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EPIGRAPH

Stay hungry, stay foolish

—Steve Jobs

The important thing is not to stop questioning. Curiosity has

its own reason for existence. One cannot help but be in awe

when he contemplates the mysteries of eternity, of life, of the

marvelous structure of reality. It is enough if one tries merely

to comprehend a little of this mystery every day.

—Albert Einstein
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ABSTRACT OF THE THESIS

Scene Reconstruction for Simulated Grasp Search in Structured Clutter

by

Runlin Guo

Master of Science in Computer Science

University of California San Diego, 2022

Professor Henrik I Christensen, Chair

Robotic grasping in a complex environment is one of the fundamental challenges for

home-assistant robots. Complex environment grasping has been extensively studied in industrial

bin-picking scenarios, where reliably grasping objects from unorganized heaps is challenging due

to sensor noise, obstructions, and occlusions. However, bin picking is still relatively easier than

grasping common household objects from a structured clutter in a home environment because the

robot cannot knock over neighboring objects during the grasping motion. Recently, there have

been several attempts to tackle the grasping-in-structured-clutter problem. In our experiments,

we found these methods either hard to adapt to our simulated environment without extra tuning

or generate too few stable grasps to successfully grasp the objects. The overviews and detailed
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analyses of these existing grasping approaches will appear in the first half of this thesis.

In the second half of this thesis, we investigate the idea of using a physical simulator

as an intermediate step to generate a grasp trajectory proposal. At a high level, we propose a

two-step approach to solve the grasping-in-structured-clutter problem. First, we collect RGB-D

observations to reconstruct the environment in a physical simulator via 9 degree-of-freedom (DoF)

category-level object pose estimation, CAD model matching, and physical support refinement.

Then, we perform antipodal grasp sampling, collision-free motion planning, and grasp execution

in the simulator and directly transfer the robot arm’s motion trajectory to the original environment.

To generate a 9-DoF category-level object pose estimate, we extend a state-of-the-art

6-DoF instance-level object pose estimation network. In our experiments, we found the 9-DoF

pose estimation network can reach performance comparable to the state-of-the-art on a category-

level object pose estimation dataset. Relying on only the top-down view of the environment, we

reconstructed the environment using the proposed two-step approach and evaluated the grasp

transfer success. The results show further room for improvements in the model matching process.

Future directions and some ideas will be discussed towards the end of this thesis.

We hope the work of scene reconstruction for simulated grasp search and trajectory

transfer will help future research of robotics manipulation in complex environments.
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Chapter 1

Introduction

Human beings develop the ability to perceive the environment and the coordination to

grasp and pick up objects during the first 12 months after born. At birth, infants possess five

major sensory systems: vision, audition (hearing), olfaction (smell), somatosensation (touch),

and gustation (taste). Among these, vision is the least developed sense at birth [Rym14]. As

infants’ vision system matures, they gradually develop eye-tracking, color and depth perception,

and hand-eye coordination. Combining with the sense of touch, infants become able to grasp and

manipulate objects.

For robots, there are currently three major sensor modalities: visual observations from

cameras, sound from microphones, and pressure from contact force sensors. At the time of this

thesis, contact force sensors are mostly either very expensive and industry-oriented or cheap but

provide only a low-resolution sensing area. Voice commands require speech recognition and

natural language processing which recently has impressive breakthroughs thanks to vast language

datasets and large language models such as GPT-3. However, obtaining adequate computational

resources for even running these large language models is challenging in an academic setting. In

comparison, visual observations are easier to collect from RGB-D cameras or simulated renders.

Moreover, many challenges of teaching a robot to perceive and understand the world around itself
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still remain unsolved. In this thesis, we investigate some challenges of learning to grasp a target

object in a complex environment with a fixed-base robot arm given RGB-D observations.

Robot grasping in a complex environment has been studied extensively in industrial bin-

picking scenarios [MLN+17, MMS+19, MCL19]. Although reliably grasping objects dissimilar

in shape from unorganized heaps is challenging because of sensor noise, obstructions, and

occlusions, bin-picking is still relatively an easy robot manipulation task. A large body of bin-

picking works have focused on solving 3/4 degree-of-freedom (DoF) grasping, where the gripper

is approaching objects from above [MPH+16, MLN+17, MCL19]. This vertical approaching

assumption is valid in the bin-picking scenarios and greatly simplifies the grasp pose search space.

However, if the target object is a horizontally placed plate, then such top-down grasping can not

succeed. The ability to grasp more household objects with a larger search space for grasp planning

motivates the focus of 6-DoF grasping. On the other hand, bin-picking considers unorganized

objects randomly stacked in a pile where collisions with neighboring objects during grasping

are allowed. However, for home-assistant robots, the common scenarios are grasping from a

structured clutter (i.e., packed configurations of objects). Kitchen cupboards or supermarket

shelves are some examples. Objects in a structured clutter have fewer stable configurations

because they rely only on the underlying surface (or other objects if object stacking is allowed)

directly to provide support. This is different from bin-picking scenarios where objects can have

support coming from neighboring objects or bin enclosure surfaces. Because of the fewer stable

poses, collisions with neighboring objects during grasping can have more catastrophic effects

including knocking over objects, breaking them, and hurting people nearby. Thus, avoiding

collision becomes more important for grasping objects in a structured clutter.

For testing the grasping-in-structured-clutter problem, we focused on a typical kitchen

table-top scenario and created a set of clutter scenes where each scene contains 5 to 10 objects.

The object dataset consists of 4 categories, including bottles, bowls, cans, and mugs, with a total

of around 550 unique model instances. We will use this table-top grasping environment as our

2



grasping-in-structured-clutter task to perform all of our experiments throughout this thesis.

Several recent works have also studied this grasping-in-structured-clutter scenario. We

carefully examined their performances in our table-top clutter scenes inside a physical simulator.

Overviews and detailed analyses of these existing approaches will appear in Chapter 2. In our

experiments, we found these methods either hard to adapt to our simulated environment without

extra tuning or generate too few stable grasps to successfully grasp the objects. In Section 2.6,

we also include discussions of a recent task-and-motion-planning (TAMP) approach [LK19] that

claimed to reliably grasp objects in a structured clutter.

After our experiments and analyses, we found that a successful grasp from a structured

clutter not only depends on a complete accurate scene object mapping and high-quality grasp pose

generation, but also relies on grasp trajectory planning and robot configuration space feasibility. In

addition, data-driven grasp proposal networks are often trained on known objects with annotated

grasp poses in simulation. Thus, a pretrained grasp proposal network is difficult to generate

successful grasp proposals when testing on unseen objects and different object arrangements in the

scene. To incorporate the full grasp trajectory and whole-scene information into the grasp search

process, we think a possible solution is to reconstruct the scene in a simulator from collected

observations, leverage physical simulation to evaluate grasp proposals, and finally transfer the

robot’s joint action trajectory back to the original scene to grasp the target object. Our detailed

method and experiments will appear in Chapter 3 of this thesis.

For the scene reconstruction for grasping pipeline, we first examined a recent approach to

reconstruct interactive 3D scenes in a simulator by panoptic mapping and CAD model alignments

[HZJ+21]. All of their experiments were done in a room setting where most objects are large fur-

niture (e.g., tables, refrigerators, and microwaves). Because their model matching and alignment

process is only based on RANSAC extracted planes from the surface of the observed objects, we

found it does not perform well on smaller objects (e.g., mugs, bottles, and bowls) whose geome-

tries mostly consist of spherical and cylindrical surfaces. Despite this naive plane-based matching
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approach, using the reconstructed scene from their pipeline and a simple but effective brute-force

grasp sampling technique, we can already achieve a slightly higher grasping-in-structured-clutter

success rate compared to current grasping state-of-the-art approaches. This motivates the research

direction of interactive scene reconstruction at higher geometric accuracy.

To better reconstruct the geometry of the original scene in a physical simulator from

RGB-D observations, we proposed to use a two-step approach. First, we collected RGB-D

observations and performed 9-DoF category-level pose estimations of the objects in the scene. In

our experiments, we demonstrated that converting 6-DoF instance-level keypoint-voting-based

pose estimation into 9-DoF category-level pose estimation can produce accurate estimates by

simply choosing the voted key points to be the 8 corners of the object’s oriented bounding box

(OBB). By extending a state-of-the-art 6-DoF instance-level object pose estimation network,

we achieved comparable performance as the state-of-the-art on a category-level object pose

estimation dataset. Currently, the bottleneck of our pose estimation accuracy is the semantic

segmentation of observed object points. If we substitute the predicted semantic labels with the

ground-truth labels, our pose estimation accuracy surpasses the state-of-the-art in the degree/cm

average precision (AP) metric by almost 10%. Future plans to improve the semantic segmentation

results are discussed in Section 4.1.

Given the 9-DoF category-level object pose estimations, the second step in our scene

reconstruction pipeline is to match the observed object points with a CAD model from the model

database while ensuring scene stability (i.e., object support is adequate to not fall over and no

neighboring object model mesh penetration occur). For each object model in the predicted

object category dataset, we applied the predicted 9-DoF transformation to the object model and

uniformly sampled points on the model surface. By computing Chamfer distance between the

observed object points and the sampled model points, we selected the most geometrically similar

object model. To help refine the table-object support and eliminate table penetration, we use

RANSAC to estimate the supporting tabletop surface plane for the objects and refine the object
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models’ gravity-aligned axis position. Finally, we used the reconstructed scene and brute-force

grasp sampling in a simulator to generate a grasping trajectory and then transferred the action

trajectory back to the original scene.

The main contributions of this thesis include (1) detailed analyses of existing grasping-

in-structured-clutter approaches; (2) the proposed two-step scene reconstruction pipeline for

simulated grasp planning; (3) the OBB keypoint selection technique to convert any existing

keypoint-based instance-level 6-DoF pose estimation network into a category-level 9-DoF pose

estimation network; (4) state-of-the-art category-level pose estimation accuracy on an existing

dataset and 10% higher than state-of-the-art degree/cm AP when given ground-truth semantic

labels. Future plans to improve are discussed in Chapter 4.
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Chapter 2

Baseline Approaches for Grasping in

Structured Clutter

Grasping is one of the most fundamental challenges in robotics and how to reliably grasp

objects in a complex environment remains an open problem. In this chapter, we will focus on

grasping objects in a structured clutter and benchmark several existing baseline approaches.

2.1 Related work

Camera Viewpoint Selection Viewpoint selection or active exploration (perception) is an

important aspect of vision-based grasp pose generation, especially when grasping objects in heavy

occlusions or completely obstructed behind clutter. Given current observation from a camera

mounted on the robot gripper, the robot plans and moves its arm to collect observation from a

different camera viewpoint where previously occluded regions can be observed. By repeating this

exploration process, the robot can collect a more complete geometry of the scene and use it for

planning a collision-free grasp trajectory.

Viewpoint selection has been used on mobile manipulators to generate a better envi-
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ronment map for navigation and manipulation [LFW+21, LLA21]. Several works have also

used active exploration for object detection and pose estimation in a clutter [WRD15, SKLK17,

SGHK20]. For robot grasping, [ALRC14] proposed to actively manipulate the target object to

accumulate a complete view from multiple viewpoints. [KSP+15] used a trajectory optimization

approach to encourage exploration of unseen space in a cluttered environment until a feasible

grasp can be found. [MAC16] proposed a spatial attention approach driven by a next-best-view

algorithm that computes the most promising sensor viewpoints to observe the detected salient

regions. Recently, [MCL19] proposed a Multi-View Picking controller that uses active perception

to choose informative viewpoints based on bin-picking grasp pose estimates, reducing the uncer-

tainty in the grasp poses caused by clutter. [FUU+20] designed a reinforcement learning-based

system that takes in an arbitrary-pose RGB image of the desired target object with a sequence of

RGB wrist camera observations and generates actions consisting of a 4-DoF gripper pose change

and a binary open/close gripper command.

To test the active exploration idea, we adapted the trajectory optimization approach

proposed in [KSP+15] and evaluated its performance in our table-top grasping-in-structured-

clutter environment. We chose this work as one of our baselines because the authors had performed

similar experiments of grasping an object in a structured clutter with a 93% success rate. Also,

it does not involve deep reinforcement learning networks which require large computational

resources to train and much effort to tune the network performance.

Data-driven Model-free Grasping Methods Motivated by the recent success of data-driven

approaches in computer vision and scene understanding, more robotics researchers began to think

about data-driven grasping methods. To create an object dataset with annotations of grasp poses

and corresponding grasp qualities, researchers have used manual human annotations [KBS15],

probabilities of grasp pose force closure that are robust to imprecision in perception and control

[WA12], and simulation-based grasp annotations under varying friction [EMF21]. With a diverse
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object dataset and grasp pose annotations, many data-driven grasping methods achieved reliable

grasping success in the bin-picking scenario [MPH+16, MLN+17, ZSY+19].

Grasping involves 3D geometry understanding, physics properties reasoning such as

mass and friction, and complex contact physics modeling. On a high-level, grasping has been

studied in two main directions: model-based grasping where the 3D object models or the object

categories are known [CMS11, ZYS+17, MEF19], and model-free grasping where there is no prior

knowledge about the objects [QCZ+19, MME+20, SMTF21]. For our grasping-in-structured-

clutter problem, the challenges largely come from the difficulties of obtaining a complete and

accurate scene model. Adapting model-based grasping approaches will greatly simplify our task

setting and therefore we will look at model-free grasping methods.

For our table-top structured-clutter grasping environment, there are several existing data-

driven model-free grasping approaches. [QCZ+19] proposed a single-view single-shot 6-DoF

grasp proposal network trained with synthetic data and tested in real-world table-top clutter

scenes. [MME+20] developed a cascaded grasping framework involving unknown instance

segmentation, target object neighborhood point cloud cropping, 6-DoF grasp pose sampling with

a conditional Variational Autoencoder, and a clutter-centric CollisionNet to predict grasp pose

collision probability. [WFG+21] introduced a “graspness” quality metric based on geometry cues

that distinguishes graspable areas in cluttered scenes and developed a two-stage neural network

to predict “graspness”, sample points with high graspness, and generate 6-DoF grasp poses from

the selected most confident viewpoint. [SMTF21] proposed Contact-GraspNet, a grasp pose

generation network which takes in a single-view full scene point cloud and generates candidate

6-DoF grasp poses each with a confidence score. Similar to [MME+20], a separate unknown

instance segmentation network is used to filter the grasp contacts and a CollisionNet is used to

predict collision probability.

To evaluate existing data-driven model-free grasping methods, we adapted and bench-

marked the Contact-GraspNet [SMTF21] in our table-top environment. We chose this work as a
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baseline because it is the most recent grasping-in-structured-clutter approach that achieves more

than 90% success rate in real robot experiments.

2.2 Problem Setting & Environment Overview

In all of our experiments, we focused on a typical kitchen table-top setting where some

common household objects are placed on a table. The objective is to grasp and lift the target object

out of the structured clutter while not knocking over other neighboring objects. The simulated

environment is created using SAPIEN [XQM+20] and one example scene is shown in Figure 2.1.

Figure 2.1: One example table-top structured-clutter scene created using SAPIEN. The position
and orientation of the cameras attached to the robot arm are illustrated by the orange camera
viewing pyramids where the triangles indicate the up direction in the camera frame. ẑ axis of the
world frame is in the up direction.

In all of our experiments, we will be using the custom fixed-based robot shown in Figure

2.1. It includes a fixed-base upper body from the Sciurus17 robot and a single 7-DoF Franka
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Emika’s Panda arm with one shoulder camera attached to the fixed base and one gripper camera

attached to the arm’s gripper. The cameras’ position and orientation are illustrated in Figure 2.1.

2.2.1 Object Dataset

Our object dataset consists of 4 categories, including bottle, bowl, can, and mug, with a

total of 546 objects. Detailed number of object instances are summarized in Table 2.1. Bottles are

articulated models from PartNet-Mobility dataset [MZC+19] while bowls, cans, and mugs are

rigid models from ShapeNetCorev2 dataset [CFG+15]. Some examples of object model instances

are visualized in Figure 2.2.

Table 2.1: Number of object instances of each category in our dataset

Object Category Bottle Bowl Can Mug
Number of Instances 57 170 108 211

2.2.2 Table-top Scene

Using the object dataset, we generated 50 table-top object clutter scenes by rejection

sampling while ensuring objects can be stably placed within a bounding box at the table center.

Each scene contains 5 to 10 randomly selected objects. All objects are standing upright on the

table and no stacked objects are allowed (i.e., the table provides direct support to the objects).

Some examples of the generated table-top scenes are visualized in Figure 2.3. In total, the 50

table-top scenes include 393 object instances where 240 of them are unique instances (21 bottles,

37 bowls, 81 cans, 101 mugs).

2.2.3 Grasping Observations & Evaluation

Observations When evaluating all grasping baselines in this chapter, we include the following

observations: (1) robot joint positions and velocities; (2) RGB-D images from both the robot
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Figure 2.2: Sample object model instances in our dataset

shoulder camera and the gripper camera; (3) ground-truth segmentation masks of the objects and

robot arm links for the RGB-D images. The ground-truth segmentation masks are rendered from

the simulator.

Grasping Success Condition For a successful grasp in our clutter environment, we require that

(1) the target object is lifted (i.e., object z axis position change is > 0.1 meter) and remains static

(i.e., magnitude of object velocity is < 0.1 meter per second and magnitude of object angular

velocity is < 0.2 radian per second or 11.46 degrees per second); (2) all other objects in the scene

have not fallen over due to collision (i.e., angle between the world ẑ axis and the object ẑ axis is

< 0.1π radian or 18 degrees). Based on our success conditions, we allow slight collisions with

other objects in the scene and only consider a grasp as failed when other objects are knocked over,
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Figure 2.3: Top-down view of sample table-top scenes generated and used for benchmarking
grasping performance

which is a much more catastrophic outcome.

2.2.4 Noisy Depth Generation

To better approximate the real depth noise that exists in commercial RGB-D sensors, we

adapted SimKinect [HWMD14] to add noise to clean depth images rendered with our simulator.

The original Microsoft Kinect for Xbox 360 uses an infrared structured light projector and an

infrared camera to capture the projected light pattern. After triangulation over the known codified

pattern, the resulting depth images have different kinds of noise [BM13]: (1) the depth and

RGB images are often not well-aligned; (2) the disparity recovered by the Kinect is often noisy,

presumably due to sensor noise or errors in the Kinect’s matching algorithm; (3) the disparity is

quantized, which leads to step-like artifacts in depth.

To approximate the three kinds of noise, SimKinect models the depth noise as a com-

bination of three noise models: (1) added Gaussian shifts to pixel coordinates and perform

bilinear interpolation [BM13]; (2) disparity filtering with the Kinect light pattern in a 9-by-9

correlation window [BRHS14, GKUP11]; (3) 8-bit quantization to approximate the quantized

disparity [BRHS14, GKUP11]. SimKinect has been used to benchmark 3D reconstruction,

RGB-D semantic segmentation, simultaneous localization and mapping (SLAM) systems in
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[HWMD14, HPB+16] and found it to generate reasonable noise characteristics similar to depth

images in real-world datasets. An example of the added depth noise on a clear depth image

is shown in Figure 2.4. The original SimKinect implementation sequentially processes image

pixels and takes around 2 seconds to process a depth image. We developed a CUDA parallel

implementation to greatly decrease the processing time to 16 milliseconds per depth image,

although there can be a further decrease if custom CUDA kernels are implemented.

Figure 2.4: SimKinect depth noise visualization. Top-row is the rendered RGB image. Bottom-
left is the rendered clean depth image. Bottom-right is the noisy depth image generated by
SimKinect.
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2.3 Antipodal Grasping Baseline

In this section, we implemented and tested a simple antipodal grasping baseline in our

table-top grasping-in-structured-clutter environment. The high-level idea of antipodal grasp

selection comes from [Ted21].

2.3.1 Antipodal Grasp Definition

In robotic manipulation, a commonly used friction model is Coulomb friction, which is

an approximate experimental model. It states that the tangential friction force magnitude ft is

related to the normal force magnitude fn by ft ≤ µ fn, where µ is called the friction coefficient. If

the contact is sliding or just about to begin sliding, then ft = µ fn and the direction of the friction

force is opposite to that of the sliding direction. For a contact normal in the +ẑ-direction, the set

of forces that can be transmitted through the contact satisfies
√

f 2
x + f 2

y ≤ µ fz where fz is the

normal force and fz ≥ 0. This set of contact forces forms a friction cone, shown in Figure 2.5a.

Given a single movable object with several frictional contacts, we say the contacts result

in force closure if any external forces or torques on the object can be balanced by contact forces

inside the friction cones. To increase the probability of creating force closure or at least resist the

gravitational wrench (i.e., the spatial force due to gravity) with a parallel gripper, a reasonable

strategy is to grasp at antipodal points (i.e., the pair of points with normals that are collinear with

the line connecting the points and are pointing in opposite directions) [Ted21]. An illustration

of an antipodal point pair is shown in Figure 2.5b. The grasp at antipodal points is called an

antipodal grasp.

In practice, the contact between a parallel gripper and the object is a patch contact instead

of a point contact due to the fingertip deflection of the gripper and any deflection of the objects

being grasped. An example is shown in Figure 2.5c. Thus, we can define a grasping cost function

by summing the square of the dot product between contact point normals and the gripper’s ŷ axis
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and taking its negation as

cost =−∑
i
(n̂i · ŷgripper)

2, (2.1)

where n̂i are normals of all object points between the parallel gripper.

(a) Friction cone with normal
force in +ẑ-direction. Taken from
Figure 12.18a of [LP17]

(b) Antipodal grasp where red
arrows represent normal direc-
tions and {G} denotes the grip-
per frame. The parallel gripper
is sketched in blue.

(c) Patch contact where contact
points between the parallel grip-
per are shown in red. Taken from
Example 5.10 of [Ted21]

Figure 2.5: Antipodal grasp definitions: friction cone, antipodal grasp, patch contact

2.3.2 Simple Antipodal Grasping Pipeline

Using the antipodal grasping cost function, we implemented a simple grasping pipeline

for our table-top grasping problem. Specifically, the pipeline consists of the following six stages:

(1) Explore: move the robot gripper towards the target object to accumulate more observations

of the scene by simply concatenating observed point cloud, downsampling to 5mm voxels,

and estimating point normals using neighboring points; (2) Antipodal grasp sampling: sample

antipodal grasps and check for collision with the observed scene point cloud, compute antipodal

grasping cost function and select the grasp with lowest cost; (3) Pregrasp: plan and move to the

selected grasping pose but 0.2 meter above the target object; (4) Grasp: plan and move to the

grasping pose; (5) Lift: close the parallel gripper, plan and move to 0.2 meter above the object;

(6) Hold: hold the grasped object in air. Both motion planning and collision checking are done

with an open source library, MPlib [Liu21]. Details of MPlib can be found in Appendix A.
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2.3.3 Grasping Evaluation Results

To evaluate the simple antipodal grasping pipeline in our 50 table-top object clutter scenes

discussed in Section 2.2.2, we used noise-free RGB-D observations rendered directly by our

simulator. We found that the overall grasping success rate is 71.25% and most of the failure

cases are due to incomplete object models from partial observations despite the exploration stage

of trying to accumulate more observations about the target object model. Thus, based on the

incomplete observations, the collision checking module failed to filter antipodal grasps that would

lead to collisions. An example of this failure case is shown in Figure 2.6.

(a) Mug body surface around its handle is not ob-
served

(b) The robot gripper attempts to insert and grasp the
mug by its body surface

Figure 2.6: Simple antipodal grasping failed to grasp the mug due to the incomplete object
model from partial observations. The algorithm mistakenly thought the mug does not have a
complete body surface and planned a grasp to insert into its side body.

In addition, some of the sampled antipodal grasps are unstable (Figure 2.7) because the

antipodal grasping cost function considers all object points between the parallel gripper which

include the extra points on the mug’s handle. Actually, when computing the grasping cost function,

only gripper contact points should be considered. We leave the task of improving this antipodal

grasp sampling process as a potential future work.
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Figure 2.7: Unstable antipodal grasp. All points between the parallel gripper were considered
in the grasp cost function.

2.4 Active Exploration with Antipodal Grasping

The evaluation results of the simple antipodal grasping pipeline in the previous section

demonstrate the importance of complete scene geometry to the grasp sampling process. In this

section, we adapted a trajectory-optimization-based active exploration approach [KSP+15] with

our antipodal grasp sampling process and evaluated it in our table-top grasping-in-structured-

clutter environment.

2.4.1 Active Exploration using Trajectory Optimization

The active exploration work [KSP+15] aimed to plan the robot arm motion in order to

search for feasible grasp handles occluded by object clutters in the initial camera view. They

designed an active exploration and grasping system (shown in Figure 2.8a) that continuously

updates the environment map from RGB-D observations and performs frontier detection, active

exploration, and grasp handle detection. When a grasp handle is detected and a collision-free grasp

trajectory is found, the system executes the grasp. Otherwise, the system continues exploring.

Map Construction The map construction used KinectFusion (KinFu) [NIH+11] to fuse the

streaming point clouds into a single map. Internally, KinFu represents the environment map using
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a truncated signed-distance function (TSDF) where each voxel contains a confidence weight wi

and the truncated signed-distance di to the nearest surface. Voxels with wi = 0 are unobserved

voxels and voxels with wi > 0 are either in free space (di > 0) or near a surface (di ≈ 0). Figure

2.8d illustrates a 2D TSDF example.

Frontier Detection The active exploration starts with frontier detection. The frontier denotes

the surfaces that separate known regions and occluded regions. An example is shown in Figure

2.8b and Figure 2.8c. During frontier extraction, the surface voxels and zero-weight voxels are

first extracted from the TSDF map. Then, clustering is applied to the surface voxels. For each

surface voxel cluster, an oriented bounding box (OBB) is fitted and the extracted frontiers are

the OBB faces closest to the current RGB-D sensor position. Finally, the zero-weight voxels

occluded by each OBB are parameterized by Gaussian fitting.

Trajectory Optimization Objective Given the current frontiers and M fitted Gaussians (xm,Σm
0 )

of the occluded regions, researchers in [KSP+15] formulate a discrete-time trajectory optimization

problem over time horizon T (T = 5 is chosen for our experiments). The current joint state and

uncertainty of the robot arm are denoted as (xR
0 ,Σ

R
0 ). Let u be the joint velocity control input

applied to the joint state xR. To minimize the uncertainty of the occluded regions and penalizes

the control effort, they design the cost functions as

ct(xR
t ,Σ

1:M
t ,ut) = α∥ut∥2

2 +
M

∑
m=1

βt tr(Σm
t ) (2.2)

cT (xR
T ,Σ

1:M
T ) =

M

∑
m=1

βT tr(Σm
T )

where α and βt are user-defined scalar weighting parameters.
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(a) Active exploration and grasping system

(b) Frontier detection (c) Signed-distance computation
(d) Truncated signed-distance
function

Figure 2.8: Active exploration related figures taken from [KSP+15]. (a) Overview of the
active exploration and grasping system. (b) The output of the frontier detection algorithm given
a single object in the environment. The frontier is represented by the red rectangle and the
occluded region voxels are shown in white. The purple ellipsoid denotes the fitted Gaussian to
the occluded voxels. (c) A simplified 2D illustration of (b). The RGB-D sensor view frustum
is outlined by the dotted line. The view frustum is geometrically truncated against the frontier
into the green, blue, and yellow convex regions. The signed-distance is negative if the occluded
region mean is inside one of the visible convex regions and positive otherwise. The magnitude
of the signed-distance is the distance to the nearest convex region border. The signed-distance of
the illustrated occluded region is shown by the black arrow. (d) A 2D illustration of the weights
w and truncated signed-distance values d of the KinectFusion (KinFu) truncated signed-distance
function (TSDF). The RGB-D sensor view frustum is outlined by the dotted line and the frontier
(observed surface) is shown in green. The voxels in the yellow region are known free space
while the voxels in the blue region are the unobserved region.
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The optimization objective is then

min
xR

0:T ,u0:T−1

E

[
cT (xR

T ,Σ
1:M
T )+

T−1

∑
t=0

ct(xR
t ,Σ

1:M
t ,ut)

]
(2.3)

s.t. xR
t+1 = xR

t +(ut +qt)dt

xR
t ∈ X f easible, ut ∈ U f easible

xR
0 = xR

init , Σ
m
0 = Σ

m
init

where qt is the robot dynamics noise.

Uncertainty Model Given the current system belief (xR
t ,Σ

R
t ), occluded region beliefs (xm,Σm

t ),

control input ut , and measurements zm
t+1, the occluded region beliefs are evolved using an extended

Kalman filter (EKF). In this work, they assumed the occluded regions are independent and thus

their covariances evolve separately. Also, a static environment is assumed and the occluded region

means xm do not evolve in the EKF.

2.4.2 Grasping Evaluation Results

Grasping Evaluation Details To adapt the trajectory-optimization-based active exploration

approach in our table-top grasping environment, we substituted the grasp handle detection and

grasp trajectory generation modules (shown in Figure 2.8a) with our simple antipodal grasp

sampling process described in Section 2.3.2. Also, we added an extra antipodal grasp cost

threshold to select good grasps and switch from trajectory optimization to grasp execution. The

trajectory optimization is re-implemented in Python using sequential quadratic programming

(SQP) from CVXPY [DB16] and we initialized the joint velocity control input ut and intermediate

joint state xR
t with a heuristic that guides towards the mean of occlusion centers. Map construction

used a Python implementation of KinFu [ZSN+17], which removes the iterative closest point

(ICP) pose estimation step from the original KinFu work [NIH+11] and instead requires a camera
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pose for each input RGB-D image.

Object Interior as Occlusion Issue Because our table-top environment only includes small

household objects, if we extract the occluded region purely based on the closest OBB faces to

the current RGB-D sensor position, the object’s interior space will always be recognized as an

occluded region. However, these object-interior occluded regions can never be observed from the

outside regardless of camera movements. Given that the trajectory optimization process is already

difficult to find the optimal joint trajectory due to many local minima and the frontier-extracted

occluded regions are heavily viewpoint-dependent, we observed many cases where the trajectory

optimization cannot find any good joint action and always returns a zero vector because of

these additional object-interior occluded regions. Therefore, we added an extra simple step to

remove most of these object-interior occluded voxels by filtering out the voxels inside the object

axis-aligned bounding box (AABB). However, this is not guaranteed to filter out all object interior

voxels (as shown in Figure 2.10a after this filtering step) and will sometimes remove surface

points if the estimated AABB is not exact.

Eval Results The grasping success rate of the active exploration with antipodal grasping

approach in our 50 table-top object clutter scenes with rendered noise-free RGB-D observations

is 64.38%, 6.87% worse than the simple antipodal grasping pipeline described in Section 2.3.

After detailed analyses, we found a few improved examples with more complete observed object

models compared to the simple antipodal grasping pipeline but observed several failure cases. The

most frequent failure case is that the trajectory optimization process often plans a joint trajectory

that is very close to inverse kinematic singularities, making it difficult to plan the subsequent

antipodal grasping motion.

The second frequent failure case relates to an inherent issue of the TSDF map repre-

sentation used by KinFu [NIH+11]. In a voxel grid constructed by KinFu TSDF, each voxel

contains a confidence weight w ≥ 0 and a truncated signed-distance value d ∈ [−1.0,1.0]. The
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surface meshes are then extracted from the TSDF by running the marching cubes algorithm

[LC87] on d to extract the zero-crossing surfaces. Given a point cloud observation at time t, the

truncated signed-distance values d are updated using a simple weighted moving average with

dt ∈ [−1.0,1.0] computed from the observation, where dt is normalized by dividing the depth

distance between the voxel and the observed point on a camera ray with a truncation margin µ

and dt is positive if in front and negative if behind the observed point. The d values of a planar

surface from a single viewpoint are illustrated in Figure 2.9a.

However, in Figure 2.9b, if the camera moves to the opposite side of the planar surface,

the d values obtained from the first viewpoint will be eventually overwritten by the weighted

moving average, causing the marching cubes algorithm to mistakenly extract an extra surface

plane between the d =−1.0 and d = 1.0 crossing. This inherent issue of the TSDF update process

appears quite often in our environment because all of our objects are relatively small objects with

finer geometry and the observations are collected with a trajectory-optimization-based active

exploration approach where a surface is very likely to be observed from opposite viewpoint

directions. Two of such double surface examples from our scenes are shown in Figure 2.10.

Finally, there are a few failed grasps where the robot arm collides with scene objects

during the active exploration trajectory optimization process because no collision checking is

done during the optimization to validate the robot joint states. The antipodal grasping algorithm

deficiency illustrated in Figure 2.7 also occurs in some scenes.

Overall, getting the trajectory-optimization-based active exploration approach to work

properly is tricky due to many reasons including the joint state initializing heuristic, optimization

local minima, viewpoint-dependent frontier extraction, object interior voxels as occlusions issue,

TSDF inherent double surface issue, kinematic singularities and no collision checking during

trajectory optimization. Although researchers proposed directional TSDF [SB19] to solve the

double surface issue by encoding the surface orientations and preventing overwrites, implicit

surface reconstruction with approaches such as neural radiance fields (NeRF) [MST+20] and
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(a) Truncated signed-distance values d from a
single viewpoint

(b) d values after more observations from a sec-
ond viewpoint

Figure 2.9: A planar surface example illustrating the issue of TSDF truncated signed-distance
values d. The planar surface denoted by the black solid lines is the same in (a) and (b). The
marching-cubes extracted surfaces are denoted with blue dotted lines. Camera viewpoints are
illustrated with the camcorder icon. (a) shows the d values after observations from a single
viewpoint. (b) shows the d values after more observations from a second viewpoint on the
opposite side of the planar surface. An extra surface plane is mistakenly extracted because the
observations from the second viewpoint overwrite the d values from the first viewpoint.

(a) TSDF surface issue (black ellipsoid is the oc-
cluded region Gaussian covariance)

(b) Another TSDF surface issue causing an unstable
grasp

Figure 2.10: TSDF erroneous double surface issue (red circles) causes unstable grasps. (a) and
(b) show the point cloud extracted from TSDF on the left and the actual scene in simulation on
the right. (a) shows both the mug and the bottle have erroneous surfaces around the top rim. (b)
shows that the erroneous points around the can’s rim cause an unstable grasp.
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occupancy networks [MON+19] would be more promising, efficient, and scalable to large scenes.

2.5 Contact-GraspNet

In this section, we evaluated Contact-GraspNet [SMTF21], the most recent state-of-the-art

grasping-in-clutter approach in our table-top environment.

2.5.1 Method Overview

The Contact-GraspNet (CGN) [SMTF21] is an end-to-end grasp pose generation network

which takes in a single-view full scene point cloud and generates candidate 6-DoF grasp poses

each with a confidence score. The full inference pipeline is shown in Figure 2.11.

Grasp Representation In this work, researchers proposed to map the grasp pose to a contact

point c ∈R3 and reduce the 6-DoF grasp learning problem to estimating the 3-DoF grasp rotation

Rg ∈ SO(3) and the 1-DoF grasp width w ∈ R of a parallel gripper. Starting from a contact point

c ∈ R3, a 6-DoF grasp pose g defined by (Rg, tg) ∈ SE(3) can be recovered as

tg = c+
w
2

b−da (2.4)

Rg =

[
b a×b a

]
,

where a ∈ R3, ∥a∥= 1 is the approach direction, b ∈ R3, ∥b∥= 1 is the grasp baseline direction

perpendicular to a, w ∈ R is the predicted grasp width, and d ∈ R is the constant distance from

the gripper baseline to the gripper base frame. Their proposed grasp representation is illustrated

in Figure 2.12.

Training Data CGN is trained with the ACRONYM dataset [EMF21], which consists of 8872

object meshes from the Shapenet dataset [CFG+15] and 17.7 million simulated grasps under
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Figure 2.11: Contact-GraspNet full inference pipeline (taken from [SMTF21]). The unknown
object segmentation network is replaced with ground-truth segmentation rendered from our
simulator. The CGN processes a local region point cloud around the target object. Predicted
6-DoF grasps are associated with the target object by filtering their contact points. The predicted
6-DoF grasp distribution is shown on the right, with the most confident grasp per object segment
in bold.

Figure 2.12: Contact-GraspNet grasp representation (taken from [SMTF21]). c denotes the
observed contact point. The approach direction a and the grasp baseline direction b constitute
the 3-DoF rotation. w is the predicted grasp width and d is the fixed distance from grasp baseline
to the gripper base frame. The five gripper points v used in the ladd−s loss are shown in pink.

varying friction. The 10000 training clutter scenes are generated by placing 8 to 12 object meshes

from the ACRONYM dataset on a table at random stable poses. Annotated grasp poses in collision

are removed and the remaining grasps are mapped to their contact points on the mesh surface.

During training, a single-view point cloud is rendered from a randomly sampled virtual camera

pose, and the points are considered as positive contacts if there exist collision-free grasp pose

mesh contacts in a 5mm radius and are associated with the grasp pose of the closest mesh contact.

These per-point binary successes and grasp pose annotations are used to supervise the CGN.
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CGN Architecture and Losses The CGN used the set abstraction and feature propagation

layers proposed in PointNet++ [QYSG17] to build a U-shaped network. The network has four

output heads each with two 1D-Conv layers and outputs per-point the grasp success probability

s∈R, z1,z2 ∈R3, and o ∈R10. The predicted grasp width w∈ [0,wmax] is split into 10 equidistant

bins o ∈ R10 and formulated as a multiclass classification problem. The grasp width w used

to recover the 6-DoF grasp pose is the upper-bound value of the bin intervals with the highest

confidence (to allow grasps at maximum grasp width). The approach direction a ∈ R3 and the

baseline direction b ∈ R3 are orthonormalized from z1,z2 ∈ R3 by the Gram-Schmidt process.

Besides the binary cross entropy loss lbce of grasp success s ∈ R and the multiclass cross

entropy loss lwidth of grasp width bins o ∈ R10, CGN introduces a 6-DoF grasp loss ladd−s as

a weighted minimum average distance of the 5 gripper points (shown in pink in Figure 2.12)

between ground-truth vgt and prediction vpred:

ladd−s =
1

n+
n+

∑
i

ŝi min
u

∥vpred
i −vgt

u ∥2, (2.5)

where n+ is the number of points with ground-truth positive grasps, and ŝi is the predicted contact

grasp success confidence. The total loss is l = αlbce +βladd−s + γlwidth with α = 1, β = 10, and

γ = 1.

2.5.2 Grasping Evaluation Results

Grasping Evaluation Details To evaluate CGN in our table-top grasping environment, we

replaced the unknown object segmentation network shown in Figure 2.11 with ground-truth

segmentation rendered from our simulator. Also, the CGN work utilizes learned implicit collision

functions [DMEF21] to generate collision-free robot arm motion. In our evaluation, we used

the same library, MPlib (details see Appendix A) as in previous grasping evaluations for motion

planning and collision checking. Starting from the CGN-generated grasp pose with highest
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confidence, we executed the first collision-free grasp to determine grasping success. We chose

the camera viewpoint to be a side view with most objects visible similar to CGN’s evaluation

environment.

Eval Results The grasping success rate of the pretrained CGN in our 50 table-top object clutter

scenes with rendered noise-free RGB-D observations is 74.81%, the grasping pipeline with the

highest success rate so far. To examine its performance with depth sensor noise, we also evaluated

the pretrained CGN with RGB + noisy depth observations obtained with SimKinect (details see

Section 2.2.4) and the success rate in our 50 scenes is 62.60%. After analyzing the results, we

found that most of the grasps failed because the grasp candidates generated by CGN result in

collisions, and the remaining collision-free grasp candidates are unstable.

The predicted grasp poses in collision can be categorized into several cases depending

on their causes. Figure 2.13a shows that very few predicted grasp widths w are at the maximum

width and thus will result in collision if the object is thick and only allow grasps almost at the

maximum grasp width (Figure 2.13b-2.13c). This observation is in line with the CGN paper

[SMTF21] and they conjectured its reason to be the discontinuous decision boundary of the

grasp width bins. Also, if the predicted grasp baseline direction deviates too much from being

perpendicular to the contact surface, the gripper fingertip can collide with the target object as

shown in Figure 2.13d-2.13e. The remaining collisions include colliding with the table (Figure

2.13f), a nearby object (Figure 2.13g), and the target object if the selected contact point is too low

(Figure 2.13h). In addition, because the CGN is single-view-based, heavy occlusions of the target

object in the camera viewpoint might cause the predicted grasp to be in collision or unstable

(Figure 2.13i-2.13j). Finally, the predicted grasp pose can be unstable and misleading by trying to

grasp the mug shown in Figure 2.13k by the straw, probably because CGN was not trained on

such adversarial object models.

27



(a) Histograms of all and the most confident pre-
dicted grasp widths w

(b) Wrong grasp width w
(right one) causes collision

(c) Wrong grasp width
collision

(d) Deviated grasp base-
line b causing collision

(e) Deviated grasp base-
line collision (f) Collides with the table

(g) Collides with a nearby
object

(h) Contact point too low,
gripper-object collision (i) Occluded viewpoint

(j) Collision from occlu-
sion

(k) Unstable grasp by
straw

Figure 2.13: Causes of collision for grasps predicted by CGN. Red circles denote collisions
and green circles denote an unstable grasp. (a) shows that only a tiny portion of both all and
the most confident predicted grasp widths w is the maximum grasp width. (b)-(c) show that the
wrong predicted grasp width w causes collision for thick objects. (d)-(e) show that the deviated
predicted grasp baseline causes a collision with the target object. (f) shows the gripper collides
with the table at the predicted grasp pose. (g) shows the gripper collides with a nearby object
at the predicted grasp pose. (h) shows the gripper collides with the target object because the
predicted contact point is too low. (i)-(j) show a collision caused by heavy occlusion in the
camera viewpoint. (k) shows an unstable predicted grasp of the mug by the straw.
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In summary, the data-driven model-free grasping method, Contact-GraspNet, shows the

highest grasping success rate in our 50 table-top clutter scenes when using noise-free RGB-D

observations. However, there is still a wide gap between CGN’s current performance (noise-free

or noisy observations) and a reliable grasping-in-structured-clutter pipeline with a ≥ 95% success

rate. Admittedly, the proper way to test the true performance of the CGN approach with noisy

depth observations is to collect a similar object model dataset with simulation-annotated grasp

poses and retrain the CGN on a new set of train/test table-top clutter scenes. But even then,

some of the observed failure cases of CGN will still remain, including the issue of very few

predicted grasp widths at the maximum width, no supervision of aligning the gripper baseline to

be perpendicular to the contact surface, single-viewpoint occlusions, and the unstable misleading

grasps from adversarial object models.

2.6 Discussion & Conclusions

In this chapter, we closely examined a simple antipodal grasping algorithm and two

existing baseline approaches: trajectory-optimization-based active exploration [KSP+15] with

antipodal grasping and the Contact-GraspNet [SMTF21]. Their grasping success rates in our 50

table-top clutter scenes are summarized in Table 2.2 below.

Table 2.2: Grasping success rate of tested baselines in our 50 table-top clutter scenes

Baseline Observation Type Success Rate
Simple antipodal grasping Noise-free RGB-D 71.25%

Active exploration with antipodal grasping Noise-free RGB-D 64.38%
Contact-GraspNet (pretrained) Single-view Noise-free RGB-D 74.81%
Contact-GraspNet (pretrained) Single-view RGB + Noisy depth 62.60%

From the table, we can see that none of the baselines achieves performance close to an

ideal reliable grasping-in-structured-clutter method with a ≥ 95% success rate. We also found a

recent task-and-motion-planning (TAMP) approach [LK19] that we will briefly discuss next.
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TAMP for grasping in clutter In unstructured environments such as homes and hospitals,

directly specifying the full behavior policy for a robot is not practical due to complexity and edge

cases. TAMP divides the complete behavior policy into high-level task planning (e.g., move robot

base, pick up object, place object) and low-level motion planning (e.g., how to move the robot

arm to grasp and pick up the target object). In [LK19], researchers proposed to use TAMP to first

plan a motion trajectory to rearrange any existing obstacle that prevents access to the target object

and then move to grasp the target object to the placement location. An example of this process is

illustrated in Figure 2.14. In our point of view, this TAMP approach can be a quite strong method

for our cluttered environment even if the clutter is denser. However, searching in a dense clutter for

the optimal set of obstacles to move and the corresponding placement areas for rearrangement is

probably a difficult time-consuming optimization problem. In [LK19], researchers also assumed

a planar approach direction to the objects instead of a full 6-DoF grasp that can approach and

lift the object from above. Moreover, implementing this TAMP approach requires lots of effort

and the resulting pipeline will be very specific to this grasping-in-structured-clutter task without

much generalizability to similar grasping tasks.

Figure 2.14: Example of grasping obstructed object using TAMP (taken from [LK19])

In our baseline experiments and analyses, we found that a successful grasp not only

depends on a complete accurate scene mapping and high-quality collision-free grasp pose gen-

eration, but also relies on grasp trajectory planning and robot configuration space feasibility.

Thus, we next explore the idea of bringing the simulator in the loop of planning a grasp by first

reconstructing the observed scene in a physical simulator.
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Chapter 3

Scene Reconstruction for Grasp Planning

For planning a robotic manipulation task in a physical simulator and directly transferring

the planned motion trajectory, the reconstructed scene needs to have not only accurate geometric

reconstruction but also close-enough dynamic properties predictions, stable physical supports

with no penetration, and correct joint information for articulated objects. In this chapter, we will

focus on reconstructing rigid objects in 3D scenes with accurate geometry and plausible physical

constraints as a starting point. The table model and pose are fixed with ground-truth and not being

reconstructed.

3.1 Related work

Digital Twin A digital twin is a virtual representation that serves as the real-time digital

counterpart of a physical object or process. Recent work has studied the recreation of the digital

twin of articulated objects through interactive perception [JHZ22]. Their category-agnostic

implicit neural representation model is able to reconstruct part-level geometry and estimate the

articulation model of an articulated object given a pair of point cloud observations before and

after an interaction. The reconstructed digital twins can be directly imported into a physical

simulator and used for planned motion transfer to the real world. However, they assumed a simple

31



scene where no other object exists and the reconstructed object surface generated by the marching

cubes algorithm [LC87] from the implicit neural representation is not guaranteed to be smooth

enough for stable placement on a supporting surface.

Scene Reconstruction Scene reconstruction has been studied extensively on indoor datasets of

furniture such as beds, tables, and chairs [ADD+19, AKC+20, LYS+21]. These relatively large

objects are less likely to result in collision (i.e., object mesh penetration) in the reconstructed

scene. However, for smaller household objects, a small error in the predicted pose or scale can

incur mesh penetration, making the scene unstable for a physical simulator. On a high level, scene

reconstruction methods can be categorized into implicit surface reconstruction and object pose

estimation followed by CAD model alignments. For reconstruction with implicit representation,

[AXW+20] worked on reconstructing a table-top setup for manipulation similar to ours. To

encourage scene stability, they introduced a stability loss by geometric centroid analysis and a

connectivity loss for bridging the disconnected object parts. The reconstructed scene is used

for manipulation trajectory planning. Although their idea seemed promising, the reconstructed

object surfaces from implicit representation are not smooth and their grasping success rate is

< 45%. [JZS+21] proposed to jointly learn the gripper grasp pose and scene reconstruction with

an implicit neural representation. However, their network input is a TSDF volume fused from

depth images which will unavoidably suffer from its inherent double surface issue illustrated in

Figure 2.9. Also, their reconstructed scene was extracted using the marching cubes algorithm

[LC87] and was not intended for physical simulation, meaning that potential collisions can occur.

For the two-step reconstruction approach of object pose estimation and CAD model

alignments, [HZJ+21] is the most recent work. From an RGB-D image sequence, their panoptic

mapping module generates reconstructed meshes for all object instances. Then, for each object

mesh, they perform matching and optimization-based pose alignment with a CAD model dataset

of the same object category. Finally, they perform physical violation checks to resolve nearby
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object mesh penetrations and refine object supports. They demonstrated robot interactions in a

ROS simulator and interactions in a VR environment using the reconstructed scene. Based on

their promising reconstruction results of indoor scenes (e.g., kitchen and room), we chose their

approach as our scene reconstruction baseline and examined its performance in our table-top

clutter environment.

3.2 Plane-based Scene Reconstruction Baseline

In this section, we evaluated [HZJ+21], the most recent scene reconstruction by pose

estimation and CAD model alignment approach in our table-top clutter environment.

3.2.1 Method Overview

In [HZJ+21], researchers proposed to use a three-step pipeline to reconstruct interactive

3D scenes in a physical simulator: (1) panoptic mapping; (2) CAD matching and alignment; (3)

physical violation check and contact graph generation. To represent the object-object relations,

they proposed the contact graph scene representation which consists of a tree-like structure

encoding the object support relationship and proximal edges for ensuring the non-penetration

constraint between nearby objects.

Panoptic Mapping Given a sequence of RGB-D observations, they performed per-frame object

segmentation by fusing panoptic segmentation from Mask R-CNN [HGDG17] and geometric

depth segmentation based on surface convexity and depth discontinuity. Then, data fusion across

image frames associates the instance and semantic labels to generate a set of consistent global

instance labels. After processing all observations, the initial contact graph is constructed by

estimating supporting relations between the objects based on extracted 3D oriented bounding

boxes (OBB).
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CAD Matching & Alignment Before matching, dominant planes are extracted from the

reconstructed object meshes using RANSAC [FB81]. Then, for each model in the CAD object

dataset of the same semantic category, a coarse pose matching is done by posing the CAD model in

24 discretized orientations and matching them with the reconstructed mesh using three similarity

distance metrics, including the 3-DoF OBB size difference, the relative pose difference of the

extracted RANSAC planes, and the up-direction matching error to encourage upright standing

models. Next, a fine-grained pose alignment step takes the matched poses as initializations and

performs a least-squares optimization to minimize the OBB error and the plane alignment errors

using the Levenberg-Marquardt algorithm [Mor78]. To simplify the pose optimization process, it

only involves a 4-DoF variable: a 1-DoF uniform scale, the yaw angle around the gravity-aligned

axis, and the 2-DoF translation in the gravity-perpendicular plane.

Physical Violation Check & Contact Graph Generation With a set of well-aligned CAD

model candidates, they performed a global physical violation check to refine the object position

in the gravity-aligned axis and select CAD candidates for each segmented object to prevent

object-object collision with a min-conflict constraint satisfaction algorithm [MJPL92] using the

sum of mesh penetration depths. Finally, a contact graph with all matched CAD models and their

poses is generated.

3.2.2 Reconstruction & Grasping Evaluation Results

Evaluation Details To reconstruct the table-top clutter scenes, we set the TSDF voxel resolution

used in the voxblox++ [GFN+19] object segmentation module in [HZJ+21] to 5 mm. The RGB-D

observation sequences were collected along the trajectories generated by the active exploration

approach described in Section 2.4.1. We used the RGB + noisy depth observations obtained with

SimKinect (details see Section 2.2.4). For now, the object dataset used for matching contains the

same objects as the dataset we used in the 50 table-top scenes.
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Reconstruction Results After examining the reconstructed scenes, we noticed that the CAD

matching and alignment process does not perform well with our object dataset. In [HZJ+21],

the scene being reconstructed are mostly indoor kitchens or rooms which mostly consist of

relatively large furniture such as refrigerators, microwaves, and tables. These objects mostly

have flat enclosing surfaces and RANSAC extracted planes are adequate approximations for

their geometries. In our table-top clutter environment, the objects have much fewer flat surfaces,

causing very few extracted planes. Also, a significant portion of objects have no extracted planes

because their geometries mostly consist of spherical or cylindrical surfaces. Since the pose

matching and alignment process heavily relies on the RANSAC extracted planes, these CAD

models without any extracted planes would not be used, limiting the size of the actual object

dataset used for matching. A few object model examples are shown in Figure 3.1.

(a) Refrigerator (b) Bottle (c) Bowl (d) Mug

Figure 3.1: RANSAC extracted planes of objects for pose matching used in [HZJ+21]. Planes
and their normals are illustrated with colored squares and arrows. (a) shows a refrigerator with
flat enclosing surfaces, a common case for relatively large furniture. (b)-(d) show objects used
in our table-top scenes with much fewer flat surfaces and hence very few RANSAC extracted
planes.

In our 50 table-top clutter scenes, we found that there are still 3 unstable reconstructed

scenes where all of them are due to slight nearby-object mesh penetration. An example of such

mesh penetration is shown in Figure 3.2. A possible reason is that the global physical violation

check step only involves CAD candidate selection with no pose refinement and thus cannot

guarantee object-object non-collision if no pair of CAD candidates is collision-free. Also, it could

be that their mesh penetration checks are not accurate enough for slight penetrations.
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Figure 3.2: Unstable scene reconstruction due to slight nearby-object mesh penetration

Grasping Results Using the reconstructed scenes, we performed brute-force sampling with

the scene models and antipodal grasp sampling (see Section 2.3) to plan and execute grasping

joint trajectories in our physical simulator. An example of brute-force sampled points on an

object surface and a table-top scene is shown in Figure 3.3. The executed joint trajectories, if

successful, will be directly transferred to the original scene to grasp the target object. The overall

success rate in our 50 table-top scenes is 65.01%, around 2.5% better than CGN with noisy depth

observations from Section 2.5.

(a) An object model (with sampled point normals)
(b) A clutter scene (only the top-surface of the table
is sampled for efficiency)

Figure 3.3: Brute-force sampled points on (a) an object surface and (b) a clutter scene. Red
points indicate the sampled points.

Two examples of the reconstructed scene along with the original scene are shown in Figure

3.4. In Figure 3.4a, most of the objects are reconstructed with geometrically-similar different

model instances but the object positions are all quite accurately reconstructed, which helps to
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successfully transfer the grasping joint trajectories for all objects in the scene. However, in Figure

3.4b, several reconstructed objects have large geometric differences: the bottom-left upside-down

mug is reconstructed as standing upright, the gray can is reconstructed with a completely different

small oil dispenser (most likely to avoid nearby object collisions), and the wine bottle is replaced

with a much wider bottle instance. These failure cases are great examples to show the deficiency

of both the RANSAC-plane-based model matching and pose alignment process and the naive

candidate selection algorithm to avoid nearby object collisions.

(a) A scene where all 9 transferred grasps succeed (b) A scene where 6/10 transferred grasps fail

Figure 3.4: Examples of the reconstructed scenes by [HZJ+21]. Left is the reconstructed scene
and right is the original scene. (b) Objects marked by the yellow arrows are the ones with
successfully transferred grasps.

Takeaways The [HZJ+21] work demonstrates a simple and efficient scene reconstruction

pipeline by panoptic mapping, RANSAC-plane-based CAD model matching and alignment, and

physical violation checking by candidate selection. We have seen its potential in reconstructing

a geometrically similar scene (as shown in Figure 3.4a); however, it has several drawbacks: (1)

plane-based model matching and pose alignment are not well suited for small objects without

many flat enclosing surfaces; (2) the naive model candidate selection algorithm for preventing

object-object collision usually sacrifices geometric similarity for physically stable non-penetration

which is unideal if the reconstructed scene is going to be used for geometry-based planning; (3)

the TSDF-based fusion of RGB-D observations will inevitably suffer from its inherent double

surface issue illustrated in Figure 2.9. Also, although the results are not included, we have

observed that TSDF-based scene representation is hard to filter out depth observation noises:
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either the sensor noise needs to be filtered out before TSDF voxel updates, or a manual threshold

of the TSDF observation weights w needs to be tuned to filter out the noisy voxels, assuming the

noisy voxels will all have relatively lower observation weights compared to the rest.

Nevertheless, there are some takeaway ideas. First, the two-step scene reconstruction

approach of object pose estimation followed by CAD model matching can make it much easier

to generate a reconstructed scene with adequate object support because most CAD models are

carefully designed for stable placement on a supporting plane. Second, to resolve nearby object

penetration, a naive model candidate selection is probably not the right direction to pursue. It

would be better to perform 3-DoF rescaling or deformation based on observations with some

pose refinement steps to avoid nearby object collision and preserve geometric similarity. Third, a

contact graph can be a good representation of the scene structure. Although if the scene has more

complex support relations (e.g., two objects both provide support to a third object on top of them),

generalizing the tree-like support structure to a directed acyclic graph would be necessary. In our

simple table-top environment where currently no object stacking is allowed, we do not need to

explicitly generate the contact graph for our scene representation. Fourth, if the TSDF-based scene

representation is not the right direction for fine-grained geometry representation and observation

viewpoints from opposing directions, then in-network RGB-D observation feature fusion or

observation keyframe selections might be worth to explore. Implicit neural representations also

contain lots of potentials.

In the next section, we continue to explore the two-step scene reconstruction approach by

9-DoF category-level object pose estimation and CAD model matching focusing on geometric

similarity.
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3.3 Scene Reconstruction by Category-level Pose Estimation

and Model Matching

In this section, we explore the scene reconstruction approach by 9-DoF category-level

object pose estimation and CAD model matching in our table-top clutter environment.

3.3.1 Objective, Assumptions & Evaluation Metrics

The objective of our scene reconstruction approach is to reconstruct the scene in a physical

simulator to match the geometry of the original scene as close as possible from a sequence of

(or only one) RGB-D observations. The reconstructed scene can be used to plan for downstream

manipulation tasks.

Our proposed two-step method is as follows: (1) perform a 9-DoF category-level pose

estimation of the objects in the scene, and (2) match the observed object at the 9-DoF estimated

pose with the most geometrically similar CAD model from the model database of the predicted

semantic category while ensuring scene stability. Currently, the original and reconstructed

environments are both created and simulated using SAPIEN [XQM+20].

Our environment assumptions include (1) objects are relatively small household objects

(e.g., mugs and bowls) but not large home furniture (e.g., chairs and beds); (2) all objects are

rigid and standing upright on the table with no object stacking allowed; (3) our environment is

assumed to remain static during observation collection. During our reconstruction, we also do

not attempt to reconstruct any visual properties (e.g., colors, BRDFs) or dynamic properties (e.g.,

frictions, mass distributions).

To evaluate the reconstruction, we need metrics to measure the geometry difference

between the reconstructed scene and the original scene. We proposed to use a scene-level

Chamfer distance by densely sampling the objects on the table (similar to Figure 3.3b). To

account for scene stability, we simply use a binary metric to record whether the reconstructed
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scene is stable in a physical simulator by forward-stepping. If needed, we can compute and

use the sum of mesh penetration depths of all scene objects. We will also keep the grasping

success rate metric in our table-top clutter scenes to evaluate the downstream manipulation task

performance.

3.3.2 Related Work on Pose Estimation

Instance-level Instance-level object pose estimation has great practical importance in industrial

applications and has been extensively studied in the literate both using traditional point cloud

matching methods [AHB87, MAM14] and using learning-based methods [XSNF18, WXZ+19,

HSH+20, HHF+21]. The task is to infer the 6-DoF object pose (3D position and 3D rotation) of

the objects, assuming exact 3D CAD models and their sizes are available. The main challenges

come from partial observations due to inter- and intra-object occlusions. Recently, the most

notable work is PVN3D [HSH+20], a point-wise keypoint-voting-based network that takes in

an RGB-D image and performs semantic segmentation, object center offset prediction, and

3D keypoint offset prediction. By clustering and voting the per-point semantic segmentations

and center offset predictions, the model generates instance semantic segmentations which are

combined with keypoint offset predictions to generate 3D object keypoint positions. A least-

squares fitting is used at the end to produce 6-DoF object pose estimations from the keypoint

positions. Their follow-up work, FFB6D [HHF+21], achieves state-of-the-art performance on

6-DoF instance-level pose estimation by adding a bidirectional fusion of the RGB image and depth

point cloud features in the network flow. In their experiments, even when 90% of the object’s

surface is invisible in view, the FFB6D network can still achieve a remarkable pose estimation

accuracy of 99.8%. However, instance-level object pose estimation needs exact 3D models of the

objects during training and testing time. Besides the practical limitation in storing all 3D CAD

models or learned networks in memory at test time, capturing and designing high-fidelity 3D

models of many objects is a challenging task.
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Category-level Category-level object pose estimation does not rely on the exact 3D models.

Instead, it utilizes a canonical object frame for each object category, shared per-category keypoint

positions, or part information as a bridging step to generate 9-DoF pose estimations for all

object instances of the same category. One of the earliest works in category-level object pose

estimation is NOCS [WSH+19], which defines a normalized object coordinate space (NOCS) for

each object category and uses a Mask-RCNN backbone [HGDG17] to predict object category,

instance segmentation mask, and the NOCS coordinates from an RGB-D image. The 9-DoF

object pose is extracted with RANSAC [FB81] followed by the Umeyama algorithm [Ume91].

Two examples of the pretrained and retrained NOCS model performance are shown in Figure

3.5. The performance is not great mainly because the original NOCS network relies only on

RGB images to perform classification, segmentation, and coordinate prediction while important

geometric information contained in depth images is not utilized.

(a) Pretrained NOCS model pose predictions (b) Retrained NOCS model coordinate predictions

Figure 3.5: NOCS predicted results in our scenes. Left are ground-truths and right are predic-
tions. (a) shows the pretrained model failed to detect 4 objects and generates inaccurate pose
estimations for the 5 detected objects. (b) shows the retrained model contains severe noises in
the NOCS coordinate predictions which will result in inaccurate pose estimations.

3.3.3 Method Overview

Inspired by our discussions with geometry experts, we found that simply choosing the

voted keypoints to be the 8 corners of the object’s oriented bounding box (OBB) can convert a

6-DoF instance-level keypoint-voting-based pose estimation network into a 9-DoF category-level

pose estimation approach. In our following experiments, we adapted the state-of-the-art instance-
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level pose estimation FFB6D architecture [HHF+21] to our category-level pose estimation

problem. Specifically, given an RGB-D image, the FFB6D network produces per-point semantic

segmentations, object center offset predictions, and keypoint offset predictions to the 8 OBB

corners. Then, clustering and voting are performed to recover the 3D OBB corner positions

which we used to estimate a 2-DoF object aspect ratio and a 7-DoF similarity transform using the

Umeyama algorithm [Ume91]. We will refer to this category-level pose estimation approach as

FFB6D-8OBB for the rest of this thesis.

3.3.4 Pose Estimation Evaluation Results on NOCS dataset

Evaluation Details To evaluate the category-level pose estimation of our FFB6D-8OBB ap-

proach, we chose the dataset introduced in the NOCS paper [WSH+19] because it is the only

existing dataset for benchmarking category-level pose estimation approaches and it allows us to

compare with existing baselines. The NOCS dataset contains two sets of RGB-D images: (1)

a Contact-Aware MixEd ReAlity (CAMERA) dataset with real IKEA background images and

synthetically rendered foreground objects in a context-aware matter (i.e., objects are rendered

with plausible physical locations, lighting, and scale); (2) real RGB-D images of 18 indoor

scenes. The objects consist of 6 categories, including bottles, bowls, cameras, cans, laptops, and

mugs. Detailed data distributions are summarized in Table 3.1 below and an example for both a

CAMERA scene and a REAL scene are shown in Figure 3.6. Following the same training method

used in NOCS [WSH+19], we train on both the CAMERA and REAL datasets and test on the

REAL dataset.

Table 3.1: NOCS dataset distribution. Dataset splits are formatted as “Train / (Val) / Test”

Dataset Name Models (6 categories) Scenes RGB-D Images
CAMERA 901 / 184 27 / 4 275K / 25K

REAL 18 / 6 / 18 (3 / 1 / 3 for each category) 7 / 5 / 6 4300 / 950 / 2750
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(a) Example NOCS CAMERA scene (b) Example NOCS REAL scene

Figure 3.6: RGB-D observations of an example CAMERA scene and an example REAL scene
in the NOCS dataset

NOCS 3DIoU Computation Bug As we started looking into the evaluation metrics used

in NOCS, we found an unnoticed bug in computing the OBB IoU. The code and an example

incorrect value are shown in Figure 3.7. At a glance, it seems like the authors of NOCS want

to compute an enclosing AABB IoU as an approximation to the actual OBB IoU. However, the

NumPy axis indices are incorrect, causing the significant numeric difference shown in Figure

3.7b. Unfortunately, all approaches evaluated on the NOCS dataset used this same incorrect

implementation to compute 3D IoU. We have adopted a verified correct 3D IoU implementation

from PyTorch3D [RRN+20]. For a fair comparison, all 3D IoUs shown in our later results are

computed in the same way (Figure 3.7a) as NOCS (unless explicitly noted).

Evaluation Metrics The evaluation metrics for the category-level pose estimation are mean

average precision (mAP) proposed in [EGW+10] of the 3D OBB IoU, rotation error (in degree),

and translation error (in centimeter) at several thresholds. In order to compute the mAP values,

one-to-one instance matches between the ground-truth objects and the predicted objects are

computed by checking if they are of the same object category and if the 3DIoU is above the

threshold (or the rotation and translation errors are below the thresholds). From the object

instance matches, the precision/recall curve and average precision are computed. Finally, mAP is

computed as the mean of APs for all object categories.
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(a) Function definition of 3D IoU computation in NOCS

(b) Example of an incorrect 3D IoU

Figure 3.7: NOCS incorrect OBB IoU computation. (a) shows the code used in NOCS. axis=0
should have been axis=1 to compute an enclosing AABB IoU. (b) shows an example of incorrect
3D IoU. Left is ground-truth OBB and right is predicted OBB. For object 1, the OBB IoU
between GT and pred should be 0% but NOCS gives 23.378% while the result from PyTorch3D
3DIoU implementation is correct.

Pose Estimation Results The category-level pose estimation results on the NOCS REAL-Test

dataset are summarized in Table 3.2. From the row “FFB6D-8OBB”, we can clearly see a large

difference in IoU mAPs but only a small gap in deg/cm mAPs between our approach and the

current state-of-the-art on NOCS REAL-Test dataset, FS-Net [CJC+21]. After inspection, we

found our FFB6D-8OBB approach failed to generate correct semantic labels for many objects in
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the dataset. The semantic classification confusion matrix is shown in Figure 3.8a. An example

scene with per-point semantic prediction is shown in Figure 3.8b and 3.8c.

Because the semantic segmentation is not great and the mAP metrics couple pose accura-

cies with semantic classification accuracies, we performed another evaluation where the predicted

semantic labels are substituted with the ground-truth semantic labels. The results are shown in

Table 3.2 as “FFB6D-8OBB GTseg”. We can see that our degree/cm mAPs surpass FS-Net by a

large margin of 10% while the IoU mAPs are still ∼3% lacking behind, indicating possible room

for improvements in the 8OBB corner position prediction.

Table 3.2: Category-level pose estimation performance on NOCS REAL-Test dataset and
our custom SAPIEN dataset, partly taken from [CJC+21]. All metrics are mAP. ‘-’ means
no results are reported. ‘GTseg’ means ground-truth semantic segmentation labels are used.
Baseline references: NOCS [WSH+19], CASS [CLWX20], Shape-Prior [TAL20], 6-PACK
[WMMX+20], FS-Net [CJC+21].

Method IoU25 IoU50 IoU75 5◦5 cm 10◦5 cm 10◦10 cm Speed (fps)
NOCS 84.9% 80.5% 30.1% 9.5% 26.7% 26.7% 5
CASS 84.2% 77.7% - 23.5% 58.0% 58.3% -

Shape-Prior 83.4% 77.3% 53.2% 21.4% 54.1% - 4
6-PACK 94.2% - - 33.3% - - 10
FS-Net 95.1% 92.2% 63.5% 28.2% 60.8% 64.6% 20

FFB6D-8OBB 62.2% 61.3% 39.4% 26.7% 57.7% 61.8% 10
FFB6D-8OBB GTseg 91.1% 89.9% 61.3% 35.4% 70.9% 73.4% 10

Performance on our SAPIEN dataset (Section 3.3.5)
FFB6D-8OBB 77.3% 71.9% 56.8% 71.2% 76.8% 78.1% 10

FFB6D-8OBB GTseg 96.7% 92.0% 72.1% 78.6% 83.9% 84.5% 10

Possible Reasons for Semantic Segmentation Deficiency We summarized some potential

reasons for the semantic segmentation deficiency we observed. (1) Comparing the NOCS

CAMERA and REAL dataset as shown in Figure 3.6, we see that the CAMERA dataset has no

depth noise for the object models while the REAL dataset has realistic depth discontinuity noises

around the object boundaries. Also, the size of the CAMERA dataset is much larger than that of

the REAL dataset as shown in Table 3.1 but the RGB-D images are sampled with equal weighting
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(a) Object semantic classification confu-
sion matrix (b) Per-point semantic predictions of (c)

(c) Ground-truth (left) and predicted (right) object OBBs

Figure 3.8: Pose estimation visualizations of FFB6D-8OBB on NOCS REAL-Test. (a) shows
bottles are being mostly misclassified as cans and many bowls are being misclassified as mugs.
(b) shows that all points of the leftmost bottle are mispredicted as can points. Many points of
the camera and the mug are also mispredicted as background. (c) shows that the OBB corner
position predictions still have room for improvement for all 5 objects.

during training. It would probably make sense to sample more often in the REAL dataset or use

SimKinect to add some simple depth noises to depth images in the CAMERA dataset. (2) In

many baselines shown in Table 3.2, instance semantic segmentation is done by a separate Mask-

RCNN-based network and additional RGB image datasets (e.g., COCO [LMB+14]) are used to
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train the 2D segmentation model. Comparing the per-point semantic segmentation approach with

the 2D image approach, it is harder for the point-based network to learn more global object-level

information which is valuable for instance semantic segmentation. If point-based network is

necessary or end-to-end training is desired, the recent Point Group approach [JZS+20] might be

worth looking into. More future works will be discussed in Chapter 4.

3.3.5 Pose Estimation Evaluation Results on Custom SAPIEN dataset

In this section, we present the results of applying FFB6D-8OBB in our table-top clutter

environment for object pose estimation.

Custom SAPIEN Dataset To evaluate the category-level pose estimation approach in our

table-top environment, we first divided our object models into train/test sets and then generate

80 training clutter scenes and 30 testing clutter scenes using the object sets. Then we rendered

RGB-D images from the 1201 camera viewpoints shown in Figure 3.9b for each of the scenes.

The depth images are processed with SimKinect (described in Section 2.2.4) to add close-to-real

depth noises. The dataset details are summarized in the table shown in Figure 3.9a.

(a) Dataset distribution (b) Camera positions

Figure 3.9: Custom SAPIEN dataset details. (a) shows the train/test splits of object models
and clutter scenes. RGB-D images in the test scenes are interleavedly sampled down to 121
images per scene for speeding up the evaluation process. (b) The 1201 camera positions around
the one-quarter ellipsoid centered at the table center for rendering RGB-D images. The camera
always looks towards the table center.
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Pose Estimation Results The category-level pose estimation results on our testing images

are summarized in the last two rows of Table 3.2. We see that the performance gap between

using predicted semantic labels and using ground-truth labels is ∼10% smaller than that on the

NOCS REAL-Test dataset. The semantic classification confusion matrix shown in Figure 3.10a

also shows a better performance. Admittedly, we note that our custom SAPIEN dataset can be

easier to achieve a good semantic classification accuracy because of the same distributed train/test

sets and the simple background in our table-top environment. To further improve the semantic

segmentation, one additional attempt can be adding category frequency weighting in the semantic

segmentation Focal Loss [LGG+20] used by FFB6D given that there are larger differences in the

number of model instances of the object category. However, a portion of the misclassifications

might be unavoidable due to category ambiguity from the camera viewing angle. An example

scene with per-point semantic prediction is shown in Figure 3.10b and 3.10c.

3.3.6 Scene Reconstruction Evaluation Results on Custom SAPIEN dataset

In this section, we complete the scene reconstruction pipeline with CAD model matching

and present some evaluation results.

Top-down View Only To reconstruct the table-top clutter scene, we started our experiment by

only using the top-down view observations. We chose the top-down view because it is guaranteed

that all objects are observed in this view whereas other side views might have complete occlusions.

A comparison of pose estimation accuracy by using all views and using the top-down view only

is shown in Figure 3.11. We see that all metric performances are better when using the top-down

view only, probably because of no occlusions.

Model Matching Details Given 9-DoF pose estimations of the scene objects, we proceed to

use CAD model matching to reconstruct the original scene. A naive solution for matching models
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(a) Object semantic classification confu-
sion matrix (b) Per-point semantic predictions of (c)

(c) Original RGB image (left) and predicted object OBBs (right)

Figure 3.10: Pose estimation visualizations of FFB6D-8OBB on our custom SAPIEN dataset.
(a) shows many bottles are being misclassified as cans and many mugs are being misclassified.
(b) shows that mug with obj id=6 and the center bottle have half of the points misclassified.
With only a slight number difference, mug 6 is classified correctly and the center bottle is not.
(c) shows that the center bottle is mispredicted as a mug although no handle is visible.

at the predicted pose is to use the 7-DoF similarity transform which considers a uniform 1-DoF

scaling and select the most geometrically similar object model. However, the 1-DoF scaling

can limit the matching to only CAD models with similar 3D aspect ratios and will more likely
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Figure 3.11: Mean pose estimation accuracy from all views vs. from the top-down view only.
The degree/cm numbers are accuracies while others are means of the metric values.

cause nearby object mesh penetration (as demonstrated in Section 3.2.2 for the plane-based

scene reconstruction approach). Thus, we proposed to utilize the full 9-DoF pose estimations by

performing an additional 3-DoF rescaling.

Specifically, we decomposed the 9-DoF pose into a 2-DoF 3D aspect ratio â ∈R3,∥â∥= 1

and a 7-DoF similarity transformation. Given a CAD model, we performed rescaling to match the

predicted 3D aspect ratio â and then inserted the scaled CAD model into the scene at the predicted

7-DoF pose. Next, we uniformly sampled points from the posed CAD model, computed the

Chamfer distance between the observed object points and the sampled CAD points, and selected

the model with the smallest Chamfer distance for reconstruction. Similar to [HZJ+21], we refined

the table-object support relation by estimating the table top surface plane using RANSAC [FB81]

and resetting the CAD model’s ẑ-position accordingly.

Scene Reconstruction Results We computed the scene-level Chamfer distance metric described

in Section 3.3.1 for the 30 testing table-top clutter scenes. The results are plotted in Figure 3.12a.

As we can see, there are 4 scenes with fallen-over reconstructed objects. One of them (shown in

Figure 3.12b and 3.12c) is because of a slight nearby object mesh penetration caused by the errors

in the predicted object scales for both objects. The other 3 scenes contain reconstructed objects

that have slight rotation errors and are not completely standing upright on the table. These unstable

scenes inspire a future direction of estimating the uncertainty of the 9-DoF predicted pose and

formulating a pose refinement optimization step to resolve such collisions and instabilities (details

discussed in Section 4.2). For the remaining stably reconstructed scenes with no fallen-over

objects, several scenes still have relatively large scene-level Chamfer distance. An example is
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shown in Figure 3.12d and 3.12e. This is probably because using observations only from the

top-down view is hard to find a good match for the scene objects.

(a) Scene-level Chamfer distance
(b) Slight mesh penetra-
tion

(c) Forward-stepping result of
scene shown in (b)

(d) Example of an original scene (e) Reconstruction of (d) with a large scene-level CD

Figure 3.12: Reconstruction results of our table-top clutter scenes. (a) shows the scene-level
Chamfer distance metric with 4 scenes containing fallen-over objects. (b)-(c) show slight nearby
object mesh penetration due to the errors in the predicted scale, causing many fallen-over objects.
(d)-(e) show an example of a stably reconstructed scene with a large scene-level Chamfer
distance. Red arrows indicate objects with large Chamfer distances.

Grasp Planning Results To test the performance of using the reconstructed scene for down-

stream manipulation motion planning, we used the same method as we did when testing the

plane-based scene reconstruction method in Section 3.2.2: brute-force sampling with the recon-

structed scene models and antipodal grasp sampling to plan and execute grasping joint trajectories

in our physical simulator. The executed joint trajectories, if successful, will be directly transferred

to the original scene to grasp the target object. After evaluation, the overall success rate in our 30
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testing table-top scenes is 46.36%. The grasping performance is quite low compared to previous

approaches but it is understandable given the matched objects’ geometries are not similar enough

to the geometries of the original objects (Figure 3.12a). Another failure case we found is that

some matched bowls with too detailed geometries (e.g, the two hollow bowls shown in Figure

3.12e) will cause the antipodal grasp sampler to find an unstable grasp due to the current antipodal

cost design deficiency mentioned in Section 2.3.3.
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Chapter 4

Discussions & Future Work

Given that our FFB6D-8OBB 9-DoF category-level pose estimation approach achieves

promising results as the current state-of-the-art approach, we plan to continue working on

improving the pose estimation performance and then the scene reconstruction accuracy. In this

chapter, we discuss several future directions we plan to pursue.

4.1 Pose Estimation

Currently, the bottleneck of our category-level pose estimation is the instance semantic

segmentation accuracy, which has plenty of room for improvements on both the NOCS REAL-

Test dataset and our custom SAPIEN dataset as shown in Table 3.2. For the NOCS dataset, we

need to get a fairer evaluation by verifying the training procedure of the existing baselines to get

aware of any particular tricks for good semantic segmentation performance on the NOCS dataset

(e.g., CAMERA/REAL dataset weighting, additional training data from COCO). This might

require us to employ a separate 2D RGB instance semantic segmentation network pretrained on

abundant real-world images or utilize point-based techniques like PointGroup [JZS+20]. We also

need to decouple the mAP evaluation metrics from depending on semantic classification results

and generate separate metrics for segmentation, IoU, and degree/cm accuracies to help better
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understand the pose estimation performance. If there is a need, we need to re-benchmark the

pose estimation performance for all existing baselines on the NOCS REAL-Test dataset with the

correct implementation of 3DIoU to eliminate any uncertainty from the incorrect implementation.

For our custom SAPIEN dataset, we need to add a class-imbalance weighting in the

segmentation Focal Loss and check the performance improvements. There is also the viewpoint-

dependent object category ambiguity issue that we can verify by training a standard state-of-the-art

object classification network to see the performance upper bound.

Better Keypoint Selection In PVN3D [HSH+20], researchers performed ablation studies and

demonstrated a ∼1.5% ADD-S metric (i.e., AUC of mean pair-wise distances between ground-

truth and predicted object vertices considering symmetry) improvement if the selected keypoints

for prediction switched from the 8 OBB corners to 8 farthest-point-sampled (FPS) points on the

object surface. They claimed it is because the bounding box corners are virtual points relatively

far away from the object surface and point-based networks are difficult to aggregate scene context

in the vicinity of these virtual corner points. Thus, a better keypoint selection can help the pose

estimation performance and possibly the semantic segmentation performance as well given that

they are simultaneously learned during training. A simple starting point can be keypoints close to

the semantic parts of the object category (e.g., mug’s handle, bottle’s cap on top). These keypoints

can be transformed and mapped to each model instance of the same category using the defined

NOCS coordinates. However, a better keypoint selection alone probably will not improve the

pose estimation performance a lot.

Multi-view Observations Utilizing multi-view observations and designing methods to fuse

the visual information would almost certainly improve the pose estimation performance because

relying on a single view will potentially suffer from object occlusions, object pose and category

ambiguity. However, there is the challenge of efficiently acquiring multi-view observations while

traversing a collision-free robot joint trajectory. Moreover, there have been several methods
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studying the problem of category-level object pose tracking [WMMX+20, WWZ+21, WB21].

The most recent BundleTrack work [WB21] achieved close to 100% pose tracking accuracy in the

NOCS REAL-Test dataset while not relying on any instance-level or category-level information

by using a keypoint detection network similar to [SSTN18] and a keyframe memory pool for

multi-frame pose joint-optimization similar to techniques used in the simultaneous-localization-

and-mapping (SLAM) field. However, it assumes a static scene which essentially reduces the

object pose tracking problem to a simple camera pose tracking problem widely studied in the

computer vision community. I think the next important challenge along this direction is to perform

9-DoF object pose tracking in dynamic environments similar to recent research in the HOI4D

dataset [LLJ+22]. Thus, working on object pose tracking in a static environment is of fewer

merits and probably not something we want to pursue.

4.2 Pose Refinement Optimization for Physically Stable Scene

From the nearby object mesh penetration in the reconstruction scenes shown in Figure

3.12b and 3.12c, we see potential catastrophic outcomes if the 9-DoF object pose estimations

contain small errors. Given that the FFB6D is a per-point prediction network, each observed

object point will generate offset predictions to the 8 OBB corners. It seems natural to estimate a

Gaussian distribution for the 8 OBB keypoint 3D position predictions and develop a technique to

propagate the keypoint location uncertainty to the extracted 9-DoF pose parameters generated by

the Umeyama algorithm [Ume91]. With uncertainties of the pose parameters, we can formulate a

pose refinement optimization problem that attempts to prevent nearby object mesh penetration

and encourage stable object placement (i.e., standing upright on the table). This pose refinement

step has the potential to guarantee stable scene reconstructions and thus is worthy of further

consideration.
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4.3 Miscellaneous

Some miscellaneous improvements are included in this section.

Antipodal Cost Design As shown in Figure 2.7, the current antipodal cost function used

for grasp sampling can generate unstable grasp poses because all points between the gripper

contribute to the antipodal cost. However, the correct implementation should only consider points

on the contact surfaces between the gripper and the object.

Re-evaluate Grasping Baselines The grasping-in-clutter baselines discussed in Chapter 2

were benchmarked on the old 50 table-top clutter scenes while the scene reconstruction grasping

approaches were evaluated on the new 30 testing clutter scenes. If we want to compare against

the grasping baselines, we should re-evaluate their success rates on the 30 testing scenes.

This thesis, in part, is a coauthored unpublished material with Quan Vuong, Yuzhe Qin,

Luobin Wang, Hao Su, Henrik Christensen. The thesis author is the primary investigator and

author of the material appeared in this thesis.
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Appendix A

MPlib: a Lightweight Motion Planning

Package

To reduce the barrier to entry of robotic motion planning framework, the SAPIEN team

release a lightweight Python package for motion planning, called MPlib [Liu21]. With less

focus on low-level hardware interface, MPlib is decoupled from ROS and is a standalone Python

package. In its experiments, MPlib demonstrated close to 100% success rates in motion planning

with collision checking. The success rates are higher than the RRTConnect algorithm in MoveIt!

[CSCC14] (a commonly used ROS motion planning package) while being 2 to 4 times faster.

During initialization, MPlib takes in a Unified Robotic Description Format (URDF) file

that describes a robot’s geometric representation, kinematics, and dynamics properties. It also

takes in a Semantic Robotic Description Format (SRDF) file which provides extra information

useful for motion planning, such as certain pairs of links to ignore collision checking. When

planning a robot arm joint path, users need to provide current joint positions and specify the

end-effector link and its SE(3) goal pose. To enable collision checking, users also need to

update an environment model in the form of point clouds, attached boxes, geometric primitives,

or meshes. Then MPlib generates time-optimal joint trajectories, which include desired joint
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positions, velocities, and accelerations.

A high-level pipeline of MPlib is shown in Figure A.1. MPlib utilizes Pinocchio [CSB+19]

and KDL for solving robot forward and inverse kinematics, FCL [SCP12] for detecting collisions

between model geometries, RRTConnect algorithm from OMPL [SMK12] for sampling-based

planning, and toppra [PP18] for time-optimal trajectory parameterization.

Figure A.1: MPlib high-level pipeline with third-party libraries. Taken from [Liu21].

Collision-checking Details for Our Use Case For all of our motion planning use cases, we

used sampled or observed point clouds acquired from CAD models or depth camera observations.

For collision checking, MPlib constructs an octree representation from the point clouds with a

specified voxel resolution, generates boxes for each octree node based on the resolution, and uses

FCL [SCP12] to check collision between robot link convex collision meshes and the octree boxes.
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