purpose of The Ontology

A robust pedestrian behavior ontology serves several key purposes in the autonomous

driving research and industry:

First, the ontology gives clarity on what behaviors need to be modeled in order to

craft real-world pedestrians in simulation. The existing methods on pedestrian agent

modeling has so far been limited due to the lack of such an ontology. For example,

no method modeled how a kid can take a round-trip in the middle of a four-way inter-

section seen in Section [4.10] as this is an extremely rare scenario which has not been

documented in pedestrian behavior literature before.

Second, the ontology facilitates coverage-based testing and reporting. Behavior-

coverage-based testing is important to ensure that a autonomous driving system is well-

equipped to handle all possible dangerous situations on the road. Modern self-driving

systems are often neural-network-based, which cannot be proven to work in all possible

situations. Thus, exhaustive testing is required to ensure the safety of their behavior

space. In addition to testing, interpretable reporting is also necessary for the public

and the regulators. Autonomous vehicle companies publish safety testing reports [243,

244, 72]. However, these reports summarize test reports and do not shed light on what

kind of pedestrians their autonomous driving systems are tested against. With such an

ontology, autonomous driving companies can conduct tests that cover the ontology and

publish detailed results.

Third, the ontology also creates a vocabulary of terms describing types of pedestrian
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behaviors which creates a language of communications among the public, regulators,

and businesses. Currently, the public is concerned about pedestrian safety and recently

demonstrated aggressive behavior against driverless cars [226, 230, 228, 175, 217, 164].

People want to know whether autonomous vehicles can safety interact with different

types of pedestrians, especially children. However, they also need the ontology to

clearly understand pedestrian behavior to set realistic expectation of autonomous driv-

ing. Regulators can use the ontology to assess risks of AVs interacting with different

types of pedestrian behaiors and develop safety requirements. Autonomous vehicle

companies can share how their driving agents perform against specific behaviors de-

scribed in the ontology without revealing their technology secrets. In addition, different

stakeholders can collectively develop testing scenarios based on the ontology which can

amount to a standard suite of tests. This can facilitate safety comparisons of different

self-driving vehicles.

Finally, the ontology also provides a terminology that reduces ambiguity in describ-

ing traffic scenarios. Pedestrian datasets are annotated by human annotators. However,

human annotators are free to use different words to describe the same event. For ex-

ample, instead of stating, "A pedestrian has stopped in the middle of the road," another

annotator may describe the same behavior as "a pedestrian frozen in the center of the

lane". With such differences in the scenario description language, it becomes diffi-

cult to search for specific scenarios by specific terms which makes it harder for further

research. With an ontology, annotators can use the same terminology to describe sce-
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narios, achieving consistency in wordings in datasets [213].

3.2 Literature Review

While there is no comprehensive existing ontology on pedestrian behaviors, re-

search in pedestrian behavior modeling has defined several high-level categories, inten-

tions, and demographic tags for categorizing pedestrians. In [10, 9], pedestrian behav-

ior is categorized according to activity choice, mode choice, route choice, destination

choice, walking behavior, and interactions. They discuss different pedestrian interac-

tions (e.g., group behavior), however, such interactions are not extensively explored

and enumerated, especially in the context of road crossing. Moreover, their walking

behavior and route choice models do not cover erratic movement on the road depicted

in Figure [4.12]. In [121, 176], a limited ontology is developed which does not include

rare pedestrian behaviors. None of the existing ontology works focus on the diversity

of crossing behaviors, especially the dangerous behaviors.

The PIE Dataset [189] offers text labels for pedestrian actions (“walking”, “stand-

ing”, “looking”, “not looking”, “crossing”, “not crossing”)’ as well as a 5-interval

scale for annotations involving whether the pedestrian wants to cross the street. The

JAAD Dataset [190] utilizes video attributes ("time of day", "weather", "location"),

pedestrians with behavior annotations, traffic information (e.g., signs, traffic light), and

vehicle actions, but these behavior tags are fairly limited and provided only within

single frames. The PSI 2.0 Dataset [186] concerns "the dynamic intent changes for
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the pedestrians to cross in front of the ego-vehicle." However, the dataset utilizes text-

based explanations of the driver reasoning process when estimating pedestrian intents

and predicting their behaviors during the interaction period. PSI 2.0 offers only three

behavior tags: (a) not cross, (b) not sure, and (c) cross. Even though their correspond-

ing text-based explanations reveal certain pedestrian behaviors, vehicle behaviors, and

environmental conditions, the comments are not structured, and using them for further

research is inconvenient.

Several articles focus on behavior modeling based on demographics such as gender

[257], culture [116], and age [139, 257]. In [257], walking and running speed statistics

are given for males and females across different age groups. In addition, the manner of

movement is also categorized into one of "Slow", "Ordinary", "Fast", "Running", and

"Sprinting". These movements belong to essential microscopic behaviors that describe

how pedestrians walk on the road.

3.3 Methodology

The ontology defines behaviors from the perspective of the ego vehicle and its

lane. It tries to represent how a driver, while driving, sees the pedestrian. For ex-

ample, the "Flinch-out" behavior denotes that the pedestrian flinches out of the lane

that the ego vehicle is taking, and the "Flinch-in" behavior describes a situation where

the pedestrian flinches out of another lane and enters the ego vehicle’s lane suddenly.

The initial ontology has been developed by analyzing pedestrian videos, datasets, and
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existing literature and focuses on the decisions that pedestrian makes while cross-

ing [213]. It is being revised and expanded. The updated ontology can be found at

https://pedanalyze.readthedocs.io

3.3.1 Data Sources

• Public dashcam compilations: Many dashcam companies publish compilations of

pedestrian behavior on road [36, 37, 38, 122, 60]. The compilations are curated

from videos collected from dashcam users across the world. There are several

advantages to using such videos over the ones recorded for research and develop-

ment of autonomous driving. First, video datasets such as Waymo Open Dataset

[225] are collected in selected cities in the world and along very specific map

areas. So, such datasets do not represent pedestrian behavior in general. Sec-

ond, datasets collected for autonomous driving do not have many rare scenarios

(e.g., accidents, near-miss, risky behaviors). However, the dashcam compilation

videos are rich in rare scenarios.

• Literature on pedestrian behavior: research works focused on pedestrian behav-

iors such as [9, 257] reveal essential behavior patterns. Though these works are

often focused on traffic flow analysis and capacity planning, they identify key

microscopic behaviors applicable to road crossings.

• Autonomous driving datasets: Annotated datasets such as [186] have not defined

a rich set of behaviors for pedestrians. However, their videos contain interest-
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ing pedestrian behavior (see Section [4.1] for an example). Analysis and re-

annotation of their videos revealed some key pedestrian maneuvers and decisions

while crossing the road.

3.3.2 Annotation Tool

A specialized open-source tool, PedAnalyze, was created to develop the ontology

along with annotated datasets using car dashcam videos found on public platforms such

as YouTube. There are several key features that distinguish the tool from existing ones:

• PedAnalyze allows for annotation of behaviors over a sequence of frames and

allows multiple annotations per pedestrian over the same sequence. This helps

to create rich annotations without repetitions. In existing tools, annotations are

made per frame, making the annotation job repetitive and harder and producing

redundant information.

• PedAnalyze encourages the usage of existing behavior tags to ensure consistency

in wordings of the behaviors. In addition, extending the set of predefined tags is

easy through configurations.

The tool can be found at https://pedanalyze.readthedocs.io
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3.3.3 Pedestrian Behavior Tags

Every distinguishable decision and maneuver is given a tag. Currently, the tags are

organized into several categories as follows:

3.3.3.1 Manner of Walking

Manners are determined by pedestrian gait properties, such as walking speed, ac-

celeration, and direction changes. In addition to common manners such as running, this

work identifies some rare manners seen on road such as "Crawling" where pedestrians

cross the road by crawling.

3.3.3.2 Navigation

Navigation categorizes behaviors that determines various routes pedestrian can take

and voluntary violation of rules and norms. For example, "Along-lane" behavior de-

scribes a pedestrian who walks along a driving lane without showing the intent to cross

the road.

3.3.3.3 Instant Reaction

These are instantaneous maneuvers (e.g., flinch, sudden stops) that are impulsive

and happen quickly (often in a second). Often these maneuvers are to avoid collisions.

However, as the pedestrians do not have enough time to check the surroundings, the

instant reaction decisions can lead to risky situations.
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3.3.3.4 Collision

These behaviors result in collisions or near-miss scenarios between the pedestrian

and the ego vehicle or other traffic participants

3.3.3.5 Interaction

Interactions cover verbal or non-verbal communication among traffic participants

where one or more pedestrians are involved. The interactions are further divided into

sub-groups to delineate different kinds of interactions such as group interactions and

vehicle pedestrian interactions (VPI):

• Interaction: Group: Group interactions involve multiple pedestrians. These

interactions revolves around group dynamics, activities and communication with

group members and other traffic participants. For example, in the "Street-fight",

two or more pedestrians fight on the roads having traffic.

• Interaction: VPI: VPI interactions capture how pedestrians communicate with

the ego vehicle and interact with any vehicles on the road. For example, a pedes-

trian can board a halted or slow vehicle on the road denoted by "Getting-in"

behavior.

• Interaction: Object: Object interactions include any interactions with objects

beyond other traffic participants. For example, the "Change-tire" behavior cap-

tures the situation where a pedestrian is fixing a vehicle tire and dangerously
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close to or on a driving lane.

3.3.3.6 Intention

Intentions cover predictable crossing decisions taken by a pedestrian (e.g., "cross",

"not cross"). These are different from instant reactions as instant ones are unpredictable

and sudden. Intention behaviors kept separated from "Mental State", 3.3.3.7, behaviors

because existing literature established this category.

3.3.3.7 Mental State

This category encapsulates all the behaviors concerning the pedestrian’s mood,

awareness, and responsiveness of the surrounding environment, which can be perceived

by other traffic participants. While the actual mental state may be unknown or am-

biguous, the ontology suggests identifying behaviors from the driver’s or ego vehicle’s

perspective.

3.3.3.8 Physical State

Physical state contains physical attributes, impairments, or augmentation that changes

the walking behavior. For example, the "Bicycle" state denotes that the pedestrian may

walk along with a bicycle while crossing the road.

Manner of Walking gait properties such as walking speed, acceleration,

and direction change

Brisk-walk Walk fast
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Run Running while crossing

Retreat Walk backward or return to the origin

Speed-up Sudden change from slow to fast

Slow-down Sudden change from fast to slow

Pause-start Stop momentarily, and proceed afterward, [21, 101]

Drunken-walk Unsteady walking patterns where the pedestrian

finds it hard to keep balance and often fails to walk

towards a single destination, [76, 87, 77, 88]

Crawling Crawling on the road, [89, 90]

Wavering-direction Fluctuate in directions of travel, [87]

Navigation violating rules and norms of crossing the road

Along-lane Walking along a driving lane instead without show-

ing the intent to cross the road for a while (more than

3 seconds), [78, 79, 23, 24]

Jaywalking Not crossing at marked crosswalk, [39, 235, 75, 40,

123, 122, 234]

Cross-on-red Crossing on red light for pedestrians

Walking-around-vehicle Walking around a halted or slow vehicle on a driving

lane

Instant Reaction impulsive and instantaneous actions

Trip Pedestrian falling or collapsing on the road

Swerve Abrupt change in direction

Break Abrupt stop at the lane boundary and yield

Flinch-out Jump out of ego’s lane, [36, 41, 196, 42, 37]

Flinch-in Jump into the ego’s lane, [36, 41, 196, 42, 37]

Frozen Stop in the middle of a lane
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Collision collision with a vehicle

Collision Colliding with a vehicle leading to injury

Near-miss Nearly missing a collision with a vehicle, [43, 20]

Run-into-traffic Creating near-miss/collision with vehicles, [33]

Thrown-back Thrown backward by vehicle collision, [170]

Interaction: Group Group behavior and formation

Group-walk Walk in a group, [44, 192, 69]

Group-disperse A group dispersing in the middle of the road, [35,

173, 154, 256, 71]

Re-group Reformation of a dispersed group in the middle of

the road, [197, 34, 173, 154, 256, 71]

Pet-walk Crossing the road with a pet such as a dog, [4]

Street-fight Fighting on the road, [61, 62, 60]

Interaction: VPI Vehicle-Iedestrian-Interactions. Voluntary interac-

tions with a vehicle on the road

Make-stop Gesturing to vehicle to stop

Make-go Gesturing to vehicle to go

Aggression Aggressive gestures to vehicle, [183]

Assault Assault the vehicle, [45]

Observing Standing still and observing vehicle’s behavior

Getting-off Getting off a vehicle on a driving lane, [25]

Getting-out Getting out of a vehicle on a driving lane, [25]

Getting-in Getting in a vehicle on a driving lane, [25]

Load-unload Loading or unloading goods from a vehicle on a

driving lane, [198]

Interact-non-ego-

participant

Interacting with other traffic participants, [195]
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Interaction: Object Voluntary interactions with an object while crossing

the road

Phone Texting or talking over phone, [199, 124]

Porter Pedestrians carrying large objects

Hauler Hauling objects such as bicycle and sleds [35]

Photography Taking photos while crossing the road

Drop-object Drop an object in the middle of a lane, [46, 209, 200]

Pickup-object Pick up an object in the middle of a lane, [46, 209,

200]

Change-tire Changing tires on the road, [146]

Intention

Cross Clearly shows the intent to cross, [186]

Not-cross Clearly shows no intent to cross, [186]

Not-sure-cross Does not clearly show the intent to cross, [186]

Mental State Mood, awareness, and responsiveness to the sur-

roundings

Looking Looking at the oncoming traffic (>1s), [192]

Glancing Glancing at the oncoming traffic (<1s)), [192]

Never-looking Never looking at the oncoming traffic, [192]

Distracted Distracted and not responding to the surroundings,

etc., [208]

Fixated Fixated on a direction different from the direction of

an approaching vehicle, or another object, [47, 195]

Music Listening to music using headsets or earphones,

[208]
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Agitated Showing agitation in general and does not need in-

volvement with the vehicle, [45, 48, 49]

Cautious Showing careful deliberation

Indecisive Faltering in decision to proceed, [50, 201, 34]

Late-response Taking actions too late, leading to dangerous situa-

tions, [21]

Ignorant Not knowing the rules and social norms of the road,

[22]

Physical State Physical attributes, impairments, or augmentation

changes their walking behavior

Under-teen Aged below 13, [26, 27, 28]

Walking-stick Using a stick to walk, [171]

Walking-crutch Using a crutch to walk, [171]

Wheel-chair Crossing on a wheel-chair, [202, 171]

Scooter Crossing on a scooter, [212]

Unicycle Crossing on a unicycle, [16]

Bicycle Crossing with a bicycle (may or may not ride it),

[203]

Table 3.1: Pedestrian Behavior Tags: behaviors from the perspective of the ego vehicle

and its lane.
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3.4 Conclusion

The pedestrian ontology opens up new research directions on how and what to study

about pedestrian behavior on the road. It also serves the behavior-coverage-based test-

ing standards for autonomous vehicles for pedestrian safety. With explicit behavior-

based testing, autonomous driving agents can achieve better interpretability of their

actions.

The hybrid approaches for generative pedestrian behavior modeling such as [157,

158, 128, 103] depends on micro-behavior models. Such an ontology can greatly im-

prove the expressiveness of hybrid approaches in simulation-models.

It is important to note that development of a comprehensive ontology is a chal-

lenging task, requires collaboration, and consensus. This work only includes behavior

with evidences curated, defined, and annotated by a group of nine collaborators includ-

ing the authors of PedAnalyze, [213]. PedAnalyze and Youtube dashcam videos was

extensively used by the collaborators to develop this ontology to extract behaviors. Be-

havior naming and categorization ambiguities were resolved through discussions and

voting. It is challenging to measure the completeness of the ontology. We used over

fifty Youtube dashcam videos and PSI 2.0 datasets for evaluation and the current ontol-

ogy covers all the behaviors seen in the videos.
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Chapter 4

The Dangerous Pedestrian Archetypes

A safe pedestrian is a predictable and law-abiding citizen. In the presence of traffic,

a safe pedestrian:

• Does not violate road signals.

• Crosses the road using crosswalks.

• Is always attentive to the road situation.

• Communicates with other traffic participants effectively and makes their inten-

tions clear to others.

• Does not quickly change their behavior.

• Avoids risky decisions.

A dangerous pedestrian violates one or more of the characteristics of a safe pedestrian.

Often, unsafe behaviors seem benign as accidents are rare. However, pedestrians can
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avoid accidents if they always make safe decisions while on the road. But, being al-

ways safe is strenuous. As to err is human, to be a pedestrian is often to be dangerous.

Dangerous pedestrians pose a risk to themselves or others. This work proposes pedes-

trian archetypes to identify, communicate, and address public concerns about dangerous

pedestrians.

A pedestrian archetype is a composition of behaviors that uniquely identifies a

specific personality of pedestrians, e.g., drunk pedestrians, and addresses public con-

cerns. This chapter identifies several unpredictable and irrational pedestrian archetypes

that lead to dangerous situations and accidents on roads. These archetypes pose sev-

eral challenges in pedestrian behavior modeling. The major challenge is that many of

these archetypes lack adequate data for rigorous analysis and modeling for simulation.

These archetypes delineated research gaps and fueled this research endeavor through

the unexplored territory of pedestrian behavior research in general.

The archetypes have been identified after analyzing datasets from the following

diverse sources:

• NHTSA Traffic Safety Facts reports: The National Highway Traffic Safety Ad-

ministration (NHTSA) publishes traffic safety facts every year based on accident

analysis, [166, 167, 172]. In their reports, they mainly categorize pedestrians by

age, gender, distractions, and alcohol level.

• FARS Data: NHTSA uses a Fatality Analysis Reporting System (FARS) to serve

both data visualizations [169] and queries [171]. This work extensively uses the
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FARS Query tools to extract pedestrian behavior (see Figure [4.1]).

• PSI 2.0 dataset: [186] contains videos with pedestrian behavior annotations. This

dataset contributes to several archetypes.

• Pedestrian Video Compilations: While NHTSA data contain major characteris-

tics of pedestrians involved in accidents, the data is essentially text. So, it is diffi-

cult to understand the scenarios of the accidents. To understand the scenarios, this

work utilized pedestrian video compilations from car dash-cams. The compila-

tions can be found on YouTube [36, 236, 237, 46, 37, 51, 122, 29, 20, 45, 77, 21].

The archetypes are not categories of behaviors where behaviors denote specific ma-

neuvers such as stopping and running, or decision choices such as direction change

and intent to cross. Often different archetypes have overlaps in behaviors. For exam-

ple, "The Blind" overlaps with "The Distracted". However, it is important to make this

distinction as it can be important to someone concerned about blind pedestrians on the

road. There is a huge number of pedestrian personality types. For example, an adult can

show behaviors similar to "The Kid". However, archetypes only include "The Kid" as

it is a major concern. The purpose of the archetype is to identify a unique combination

of behaviors so that:

• The combination of behaviors is realistic.

• The correlation of behaviors can be measured.
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• How the archetype modifies the behavior can be modeled conditionally. For ex-

ample, how a pedestrian makes a stop in the middle of the road greatly depends

on whether they are intoxicated or indecisive. The intoxicated person often shows

an unsteady stop.

• Various stakeholders can discuss safety testing based on the archetypes.

The archetypes emerge from the pedestrian’s internal factors and how they tend to

react to the surroundings. Such factors have been studied in [148, 178, 192]. How-

ever, research into the resulting observable pedestrian models is limited and mostly

non-existent. This research focuses on identifying the emergent pedestrian types that

facilitate further modeling research.

4.1 The Wanderer

The wanderer type loves to wander along the driving lanes and often ignores the

traffic. It is challenging for the driver to understand their intentions. PSI 2.0 1, Video_0019

portrays a wanderer, figure 4.2. Illustration 4.3 shows key points in time in the pedes-

trian’s trajectory where they exhibit changes in behavior. There is a one-way road

with 4 driving lanes. A vehicle is cruising at 22 mph along the second lane. So is

the pedestrian along the lane immediately to its right. At time step 1, the pedestrian

walks towards the vehicle lane. 50 percent of the annotators estimated a "crossing",

1PSI 2.0 is a pedestrian crossing dataset with three crossing intent annotations on video frames: cross,
not cross, not sure, [186].
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Figure 4.1: Fatality Analysis Reporting System (FARS) Query Interface.

10 percent "not cross" and 40 percent "not sure". This clearly shows how difficult it

is to understand a wanderer’s mind. The driver slows down a little bit, anticipating a

distracted person.

To the driver’s surprise, at time step 2, they start moving away. All the annotators

agree that the pedestrian will not cross. To everyone’s surprise, at time 3, the pedestrian

again starts getting closer to the vehicle lane, and at step 4, they suddenly make a sharp

direction change and cross the road.

Wanderers show diverse behaviors. In [78], the pedestrian runs towards the ap-

proaching vehicle from the opposite of the driving direction, makes the car stop, and

climbs the hood. In [79], they dance on the highway and stop the traffic. The wanderer
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becomes much more dangerous while they are drunk [87] as they can quickly change

directions and accelerate or stop.

(a) (b)

(c) (d)

Figure 4.2: The wanderer from PSI 2.0, Video_0019, who loves to walk along the road

and keeps changing the intention to cross the road.
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Figure 4.3: The trajectory of the wanderer from PSI 2.0, Video_0019. Here the number

represents interesting points in time, the circles denote the pedestrian.
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4.2 The Drunk

About 31 percent of pedestrian fatalities were intoxicated with BACs of 0.08 g/dL

or higher in the USA in 2021 based on NHTSA’s traffic report, [166]. This fact calls for

attention and results in the drunk archetype. The illustrated dashcam video in Figure

[4.4] shows a drunk pedestrian that stupefies even the veteran drivers.

In this video, the pedestrian finds it very hard to understand where they are on the

two-way four-lane road. First, they completely cross two lanes and retreat though they

could have crossed the full road. The traffic in the remaining lanes is stopped due

to a red signal. Second, While retreating they dance toward the approaching vehicle,

requesting it to stop. When the vehicle stops they slide along the front of the vehicle to

cross the lane again.

In video [88], the drunk pedestrian is standing outside the highway lanes, and sud-

denly starts falling on their back. They recover themselves but also enter the driving

lane in the process. With no intention or action to cross, the drunk still manages to put

themselves at risk of colliding with high-speed vehicles on the road.

Like the Wanderer, the Drunk comes in many forms. In video [89, 90], the drunk

crosses by crawling (using legs and hands). In video [91], the drunk walks blindly and

crushes into the midsection of a moving bus. In [87], they wander along the driving

lane. The drunk type modifies all the other archetypes making their behavior more

erratic and showing additional maneuvers.

47



(a) (b)

(c) (d)

(e) (f)

Figure 4.4: The drunk on the road from [76]. It is hard to predict whether they are done

with crossing or not.
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4.3 The Distracted

The distracted are often fixated on something other than the approaching vehicles

[47, 195]. They are able to come back to their senses. The distracted is different from

the drunk, as they can act rationally if other actors in the situation communicate with

them. There are several patterns in distracted pedestrians:

• Looking at the phone screen [199, 208].

• Talking to the phone [124].

• Listening to music [208].

• Interacting with another traffic participant [195].

• Fixated on a direction different from the direction to approaching vehicle [47]

Figure [4.5] shows a rare event where the pedestrian talks to a taxi driver while

walking against a driving lane. Suddenly, they discover themselves to be very near to

the approaching vehicle and jump out of the lane.
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(a) Talking to a driver ignoring the approaching vehicle. (b) Eventually looks at the approaching vehicle.

(c) Startled! (d) Moves out quickly.

Figure 4.5: The distracted from [195] keeps talking to a taxi driver for a while without

noticing the approaching vehicle. When the vehicle is very near, they get startled and

jump out of the way.
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4.4 The Flash

The flash dashes into traffic and sprints through traffic, often making things happen.

In the case of the flash, something else is more important than safety. Though being

sober and grownups, the flash does not stop at anything. Figure [4.6] shows two such

pedestrians beaming through the traffic.

The main characteristic of the flash is they sprint. There is a sense of urgency in

their behavior. They do not necessarily travel along the shortest path. In [32], they

appear running from behind a parked vehicle and cross the street straight. However, in

[33], they follow a curved path to reach their destination.

Kids often run on the streets. But their behavior is different. The kid is defined in

section 4.10.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The flash in (a) and (b) dashes into the traffic and almost gets hit by the

approaching vehicle, from [32]. The second flash (c)-(d) sprints through traffic to catch

the bus, from [33].
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4.5 The Indecisive

The indecisive falters in their decisions which results in dangerous and involuntary

maneuvers such as flinching back to another driving lane. A quick decision without

proper judgment forces one to change the decision frequently. Such indecisiveness [50,

34, 201] creates confusion for everyone and can influence the other traffic participants

to falter in their decisions.

Figure [4.7] shows a pair of pedestrians who change their decisions several times

while crossing the road. Their decision to cross the road is too early to be safe. Without

observing the traffic well one of them paces up and nearly misses another vehicle in

the next lane. Shocked, they retreat and go back to where they came from. Readers

are strongly suggested to watch the scenario at [34] for a better understanding of the

events.
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(a) Jogs into the driving lane. (b) Makes a momentary stop.

(c) One starts crossing by running without looking at the traffic

on the next lane. (d) Meet each other again.

(e) Decide not to cross at all. (f) Go back to where they came from.

Figure 4.7: The indecisive on the road from [34]. Watching the video is strongly rec-

ommended to get the full experience of the events.
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4.6 The Blind

The blind comes in two flavors: (a) intentionally ignoring and (b) failing to notice.

They can turn a blind eye to traffic and signals. Figure [4.8] illustrates the pedestrian

who intentionally ignored an approaching tram and crossed the road. The tram barely

avoided an accident by making a stop. Similar intentionally blind pedestrians can also

be found in [52].

In [43], while crossing, the pedestrian not only listens to music but also plays with

their phones. The approaching vehicle honks at them, but they do not even budge from

their path. Without noticing the surroundings, they cross a four-lane road on a green

signal. Such behavior is often common in rare scenarios [53, 54].
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(a) The car on the left stopped to let the tram pass. (b) The pedestrian keeps crossing.

(c) The completely ignores the approaching tram. (d) The tram makes a stop to avoid an accident.

Figure 4.8: The blind from [20]. In this example, the pedestrian intentionally avoids

the approaching tram and crosses the road. This leads the tram to make a hard stop and

nearly hit the pedestrian.
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4.7 The Flock

The flocks (a group of pedestrians) are dangerous when they do not precisely fly

together. Figure [4.9] depicts a woman hauling a sled with two kids. They decide to

cross the road. However, they do not notice the kids falling off the sled while crossing.

Even the animal flock crosses the road better [44]. In [210], one flock member leaves

others behind, scared by the approaching vehicle. One wants to continue crossing in

[211], but the other drags them and retreats off the road. In [204], one of the two

pedestrians crosses the road and the other retreats to the previous lane. Things get more

complicated when they are on scooters and violate the signal on high-speed roads [123].

Where pedestrian flocks usually move as a body, in rare scenarios, the group can

have multiple choices for the next action. Then, the flock may disperse (often invol-

untarily) or negotiate on the next action, creating confusion on the road. The main

characteristics of the dangerous flock are:

• They can disperse while crossing the road.

• They can re-group while on the road.

• They can cross or retreat after dispersing or re-grouping.
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(a) Hauling two kids. (b) Crossing the road without looking back.

(c) Kids falling off the sled.

(d) The guardian finishes crossing the road while the kids are on

a driving lane.

(e) One kid gets up and runs to the guardian. The other is still

on the ground. (f) The guardian comes back to carry the kid and cross the road.

Figure 4.9: The flock from [35]. In this scenario, the guardian is sledding the kids

across a two-lane road. While crossing, they fail to notice that the kids fall off the sled

in the middle of the first lane. After completely crossing the road, they notice that the

kids are on the road. One of the kids runs to the guardian, but the other fails to get up.

So, the guardian comes back to carry the other kid on the other end of the road.
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4.8 The Jaywalker

The jaywalker will cross at any point, over anything. They may cross at the right

time, with the right people, but not at the right place. About 73 percent of accidents

happen due to mid-block jaywalking, [168].

However, it is not only the mid-block where the jaywalking happens. Video [122]

shows a very large intersection with six lanes on one axis and four lanes on the other.

The jaywalker crosses the road along the longer axis. However, they walk along the

center line between the four lanes. Video [234] (viewer discretion is advised as this

leads to an accident) shows a large roundabout. The pedestrian decided to cross the

road by taking the shortest path over the middle island. The exceptional crossing loca-

tions of the jaywalkers are shown in Figure [4.10]

(a) Crossing inside a large intersection. (b) Crossing in the middle of a roundabout.

Figure 4.10: The jaywalker can cross the road anywhere. (a) taken from [122], (b)

taken from [234]
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4.9 The Elderly

Based on the literature, age is correlated with response time. When one has a high

response time, they appear to take action too late. In this work, the Elderly is defined as

a person who takes an action when they already lost the opportunity to take the action

safely. One might assume that the pedestrian in [55] took a risk to cross the road by

accelerating. However, these events often happen because it is already too late by the

time they start to cross. They tend to follow the habits from a younger age. However,

the declining sensory and motor functions lower their crossing efficiency and, thus,

elevate the risk. The video is a counter-example of gap acceptance models that assume

older people reject shorter gaps. The gaps might be longer in their mind, but they

emerge as shorter in reality.

Figure [4.11] visualizes an example where an elderly pedestrian makes decisions

too late endangering the pedestrian on the other side of the road and derailing the ap-

proaching truck.

In addition to accepting higher risk while crossing, older people have a higher

chance of death from injuries though they walk less [168].
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(a) The elderly on the left cruising into the road slowly.

(b) They suddenly start jogging. The pedestrian on the other

side of the road makes a full stop.

(c) The truck swerves off its lane to avoid the elderly pedestrian.

The pedestrian on the right retreats to save themselves. The el-

derly pedestrian makes a full stop in the middle of the lane. (d) The elderly pedestrian crosses the road after the truck passes.

Figure 4.11: The elderly from [21]. In this example, the elderly pedestrian seems to

make decisions too late which causes a near accident situation for the approaching truck

and the pedestrian on the other side of the road.
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4.10 The Kid

Though the number of accidents involving under-teens is relatively lower than in

other age groups when kids cross the road, they may show extremely dangerous behav-

ior due to a lack of inexperience and understanding of the rules of the roads. On top

of that, it is also important to define this archetype as autonomous driving systems may

have problems recognizing children [227].

Figure 4.12 shows the round-trip taken by a kid in a four-way intersection. Their

destination changed twice before they came back to the source location. They ran

during the trip. In [205], a two-year-old crosses the road ahead of their parents.

62



(a) Starts at a green signal! (b) Dashes diagonally.

(c) Makes a stop in the middle of a lane. (d) Dashes to another point.

(e) Guardians retreat. (f) Dashes to the guardians.

Figure 4.12: The kid from [22] took a round trip inside a four-way intersection on

the green light. They have no understanding of the rules of the road, keep dashing to

destinations, and misinterpret guardians’ intentions.
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4.11 The Eventful

The eventful pedestrian is a victim of a situation over which they have no control.

Such incidents include pedestrians tripping over, popping out of occlusions, and drop-

ping items on the road.

Pedestrians can fall on the road in many different ways. In [56], slips on an icy

road while crossing. In [57], they trip over from the middle island as the island was at

a level higher than the road surface, and the pedestrian failed to consider that. NTHSA

reports fatal accidents involving pedestrians collapsing on the road while crossing, Fig-

ure [1.5].

Another example is a pedestrian dropping items on the road [46, 200]. In [200], a

kid crossing with a group drops one of their sandals on the road and falls behind the

group.

Occluded pedestrians pop out of thin air [38, 125]. Occluded pedestrians can appear

anywhere on the road. While in the more common scenarios, occluded pedestrians

appear from around a stopped vehicle, in [125], we see an event when the occluded

pedestrian appears from the front of a high-speed vehicle moving at over 40 mph!

4.12 The Parked Pedestrian

This archetype defines the pedestrian interacting with a parked vehicle. The behav-

iors these pedestrians show are inherently different from those crossing the road. They
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purposefully move on the road while interacting with the parked vehicle. They can

load/unload a vehicle, get in or get off on the driving lane, or walk along the parked

vehicle. They are also often less distinguishable when near the vehicle. In [198], the

pedestrian loading the vehicle is barely visible to the human eye. Also, at the same

time, two more pedestrians are interacting with the vehicle.

Each archetype exhibits a unique set of behavioral patterns, entangling the pedes-

trian behavior modeling researchers’ work. Formulating these behaviors is painstak-

ingly difficult. The impact is so severe that researchers, even acknowledging these

patterns, avoid addressing them in their work. However, research on archetypes can

greatly contribute to the safety testing of autonomous vehicles and wider adoption.

They provide a platform to discuss pedestrian safety, quantitatively evaluate, and de-

velop consensus for acceptable performance of autonomous driving systems.

4.13 Archetype Patterns

Each archetype consists of some essential and some occasional behavior patterns.

The behavior patterns come from the pedestrian behavior ontology (Chapter [3]). The

essential patterns define the archetype. For example, "The Wanderer" must have the

"Along-lane" behavior, e.g., they must walk along a driving lane for a while without

showing the intention to cross the road. The occasional behaviors are commonly seen

with the essential behaviors adding variations to the essential behaviors or creating

more dangerous events. For example, "The Wanderer" can also be "Distracted", fail-
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ing to notice traffic around them, which can lead to more dangerous situations. Table

4.1 catalogues the pedestrians and their behaviors. The occasional behaviors are not

exhaustive, e.g., "The Wanderer" can also have the "Porter" behavior, carrying large

objects.

Archetype Essential Behaviors Occasional Behaviors

The Wanderer Along-lane

• Wavering-

direction,

• Distracted

• Never-looking

The Drunk Drunken-walk

• Make-stop

• Near-miss

• Collision
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The Distracted Distracted, Never-looking

• Phone

• Music

• Interact-other-

participant

• Fixated

The Flash Run-into-traffic

• Brisk-walk

• Never-looking
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The Indecisive

• Retreat, or

• Flinch-in, or

• Flinch-out, or

• Frozen, or

• Swerve

Near-miss

The Blind Not-looking Distracted

The Flock Group-walk

• Group-walk

• Group-disperse

• Re-group

• Pet-walk

• Street-fight
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The Jaywalker Jaywalking (any place except

crosswalks)
• Make-stop

• Near-miss

• Collision

The Elderly Late-response

• Make-stop

• Near-miss

• Collision

The Kid Under-teen and Ignorant

• Make-stop

• Near-miss

• Collision
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The Eventful

• Drop-object, or

• Pickup-object, or

• Trip, or

• Pop-out of occlusion

• Make-stop

• Near-miss

• Collision

The Parked

Pedestrian
• Getting-off, or

• Getting-in, or

• Change-tire, or

• Load-unload

-

Table 4.1: Pedestrian Behavior Tags: behaviors from the perspective of the ego vehicle

and its lane.
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Chapter 5

Toward Expressive Generative

Pedestrian Modeling

Safe and Dangerous pedestrians are equally wanted.
This work guides how to develop rich simulation models for pedestrians. In simula-

tion, autonomous driving agents are often tested against critical scenarios [126, 11, 100,

112, 113, 153, 220, 85, 12, 150, 194, 265]. Some methods search for emergent criti-

cal scenarios based on the interplay of traffic agents such as vehicles and pedestrians or

road structures [98, 141, 142, 8, 165, 84, 223, 261, 97, 110, 105]. In such a search-based

setting, to reliably validate driving agents against pedestrians, a generative pedestrian

model needs to support some essential characteristics such as adaptability, controlla-

bility, and variations. Adaptability ensures that the pedestrian adapts to the evolving

scenario during the search. Controllability exposes parameters the search method can
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use as the behavior search space. Variations capture the randomness in behavior given

the same situation.

In addition to the key characteristics, the generative simulation model must create

safe and dangerous pedestrians to cover a wide range of scenarios, including rare cases,

for testing purposes. However, generative modeling of rare behavior is a complex prob-

lem.

Furthermore, different components in the autonomous driving stack require various

input modalities. Perception systems often take visual inputs or 3D point clouds, which

contain human locomotion. Locomotion is essential to understanding human body lan-

guage and can reveal what a pedestrian is going to do next. For example, the future

trajectories can be more accurately predicted if the perception systems can understand

whether a pedestrian is falling on the road by analyzing the locomotion. Planning sys-

tems mainly deal with trajectories. However, it can be further improved if the planning

system knows more about the human states. For example, at the trajectory level, a

pedestrian can be static. However, the pedestrian can be standing or lying on the road,

which may require the AV to follow different plans. This work assumes that various

modalities are available in the simulation models. MotionGPT, [131] demonstrate how

behavior, trajectory, and locomotion can be generated simultaneously for humans.

Last but not least, the approach to a simulation model with diverse pedestrian be-

haviors with requirements for test facilities can be complex, which is addressed at the

end of this chapter.
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Figure 5.1: In this traffic context, a vehicle is approaching the crossing pedestrian.

Pedestrians can show different types of behavior. (1) They may make a stop and let the

vehicle pass, (2) They can ignore the vehicle and cross the road, (3) They can momen-

tarily flinch back and cross if the vehicle yields, or (4) they can take an unexpected route

and cross the road. Given the same situation, pedestrians may have different adapta-

tion strategies or can completely ignore the approaching vehicle. So, both adaptability

and variability are important aspects of a robust pedestrian model. Controllability is

required so that during the test, one can deterministically produce all of the four sce-

narios.
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5.1 The Ideal Pedestrian Model

The ideal pedestrian model tests autonomous driving in both safe and unsafe scenar-

ios and shows different crossing strategies while a scenario evolves during simulation

(see Figure [5.1]). The following components are derived from the archetypes (Chap-

ter [4]), ontology (Chapter [3]), and pedestrian choice model [9]:

• Appearance: Pedestrians come in different shapes, wear clothes with an infinite

variety, and may carry objects such as a storage box. Appearance is important

when the autonomous perception methods are dependent on the 3D shape of the

pedestrians and visual colors.

• Locomotion: Locomotion is how the animal moves their body parts to specific

tasks related to movement maneuvers such as walking, jumping, falling, and stop-

ping. Each maneuver has a unique locomotion. Locomotion tells what the pedes-

trian is doing and often hints at what they can or cannot do next.

• Activity Choice: The pedestrian decides what to do next voluntarily or involun-

tarily [9]. For example, the pedestrian may impulsively stop in the middle of the

road or start running suddenly. External control is needed for specific test goals

as there can be a score of options for the next activities. The ontology, Chapter

[3], presents the essential set of activities.

• Maneuvers: maneuvers capture the diversity in temporary motion to support a

pedestrian’s activity, e.g., where to stop to let an oncoming vehicle pass. They
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also capture the maneuvers’ timing constraints, such as how long it takes to com-

plete a maneuver. The stopping behavior from [206, 207] is very different from

[21] (see Figure [4.11]).

• Destination Choice: The destination is related to the activity the pedestrian has

chosen. It can be on other sidewalks, or their current location, or at any other

location on the road. Section [4.10] shows a child changing their destinations

three times in the middle of a four-way intersection.

• Mode Choice: While crossing, pedestrians can walk on foot, or use a wheelchair,

or ride a scooter or skateboard. They can use devices such as a walking stick to

help them cross or haul a sled (see Section [4.7]). The mode introduces con-

straints on movements or increases some movement capacity, such as speeding

due to scooters.

• Route Choice: Pedestrians take diverse routes while crossing a road. They do

not necessarily confine themselves to staying on a crosswalk. Often, they cross

on the midblock of the streets or in the middle of an intersection, a move which

is unexpected by an AV (see Section [4.8]). Also, pedestrians do not necessarily

always want to cross. Section [4.1] shows examples where pedestrians choose

to wander on the roads without crossing. Section [4.10] shows how kids and

4.5 show how indecisive pedestrians can quickly change their trajectories while

crossing. They can even take a U-turn and return to the sources after crossing a
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lane. The route diversity drastically changes the situation and can invalidate the

ego vehicle’s prediction of a pedestrian’s next action. The route choices can be

sparse and difficult to control [157, 158].

• Gait Properties: gait relates to pedestrian speed, acceleration/deceleration, and

rotation capacities. The controllability of these properties allows one to generate

different types of pedestrians with different physical constraints. For example,

to test self-driving against running pedestrians, one needs to control the speed of

the pedestrians in a higher range than the usual walking range.

• Interactions: Pedestrians can show gestures or interact with other pedestrians,

traffic participants, and objects on the road in many different ways, e.g., a dog

companion can change how a pedestrian moves while crossing. Section [4.7]

illustrates how group behavior emerges due to interactions among a group of

pedestrians crossing together.

• Interactions: Control of interactions is also desired since it leads to considerable

scenario diversity. For example, a pedestrian may or may not follow the leader

in a group, [58, 210, 211, 204, 35, 197, 123], or a pedestrian may drop an object

while crossing and impulsively stop to pick it up [46, 209].

Each component of a robust generative pedestrian model may require support for

adaptability, variability, and controllability for test goals and methods.
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5.2 Modeling Adaptability

The adaptability property ensures that pedestrians adapt to the diverging scenarios

in the simulation, producing the expected behavior set by the test plans. Humans adapt

fast. A pedestrian can effortlessly jump over a pothole, cross streets with different

shapes, navigate through complex and ever-changing traffic, and read the minds of

others. Humans also adapt to any given context. For example, assume a scenario

where the purpose of the test is to ensure the ego vehicle avoids an accident when the

pedestrian already started crossing the road. The ego vehicle can speed up to escape

the pedestrian or slow down to let them pass. However, if the pedestrian does not adapt

to the changing speed of the ego vehicle, it cannot challenge the ego vehicle well. So,

the ego vehicle may actually fail if the pedestrian also speeds up.

5.2.1 Adaptability Challenges

There are two major challenges in modeling adaptability: (a) identifying which

behaviors can be adaptive and (b) how to make a behavior adaptive.

• Identifying adaptive maneuvers is challenging as it requires analysis of all sorts of

data available on pedestrian crossings. Humans show a wide range of maneuvers

and richness in adaptation. However, to model adaptability, one needs data on all

the behaviors, including rare ones, [160]. A promising approach to identifying

all possible human behaviors can be found at [213].
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• Once the adaptability behavior is discovered, the challenge of choosing the right

modeling method comes. The methods that can learn different types of maneu-

vers are often data-driven systems requiring a representative data set. Using some

rule-based systems faces the challenge of analyzing and hand-crafting hundreds

of rules. In addition, rule-based systems often require calibration of some data.

However, in many rare cases, extracting necessary information from the data

sources is impossible. For example, a picture showing a pedestrian jumping on

the road does not tell how high they can jump or whether they were also moving

on the horizontal axis. For such a situation, one often needs to hand-craft the

model using many different sources.

5.2.2 Adaptability Literature

In rule-based systems, a pedestrian follows a set of discrete choice models and a set

of physics models to interact with the surroundings and move toward their destinations.

There is a score of physical social-force-based models [145, 249, 248, 114, 258, 65,

174]. Social forces are any human-created ways of doing things that influence, pres-

sure, or force people to behave, interact with others, and think in specified ways. An

approaching vehicle can push a pedestrian away, but the destination always draws the

pedestrian to it. The resultant force of all the influential factors determines the direction

and speed of the pedestrian. However, these are only physical models and do not model

many behaviors, such as jumping over a pothole or making a hard stop to avoid colli-
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sions. Discrete choice models [10] and cellular automata-based approaches can capture

such behavior [17, 138, 13, 263]. However, though these methods are powerful, they

can grow very complex [10].

In a data-driven system (specially neural networks) ([224, 140, 83, 120, 2, 246, 259,

144, 80, 68, 184]), the model automatically learns from data. While this approach can

theoretically learn to adapt to any situation, it also requires all the data about pedes-

trians, and the data have to be high quality and is still infeasible. In addition, such

a model is often hard to control as the testing may require many control parameters

(more at Section [5.4]). In addition, these methods have difficulties adapting to unseen

situations or scene contexts.

5.3 Modeling Variability

The variability property ensures that, given the same context, the pedestrian can

exhibit all possible variety in their acts. The unpredictability of pedestrian behavior on

the road originates from psychological and physical diversity and a plethora of choices.

Variability in behavior can be modeled as emergent behaviors due to the personalized

properties of a pedestrian, such as age, gender, height, impairment, etc. However,

hundreds of such properties exist, [191]. An opposite way is to model based on the

observed behavior. Instead of diving into the minds of the modeled pedestrians, it is

possible to record and categorize their observable actions under variability. The urge

is to recognize the effect even when the cause is concealed. Variability differs from
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adaptability as pedestrians often do not adapt to a situation at all, forcing others to

adapt to them.

The pedestrian model requires diversity in each component defined in Section [5.1].

Each component relates to a broad domain of research. This work discusses and sum-

marizes the variability of the main components that challenge autonomous vehicle plan-

ning algorithms only. Components related to visual perception, such as "Appearance"

and "Locomotion", has a long line of research which are applicable but not exclusive to

pedestrians.

5.3.1 Decision Variability

Pedestrians make discrete decisions on the road, including choosing their next activ-

ity and destination. The decisions can be voluntary or involuntary. Decision variability

refers to the possible discrete decisions a pedestrian can make in a situation. For exam-

ple, different persons accept different amounts of gap with approaching vehicles when

they make a decision to cross the road from a sidewalk [15, 264, 67, 134, 137, 232].

5.3.1.1 Challenges and Research Gaps

There are several challenges in capturing the decision variability:

• Exhaustive studies do not exist on decision variability in every situation. For

example, there exists no method that models pedestrians falling on the road while

crossing [56, 57] or crawling on the road [89, 90].
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• Existing studies on specific situations may not cover all the possible decisions.

For example, the Rolling Gap models capture the gap accepted by pedestrians in

multi-lane traffic scenarios [132, 133, 255, 161]. However, none of the models

capture the counter-examples where the pedestrian completely ignores the vehi-

cle on far lanes as seen in [30, 237, 238]. These studies often confine themselves

to datasets covering a particular season and specific geographical locations.

• Decisions are correlated with many factors, and some are confounding factors.

Sometimes, it is evident when the pedestrian shows a particular behavior. But

sometimes, it is challenging to associate decisions with specific situations. For

example, when a pedestrian starts crossing by running, it is highly likely that they

will continue to run while crossing [32, 59, 33]. However, one starting slow can

suddenly begin to run without any observable reason, [21]. Thus, it is challenging

to map a specific situation to possible pedestrian decisions.

5.3.2 Maneuver Variability

The maneuver refers to how a pedestrian executes a behavior over time. For exam-

ple, when a pedestrian retreats to a safer location, they can turn and walk or run back.

It is also possible that they retreat without turning back. In addition, the time it takes to

turn back depends on the pedestrian’s physical and mental capacity and state.
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5.3.2.1 Challenges & Research Gaps

Maneuver variability challenges differ from decision variability as the action is al-

ready identified. However, they have a different set of challenges:

• Many maneuver trajectories need to be learned from high-quality data. The ve-

locity profile modeled by rule-based methods such as Helbing’s Social-Force-

based model [115] is too simple to capture real-world situations. One can model

the retreat maneuver with social forces. However, the social force model can-

not capture behaviors such as impulsive turning back and fast acceleration and

deceleration.

• Many maneuver trajectories cannot be learned from data due to the lack of high-

quality data. Thus, one needs to create a highly sophisticated rule-based model.

However, existing literature using rule-based systems only captures simpler ver-

sions of the maneuvers. For example, the crowd simulation models [74, 93, 179,

252, 69, 135] miss the opportunity to model the dangerous flock depicted in Sec-

tion [4.7]. The existing simulation models do not capture group dynamics found

in [71, 154, 173, 256]. According to the literature, there is a diversity in group

shapes, and groups can dynamically break off or merge.

• Multiple maneuvers in a single crossing trajectory share common properties.

Figure [4.7] shows two pedestrians. The maneuvers shown by the indecisive

leader are much quicker than those of the follower. So, maneuvers need to con-

82



sider archetype properties. Conditional maneuver dynamics make it even harder

due to the increasing complexity and the rarity of data.

5.3.3 Route Variability

Route diversity comes from different paths pedestrians take in the shared space on

the road. The different paths can emerge due to the traffic participants and obstacles.

However, diversity can also emerge in the absence of any factors at all.

5.3.3.1 Challenges & Research Gaps

• Rare routes are infrequent, and no knowledge base covers rare routes. While

almost all the routes taken in a given traffic context are predictable and very

similar to each other, some routes taken by pedestrians are unimaginable and

inexplicable (see Figure [4.2] and Section [4.2] for such examples). Existing

literature on pedestrian route choice and planning produces optimal routes only

based on some goal or utility function [3, 6, 119, 215, 233]. However, testing

requires unsafe and irrational routes. Chapter [7] proposes a novel method for

capturing rare routes from real-world scenarios and using them in simulation.

• Data-driven methods may not produce rare routes. Several data-driven works

produce route plans based on existing traffic participants and obstacles in the

shared space [247, 266]. However, these methods only produce paths similar to

those seen in the data given the scene context.
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• Given a shared space on the road, the possible number of routes can be pro-

hibitively large to test against [119]. So, the random generation of routes makes

the testing plan lengthy and extremely costly. Chapter [8] proposes a novel

method to reduce the search space of extraordinary routes while covering the

shared space well.

5.3.4 Interaction Variability

Pedestrians interact with other traffic participants and objects while crossing the

road. Sometimes, they cross together in a group or play with their mobile phones while

crossing. In [9], four categories of interactions have been identified: (a) group, (b)

leader-follower, (c) collision avoidance, and (d) other scene objects. Group behaviors

refer to socially connected people who tend to be close to each other spatially while

crossing. Leader-follower behaviors refer to the tendency of pedestrians to follow a

leading pedestrian. Collision avoidance refers to the behaviors where a pedestrian tries

to avoid collisions with other pedestrians or traffic participants. Scene object interac-

tions refer to interacting with other objects in the world, such as boarding on a parked

vehicle.

5.3.4.1 Challenges & Research Gaps

• Group shapes and dynamics are complex [69, 135]. A group can break off and

regroup in the span of a crossing [173, 154, 256, 71]. Section [4.7] shows rare
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group interactions that are very different from each other. So, such interaction

modeling requires exhaustively enumerating group interactions and modeling

them using rule-based systems because of the scarcity of data.

• In case of crossing, the leader-follower interactions show different structures,

such as followers failing to keep up with the leader or followers out-walking the

leader. At some point, the follower may stop following the leader completely

[34]. Diversity and elasticity in the leader-follower interactions make it harder to

model.

• Collision avoidance interactions depend on pedestrian perceptions. Existing lit-

erature assumes that pedestrians always apply a collision avoidance mechanism.

However, in the real world, pedestrians often fail to avoid collisions with other

pedestrians, vehicles, or objects. Video [147] shows some pedestrians bumping

into objects or other pedestrians. Also, in a given situation, there can be several

evasive strategies for collision avoidance [156].

• Pedestrians can interact with different scene objects differently. How they in-

teract with a handheld device is very different from how they interact with a

parked vehicle. Some literature discusses the impact of using handheld devices

such as mobile phones [181, 218]. However, no simulation model produces such

behavior in simulation. Other literature focuses on how parked vehicles impact

the pedestrian flow [107, 117], but no method to model how pedestrians inter-

85



act with the vehicles currently exists. There exists a visual attention model for

parked vehicles in [82] which can be extended with trajectory generation. How-

ever, appropriate trajectory datasets are required. In addition to everyday ob-

jects, pedestrians interact with other rare objects while crossing. For example,

pedestrians may use unicycles [16] or scooters [212, 31] while crossing the road.

Enumerating all such objects and interactions with them is a taxing task.

• There are other kinds of interactions that are not well discussed in the literature.

For example, pedestrians can fight each other on city streets [61, 62] or highways

[60]. Unknown interactions make it more difficult as one has to discover such

interactions first before modeling.

To summarize, the current literature only exhaustively explores some of the data

available for analysis. Therefore, the models are heavily biased towards niche cultures

and often completely ignore unique behaviors. Many known unknowns and unknown

unknowns are yet to be discovered and modeled when it comes to variability in behav-

ior.

5.4 Modeling Controllability

The controllability property ensures that test plans can be created to target specific

pedestrian behaviors. For example, when validating autonomous driving against drunk

pedestrians, a pedestrian behavior model must be able to explore possible behaviors
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and trajectories of drunk pedestrians only. Furthermore, it is also desirable to control

specific micro-behaviors, such as whether the pedestrian can fall down or stop in the

middle of the road to produce extremely rare and dangerous situations. With the con-

trollability of the pedestrian model, test methods can navigate through the variability of

the model with a well-defined purpose.

To support controllability, pedestrian agents must be controllable through some con-

figuration options, such as speed or a set of possible micro-behaviors. Controllability

works in two layers. At the higher layer, one can configure which behaviors pedestrians

can show during the simulation. For example, the configured pedestrian can be drunk,

wander on the road, and make sudden stops. At the lower layer, one can control the

parameter that modifies the properties of a behavior. For example, one can control how

long a drunk pedestrian stands still on the road before starting to move again.

Controllability serves several objectives to facilitate testing:

• Test coverage: To ensure that autonomous driving can deal with possible pedes-

trian behaviors on roads, it is essential that test cases can deterministically cover

a wide range of possible pedestrian behaviors. A random search-based approach

can explore all possible behaviors. However, it also produces repeating or similar

test cases, making the search very costly. With control parameters, test designers

can carefully control the parameters to search for unique test cases faster.

• Targeting specific behaviors: Producing scenarios with specific types of behav-

ior requires control of the behaviors. For example, to thoroughly test against
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impulsive stops, the probability of stopping should be configurable.

• Composing archetypes: Pedestrian behaviors have correlations with each other

and modify one another. With behavior controllability, one can create plausible

archetypes by choosing a set of active behaviors that have a higher correlation

with each other. The ability to compose archetypes supports the reusability of

different behaviors for different types of pedestrians. For example, both adults

and kids can sprint on the road, or a group can have some members intoxicated.

• Producing critical scenarios: In adversarial search methods, the goal is to evolve

scenarios in such a way that the vehicle under test faces increasingly dangerous

situations, [98, 141, 239, 242]. Such methods can be applied to behavior space to

search for dangerous behavior in different situations. It is indeed a hard problem

to tell which behavior is more dangerous. For example, a sober person cross-

ing a roundabout may be much more dangerous than a drunk person on a 4-way

straight road. Such search methods empirically measure the relative risk associ-

ated with pedestrian behavior.

5.4.1 Challenges & Research Gaps

• Fine-control of pedestrian agent depends on agent modeling method. Some meth-

ods cannot easily facilitate controllability. For example, neural networks are an

effective data-driven approach [120, 2, 246, 259, 144, 68, 80, 184, 224] for pedes-

trian trajectory generation. However, fine control of the agent behavior is very
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difficult to achieve in neural-network-based models.

• Search space complexity increases with the number of control parameters. So,

it is important to reduce the number of correlations to make the testing method

tractable. Many pedestrian properties are highly correlated with each other. For

example, rotation capacity is constrained by the speed of the pedestrian. So, the

maximum possible rotation parameter can be derived from the speed parameter.

However, finding such a correlation requires microscopic behavior research. The

existing literature has some findings on how age, gender, or culture is related to

pedestrian speed [222, 116, 96, 240, 139, 257]. However, more discoveries are

needed at different archetype levels for generative modeling.

5.5 Modeling Approach

5.5.1 Combinatorial vs Archetypes

Each pedestrian is a composition of a set of behaviors (e.g., stop, flinch, run) with

personalized limitations. For example, a child can be quick but cannot run as fast as an

adult. One modeling approach is the random combination of behaviors with a random

selection of parameter ranges. Another modeling approach is to combine behaviors that

are compatible with each other and carefully select parameter ranges to represent some

archetype. Both approaches have their advantages and disadvantages.
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5.5.1.1 Combinatorial

By having a collection of behavior models, it’s possible to combine them randomly

to generate a large set of pedestrian models. While this can be easy to implement, it has

some severe disadvantages.

Pros:

• Can represent unseen trajectories. For example, if there is ever an elderly person

who can run fast, the combinatorial approach can produce such pedestrians.

• New behaviors can be added to the behavior collection, and less effort in making

the combinations

Cons:

• Can produce unrealistic pedestrians. For example, a child may run at the speed

of an adult.

• Testing method needs to deal with combinatorial explosions. Frequent testing

may be prohibitively inefficient.

5.5.1.2 Archetypes

Chapter [4] defines archetypes such as the wanderer who tends to walk on the road

along the lanes. Each archetype has its own set of possible behaviors and a specific

range of behavior parameters. While this is very promising, it requires a heavy work-

load.
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Pros:

• Models are very realistic as each archetype has its fixed set of behaviors learned

from the real world.

• Testing methods have a much smaller search space of behaviors as the number of

possible combinations is limited.

• Supports coverage and scenario-based testing. For example, one test suite can

contain testing against children only.

• Archetypes are tangible assets and can contribute greatly to the community of

practitioners and consumers of autonomous driving.

Cons:

• Requires expert human knowledge.

• Requires exhaustive research in discovering behavior inter-dependencies.

• Model can become extremely complex.

5.5.2 Predictive vs Generative Models

Generative modeling differs from probabilistic predictive modeling in that proba-

bilistic predictive modeling tasks produce the most probable trajectories. Re-purposing

a predictive model for generation leads to the exhibition of common behaviors only.

However, effective testing requires both common and rare scenarios.
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Predictive models based on neural networks or sequence probability optimization

create a sequence of pedestrian positions [120, 2, 259], optionally along with body pose

[224, 131], over a short period of seconds. While creating the sequence, the models are

optimized to produce sequences with the highest joint probabilities of the data points.

One can sample low-probability trajectories from existing predictive models. Unfortu-

nately, low probability trajectories include long-tail and unrealistic cases and explode

in numbers. However, these are potent learning methods given adequate data.

Generative models based on physics and rules allow the introduction of rare cases

[145, 248, 156]. However, there are two catches. First, the physics models have a set of

independent variables and are parameterized, which needs to be calibrated against them.

Having a strict system of variables leads to failure when the scene context does not have

values for the variable or has more traffic participants than the model considers. For

example, the collision avoidance model, which only considers two traffic agents, may

produce unexpected results when there are more than two agents in conflict. Second,

rules create branches in behavior. So, it faces challenges in management when the

model grows deep with hundreds of branches. Even with such disadvantages, these

models can be crafted using rare data and human expertise.

5.5.3 One model vs Multi-model Approach

As the pedestrian behavior space is sparse, building a single model using both

classical rule-based approaches and modern machine-learning-based approaches is dif-

92



ficult. Rule-based models quickly become large and difficult to manage. Machine

learning-based approaches require representative data for every behavior and type of

pedestrian. In addition, controlling one rule-based model is difficult because it may

have a large number of control parameters, and one machine-learning-based model is

difficult as it may not offer enough control parameters.

To address the drawbacks and gather the benefits of both approaches, the literature

has explored multi-model approaches where different decisions, maneuvers, routes, and

interactions are learned in different micro-models. At any point in a scenario, the active

micro-models define the pedestrian trajectory and behavior. To correctly select micro-

models, the pedestrian state is modeled as a finite state machine (FSM) [156, 249, 128].

Each state has a mapping to the relevant micro-models. For example, in [156], the

pedestrian crossing decision is made in the waiting state, and the motion plan is made

in the crossing state.

5.5.4 Evaluation of Models

Generative models are hard to evaluate because they have several roles to play:

• Reproducing real-world scenarios: With the same initial state, the generative

model may not produce the same trajectory for pedestrians seen in a dataset ex-

actly. This is because, it also has to produce the diversity from the initial state.

• Producing realistic trajectories: In predictive models, realism is measured by

comparing generated trajectories with real trajectories using distance metrics
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such as Average Displacement Error (ADE) and Final Displacement Error (FDE).

However, the generative model often only have micro-behavior models which

produces new trajectories. So, it is essential that the micro-behavior models are

evaluated separately as a very good generative model will not perform well on

ADE or FDE.

• Producing long-tail scenarios: One of the main purposes of the generative mod-

els is to produce scenarios which are very rare or even non-existent in the real

world datasets. But such scenarios are not impossible. Evaluation of such long-

tail behaviors requires human evaluation or using metrics such as "Perplexity",

[130].

This work suggest taking a multi-model approach for pedestrian simulation mod-

els. However, multi-model approaches require human expertise and effort, and prone to

errors. Whether the correctness of the models is important depends on why the models

are being used. For training of neural-network-based models, correctness is not essen-

tial. However, for testing, the correctness is important as testing cases must represent

the real world behaviors accurately.
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Chapter 6

Adversarial Jaywalker Modeling for

Simulation-based Testing of

Autonomous Vehicle Systems

The following chapter was originally published as Adversarial Jaywalker Modeling

for Simulation-based Testing of Autonomous Vehicle Systems in IEEE Intelligent Ve-

hicle Symposium (IV), Aachen, Germany, 2022. This was the initial effort to create

a robust pedestrian model, and the underlying idea was to use a compositional social

forces model where a finite state machine controlled progression among a series of

different pedestrian behaviors, where each behavior is a separate social force model.
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6.1 Abstract

We present an approach for creating adversarial jaywalkers, autonomous pedestrian

models which intentionally act to create unsafe situations involving other vehicles. An

adversarial jaywalker employs a hybrid state-model with social forces and state tran-

sition rules. The parameters (for social forces and state transitions) of this model are

tuned via reinforcement learning to create risky situations faster with synthetic yet plau-

sible behavior. The resulting jaywalkers are capable of realistic behavior while still en-

gaging in sufficiently risky actions to be useful for testing. These adversarial pedestrian

models are useful in a wide range of scenario-based tests for autonomous vehicles.

6.2 Introduction

Predicting pedestrian trajectories (position, velocity, etc.) is one of the core tasks

of Autonomous Vehicle (AV) systems. This task is challenged by several hurdles in

the perception of pedestrian movements. First, a pedestrian can change their direction

of travel and speed quickly because of their intention and interaction with other road

users [193]. Second, different pedestrians show different kinds of behavior in a given

situation due to internal factors such as distraction, age, gender, and external factors

such as the presence of other pedestrians, vehicles, signals, weather, etc. [221, 152,

188, 191]. Third, the validation of trajectory prediction algorithms is crippled by the

scarcity of real-world data.
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To reduce the cost and risks of testing AV systems on the road, researchers use sev-

eral simulation methods to develop and test AV algorithms. One promising approach is

modeling pedestrian behavior instead of generating synthetic data, a common approach.

In this behavior modeling approach, during the test, the pedestrian behavior is gener-

ated dynamically based on the situation at hand [258, 251, 250, 66, 104, 162, 129]. The

main advantage of such a behavior-model-based approach is that pedestrian behavior

can often be generated in different environments (road structures, traffic participants,

etc.). However, there are two challenges in behavior modeling for simulation: most

behavior modeling is done in other domains such as traffic accident analysis, and sim-

ulation models lack rich pedestrian behavior.

We propose a hybrid multi-state social-force-based model similar to [250] for jay-

walkers. Jaywalking is defined as crossing the road in the middle of a block (without

a crosswalk or un-signalized intersection) or crossing along a crosswalk violating sig-

nals. People jaywalk for several reasons: urgency (e.g., fire evacuation), whim, reduced

walking distance, etc. In a social-force-based model, different factors, vehicles, and

other pedestrians exert forces on a pedestrian which decide their speed and direction of

travel (see Helbing et al.[115]). Chen and Yang have extended Helbing et al.’s single

state model, which is a crossing state, to a multi-state model to formulate behavior while

waiting, finishing, and stopping in addition to basic crossing behavior [66, 250]. Zeng

et al. introduced crossing area forces to keep pedestrians inside crosswalks in [258]. In

a hybrid approach (social forces + manually-crafted rules), we can both introduce rules
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that control transitions among behavior and calibrate force intensities with available

data. When any behavior pattern is missing in the data, we can develop custom rules to

produce those patterns.

Existing social-force-based models have yet to achieve a rich set of behaviors and

a high level of non-determinism. For example, [258] uses a gamma distribution from

[260] to estimate the desired speed of a pedestrian based on crosswalk entering speed,

crosswalk length, and signal timing. Hence, the pedestrian velocity varies only within a

narrow band due to the small range of variation coming from the gamma distribution in

a context. Moreover, in the case of jaywalking behavior, which may not have any signal

factor in the context, the speed model does not work. In addition to capturing the speed

profile of pedestrians, we also need to find edge cases in speed that make pedestrian

trajectory prediction harder. So, we propose an adversarial jaywalker model which

learns adversarial policies, such as speed distribution, that are more unpredictable and

lead to more dangerous situations.

In addition to social-force-based models, another popular approach is machine-

learning-based models. While supervised-learning-based models can learn behavior

without specific mathematical modeling, they suffer from poor generalization due to

non-representative datasets [162, 224]. Another approach is self-supervising learning,

(see [185] for such models).

The goal of our research is twofold. We develop a jaywalker model considering be-

havior patterns and factors from different sources. We also develop adversarial strate-
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gies to intentionally create a problematic situation for the ego vehicle where it must

react strongly to avoid an accident involving the pedestrian.

6.3 Jaywalker Modeling

A key element of our simulation approach is to use one or more jaywalkers driven

by a behavior model. In this part, we first identify the goals of our model, then formulate

the set of tasks and categorize them into three layers. The jaywalkers in our research

settings need to satisfy multiple goals:

• Human-like behavior: Generated trajectories must be possible in real-world situ-

ations. That is, the pedestrian model exhibits human-like behavior. This criterion

ensures the internal validity of our test framework.

• Adaptability to adversarial behavior: In our simulation, the jaywalker acts as an

adversary, choosing actions that will deteriorate the current situation. To support

this, the model needs to be manipulable by adversarial algorithms.

• Allowing a rich set of behaviors: Jaywalkers must have the ability to display a

wide range of crossing pedestrian behaviors such as crossing midblock, crossing

at a crosswalk, crossing in the presence of obstacles and other pedestrians, chang-

ing destination while crossing, and so on. So, the model needs to be architected

in a modular way to support adding new behavior easily.
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• Behavior variation: We need to have the opportunity to turn on and off different

high-level behaviors (e.g., cautious, distracted, risk-taker, child, etc.) and alter

their relative strengths. One of the core issues with existing models is that they

model a single type of pedestrian, usually a rational one with a limited and deter-

ministic set of possible trajectories given a situation. We wish to model a broader

range of behavior.

• Allowing accidental factors: Some factors can drastically influence the behav-

ior of a pedestrian while crossing. An example is dropping a belonging while

crossing. These factors can lead to unexpected consequences.

In general, there are two ways of modeling the jaywalker behavior, rule-based (or

physics-based) and data-driven, along with hybrid approaches that combine the two. In

a rule-based approach (e.g. social force and other rule-based models in [151, 258, 251,

66, 250, 104]), we can divide all the decision making activities into strategic, tactical,

and operational levels. Each level models the activities using knowledge-based or data-

driven approaches. This approach helps us fill in the gaps in behavior datasets with our

knowledge and lets us evolve the model with clear goals. In a data-driven approach,

everything is learned from data by a machine learning process (e.g., the MDP-based

model in [162]). The main advantage of this approach is it can capture the whole

state represented by data, which is often too difficult in knowledge-driven approaches.

Inspired by the hybrid approaches (e.g., the multi-modal hybrid model in [129]), we

will create our model combining both knowledge and data. We define the terms factor
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and force before jumping into the details of our modeling methodology:

Factor: A factor is a tangible or intangible element that influences how pedestrians

act on the road. Factors can influence some behavior or initiate new sub-behaviors.

Examples of factors include age and gender of a pedestrian, presence of police on the

road, etc. For a comprehensive list of factors, see [192, 188].

Force: In the base Social Force Model, a factor creates a repulsive or attractive

force on the pedestrian. An example of a repulsive force is the force from an oncoming

vehicle and an attractive force from the destination. Different factors have different

models of forces, [258]. In our model, a factor can have its own force, or it can influence

the force by another factor.

In a walking state, an example of the force equation with three factors looks like

this:

F = w1 ∗ Fa + w2 ∗ Fb + w3 ∗ Fc (1)

where Fa, Fb, Fc are forces exerted by factors a, b, and c respectively. The weight

parameters w1, w2, w3, in our model, are controlled by the urgency model (Section 4)

which can increase or decrease the forces.

Pedestrians are modeled using a finite-state machine, where each state is a different

behavioral condition (waiting, walking, etc.), [Section 6.3.1]. When the pedestrian is

in motion within a given state, the motion is controlled by a set of force models based

on the factors active in that particular state. The strategic level can be viewed as a
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process by which the parameters and forces in the model are given their initial values

(which may turn on/off certain factors). The tactical level can be viewed as focused on

managing the transition between states. Finally, the operational state is concerned with

the execution of behaviors within each state via a social-force model.

To develop the rich set of behaviors, in addition to the factors and tactical models

proposed in the current literature for simulation, we propose a novel set of factors, de-

scribed in Section 6.3.1, and tactical models gleaned from pedestrian behavior research

in different domains (traffic analysis, psychology, etc.). Novel models include urgency,

risk, and destination models. Next we elaborate our model structure by describing the

state model and our novel factors, Section 6.3.1, and each of the decision levels (strate-

gic, tactical, & operational in Sections 6.3.2, 6.3.3, and 6.3.4 respectively):

6.3.1 States

Each state has its dedicated operational model (see Section 6.3.4), which can be

modeled in isolation. An operational model is essentially a force model with a set

of active factors, and optionally some rule-based behavior. For example, the waiting

state may have a force model that makes a jaywalker falter in the start zone, while the

walking state may not have any faltering behavior at all. The states, (depicted in Figure

6.1) are:

1. Initializing: planning to cross. In this state, the source and destination zones and

internal factors of the simulation model are chosen.

102



2. Waiting: The pedestrian waits at the start zone.

3. Crossing: The pedestrian is moving inside the crossing area.

4. Frozen: The pedestrian is inside the crossing area, but stops moving momentarily.

It is activated by the freezing factor. The frozen state is critical as the pedestrian

is inside a lane and forced to move as soon as possible.

5. Survival: The pedestrian goes into this state when there is a near-accident sit-

uation. The model finds a safe zone where pedestrian quickly moves to save

themselves.

6. Finished: The pedestrian reached destination zone.

Novel factors: We propose two factors, in addition to existing factors from ex-

isting social-force-based models, that are crucial in generating a rich set of pedestrian

behavior.

1. A freezing factor: freezes the pedestrian when they are shocked (state crossing

− > frozen). The freezing factor has a timeout. After the timeout, the state

is resumed to crossing. The freezing factor is an abstract factor that can model

all the factors that make a pedestrian stop while crossing. Examples of factors

abstracted by the freezing factors include dropping a belonging, panicking, etc.

2. Intermediate destination factor: This factor is handy while crossing a multi-lane

road or walking along a road while crossing. While crossing, the pedestrian
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Figure 6.1: The six states of the jaywalker model categorize the set of behaviors that a

jaywalker can exhibit.
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towards the local destination, and when reached, the state changes from cross to

waiting.

6.3.2 Strategic Level

At this level, we formulate the high-level goals for the model, which take the form

of the initialization of forces and parameters in the state transition graph. Essentially

this step allows us to configure the jaywalker’s overall behavior (distracted, risk-taker,

cautious, etc.) The purpose of modeling at this level is:

1. Identifying the source and destination zones.

2. Identifying the pedestrian’s internal factors that change behavior in the lower

levels. For example, distraction varies the pedestrian’s attention to oncoming

vehicles greatly.

3. Identifying the factors that can be abstracted away. For example, advertisements

would be abstracted away at a lower level, but we still want some way to make

the jaywalker behave as if they were distracted by an advertisement.

4. Choosing factors that, even present in the environment, can be ignored by the

pedestrians.

5. Choosing the strength of force for each factor.

6. Deliberate introduction of factors such as talking to a phone and listening to mu-

sic.
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6.3.3 Tactical Level

The purpose of tactical level decisions is to model deliberate actions (discrete choices)

by modeling discrete behaviors as individual states and transitions in the state transition

graph. Compared to the strategic level, which focuses on configuring a jaywalker, the

tactical level focuses on how an already configured jaywalker behaves. For example,

the strategic level may create a risky jaywalker, but when a risky jaywalker starts cross-

ing the road is modeled at the tactical level. The transitions are similar to transitions of

multi-state models in [250, 104, 129]. The tactical level is broken into a set of decision

models.

1. Destination model: does two things: (a) deliberate change in destination, (b)

create local destinations that will eventually get the pedestrian to their primary

destination. An example of a local destination is the island between two adjacent

lanes where pedestrians may stop temporarily.

2. Crossing area model: creates a virtual crosswalk area for the jaywalker. It also

determines the source zone and the destination zone. Pedestrians can start from

any point in the source zone and stop at any point in the destination zone.

3. Stop/Go model: makes deliberate stop/go decisions from a waiting state based

on a gap acceptance model.

4. Urgency Model: Urgency model modifies the speed and risk level of the pedes-

trian. In an urgent situation, a risk-averse person may suddenly become a risk-
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taker.

5. Risk Model: The risk model encompasses multiple decision making processes.

Each model changes its behavior according to a global risk level.

6. Interaction Model: models interactions with other pedestrians. Basically, it

chooses whether to apply an attraction force or repulsive force on another person.

7. Survival Model: models evasive actions taken by a pedestrian in case of a

near-accident situation.

6.3.4 Operational Level

We model the involuntary actions or automatic responses at the operational level

through a multi-state social forces approach. These act as a realization and enactment

of the behaviors defined by each state in the state transition graph. The purpose of this

level is:

1. Keeping the operational model as simple as possible so that upper-level behavior

can easily influence operational decisions by (a) switching forces by different

factors on and off and (b) increasing or reducing forces for a factor by changing

the force parameters.

2. Allowing force parameters to be calibrated by data.

3. Keeping operations in each state separate.
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6.3.5 How the adversarial strategy uses the model

One can run simulations with a jaywalker model in different environment configura-

tions indefinitely and wait for emergent critical scenarios. Unfortunately, that translates

to a random search approach and is not efficient. To control the level of randomness,

we propose an adversarial strategy that can search for possible challenging scenarios

faster. The purpose of the adversarial search is:

1. Learn how to configure the jaywalker behavior parameters that result in more

risky situations.

2. Find possible and plausible risky situations given an environment effectively.

3. Adapt the strategy with new AV algorithms automatically.

4. Ensure that changes in behavior do not violate the laws of physics and limitations

of human movement capabilities.

We intend to achieve the adversarial nature by three high-level operations using

Deep Reinforcement Learning:

1. Selecting/deselecting factors.

2. Choosing a risky option in case of a tactical/strategic decision.

3. Modifying the factor forces (this changes speed and direction and abides by the

laws of physics) within the allowable range.
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Our approach is different from [185], where a distribution over initial location of a

pedestrian is learned by reinforcement learning. We focus on learning behavior config-

uration instead. However, our rich jaywalker model can also be used in their settings

replacing the pedestrian models they use. For example, we can deselect some factors

forcing the pedestrian to be distracted or not noticing some other traffic participant.

6.4 Current Results

We implemented the Destination model, Stop/Go model, and Survival Model in

our current phase of research. We ran our model in the CARLA simulation engine,

[86]. First, we discuss the implementation details for the models and then evaluate the

simulation results.

6.4.1 Destination model

This model is active in the Crossing state. Currently, the destination model accepts

the final destination as a parameter and creates a force towards the destination using the

approach from Helbing et al., [115]. The force equation is

F⃗ 0
α =

1

τα
(v0αe⃗α − v⃗α) (2)

Where τα is a relaxation time to achieve desired velocity from the current velocity.

v0α is the desired speed of the pedestrian. v⃗α is the current velocity and e⃗α is the desired
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direction towards the destination and given by:

e⃗α =
( ⃗location(destination)− ⃗location(pedestrian))

distance

where the locations are in the 3-D world coordinate system of the CARLA simula-

tor, distance is the euclidean distance between the pedestrian and the final destination.

Intermediate destinations are in progress.

6.4.1.1 Stop/Go Model

The Stop/Go model decides when the pedestrian starts crossing the road. The model

makes the state transition from Waiting to Crossing. Whether a pedestrian starts cross-

ing the road depends on multiple factors such as the perceived gap (in time) with the

oncoming vehicles, speed of the oncoming vehicle (some pedestrians do not cross

while the vehicle is approaching even when there is enough gap), road width, age,

gender, etc. According to [193], gap estimation gets poorer with increasing vehicle

speed. Also, younger people are faster in estimating the gap with oncoming vehicles.

This estimated gap is called the perceived gap and often differs from the actual gap.

Logistic regression-based acceptance models with different factors are developed in

[15, 264, 137]. In [67], a Generalised Linear Mixed Model (GLMM), and in [134],

a Neural Network is used for gap acceptance modeling. The main input parameter of

all the models are the perceived gap between the pedestrian and an oncoming vehicle.

However, no models (except for some proposed noise models such as [19]) can map
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actual gaps to the perceived gap to the best of our knowledge. In our Stop/Go Model,

we also model the perceived gap. Our current model is:

Gapperceived = w ∗Gapactual (3)

where w is a weight parameter chosen by the user as there is no data to calibrate it. By

default, we set it to 0.9. So, the perceived gap is longer than the actual gap to generate

risky situations even when the pedestrian is not a risk-taker. We avoided a noise model

for the perceived gap because we intend to exploit the weight parameter for adversarial

search.

In our current research setting, we have one vehicle and one jaywalker, and our cur-

rent Stop/Go model uses Brewer et al.’s gap acceptance model, [15], with our perceived

gap model. The coefficients of the gap acceptance model are: beta0 = 6.2064 and beta1

= -0.9420. To model different risk levels, we multiply the probability of the Go deci-

sion by the Brewer model with the weight factor of the risk level. Currently, we have

four risk levels: cautious, normal, risky, and extreme. A normal jaywalker follows the

Brewer Model’s probability distribution. A cautious jaywalker reduces the probability

by 20%, while the risky profile increases the probability by 100%, and the extreme one

never waits.
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6.4.1.2 Survival Model

This model aims to generate behavior shown by a pedestrian in a near-accident sit-

uation with the on-coming vehicle. Pedestrians may show evasive behavior when the

on-coming vehicle is near, even when the vehicle is yielding. In [258], the authors pro-

pose an on-coming vehicle force to model the evasive action. However, the repulsive

force created by the force-field around the vehicle can push the pedestrian in directions

that are not essentially realistic and fails to capture the most common evasive actions

accurately [Figure 6.2]. In addition, this model makes the evasive action deterministic,

which is easier to predict. When pedestrians face danger, they either rewind to a previ-

ous location or cross the road faster as they already have a planned trajectory. They do

not follow an arbitrary direction as their focus and field of view are limited around the

vehicle. So, we approach the problem in a completely different way. In such situations,

the pedestrian chooses to rewind or move forward. If they rewind, they go back to a

past location (which depends on how close they are to the conflict point), and if they

move forward, they speed up. We implemented the rewinding method.

The model makes the state transition from Crossing to Survival when the perceived

gap is close to the time the pedestrian takes to cross the lane. The state is resumed to

Crossing when there is no chance of collision.
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Figure 6.2: The red circles show the force field created by the oncoming vehicle. In

[258], a repulsive force is applied on the pedestrian represented by the blue circle. The

force is orthogonal to the tangent line on the force field. The intensity and direction of

the force depend on the relative location of the pedestrian and the vehicle. The solid

red line is the repulsive force proposed by the model in [258], and the dashed red line

is our proposed force for rewinding.
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6.4.2 Simulation results

The setting, (Figure 6.3), has one jaywalker and one vehicle on a two-lane road, with

each lane being 3 meters wide. The jaywalker’s source and destination points were set

on sidewalks on the opposite sides of the road. We used a basic reactive vehicle agent

from the CARLA package for our initial experiment. The vehicle only has emergency

stop and collision avoidance maneuvers. It starts from a random location, 10 meters

away from a fixed central location or the center location (three different start points).

The destination location is the same for all the 30 simulation runs (episodes).

Figure 6.3: The red circles are start points and the green circle is the destination point of

the vehicle. The jaywalker starts at the red triangle and tries to reach the green triangle.

Inside the lanes, any of the crossing, frozen, and survival states may be active. Waiting

and finished states can be active in the sidewalks (gray zones).

In Figure 6.4(a), the minimum distance the jaywalker travels from the source to the

destination is 12 meters. However, due to our survival model, sometimes they may stop

and go back depending on how close they are to the conflict point. We observed that a
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walker might walk up to 20 meters to cross a 12-meter path. Figure 6.4(b) shows the

distribution of speed. We set 2ms−1 as the maximum speed in the simulation. A posi-

tive speed means the jaywalker is moving towards the destination, and a negative speed

indicates movement in the opposite direction (retreating due to a chance of collision).

Figure 6.4: (a) Distribution of distance (in meters) covered by the pedestrian with the

same source and destination locations, (b) Distribution of pedestrian speed in ms−1.

Negative speeds indicate backtracking.

A sample speed history of an episode is shown in Figure 6.5. However, not all

the episodes trigger the survival model. In Figure 6.6, we show the displacement in

y-axis against time-steps. In some episodes, the walker never stops and goes back.

In addition, we see that the survival mode is activated at different positions across

the different episodes. This sometimes means the walker stops and backtracks early,

sometimes late. Also, the distance they backtrack varies.
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Figure 6.5: Pedestrian speed history during an episode. Time-steps (x-axis) are 0.007

seconds long, so, 100 time-steps equal to 0.7 seconds. Pedestrian speed w_speed is on

y-axis and in ms−1
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Figure 6.6: History of pedestrian displacement along y-axis in meters. We see the

survival mode is trigger in time-step [30, 90] zone. Different color for different trajec-

tories/episodes of simulation.
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6.5 Conclusion

This paper presents a hybrid state machine plus social-force-based jaywalker model

to generate jaywalker behavior in simulation. In this ongoing research, we gather

knowledge from pedestrian behavior analysis from multiple domains such as traffic

analysis, behavior analysis, simulation models, personal experiences, etc. We capture

and model the micro-behavior patterns. We also shared our current progress with the

modeling tasks. Our goal is to challenge the trajectory prediction algorithms that au-

tonomous vehicle systems use with a jaywalker model with a rich behavior set.
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Chapter 7

RePed: Adaptive Pedestrian Agent

Modeling for Scenario-based Testing of

Autonomous Vehicles through

Behavior Retargeting

The following chapter was originally published as Adaptive Pedestrian Agent Mod-

eling for Scenario-based Testing of Autonomous Vehicles through Behavior Retarget-

ing in IEEE International Conference on Robotics and Automation (ICRA), Yokohama,

Japan, 2024. This work proposes a novel method to ensure pedestrian agents exhibit

the behaviors required by the test plans, even in changing situations in simulation.
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7.1 Abstract

This work proposes a new representation of pedestrian crossing scenarios and a hy-

brid modeling approach, RePed, that facilitates transferring microscopic behavior mod-

els from behavior research to higher-level trajectories. With this, real-world trajectory-

based scenarios can be augmented with a diverse set of human crossing maneuvers,

producing a wealth of new scenarios and addressing the scarcity of rare case data that

existing works struggle to deal with. Leveraging the controllability of this modeling

approach, perturbation-based augmentation can be applied to enrich scenarios further.

In addition, the representation is rooted in the ego vehicle’s coordinate system with

a logical representation of roads. This design enables scenario retargeting to various

road structures, traffic conditions, and ego vehicle behaviors. Thus, it strongly supports

scenario-based testing by forcing pedestrians to produce certain situations in simulation

even when the ego Vehicle tries to evade them.

7.2 Introduction

Pedestrians do the darndest things. Consider the jaywalking pedestrian in the left-

most panel of Figure 7.1, from the Pedestrian Situated Intent (PSI) 2.0 dataset [186]. In

this scenario, a vehicle is cruising along the second lane in a four-lane one-way road.

The pedestrian is in the lane immediately to its right. The scenario starts at step 1 with

the pedestrian approximately 15 meters away and walking towards the vehicle’s lane,
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Figure 7.1: A real-world scenario and three modeling approaches. (a) In a 4-lane uni-

directional road, the vehicle drives at 20 mph, shown at four interesting time steps

(1-4). The pedestrian walks in a wavering fashion and suddenly crosses in front of

the vehicle (dots at the same time steps). (b) Existing simulation models have low ex-

pressiveness and limited spatial and temporal variance, yielding simple behaviors. (c)

Goal-based planners and Social-Force-based methods do not allow controllability and

reproducibility of events. (d) Our modeling approach captures the original behavior

and allows adaptability.
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showing crossing intent by step 2. However, they change their decision and start to

move away, leading the driver to think they will not cross the road. The cautious hu-

man driver slows down a tiny bit, anticipating the potential for a dangerous situation

(step 3). Suddenly, the pedestrian changes direction, approaches the vehicle’s lane, and

starts crossing (step 4) within a fraction of a second. Luckily, the pedestrian safely

crosses the road without getting hit or making the vehicle stop.

Though this kind of pedestrian scenario is rare, it does happen, and most human

drivers have had to handle unexpected pedestrian behavior. Hence, autonomous ve-

hicles must also safely handle these rare pedestrian scenarios. Now, imagine an ego

vehicle is driving instead of the human one. Different ways of handling this situation

can lead to varying outcomes. In the first variation, at step 3, the ego vehicle might

speed up, assuming the pedestrian will not cross, leading to a dangerous situation at

step 4. In the second variation, the ego vehicle moves much faster to pass the pedes-

trian before they begin crossing, avoiding any collision. In the third, the ego vehicle

moves to the empty left-most lane, where the pedestrian might never challenge them.

As we can see, due to possible variations in the ego vehicle’s driving strategy, it is hard

to ensure that they experience the near-miss event at step 4 like the human driver. From

this, we identify two different problems in achieving the goal of testing the scenario

against the ego vehicle at the target situations in steps 3 and 4: (a) reproducing the

scenario and (b) adapting the scenario.

Existing literature addresses these two problems separately, resulting in either sub-

122



optimal performance in reproduction or limited adaptation capability. Figure 7.1b il-

lustrates a machine learning-based approach that takes past trajectories of all the actors

around the pedestrian and generates the future trajectory of the pedestrian. However,

these methods cannot express dramatic long-term spatial and temporal variance due to

the scarcity of rare scenario training data. In addition, it is hard to control the behavior

of such models, making reproducibility harder to achieve. Figure 7.1c shows potential

solutions to both problems involving Goal-based planners and Social-Force-Based be-

haviors, which can produce a simplified version of the pedestrian trajectories towards

the destination point. However, they overlook the exciting events in between. An alter-

native approach involves creating a trajectory follower model that compels pedestrians

to replicate the exact trajectory from a rare scenario. Nevertheless, this approach pre-

cludes the adaptability of the pedestrian against any change in the scenario, such as

vehicle speed, vehicle lane, lane width, and the presence of other traffic participants.

We introduce a pedestrian scenario retargeting method, RePed, that can represent

rare pedestrian scenarios and systematically adapt them to various test situations. This

adaptation includes adjustments for varying vehicle speed, lane changes, and differ-

ences in lane count and width (depicted in Figure 7.1d). Our approach overcomes the

expressivity limitations of current methods via a hybrid modeling approach that can

utilize the best parts of the existing approaches. It allows reproducibility, adaptability,

and controllability of the pedestrian behavior model.

The adaptability of our model ensures that ego vehicles are challenged by the target
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situations even when the ego vehicle’s trajectory changes and the scenario tries to drift

away during testing. The adaptability is achieved through a set of retargeting methods,

which has a broader application to other types of traffic participants. The controlla-

bility of our model yields more advantages in addition to ensuring reproducibility and

further variability using perturbation techniques. Search-based methods in scenario-

based testing can use our proposed control parameters to create a search space to cover

the possible range of variety, such as the minimum and maximum speed range of the

vehicle under test.

We review relevant literature in Section 7.3 and outline our methods in Section 7.4.

The simulation results of our behavior retargeting methods are presented in Section 7.5,

while Section 7.6 explores the limitations and outlines future research prospects.

7.3 Related Work

Testing of autonomous driving in simulation involves creating a set of agents such

as vehicles, pedestrians, and bicycles that mimic the real-world behavior of human

road users. The testing process aims to identify critical scenarios (see [126]) where

the ego vehicle behaves unexpectedly. On one end, testing methods replay real-world

scenarios where the behavior of all the traffic participants is pre-determined except for

the vehicle under test (the ego vehicle) [153, 112, 220]. However, it’s often desirable

to create variations of a scenario to stress-test the ego vehicle or adapt the behavior of

other actors to the changing behavior of the ego vehicle [113]. On the opposite end,
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some methods have actors show completely random behavior by sampling from a set of

predefined actions, and testing methods search for critical scenarios over a huge search

space [98, 141], which can lead to unrealistic scenarios [85]. Realistic behaviors exhibit

structured inter-dependencies, significantly reducing the search space. The exploration

of this trade-off between extremes is an active area of research in scenario generation

methods (see comprehensive surveys in [85, 12, 150, 194, 265]).

With realistic behavior models of traffic participants including pedestrians, scenario-

generation methods get more freedom in creating random valid situations. Unfortu-

nately, extensive exploration of pedestrian behavior is hindered by the complexity of

human behavior and the scarcity of recorded data on rare events. Refer to [155] for a

comprehensive literature review of pedestrian behavior modeling for AV testing. On

another note, crowd behavior literature does not address individual-level diversity and

richness and does not aim to capture rare behavior in road crossings, [74, 93, 179, 252].

This work is closely related to individual-level pedestrian crossing modeling, a cru-

cial source of test scenarios for AV testing, [65]. The modeling problems during road-

crossing can be categorized into three areas: (a) physical constraints, (b) maneuvers,

and (c) crossing trajectory. Physical constraints define the boundaries of pedestrian

movement such as speed, direction change, and reaction time. Maneuvers include

speeding up, avoiding collision, retreating, and hand-signaling. Crossing trajectories

involve movement plans using physical constraints and maneuvers. Some methods are

good at modeling physical constraints [221, 152, 260, 254, 70], some at maneuvers
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[114, 145, 248, 258, 17, 138, 159, 267], and some at producing long-term trajectories,

[111, 224, 120, 2, 246, 259, 144, 80, 68, 184, 163, 140].

Physical constraint-based models require high-level trajectory and maneuver plan-

ners to be used as simulation models. Manuever-based models require high-level trajec-

tory planners. Methods adept at modeling maneuvers are often employed in generating

long-term trajectories, but they tend to produce less diverse trajectories due to tight

coupling with interaction modeling. For instance, in the Social-Force-based approach,

[114], high-level trajectory is generated by an attractive destination force. However, it

is easy to model physical constraints and maneuvers with a limited amount of data and

transfer the behavior enabling existing work outputs directly reusable. This motivates

us to improve their trajectory generation process.

Various trajectory generation methods exist. Supervised learning and sequence

modeling can create long trajectories but aren’t suitable for road crossing scenarios,

[83]. Another approach focuses on pedestrian pose trajectories using Generative AI,

[224]. However, these machine learning-based methods struggle to model rare trajec-

tories, transfer behaviors across settings, and are challenging to control for scenario

search. Reinforcement learning-based methods such as [163, 63, 187, 241] learn spe-

cific outcomes defined by reward functions, limiting diversity and rare scenarios. Non-

machine learning-based methods use path search in free areas, [111].

Recognizing the limitations of existing methods, we propose a hybrid approach that

blends high-level pedestrian trajectories with low-level microscopic maneuvers. This
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approach has the potential to inject variability and diversity at both levels. By enabling

the transfer of behavior across different scenarios, adapting to the ego vehicle’s actions,

and exposing control parameters, our proposed method empowers scenario generation

techniques to craft novel yet realistic scenarios with a greater degree of flexibility.

7.4 Methodology

Our approach represents pedestrian trajectories using two main techniques. At a

coarse level, the path of a pedestrian is modeled as a navigation path (NavPath) moving

from one navigation point (NavPoint) to another in order. Fine-grained behavior is de-

termined by a Behavior Primitive, which controls the pedestrian position from second

to second. The process of creating a test scenario from a pedestrian behavior video

involves (a) determining a set of NavPoints consistent with the observed pedestrian

locations and (b) determining one or more Behavior Primitives that match observed

pedestrian behaviors. We describe the representation of the Navigation Path, Behav-

ior Primitives, the role of the Behavior Matcher in augmenting the Navigation Path,

retargeting during the test, and how scenarios are adapted in simulation.

7.4.1 Navigation Path (NavPath)

A NavPath, comprised of NavPoints, is a sparse pedestrian trajectory in the ego

vehicle’s coordinate system. Each pedestrian in a scenario is described as a NavPath.

Key NavPath characteristics include:
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• Represents only coarse directional movement, abstracting away micro-level be-

havioral variation.

• Tied to the vehicle coordinate system, so, if the vehicle reference frame moves,

it also moves.

• Can be somewhat imprecise, allowing for flexibility in scenario crafting.

The Navpath’s goal is to record behavior changes (which occur at NavPoints) and

travel direction in pedestrian movement. These elements challenge ego vehicle pre-

diction models. This representation plays the central role in representing diversity in

pedestrian paths and behavior, whether manually crafted or automatically derived from

real-world data or trained models.

Figure 7.2 illustrates the structure of a NavPath. A NavPath contains a set of Nav-

Points, each with associated behavioral and location properties. The NavPath itself also

contains properties for pedestrian information, such as crossing direction (left-to-right

or right-to-left) relative to the ego vehicle’s travel axis (see Figure 7.3).

A NavPoint defines a pedestrian’s state concerning the vehicle at a specific time.

Key properties are LaneId (0 for ego lane, negative/positive for left/right lanes), Lane

Section (LEFT (L), MIDDLE (M), RIGHT (R)), Distance to Ego (on ego vehicle’s

axis), and Original Speed. For details, refer to Appendix 5.

NavPoint properties achieve three goals: (1) retargeting for diverse road structures

and ego vehicle locations, (2) translating behaviorally significant locations based on
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Figure 7.2: Structure of the Navigation Path

ego vehicle behavior, and (3) allowing fuzzing techniques while retaining the link to

the ego vehicle’s behavior.

7.4.2 Behavior Primitives (Behavior Tags)

Behavior primitives represent unique microscopic pedestrian behaviors (maneu-

vers) that happen sequentially on a trajectory. Each primitive has microscopic spatial

and temporal variation based on pedestrian age, background, mental state, weather, road

structure, and other traffic participants. This work proposes a few fundamental behavior

primitives, emphasizing the unpredictability observed in the PSI 2.0 dataset,[186]:

• Evasive Stop: A complete halt within a roadway while crossing (see Figure 7.5).
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Figure 7.3: In this three-driving-lane road, NavPoint P has Lane Id: -1, Lane Section:

R (right), and distance: d.

• Evasive Flinch: Resembling Evasive Stop, this maneuver includes a brief back-

ward movement, occurring involuntarily and rapidly creating two situations (see

Figure 7.4).

• Evasive Retreat: The pedestrian voluntarily steps back to safety from an ap-

proaching vehicle, a process that can take seconds (see Figure 7.4).

• Evasive Speedup: The pedestrian increases speed to avoid the approaching ve-

hicle. (see Figure 7.5)

• Evasive Slowdown: The pedestrian reduces speed to let the vehicle pass, often

leading to near-collision scenarios (see Figure 7.5).
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Each behavior primitive is defined based on existing literature (see Section 7.3) and

is characterized by its own set of controllable parameters.

Figure 7.4: Flinch maneuver can place the pedestrian out of the way or in front of the

ego vehicle. Retreat follows a longer path with voluntary movement. P, C, and N are

previous, current, and next pedestrian locations respectively.

Figure 7.5: Evasive stop happens when the pedestrian speed is nearly 0. Speedup or

Slowdown is characterized by acceleration/deceleration to avoid accidents.

7.4.3 Behavior Matcher

The Behavior Matcher matches a portion of the NavPath with a Behavior Primi-

tive representing observed behaviors in the video. It augments the sparse trajectory
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defined by a NavPath with possible maneuvers. We have developed constraint-based

pattern-matching methods for each behavior primitive, where each NavPoint is evalu-

ated against all the matcher methods. Detailed current set of constraints available at

the link in Appendix 4.

Given the current NavPoint Ncurr, previous NavPoint Nprev, next NavPoint Nnext,

a future NavPoint Nfuture, distance between X, Y on ego travel axis dLon(X, Y ) in

meters and on the lateral axis dLat(X, Y ) in lane sections, lateral side of Y with respect

to X side(X, Y ), the summary of the constraints for each primitive is set forth below :

• Evasive Stop: speed(Ncurr)<Evastive Stop Threshold (defaults to 0.1 m/s).

• Evasive Flinch: Nprev and Nnext are on the same side of Ncurr and

– dLat(Nnext, Ncurr)<Lateral Threshold (defaults to one lane section width)

– dLon(Nprev, Ego)<Longitudinal Threshold (defaults to 0.5 meters).

• Evasive Retreat: There exists a Nfuture such that dLat(Ncurr, Nfuture) > Lat-

eral Threshold (defaults to two-lane section width) and :

– Nprev and Nfuture are on the same side of Ncurr.

– dLon(Nfuture, Nprev) < Longitudinal Threshold (defaults to 0.5 meters).

• Evasive Speedup: There Nfuture in front of the ego such that speed(Nfuture) <

speed(Ncurr) and

– side(Ego,Ncurr) ̸= side(Ego,Nfuture)
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– Angle between direction(Ncurr, Nfuture) and direction(Nfirst, Nlast) <

90◦

– There is no NavPoint between Ncurr and Nfuture

• Evasive Slowdown: There exists Nfuture such that speed(Nfuture) <speed(Ncurr)

and

– side(Ego,Ncurr) == side(Ego,Nfuture)

– Angle between direction(Ncurr, Nfuture) and direction(Nfirst, Nlast) <

90◦

7.4.4 Retargeting

Our current retargeting methods accommodate some key changes in ego behavior

and road structure:

• Lane Count: We can retarget a m-lane scenario to a n-lane one using relative

NavPaths.

• Lane Width: NavPoints handle lane width variations seamlessly (due to logical

lane sections).

• Ego Lane Change: During simulation, ego vehicle lane changes are accommo-

dated by re-planning.
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• Ego Speed Change: Pedestrian speed is adjusted to meet the relative distance-

ToEgo constraint during ego vehicle speed changes.

7.4.5 Simulation Process

See Figure 7.6 for an overview of the scenario realization process in simulation.

The pedestrian is reactive and adaptive.

Steps in Simulation:

1. The Behavior Matcher (BM) consumes a NavPath and tags each NavPoint with

Behavior Primitives (BP).

2. The tagged NavPath, Road, Ego vehicle, and its spawn location are given to the

simulator as the inputs.

3. An initial trajectory plan for pedestrians is made based on road structure and ego

vehicle’s position and lane, with lateral perturbations in NavPoint locations.

4. As pedestrians approach NavPoints, activated BPs guide their movement, es-

timating time to the next destination while preserving spatial constraints with

respect to the ego. Previous NavPoints are discarded.

5. If the ego changes lanes, then the pedestrian’s trajectory is re-planned based on

the remaining NavPoints.

The implementation architecture is available in Appendix 1, and the process and

mathematical models of NavPoint realization are available in Appendix 5.
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Figure 7.6: The test simulator takes two sets of inputs: Pedestrian navigation paths

with behavior tags and vehicle agent, location, and road maps. Before the testing be-

gins, the Behavior Matcher (7.4.3) tags the navigation points with Behavior Primitive

Types (7.4.2). During a simulation loop, models for different primitives are activated or

deactivated based on the proximity to specific NavPoints and NavPoints are translated

based on ego-vehicles location, and road structure.
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7.5 Evaluation

The validity of retargeting is explored by (a) examining the range of generated

pedestrian velocities to ensure they are within plausible ranges, and (b) examining the

distribution of pedestrian speeds vs. ego vehicle speeds. We explore scenarios that were

generated via the translation of PSI 2.0 Video #0015 into a NavPath with the stopping

behavior modeled using Evasive Stop. The video shows a pedestrian coming to a stop

in the middle of the road, allowing a vehicle (avg. speed 19 km/hr) to pass. To ex-

plore different scenarios, we retargeted this video to two different road configurations:

a 2-lane road and a 4-lane road where the ego vehicle changes lanes. In both cases, the

pedestrian starts crossing from the left sidewalk, and the ego vehicle starts in the right

lane closest to the center of the road. In the four-lane configuration, the ego vehicle

makes a lane change to the right-most lane, thereby moving away from the pedestrian.

Each configuration was run in simulation for 100 episodes, with ego vehicle speed vary-

ing in each run, uniformly sampled in the range of [10, 30] km/h. NavPoint locations

are also laterally perturbed by adding a noise value to their location. We skipped the

detailed evaluation of variability and diversity of maneuver models as retargeting is

our main contribution.

7.5.1 Pedestrian Speed Distribution

Figure 7.7 shows pedestrian speed data (sampled 25 times a second) for the first

10 (of 100) simulation runs for each road configuration. The median pedestrian speed
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(a) 2-lane road (b) 4-lane road + lane change

Figure 7.7: Pedestrian speed (in ms−1) distribution of first ten episodes (trajectories) in

each retargeting settings.

is moderate and speed distribution resembles real-world after retargeting, (see [180]).

However, several runs in the 2-lane road have moments exceeding 2 m/s, and the 4-lane

road has moments exceeding 2.5 m/s, which is a running speed. The fast speeds in the

4-lane scenario are due to the pedestrian needing to quickly catch up to the ego vehicle

which has switched lanes away from the pedestrian.

7.5.2 Retargeting against Ego Speed

Figure 7.8a shows a series of joint distributions of vehicle speed vs. pedestrian

speed. Pedestrian successfully adapts to vehicle speed changes. As pedestrian speed

increases, the distance required to stop increases, and the pedestrian starts stop maneu-

ver earlier, figure 7.8b. The y-axis variation is due to lateral perturbation in NavPoint

location in lane sections and destination force model by Helbing, [114]. Figure 7.8c

shows the stop duration. The variation happens due to the vehicle’s speed trajectory,

which impacts the Evasive Stop’s duration. Figure 7.8d shows the variation in distance
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between the pedestrian and the vehicle when the pedestrian makes a stop. The varia-

tion along the y-axis occurs due to the pedestrian agent’s time-gap estimation, which

exemplifies the variability introduced by maneuver models.

7.5.3 Retargeting against Roads and Ego Lane Change

Figure 7.9 shows, for both 2-lane and 4-lane configurations, the distribution of

pedestrian speeds, the variation of pedestrian speed over time, and the pedestrian speed

at the moment the pedestrian decided to begin stopping for Evasive Stop. The stopping

statistics in figure 7.9b show that the pedestrian model successfully adapts when the

vehicle makes a lane change. Due to the lane change, the Evasive Stop tends to activate

later (most stop activation times are greater than 300 frames). To accommodate the

lane change, we can see an increase in pedestrian speed in general as they have to travel

further. As this re-planning is done while the simulation is in progress, the pedestrian

sometimes runs to catch up, (see Figure 7.7). The pedestrian failed to catch up in 1

episode.

7.5.4 Scenario Expressiveness

In the current implementation of the simulator, we have successfully represented

all scenarios within the PSI 2.0 dataset with single pedestrians on straight and curved

roads. However, since this dataset has midblock crossings only, additional work is

required to represent intersection scenarios because inside intersections the notion of
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lanes changes.

7.6 Limitations and Future Work

This study focused on Behavior Primitives and the Behavior Matcher using PSI 2.0

data. Future research could enhance scenario expressiveness by utilizing alternative

datasets such as the Waymo Open Dataset [225], NuScenes [18], or behaviorally rich

YouTube Dashcam Videos such as [182]. Future expressiveness tasks:

• Expanding Behavior Primitives with new ones such as dropping and picking up

items while crossing and gestures perceivable by drivers [267, 159].

• Implementing vehicle collision avoidance models for near-collision situations.

However, the vehicle repulsive force model such as [258] performs poorly in out-

of-distribution situations. We suggest a set of models based on reachability sets,

[111], or rules, [174].

Another direction would be automatic NavPath extraction from dense trajectories or

videos. Interestingly, NavPath works smoothly even when the trajectories are broken,

which is common in trajectory extraction from videos (see [262]). Future work should

explore it more.

Lastly, future work should explore retargeting methods for road structures not ad-

dressed in this work such as intersections, where nearly fifty percent of accidents hap-
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pen [99]. incorporating various traffic participants, occlusions, and obstacles by ex-

tending the NavPath representation.

7.7 Conclusion

In conclusion, this paper introduces a novel hybrid modeling approach for address-

ing the challenges in pedestrian behavior modeling and scenario-based testing against

pedestrians for autonomous vehicles. It offers a unique contribution to the field by com-

bining the strengths of existing pedestrian behavior modeling approaches to achieve

scenario reproduction, adaptability, and controllability.

Our approach excels in reproducing real-world pedestrian crossing scenarios, en-

suring the rigorous testing of autonomous systems against rare and complex events.

Furthermore, its adaptability allows for modifying pedestrian behavior in response to

changing scenarios, making it a valuable tool for testing under diverse conditions. The

controllable nature of our model provides the added benefit of introducing variability

through perturbation techniques, enabling a wide range of test scenarios. Future re-

search can explore its application to various traffic participants and further refine its im-

plementation, offering a promising avenue for continued advancements in autonomous

vehicle development and testing.
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7.8 Appendix

1. https://github.com/adhocmaster/carla-jaywalker-experiments/blob/main/docs

/adaptive-soft-model.md - Model Architecture

2. https://github.com/adhocmaster/carla-jaywalker-experiments - Python Implemen-

tation for CARLA

3. https://github.com/adhocmaster/carla-jaywalker-experiments/tree/main/data

/navpath - NavPath Dataset

4. https://github.com/adhocmaster/carla-jaywalker-experiments/blob/main/docs

/adaptive-soft-model-behavior.md - Behavior Primitives & Matcher

5. https://github.com/adhocmaster/carla-jaywalker-experiments/blob/main/docs

/adaptive-soft-model-navpath.md - NavPath & Navpoint
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(a) (b) (c) (d)

Figure 7.8: Joint distribution of pedestrian (a) speed and vehicle (ego) average speeds,

(b) stop-start time and vehicle speed at that time, (c) stop distance and vehicle average

speed, and (d) stop duration and vehicle average speed, in 2-lane scenarios.

(a) 2-lane road with speed change only.

(b) 4-lane road with speed and lane change.

Figure 7.9: Distribution of pedestrian speed (left), speed trajectories (middle), speed

and frame at the moment of Evasive Stop activation (right).
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Chapter 8

HyGenPed: A Hybrid Procedural

Generation Approach in Pedestrian

Trajectory Modeling in Arbitrary

Crosswalk Area

The following chapter was originally published as HyGenPed: A Hybrid Procedural

Generation Approach in Pedestrian Trajectory Modeling in Arbitrary Crosswalk Area

in 35th IEEE Intelligent Vehicles Symposium (IV), Jeju Shinhwa World, Jeju Island,

Korea, 2024. This work aimed to efficiently generate pedestrian routes given a poly-

morphic shared space on the road as pedestrians are free to take various routes in the

real world.
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8.1 Abstract

We propose a new method to create plausible pedestrian crossing trajectories that

cover a given arbitrarily shaped crosswalk area for simulation-based testing of au-

tonomous vehicles. This method addresses the crossing area coverage problem where

the trajectories produced by the generative methods do not cover the entire area that

pedestrians may possibly walk on. The actual area covered by pedestrians often differs

from marked crosswalks on the road. Furthermore, in the case of jaywalking, the area

can take a variety of shapes based on the road structure and surrounding places of inter-

est. Our method is a constructive process that generates trajectories conditioned on an

area defined with polygons. We demonstrate that the method can generate trajectories

that cover a wide range of crossing areas, including ones from the InD dataset.

8.2 Introduction

In simulation-based testing of autonomous vehicles, trajectory generators generate

the position of dynamic actors such as vehicles, pedestrians, and bicycles on the sim-

ulation timeline to create test scenarios for the ego vehicle. Such testing aims to find

scenarios that the ego vehicle may fail to handle (see [126, 85, 12, 150, 194, 265]).

Therefore, it is necessary that the generators can generate diverse trajectories, cover

all the possible situations, and generate them at a microscopic level. There are three

spatial coverage challenges for pedestrian trajectory generators: (a) between a source
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and a destination point, there can be different paths a pedestrian can take; (b) from a

source point, the pedestrian can reach different destination points on the other side of a

road, (c) the space available for pedestrians to use can use can vary based on road struc-

ture. Figure 8.1a shows the trajectory envelopes of three different six-meter-wide road

segments in the InD Pedestrian Dataset [14], which contains road user trajectory data

from four intersection areas in Germany. While standard crosswalks are two to three

meters wide, pedestrians often go beyond the crosswalk area and have lateral displace-

ment larger than the crosswalk width. In mid-block scenarios, the lateral displacement

is even wider.

Existing generative methods for pedestrian crossing trajectories do not tackle the

coverage problems simultaneously either because of the lack of data or the expressive-

ness of the methods. We propose a hybrid approach where a high-level route plan is

procedurally generated to ensure the coverage of shared road space and integrate an

extended Social-Force-based model [114] to generate a motion plan. The route plan

tackles the spatial coverage problems, and the motion plan tackles the gait challenges

(e.g., speed, acceleration). We integrate existing works for motion planning.

In addition to solving the coverage problems, this work proposes a minimal set of

control parameters to guide the generation of high-level routes, keeping the expressive-

ness very high. One can handcraft every point on the route at one extreme; at the other

extreme, one has no control over the points. We choose several control parameters that

guide the overall shapes of the routes (see Section 8.4).
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(a)

(b)

Figure 8.1: (a) Trajectory envelopes for 6-meter wide roads from different road seg-

ments of location #2 in the InD dataset, [14]. In the left and right segments, the pedes-

trians cover five meters on the lateral axis, but in the middle, they cover ten meters. (b)

shows the pedestrians’ trajectories towards the north end of a nine-meter segment. The

shaded area highlights the envelope of a start and destination pair.

This work contributes:

• A hybrid pedestrian trajectory modeling approach that facilitates route planning

and motion planning in isolation.

• A route planner that solves spatial coverage problems of the pedestrian.
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• A set of control parameters to guide the generation of pedestrian trajectories.

The remainder of this chapter is organized as follows: Section 8.3 discusses the

existing simulation models and their capabilities. Section 8.4 discusses the route and

motion planners. Section 8.5 shows the coverage against the InD dataset and the route

planner’s expressive range. Section 8.6 discusses the potential improvement and usage

of the approach.

8.3 Literature Review

Microscopic pedestrian trajectory generators capture the crossing behavior of indi-

vidual pedestrians. At a high level, the methods can be classified into three groups: (a)

search-based, (b) physics-based, and (c) supervised-learning-based (see Figure 8.2 for

examples).

In the search-based methods, a trajectory is planned for the pedestrian, often avoid-

ing collisions and solving contextual constraints by choosing points in free places in

future timelines. They often have rules to avoid collisions and decide pedestrian move-

ment in time in a discrete spatial representation of the world. Some search-based meth-

ods generate near-optimal paths for multiple robot agents to avoid collisions and to

achieve the shortest distance traveled, [5, 118, 81, 253]. Others focus on avoiding

collisions with vehicles and modeling pedestrian-to-pedestrian interactions with a set

of rules, [214, 263, 138, 17]. There are two main issues with existing search-based
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methods: (a) they lack objective functions to create diversity because of rich human

behavior, (b) they do not address the coverage challenges.

In physics-based models such as Helbing’s Social-force-based model, [114], pedes-

trians experience attractive and repulsive forces from the external world, which drives

the pedestrian. The physics-based models generalize well against unseen situations,

are highly interactive, and can create diversity in behavior with gait parameters such

as speed, relaxation time, and force weights. However, physics-based models require

modeling forces for all the possible factors and do not capture internal mental states

such as distraction. In addition, ensuring route diversity with a noise model in the

resulting force is challenging.

In supervised learning approaches, [2, 120, 246, 144, 184, 80, 224], the model learns

pedestrian crossing behavior directly from trajectory datasets. Such methods are good

at learning all the external and internal influences that drive a pedestrian. However, they

fail in out-of-distribution scenarios, and they do not expose any controllable parameters

to create different types of pedestrians. In summary, existing methods cannot ensure

coverage of walkable areas and adaptability to a variety of scenarios at the same time.

Our work is similar to the STREETs model, [214], where a route plan with a se-

quence of waypoints is created for each pedestrian. These waypoints are locations

that pedestrians intend to visit once. However, the STREET model focuses on crowd

movement in town centers, and waypoints such as buildings and facilities are points of

interest. They use a shortest-path algorithm to create such a route plan. Regarding road
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(a) (b) (c)

Figure 8.2: Pedestrian trajectory generated by different approaches. (a) search-based

methods explore the collision-free area around the pedestrian and make a motion plan.

(b) physics-based models generate forces on the pedestrians to drive them on the road.

(c) supervised learning-based models learn trajectory distribution from datasets.

crossings, we have only one intended waypoint for a pedestrian: the destination. The

STREETs model suggests a straight line between the source and the destination point

for road crossings. However, the real-world trajectories can be spatially diverse even

when the source and destination remain the same (see Figure 8.1b).

There are a few promising hybrid approaches in [157, 103, 128]; but they lack a

generative process to create diversity. Refer to [155] for a comprehensive review. Our

proposed method creates a random sequence of waypoints in a user-defined area using

constraints that keep the plan plausible.
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8.4 Methodology

Our pedestrian simulation model works in two different phases: (a) the route-

planning phase and (b) the motion-planning phase (see Figure 8.3). This section will

first discuss the route-planning phase and then the motion-planning phase.
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(a)

(b)

Figure 8.3: Two phases of simulation. First, the route planner creates a set of waypoints

for high-level navigation. Second, force-based maneuver models define the trajectory in

the motion planning phase. The route plans are the same in (a) and (b). However, they

produce two different trajectories due to the direction of the oncoming vehicle. The blue

circles represent the pedestrian’s position, the green circles represent the destination,

and the gray circles represent the waypoints of the route plan. Red arrows represent the

repulsive force from the vehicle, green arrows are the attractive force towards the next

waypoint, and blue arrows are the resultant force.
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8.4.1 Route Planning Phase

The route planner takes a crosswalk or trajectory envelope as a polygon, a start

point, a goal side, the number of waypoints between the start and goal side, and, op-

tionally, the destination point on the goal side as the inputs. The planner generates

a destination point if the user gives none. It produces trajectories with the following

characteristics:

• Begin at the start point.

• Bounded inside the crosswalk polygon.

• Constrained angular shift from the crosswalk vertical axis and pedestrian head-

ing.

• End close to the destination point (optional).

• Randomness (produces a variety of trajectories given the same input)

The method is a constructive search where the next waypoint of the pedestrian is

determined based on the position and heading of the previous two waypoints (see Al-

gorithm 1). The heading of the current waypoint facilitates the generator to enforce the

physical limitation of human turns, and the angular shift constraints can define different

types of pedestrians. Figure 8.4 illustrates the input and outputs.

152



Figure 8.4: (a) The inputs to the route planner. (b) The red trajectories violate the

constraints of validity and are discarded. The green ones are valid outputs.

Generation Steps

1. The method takes the crosswalk polygon, A, the destination side of the crosswalk,

goal, the start point, S, optional destination point, D, the number of waypoints

between the start and goal, nW , maximum heading difference with the final des-

tination, α, maximum heading difference between consecutive waypoints, β, and

lateral direction change probability, p.

2. The method initializes the route with the starting point S as the first waypoint.

If D is given, it initializes the final destination point, Dfinal to D. Otherwise,

Dfinal is set to the closest point on the goal line. preDirection is the lateral

direction (-1 for left, +1 for right) of the pedestrian in the last waypoint and is

initialized based on the slope between the start and the final destination. After

the initialization, the method generates nW intermediate waypoints through the
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main loop from step #3 to #6.

3. Main Loop Start, nW times: It takes the latest waypoint as Wpre1 and the sec-

ond latest as Wpre2. Wpre2 is null for the first intermediate waypoint.

4. Generate n evenly distributed points on line segment Wpre1Dfinal, where n is the

remaining number of waypoints to be generated. From these points, the first two

intermediate points, A, and B, are chosen starting from S (Algorithm 1 from line

#11 to #12).

5. Then a search block (From Algorithm 1, line #14 to Algorithm 1, #37) keeps gen-

erating candidate points for the next waypoint. The search ends when a candidate

satisfies all the constraints. The process has two steps:

(a) Generation of a candidate, C: C is randomly chosen inside A and B, and

rotated randomly by {−90◦, 90◦} around A based on the lateral direction

change probability, p. With a low p, the next waypoint’s rotation angle has

a higher probability of being the same as the previous waypoint’s rotation

angle. (From Algorithm 1, line #16 to Algorithm 1, #23). (See figure 8.5).

(b) Validation of the candidate, C: First, C is discarded if it is not inside the

crosswalk area. Otherwise, two heading constraints are checked (See figure

8.6). The pedestrian direction of travel at C, directionC , must not be off by

more than:

i. α from the direction to the destination. This is the destination heading
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constraint.

ii. β from the direction of the previous waypoint, Wpre1. This is the gait

rotation constraint.

(From Algorithm 1, line #25 to Algorithm 1, #36).

6. Then the candidate, C is added to the plan, waypoints. - Main Loop End

7. After the intermediate waypoints are generated, the final destination point is

added to the route.

Two devices guide the random generation of waypoints to lead to the destination.

First, the next candidate is sampled on the line connecting to the current waypoint and

the destination (destination line), (see Figure 8.5). Second, the destination heading

constraint keeps the candidate going too far from the destination line. These devices

introduce a bias for the candidates to be moving towards the destination (see the distri-

bution of the waypoints in Figure 8.11).

8.4.2 Motion Planning Phase

The job of the motion planning phase is to exhibit a wide range of human behav-

ior, interact with other traffic participants, and ensure the gait constraints of the human

body. Our aim in the motion planning phase is to, given a route plan, explore all the

possible situations that emerge due to the dynamic nature of the situation and the di-

versity of human behavior. Figure 8.7 shows three possible different realizations of a
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Figure 8.5: Generation of the candidate for next waypoint. The red circle is the source

point, which is the latest waypoint, Wpre of the route plan. The green circle is the

destination, Dfinal. A and B are the first two evenly distributed points between Wpre1

and Dfinal. C is the generated candidate.

Figure 8.6: Controlling the drift by two heading constraints on the candidate, C (gen-

eration illustrated in Figure 8.5). Wpre1 and Wpre2 are previous two waypoints on the

current route plan. The destination heading constraint ensures C has a deviation with

the destination, green angle, less than α. The gait rotation constraint ensures the pedes-

trian does not change direction by more than β between consecutive waypoints.
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Algorithm 1 Route planner
1: function GENERATEROUTE(A, goal, S,D, nW,α, β, p)

2: waypoints← [S] ▷ start, S, added to the plan

3: Dfinal ← Destination(goal, S,D)

4: DestinationSlope← slope(SDfinal)

5: preDirection = sign(slope)

6: for i← 1, nW do

7: Wpre1 ← waypoints.Last(1) ▷ last waypoint

8: Wpre2 ← waypoints.Last(2) ▷ second last

9:

10: n = nW − i+ 1 ▷ remaining waypoints

11: pointsOL← LinePoints(Wpre1Dfinal, n)

12: A,B ← pointsOL[1, 2]

13:

14: while True do ▷ breaks on a valid point

15: /**********Generate candidate, C*********/

16: C ← random point on AB

17:

18: CDirection← preDirection ▷ direction
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Algorithm 1 Route planner (continued)

19: if random_choice([True, False], p) then

20: CDirection← CDirection ∗ −1

21: end if

22: angle← CDirection ∗ 90

23: C ← rotate(s, C, angle)

24: /***********Constraints Checks**********/

25: if C.notInside(A) then continue

26: end if

27: ∆Headingα ← ∠CWpre1Dfinal

28: if i == 1 then

29: ∆Headingβ ← 0

30: else

31: ∆Headingβ ← 180− ∠CWpre1Wpre2

32: end if

33:

34: if (|∆Headingα| ≤ α)

35: & (|∆Headingβ| ≤ β) then break

36: end if

37: end while
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Algorithm 1 Route planner (continued)
38: preDirection← CDirection

39: waypoints.Add(C) ▷ C accepted

40: end for

41: waypoints.Add(Dfinal)

42: return waypoints

43: end function

44: function DESTINATION(goal, source, d)

45: if d == null then

46: return closest point on goal from source

47: end if

48: return d

49: end function

50: function LINEPOINTS(line_segment, n)

51: return n evenly distributed points on line_segment

52: end function
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route plan during the simulation.

Figure 8.7: Realization of the route plan based on the motion models used during the

simulation.

During the simulation, we drive the pedestrian towards the next waypoint with Hel-

bing’s destination force, [114]. In addition, we use three maneuver models from our

motion planning research to interact with the on-coming vehicle: (a) the on-coming

vehicle force model, (b) the survival model, (c) the drunken model, [156, 106]. Figure

8.8 shows our hybrid planner navigates through the route with velocity updates from

the motion planners.

8.5 Evaluation

We evaluate the route planner to answer the following questions:

• How much of the given crossing area is covered by the pedestrian trajectories?
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Figure 8.8: Simulation loop of the hybrid model. Force models are applied on pedes-

trians with next waypoint as the destination.

• How diverse are the trajectories regarding paths given a source and destination

point?

• How do different parameters control the generator output shapes and coverage?

In our experimental settings, we have five trajectory envelopes of width 5-9 meters

from the InD Dataset [14], with destination heading constraint, α = 60◦, gait rotation

constraint, β = 45◦, and a lateral direction change probability of p = 0.2. These

parameters are kept constant unless otherwise specified. A Python implementation is

available 1.

8.5.1 Spatial Coverage of the Crossing Area

In this analysis, we find answers to (a) how many waypoints and (b) how many

trajectories we need to generate to cover the given crossing polygon. Figure 8.9 shows

1https://github.com/adhocmaster/carla-jaywalker-experiments
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Figure 8.9: Impact of number of intermediate waypoints and number of route plans per

start point on the trajectory envelope. X-axis has the number of intermediate waypoints

between the start and the goal-line. Y-axis shows the percentage area of covered by the

generated trajectory envelope and input area polygon.

the spatial coverage based on two variables: (a) number of waypoints between the start

and the goal-line, nW , and (b) number of routes generated for each polygon. With a

hundred routes per polygon, we can achieve nearly 95% coverage. However, this does

not imply that it ensures a representative set of routes.

8.5.2 Route Length Diversity Analysis

We use expressive range analysis (see [219]) to demonstrate the generation capa-

bilities. Figure 8.10 shows the frequency distribution of length of the generated route

plans in a six-meter wide envelope with one and five different destination points. The

minimum and maximum linear route lengths are six and eight meters, respectively. In

Figure 8.10b, nW and destination point are held constant. Due to the interplay of lat-
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(a) Five different destination points, nW ∈ [1, 10]

(b) One destination point, nW = 3

Figure 8.10: Frequency distribution of route length in a six-meter wide polygon from

InD Dataset. The green line shows the length of the maximum linear route.

eral direction change probability and candidate sampling method, we still achieve a

high diversity in length.

8.5.3 Shape Analysis

We change nW across columns and the destination point across rows in experiments

on a six-meter wide envelope (Figure 8.11). More waypoints generate more variety in
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(a) nW = 2 (b) nW = 3 (c) nW = 10

(d) nW = 2 (e) nW = 3 (f) nW = 10

Figure 8.11: Generated route plans. The red dots are the start point, the green dots are

the destination points, and the black dots are the waypoints of a route. The first row has

the destination point at (2,6) and the second at (6,6).

their envelope. However, a lower number of waypoints allows the motion planner more

control. The location of the destination point does not have much influence on the

shapes.
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8.6 Future Work and Usage

In this section, we first discuss how the route planner can be improved and then how

it can be further used to integrate sophisticated motion planners.

Statistical modeling can learn the design parameters of the route planner. For exam-

ple, the maximum change in heading between subsequent waypoints can be measured

from data. The direction change probability parameter can be extended to be a condi-

tional parameter on other factors, such as desired pedestrian speed and distance from

the destination, which may strongly correlate with the pedestrian’s ability and intention

to change direction during the crossing.

Any motion planner that takes a start and destination point can be integrated with-

out modification to the approach. However, to use methods that generate future portion

of trajectories without considering the destination point, such as deep-learning-based

methods including [2, 120, 246, 144, 184, 80, 224], one needs retraining with destina-

tion conditioning or search for the candidate which terminates nearest to the destination

point instead of most probable trajectory.

8.7 Conclusions

This work presents a hybrid approach in generative pedestrian modeling for the

simulation-based testing of autonomous vehicles on city streets. With route planning

and motion planning isolated from each other, it is possible to improve the expressive-
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ness of the generative models as one can incorporate different models for each part.

The proposed route planning method can take care of spatial coverage problems and

produce real-world trajectory envelopes. The proposed integration approach shows

promising results with rule-based and force-based models and allows the incorporation

of machine learning models. Finally, the approach exposes control of the pedestrian

model to the tester to selectively create different kinds of behaviors and trajectories.
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Chapter 9

Future Work

This work unveils several possible directions for future research in pedestrian be-

havior ontology and its application, and simulation models with rich pedestrian behav-

iors and scenarios including rare ones. Continued research in ontology is necessary

to ensure that autonomous vehicles are well-tested against a standard set of pedestrian

behaviors on the road. This standardization of behaviors will support research and

development collaboration across autonomous driving companies and research com-

munities and communication among stakeholders of autonomous driving. Continued

research and collaboration in simulation models are necessary due to the large set of

unique behaviors that pedestrians show on the road across the globe. The modeling

methods include rule-based systems to model rare behaviors that require human ex-

pertise, effort, and time. Therefore, open research in simulation models will serve the

whole industry and the people.
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9.1 Pedestrian Behavior Ontology

Chapter [3] presents the current state of the pedestrian behavior ontology for road

crossings. Currently, the work is at an early stage and has several limitations which

require attention. The major directions in future works are geographical, cultural, and

seasonal differences in pedestrian behaviors, and co-relations among different behav-

iors. These directions are necessary to model when and where one can expect to face

certain kinds of behaviors and how one can stitch together different behaviors to create

holistically plausible pedestrian simulation models.

9.1.1 Geographical Differences

Geographical location and structure have a direct relationship with what an op-

portunist pedestrian can do beyond rational behavior. For example, a roundabout can

be large enough to encourage pedestrians to cross across it to save time and energy

[235, 234], or a walking path connected to the mid-block of a road can encourage jay-

walking [34]. Modeling the relationship between geographical features and pedestrian

behaviors can facilitate the test-case generation for different road structures for which

one does not have any real-world data. It also helps autonomous driving algorithms to

develop anticipatory methods to predict possible scenarios with pedestrians.
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9.1.2 Cultural Differences

Culture plays an important role in how much risk a pedestrian takes and what kind

of traffic violations one makes [222, 116, 149]. In [149], authors showed behavioral

differences in pedestrians across different countries. Surprisingly, safety designs such

as an underpass to reduce jaywalking may be more effective in China and less effective

in Kenya. As autonomous driving needs to deal with cultural differences the way a

human driver does, it is important to extensively study the differences and include them

in the ontology.

9.1.3 Seasonal Differences

Seasons of the year and seasons of festivals or events change how pedestrians use

the road. On a snowy road, a pedestrian can slip and fall down on the road while cross-

ing [56] or can haul a sled carrying children [35]. During festivals such as Eid-Ul_Adha

in countries such as Bangladesh, pedestrians often walk on and cross the roads with an-

imals [109]. Events such as competitive sports, music concerts, and protests change the

traffic dynamics and pedestrian behaviors on the road. Capturing these changes is im-

portant as pedestrian behavior in the same geographical location can suddenly change.

9.1.4 Correlation in Behaviors

One can think of a pedestrian behavior model in a given situation as a set of micro-

behaviors that are compatible with each other. Not all the micro-behaviors can play
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together. For example, a pedestrian who is ignoring the approaching vehicle does not

show evasive maneuvers even when they run the risk of collision. These correlations

are important to reduce the infinite test space of pedestrians to a plausible and tractable

space, yet containing an acceptable coverage of pedestrian crossing behaviors.

9.2 Simulation Models

Based on the study on pedestrian behaviors on the road, the following behavior

models need attention from the broader research and development community for sev-

eral reasons. First, some behaviors are very dangerous and extremely unexpected, while

contributing to a considerable number of accidents. Second, some behaviors have not

been addressed in the existing literature at all, but exist in traffic accident data. Au-

tonomous driving needs to deal with known pedestrian behaviors. Third, different

methods are required to model these behaviors due to the lack of sufficient data and

evidence. While the recent trend is to use neural networks to learn models through

data, rule-based methods need to be explored again to model these essential behaviors.

9.2.1 Impaired Models

According to NHTSA, about 57 percent of all pedestrians who die in road accidents

have impairments Figure [1.5]. However, we have yet to develop simulation models

that exhibit walking manners and behaviors reflecting different types of impairment.

Based on fatal accident analytics some major impairments are:
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• Under Influence: Pedestrians can be under the influence of drugs, medication, or

alcohol which affects their cognitive capabilities required to cross roads safely.

Section [4.2] shows how intoxicated pedestrians may behave on the road. This

type of impairment contributes most to fatal accidents and needs to be well-

addressed in simulation-based testing.

• Cane, Crutches, and Physically Impaired: Many accidents happen because pedes-

trians cannot move in their natural manner due to sudden changes in physiology.

There is a chance that they plan normally but are not able to follow the plans as

their walking capabilities are compromised.

• Blind, Low Vision, and Deaf: These disabilities reduce the ability to perceive

traffic dynamics. Their behavior might be different from the pedestrians inten-

tionally ignoring approaching vehicles. So, more work is needed to understand

their behavior.

• Blackout: While this seems to be very rare, a surprising number of pedestrians

faint on the road and succumb to death. Currently, there are no models for such

pedestrians.

9.2.1.1 Group Models

A group of pedestrians usually moves like a single body. However, as shown in

Section 4.7, a group can show a diverse and unique set of behaviors. While several

works discussed group dynamics, the current models are very limited and often model
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a group as a single body. Therefore, more work is needed to capture different types of

groups and their behavior. Based on the literature on group behaviors and shapes in

[173, 71, 154, 256] and this work the key characteristics of robust group models are:

• The group can disperse at any time, creating multiple new groups while crossing

[35, 204].

• The group can be fluid, meaning that some members may change their speed

relative to others, changing the shape of the group. In [197], the kids outrun their

guardians when crossing making the group much longer.

• When a group disperses, the members can make completely different decisions

and follow different trajectories.

• The group members can interact with each other, which can lead to wrong intent

estimation.

• A broken group can re-group while on the road [173, 154, 256, 71].

9.2.1.2 With Parked Vehicle Models

The pedestrian behaviors around a parked vehicle are different than crossing. Pedes-

trians interact with parked vehicles in different ways and often while being in the driv-

ing lane. The essential features of a model representing how pedestrians interact with

stopped vehicles on the road are:

• Entering and exiting of a parked vehicle on the driving lanes [25].
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• Walking around a parked vehicle [198].

• Loading and unloading objects on the driving lane [198].

• Changing tires on the driving lane [229].

9.2.1.3 Distracted Models

There has been some modeling work on distracted pedestrians. However, there are

counter-examples of the existing models and many examples are not modeled at all. For

example, in [152] the model claims that pedestrians wearing headphones cross the road

more quickly. But that is the aggregated result. In [208], the pedestrian walks slowly.

And speed is not the only differentiating aspect of a distracted pedestrian. Section [4.3]

shows some key behaviors of the distracted pedestrians which have not been modeled

yet. Because of distractions several other situation emerges where:

• The pedestrian can leave objects and group members behind [35, 209].

• The pedestrian can temporarily enter a driving lane with approaching vehicle

resulting in accidents or near-misses [36, 124].

• The pedestrian can ignore all the traffic while crossing [208].

9.2.2 Occluded Models

Pedestrians can appear from any occluded area, especially in the city streets. Some

occlusion scenarios are common and some are very rare. The pedestrians can be:
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• Occluded by roadside objects such as trees.

• Occluded by a stopped vehicle.

• Occluded by a moving vehicle [125] on another lane.

• Occluded by the leading vehicle on the same lane in highway [125].

9.2.3 Kids Models

Modeling kids is different from modeling adults because:

• They have different heights and sizes which may make them harder to detect.

• They often do not understand the traffic rules. So, even if their walking manner

is normal, they can make strategic errors while on the road.

9.2.4 Physical Models

The physical models mainly capture maneuvers and involuntary motion patterns

which are completely based on the laws of physics.

9.2.4.1 Tripping Model

This model should capture the events where the pedestrian trips over or falls down

on the road. In [56, 92, 57]. Presence of road objects, ice, potholes, or curbs can lead

to pedestrians tripping while crossing. The dynamics of tripping or falling down also
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varies. Pedestrian can slide on the road, or recover by moving into some direction

quickly. More research is needed on the dynamics and modeling of such behaviors.

9.2.4.2 Crawler Model

Rarely the pedestrian crawls on the road [89, 90, 92]. It may happen after the

pedestrian falls on the road and not able get up. Pedestrians can crawl on the knees or

on the belly.

• Crawling starts with walking on foot.

• Crawling may end with getting up again.

• Crawling can also have momentary stops.

9.3 Rare Behavior Models and Long-tail Scenario Gen-

eration

The proposed behavior models from this dissertation can greatly improve the gen-

eration of realistic long-tail scenarios based on simple scenarios from the real world. A

scenario spans a period where traffic participants can show different behaviors. Current

state-of-the-art driving algorithms are evaluated against datasets that mostly cover ba-

sic driving scenarios and are not tested against rarely-seen (long-tail) situations [108].

In [108], authors proposed augmentation of real-world scenarios with new agents for
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various participants including jaywalkers during simulation. However, the jaywalker

behavior is still very simple, crossing the road without any rare behavior. Adding the

diversity of behaviors from this dissertation can significantly develop the quality and

diversity of long-tail scenarios generated from simple real-world scenarios. In addition,

HyGenPend Chapter [8] can also generate rare route plans for the jaywalker agents,

making the scenarios more challenging for the vehicle under test.

In addition to generating long-tail scenarios from simple real-world scenarios, RePed,

Chapter [7], also proposes a novel method to represent and augment real-world long-

tail scenarios, and ensure that the expected dangerous situations emerge even when the

ego vehicle behavior or road structure changes. Exiting literature attempts to ensure

the emergence of expected pedestrian behavior by setting their initial location in the

simulation world, [108, 242]. But once a pedestrian starts walking, it cannot adapt to

changing situations on the road. RePed makes the pedestrian adapt while crossing. This

adaptation method can be integrated with scenario generation methods to facilitate the

test goals.

The micro-behavior models and the route-planner from HyGenPed, Chapter [8],

can also be used to improve the generation capabilities of Large Language Model

(LLM) based generation methods where human editors can manipulate the agents in

the scenarios using natural language, [245]. It is further elaborated on in Section [9.4].
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9.4 Explainable Scenarios

Explainable scenarios are necessary for humans to interpret scenarios and test re-

sults. One challenge in scenario generation for autonomous driving is that it is difficult

to interpret the scenarios without human effort. Methods generate millions of danger-

ous scenarios, but it is not easy to tell whether these scenarios cover the diversity of

pedestrians on the road.

This work suggests the incorporation of the micro behavior models in scenario gen-

eration methods as the method can easily keep a record of which behaviors took part in

a scenario. As every behavior has an activation period and an interpretable name, it’s

easy to characterize millions of scenarios based on pedestrian behaviors. In this way,

the test reports become interpretable and clear about what behaviors the autonomous

driving has been tested against.

However, as there are other traffic participants in the scenarios, one needs more

information to completely interpret the scenarios. Recently, Large Language Model

(LLM) has been explored to generate and explain driving scenarios without human

effort. This work can contribute to LLM-based driving systems in two different ways:

• Explain-only methods: Some methods are used to only explain scenarios, [64].

In such cases, manually generating data for fine-tuning or prompt exemplars is a

costly task. The behavior matcher from RePed, Chapter [7] can identify unique

micro-behavior patterns in pedestrian trajectories and create a natural-language-

based description that can support LLMs to generate more accurate explanations.
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• Scenario-generation methods: LLMs has also been used to generate scenarios,

[73, 102, 245]. All the pedestrian behavior and scenario generation methods in

this dissertation can significantly improve LLMs capability to generate explain-

able long-tail scenarios. In the most common setting, LLMs generate high-level

instructions (in the behavior space) for agents, and agents need to have planners

and behavior models that can act (the trajectory space) according to instructions.

For example, when the LLM tells a pedestrian agent to retreat stop during simu-

lation, the agent needs the capability to retreat. Using the micro model for retreat

not only enables the agent to retreat but also makes the pedestrian trajectory in-

terpretable.
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Chapter 10

Conclusion

10.1 Summary

In this dissertation, we explored the necessity, requirements, and methods for pedes-

trian behavior modeling to make autonomous vehicles safer on the road. Throughout

the journey, we learned about the diversity and unpredictability of human pedestrians

on the road. We demonstrated several methods to test autonomous driving against rare

pedestrian behaviors and scenarios in simulation.

First, we explored why pedestrian behavior modeling is necessary. 77 percent of

fatal pedestrian accidents happen in non-intersection portions of the streets and 80 per-

cent, in dark lighting conditions. Most accidents happen when human drivers cannot

see or expect pedestrians. It is exacerbated by human drivers being intoxicated, ag-

gressive, distracted, or drowsy. Though autonomous driving can detect pedestrians bet-
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ter, it needs to be tested thoroughly against numerous pedestrian behaviors and types.

We hope an improved understanding of the range of pedestrian behaviors can lead AV

makers to better document how their vehicles perform safely in a range of unusual

situations, thereby increasing public and regulator confidence in this technology. To

improve the understanding of pedestrians:

• This research aims to identify different kinds of pedestrians (The Dangerous

Pedestrian Archetypes) which directly address public concerns. Often, the find-

ings are astonishing. While crossing the road, a mother can be so distracted that

she may leave her little kids behind on the road, or a drunk person can run to-

wards the approaching vehicle and jump onto the hood. The archetypes makes it

easier to communicate concerns and safety reports.

• This research aims to identify all the possible pedestrian acts on the road and

develop an ontology for pedestrian crossing behaviors. The ontology contains

all the rare behaviors, even when the behaviors cannot be attributed to specific

archetypes. It reveals the research gaps in pedestrian behavior modeling and

helps researchers and AV makers develop methods for coverage-based testing

and reporting.

Second, we defined the properties of a robust pedestrian simulation model for AV

testing. This simulation model must capture the diversity of pedestrian behaviors and

support the test goals. To support the test goals, models need to produce behaviors and

scenarios that the test plans expect. We elaborated on how the models can adapt and be
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controllable for that purpose. In addition, we also explored different approaches, from

classical physics-based models to modern neural-network-based models, to develop a

rich pedestrian model. To make a rich and controllable model, one has to go beyond

machine-learning-based methods due to the lack of high-quality data and rare scenarios.

Third, we demonstrated how a finite-state-machine can be used to create a rich

pedestrian model by composing behaviors in each state. In each state, different be-

haviors can be modeled using different methods and each behavior can be separately

controlled to produce specific behaviors required by test goals. This work has a great

potential in long-tail scenario generation where pedestrian agents, with rare behaviors,

can be injected into existing scenarios to produce new and potentially critical scenarios.

Fourth, this work proposes RePed that ensures that autonomous vehicles under test

cannot easily escape the desired situation during testing. RePed adapts the pedestrian

agents so that specific events, such as a near-miss, happens even when the ego changes

speed, or lanes, or drives in a different road structure. In addition, RePed offers an easy

language to describe scenarios that can be reconstructed in simulation, and a "Behavior

Matcher" method that can analyze trajectories and identify possible behaviors in natural

language.

Fifth, HyGenPed allows us to generate a diverse set of route plans in any shape

of shared space on road efficiently. Pedestrians can take various paths given the same

shared space and shared space can also change dynamically based on traffic and ob-

stacles. HyGenPed ensures the generated routes covers most of the area to challenge
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autonomous drive with pedestrians in all the possible positions.

Pedestrian behaviors are complex, and it is prohibitively difficult to model all of

them using one method. This research encourages creative recipes and directions for

future work to produce exciting and dangerous pedestrians and scenarios to strengthen

autonomous driving in simulation.
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Appendix A

External Resources

This dissertation includes long-term research projects. The updated data and source

codes can be found in the following URLs.

A.1 Pedestrian Behavior Ontology

• Annotation Tool Source Codes: https://github.com/AugmentedDesignLab/ped-

behavior-annotator

• Ontology Behaviors: https://pedanalyze.readthedocs.io

• Ontology Datasets: https://github.com/AugmentedDesignLab/ped-behavior-

annotator/tree/main/Dataset
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A.2 Pedestrian Behavior Models

• RePed and HyGenPed Source Codes: https://github.com/adhocmaster/carla-jaywalker-

experiments

• RePed Rare Scenario Dataset: https://github.com/adhocmaster/carla-jaywalker-

experiments/tree/main/data/navpath

• Micro-behaviors and Behavior Matcher: https://github.com/adhocmaster/carla-

jaywalker-experiments/blob/main/docs/adaptive-soft-model-behavior.md

• Video Demonstrations: https://www.youtube.com/watch?v=cj4ZpiOuGls&list=

PLInS8yn6W0vQWolHXn6L6jVCi46cO2DPk
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