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Summary

Induced pluripotent stem cell- (iPSC) derived neural cultures from amyotrophic lateral sclerosis
(ALS) patients can model disease phenotypes. However, heterogeneity arising from genetic and
experimental variability limits their utility, impacting reproducibility and the ability to track
cellular origins of pathogenesis. Here, we present methodologies using single-cell RNA-
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sequencing (ScCRNA-seq) analysis to address these limitations. By repeatedly differentiating and
applying scRNA-seq to motor neurons (MNs) from healthy, familial ALS, sporadic ALS, and
genome-edited iPSC lines across multiple patients, batches, and platforms, we account for genetic
and experimental variability towards identifying unified and reproducible ALS signatures.
Combining HOX and developmental gene expression with global clustering, we anatomically
classified cells into rostrocaudal, progenitor, and postmitotic identities. By relaxing statistical
thresholds, we discovered genes in iPSC-MNSs that were concordantly dysregulated in postmortem
MNs and yielded predictive ALS markers in other human and mouse models. Our approach thus
revealed early, convergent, and MN-resolved signatures of ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by
cortical and spinal motor neuron (MN) death resulting in weakness and paralysis of
voluntary muscles (Ragagnin et al., 2019; Swinnen and Robberecht, 2014). While numerous
molecular pathways and cell types associated with ALS have been described, definitive
mechanisms responsible for MN degeneration remain elusive (Taylor et al., 2016). The vast
majority of ALS cases are sporadic, with no known genetic link. In familial cases, ALS can
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be traced to a set of genetic mutations, for instance GGGGCC hexanucleotide repeat
expansions (HRES) in the intronic sequence between alternate 5' exons in C90rf72, a gene
that regulates endosomal trafficking and autophagy. Furthermore, symptom onset for both
familial and sporadic ALS varies across body regions, thereby compounding difficulty in
discerning disease etiology. Despite this variation, common clinical presentations are
observed across familial and sporadic cases, suggesting that molecular features may
converge across ALS patients.

Induced pluripotent stem cells (iPSCs) derived from ALS patients carry great potential to
experimentally model molecular events underlying ALS pathogenesis. However, identifying
early, MN-resolved, and reproducible gene expression changes has posed challenges. First,
iPSC-differentiated tissues do not recapitulate mature and adult-like states (Ho et al., 2016;
Stein et al., 2014). This suggests that signals representing dysfunctional physiologies
experienced by /n vivotissues in late onset diseases may not be recapitulated with high
fidelity in /n vitro disease models. Second, recent studies investigating transcriptomic ALS
signatures in human iPSC models have profiled cultures in bulk (Fujimori et al., 2018) or
transgenically labeled MNs (Kiskinis et al., 2014; Shi et al., 2018), all of which were
performed at time points where overt disease phenotypes such as neurite degeneration of cell
death have emerged. Bulk transcriptomic profiles cannot distinguish whether disease
signatures originate from MNs or other cell types in culture, and sampling after prolonged
differentiation times cannot distinguish early transcriptomics events from secondary
transcriptomic events responding to the overt disease phenotypes observed at these times.
Thirdly, studies using iPSC models have rarely addressed whether experimental variations in
expression data arising from repeated differentiations or transcriptomic profiling platforms
could impact the reproducible biology of disease signatures (Molpato and Webber, 2020).

Here, we overcome these challenges and present an approach for generating iPSC-based
experimental models of ALS that exhibit early, MN-specific, and reproducible
transcriptomic disease signatures. We differentiated MNs from iPSCs derived from patients
with familial ALS, sporadic ALS, healthy controls, and CRISPR-Cas9-edited C9orf72
HREs. These cultures were profiled using single-cell RNA-seq (scRNA-seq) at the earliest
time when postmitotic neurons arise and exhibit no degeneration. We validated that iPSC-
derived MNs (iPSC-MNSs) express appropriate fetal hindbrain and spinal cord development
markers. Analyzing this data uncovered early transcriptional signatures of ALS in MNs,
which were distinctive from interneuron subtypes that are concomitantly differentiated in
culture. These were verified in gene expression data sets from other human iPSC-MN
models, mouse models, and postmortem patient samples, demonstrating that these signatures
persist from early to endstage disease in both familial and sporadic ALS. In total, our results
highlight the utility of iPSC-based experimental models to capture early, dysregulated gene
expression in MNs common across a wide range of ALS patients.

Production of control, sporadic, C9orf72 ALS and isogenic iPSC derived MNs

MNs were differentiated from iPSCs reprogrammed from either fibroblasts or peripheral
blood monocytes from four healthy subjects: 0083, 0179, 0025, and 0465, two sporadic ALS
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subjects: 2XWC and 8BRM, and four familial ALS subjects with C9orf72HRE: 0028,
0029, 0052, and 6ZLD (Table S1 and Figure 1A). To isolate C90rf72 HRE effects from
inherent genetic variability, isogenic patient lines were established from two C90rf72 ALS
lines (0029 and 0052) using CRISPR-Cas9-mediated gene editing to remove the HRES
(Table S1 and Figure S1A). Edited iPSC clones were kayotypically normal (Figure S1B-E),
and retained the ability to differentiate into MNs over a 30 day /n vitro differentiation
protocol (Yang et al., 2013) at a comparable efficiency to parental C9orf72 ALS cell lines
(Figure S2A). Removal of the HREs resulted in two-fold increased expression of all C9orf72
transcript variants back to levels observed in normal controls (Figures S2B and S2C) and
eliminated sense and antisense RNA foci (Figures S2D and S2E). Furthermore, polyGP
dipeptide repeats, which accumulated in C90rf72 ALS MN cultures (Figure S2F), were
reduced to control subject levels (Figure S2G). Isogenic MN cultures thus enabled direct
attribution of molecular phenotypes to HRESs in parental C9orf72 ALS lines.

iPSC-derived MN cultures recapitulate developmental gene expression patterns

Next, MN differentiations from iPSCs (iPSC-MNs) were characterized at the single-cell
level with the Hlumina® Bio-Rad® SureCell™ WTA 3' Library Prep Kit for the ddSEQ™
System for one control line (0083) using a more rapid 18 day differentiation protocol that
produces cranial and spinal MNs and interneurons (Maury et al., 2015) (Figure 1B).
Consistent with previous observations, pluripotent cells undergo a reduction in overall
transcriptional activity upon differentiation, suggesting a refinement of transcriptional
programs from the pluripotent to progenitor state (Efroni et al., 2008) (Figures 1C and 1D).
Unique molecular identifiers (nUMIs) per cell increased between days 12 and 18, suggesting
a state of specialized physiology and functions. Global clustering resolved each time point
into distinct clusters, where day 12 and day 18 populations further resolved into
subpopulations (Figure 1E). Pseudotime analysis of cells from all time points through
Monocle (Qiu et al., 2017) arranged each time point in the expected order of progressively
differentiating cell states (Figure 1F). 20 marker genes for spinal MN development and
maturation (Ho et al., 2016) were expressed along the pseudotime axis in a pattern
consistent with fetal-like tissues derived /n vitro from iPSCs (Figure S3A).

iPSC-MN cultures globally resemble fetal hindbrain and spinal cord

We next performed scRNA-seq on MN cultures from several ALS and control subject lines
at 18 days of differentiation in order to establish a pool of single cells we could use to
determine regional specificity along the rostrocaudal axis of the neural tube as well as the
presence of ALS signatures (Table S1 and Figure 1G). Because only a finite amount of
samples could be captured and processed within each experiment, we collected samples
across six batches of differentiation (A-F). We also aimed to establish the robustness of any
signal across two different sScRNA-seq platforms: the Illumina Bio-Rad Single-Cell
Sequencing Solution (DDSEQ) and the 10X Genomics Chromium (10X) (Table S1 and
Figure 1G). Immunostaining and quantification of day 18 cultures indicated no significant
differences in ISL1 and SMI-32 positive MNs between ALS and control. This suggests that
an overt disease phenotype such as cell death, as shown in previous studies (Fujimori et al.,
2018; Sareen et al., 2013), has not manifested at this relatively early differentiation time
point (Figure S3B). In total, we analyzed 21,702 cells that passed quality control filters.
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These filters required that A) genes not expressed in any cell in any sample were excluded,
and B) cells with 1) percent mitochondrial genes, 2) total number of expressed genes, and 3)
total number of UMIs that were greater or less than three standard deviations of the sample
population were excluded (see Methods for details). To gauge the developmental and
maturation states of these cultures, we correlated their expression profiles to spinal MN
maturation gene expression (Ho et al., 2016) (Figures S4A and S4B) and to fetal hindbrain
and spinal cord tissue ranging from Carnegie stages 13 to 23 (de Kovel et al., 2017) (Figure
1H). By 18 days, iPSC-derived cells showed transcriptional states that most globally
resemble fetal hindbrain and spinal cord tissue at Carnegie stage 17, or about 42 days of /n
vivo development.

In order to establish the rostrocaudal identity of individual cells, we focused on the family of
homeobox (HOX) transcriptional regulators of morphological patterning. Based on previous
genetic studies (Di Bonito et al., 2013; Lippmann et al., 2015; Philippidou and Dasen,
2013), we composed a model for relative HOX gene expression along rhombomeres two to
eight of the developing hindbrain and cervical to caudal segments of the spinal cord (Figures
2A, 2B, and Table S2A). RNA expression levels of each HOX gene in the fetal hindbrain
and spinal cord samples from de Kovel et al., 2017 were consistent with our model, and
classification of segment identity based on the highest correlation for each sample resolves
the sample types (Figures 2B and 2C). While correlation of bulk profiles from day 18 iPSC-
MN cultures suggested that cultures globally resembled hindbrain more than spinal cord, we
hypothesized that some rare cells may have differentiated into more caudal identities. We
therefore applied this classification approach for each cell in the day 18 cultures. These
results indicated that while a majority of cells (33.19%) were not assigned (NA) categories,
either due to a lack of any detectable HOX gene expression or failure to meet the correlation
cutoff, the second majority of cells (25.75%) were classified as rhombomere eight, and a
third majority of cells (10.78%) were classified as the cervical segment (Figure 2C and Table
S2C). Notably, there were some cells classified as brachial (1.32%) and thoracic (1.40%)
segments, suggesting that the 18 day protocol can achieve differentiation into cell types
within the spinal cord that reflect upper limb sites of disease onset for most subjects
represented in this study (Table S1). However, no cells classified as lumbar segment,
possibly due to the early differentiation time point of these cultures.

Developmental gene expression profiles and global clustering classify ventricular zone
(VZ) progenitor and mantle zone (MZ) postmitotic neuronal identities

The induction of neural differentiation occurs after embryonic regionalization of the
anterioposterior axis (Metzis et al., 2018). The programmed expression of genes encodes a
two-dimensional coordinate system of morphogen gradients regulating dorsoventral and
mediolateral axes and progression of neural progenitors to postmitotic neurons in a
representative spinal cord segment (Alaynick et al., 2011; Lu et al., 2015) (Figures 2A, S5A,
and Table S2B). We resolved individual neural identities using 105 of these genes. By
correlating each cell type in our model with one another based on these genes, these profiles
can systematically distinguish each identity (Figure S5B). Assignment of individual cells
along the 18 day differentiation to either VVZ progenitors or MZ postmitotic neurons
illustrated a cell fate progression consistent with the functions of morphogenic components
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used during induction (Figures 1B, 3A, and Table S2C). Few astrocytes were seen (Figure
3A) indicating the rapid 18 day differentiation did not promote a glial program.

Additionally, we used unsupervised global gene expression profiles to unbiasedly cluster
distinct identities present in day 18 cultures. However, dimensional reduction and projection
using principal component analysis (PCA) and t-distributed stochastic neighbor embedding
(tSNE) of raw expression data primarily separated cells based on single-cell technology
platform (Figure S3C). This was despite comparable UMIs and genes per cell, albeit
DDSEQ had a higher fraction of reads aligning to intergenic regions (Figure S3D).
Experimental batch effects were also evident for samples processed within the same
platform (Figure S3C). This highlighted the need to correct the SCRNA-seq expression data
prior to discovering common variations between ALS and control conditions. To this end,
we compared several approaches to correct for experimental batch and platform effects,
including multi-canonical correlation analysis (MultiCCA) in Seurat (Butler et al., 2018),
Harmony (Korsunsky et al., 2019), Liger (Welch et al., 2019), and FastMNN (Haghverdi et
al., 2018) (Figure S3C). Evaluation of batch integration using either a Chi-squared test
(KBET) or average silhouette width (Bittner et al., 2019) (Figure S3E), revealed that most
methods improved batch correction over uncorrected data. Seurat 2 (MultiCCA) ranked as
the 2nd best method assessed by kBET and the best performing method assessed by average
silhouette width (Figure S3E). We therefore continued subsequent analyses on data corrected
by MultiCCA, which also effectively integrated samples, case and controls, genotypes, and
cell lines (Figure S5C). By optimizing clustering parameters after batch correction to yield a
maximum modularity value of all communities (Blondel et al., 2008; Waltman and van Eck,
2013), this analysis revealed four major populations of cells that distinctly expressed genes
associated with a variety of gene ontology (GO) terms (Figures 3B-D, S3F, S5D, and Table
S2C). Overlaying marker gene expression on tSNE plots further demonstrated that batch
integration using MultiCCA generated tight clusters of neuronal cells (STMNZ2), neural
progenitors (SOX2), and smooth muscle-like cells (7AGLN), suggesting that cluster
generation is driven more by cell identity than by batch effects once data has been corrected
(Figure S3G). Altogether, these analyses enable the resolution of major populations present
in this rapid differentiation protocol, identifying not only postmitotic neurons generated
from iPSCs, but also persistent progenitors and another population of non-neuronal cells.

In order to specifically detect neuronal subtype signatures in these cultures, we repeated
subpopulation detection by removing non-neuronal cells and progenitors and then
performing a new batch correction and global clustering. This analysis assigned 18 major
populations of cells (Figures 3E, S5E, and Table S2C). Six of the VZ and MZ labels formed
patterns in the tSNE that visually overlapped with globally defined clusters. We therefore
renamed them based on these observations (Figure 3F-3H and Table S2C). For example,
cells assigned as MNs of the lateral motor column (MN LMC) were enriched in clusters 0,
4,7,11, 15, and 17, and these cells expressed MN markers PHOXZ2B (Pla et al., 2008) and
/SL1 (Liang et al., 2011). We therefore renamed this group MN hereafter (Figure 3G).
Immunostaining cultures confirmed protein co-expression of PHOX2B with ISL1, and
distinct expression of VV2a and V2c interneuron markers VSX2 and SOX1, respectively
(Figure S6A). Overall, based on overlapping classifications and expression of key marker

Cell Syst. Author manuscript; available in PMC 2022 February 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ho et al.

Page 7

genes, subsets of the 18 populations were merged to assign seven major populations (Figure
3G and Table S2C).

We then assessed whether cells classified as MN, when segregated from the rest of the
culture, showed more of an adult MN expression profile than if all cells were analyzed in
bulk. By correlating only pooled MN expression profiles to our previously characterized
data set (Ho et al., 2016), MNs were significantly more correlated to /n7 vivo adult MNs
(Figures 31, S4C-E). By subsetting cells into seven populations, reanalysis of rostrocaudal
identity based on HOX gene expression demonstrated that distributions of hindbrain and
spinal cord segments are largely consistent across all populations (Figure 3J). Cluster 1, V1
Renshaw, VV2a, and VV2c populations contained a modest number of cells resembling brachial
and thoracic identities. These results highlight the value of ScCRNA-seq in resolving cell
types to enable more accurate measures of similarity between in vitro iPSC-derived models
and /n vivo cell types.

Pooling sparse transcriptional changes detected by scRNA-seq defines cell type-specific
ALS responses

Having defined seven populations, we performed differential gene expression between ALS
and control conditions. After dividing each population into ALS and control groups,
comparable numbers of cells remained for each condition (Figure 4A), supporting results
determined by protein immunostaining for MN markers at this time point (Figure S3B).
Tracking scRNA-seq platforms also demonstrated equal representation of ALS and control
groups assayed within each platform (Figure 4A). There were sufficient numbers of MNs,
V1 Renshaw, and V2a interneurons from each experimental batch to perform differential
gene expression analysis, and we focused on analyzing gene expression changes in these
populations. The Pearson correlation profiles for these cell types based on 105 marker genes
are reasonably distinct (MN LMC vs. V1 Renshaw: 0.38, MN LMC vs. VV2a: 0.36, V1
Renshaw vs. VV2a: 0.40) (Figure S5B). Conducting comparisons between ALS and control
conditions (which included isogenic C9orf72HRE-corrected lines) yielded genes called
significantly differentially expressed (data not shown). However, latent categorical variables
such as experimental batch and scRNA-seq technology platform effects mainly drove these
differences, illustrating the pitfalls of performing differential gene expression analysis
without accounting for these properties. Thus, we next applied a meta-analysis approach by
conducting comparisons between ALS and control or isogenic samples within each
experimental batch and cataloged genes called significant (Figure 4B and Tables S3-7). For
each ALS to control comparison (sporadic ALS samples presented in orange, C9orf72 ALS
samples in magenta, control samples in black, and isogenically corrected HRE samples in
green), the list of significantly upregulated genes (enumerated in red) were intersected with
all other ALS to control comparisons, and the red heatmap indicates the Jaccard index, a
measure of overlap between gene sets (Figure 4B). A similar analysis was performed on
downregulated genes (enumerated in blue) and presented in the blue heatmap. The number
and concordance of genes called significantly dysregulated were highly variable across
several comparisons, including repeated comparisons performed between two subject lines
across different experimental batches (Figure 4B, 4C, and Table S6). While there is a slight
trend in increased Jaccard indices when replicate comparisons are analyzed (Figure 4C), this
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indicated that despite assaying the same genetic comparisons, batch effects are evident,
which may have arisen either by distinct biological responses to repeated differentiation
experiments or by distinct technical effects across sample processing, both within and across
commercial sScRNA-seq platforms. Furthermore, there was low concordance of dysregulated
genes when C9orf72 ALS lines were compared directly to their isogenically corrected lines.
This observation highlights a challenge in detecting a reproducible gene expression
signature of the C90rf72 HRE using scRNA-seq analysis of iPSC models, even when genetic
variation is controlled.

Given the sparseness of genes that were reproducibly dysregulated across experimental
batches, we next cataloged and pooled upregulated and downregulated genes called
significant in at least two ALS to control or isogenic sample comparisons. This was done for
C9orf72 ALS lines (12 comparisons) and sporadic ALS lines (9 comparisons) (Tables S3,
S4, and S5). Since our goal was to find early, convergent signatures across familial and
sporadic forms of ALS, we respectively compared the extent of overlap between upregulated
and downregulated gene sets for each category between C9orf72 ALS and sporadic ALS
conditions. Through hypergeometric testing, all comparisons indicated that gene sets
cataloged for both ALS conditions overlapped significantly (Figure S6B). We therefore
combined the sparse set of differentially expressed genes from C90rf72 ALS lines together
with sporadic ALS lines to amass gene sets large enough to pursue subsequent enrichment
analyses. To this end, we cataloged and pooled genes called significant in at least two of the
21 ALS to control or isogenic sample comparisons drawn across all SCRNA-seq
experiments. With this approach, we generated a list of upregulated and downregulated
genes for each of these three majority populations in our cultures (Tables S6 and S7A), and
we compared these gene lists across all three populations (Figure 4D). Furthermore, we
compared these gene lists to differentially expressed genes calculated by bulk analysis of all
cells (Table S7A). This comparison demonstrated ALS can induce some overlapping but
mostly distinct gene expression changes in each of the three iPSC-derived neuronal
populations. Resolving cells into subpopulations was necessary to detect reproducibly
disrupted genes, because analysis on the bulk expression profiles of the whole culture did
not yield a high number of genes in either upregulated or downregulated categories (Figure
4D and Table S7A).

GO analysis on the entire list of upregulated or downregulated genes from each cell type
determined overlapping and distinct GO terms enriched among each list (Figure S6C and
Table S7B-G). Analysis on the upregulated and downregulated genes that were unique to
each cell type further refined GO terms (Figure 4D and Table S7H-M). Components
involved with translation and ribosomal subunits were commonly enriched among
upregulated genes in all three neuronal cell types, but functions in cholesterol and isoprenoid
synthesis were enriched among genes uniquely upregulated in V1 Renshaw interneurons.
While translational components were also enriched among genes downregulated in all three
neuronal cell types, components of neuronal processes including dendrite and growth cone
were enriched among genes uniquely downregulated in MNs.
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ALS iPSC-MN cultures exhibit transcriptional changes detectable in postmortem ALS

spinal MNs

We next tested the pathological relevance of these iPSC-MN defined gene sets by examining
postmortem, adult spinal MNs. In previous work, we defined 52 co-expression modules
using Weighted Gene Co-expression Network Analysis (WGCNA) (Zhang and Horvath,
2005) from laser capture micro-dissected MNs (LC MNs) from postmortem sporadic ALS
and control subjects (Ho et al., 2016; Rabin et al., 2010), herein referred to as data set A.
Some of these modules significantly correlated or anti-correlated to a principal component
that distinguished sporadic ALS from control conditions. We systematically tested whether
each list of upregulated or downregulated genes from MNs, V1 Renshaw, and V2a
interneurons were enriched in each of the 52 modules (Figure 5A). Markedly, genes
upregulated and downregulated by ALS in MNs were significantly enriched among modules
that were respectively upregulated and downregulated by sporadic ALS in postmortem
spinal MNs. This concordant response to ALS was not observed for V1 Renshaw and V2a
interneurons. A repeated analysis between our sSCRNA-seq data set and an independent but
similar postmortem study (Krach et al., 2018), herein referred to as data set B, demonstrated
reproducibly concordant gene expression changes (Figure 5B). The robustness of networks
defined in each of the postmortem data sets were also examined using module preservation
z-statistics (Langfelder et al., 2011), which indicates the likelihood that the network
structures of each module occurred by random chance. The most significantly overlapping
modules, namely the Magenta, Midnightblue, Blue (Figure 5A), and Darkgreen modules
(Figure 5B) possessed some of the most preserved network structures across data sets A and
B (Figures S6D and S6E), suggesting they support critical functions in MNs. Dysregulation
of these network genes in iPSC-MNs suggests that their disruption by ALS conditions
occurs as early as embryonic development.

A closer examination of upregulated genes overlapping among the Magenta module in data
set A, the Steelblue module in data set B, and MNs highlighted genes previously implicated
in ALS and other motor neuropathies, and the overlapping genes and GO terms enriched
among them are consistent with reports of disrupted mRNA and protein processing
pathways (Deshaies et al., 2018; Kim et al., 2013, 2008; Montibeller and de Belleroche,
2018) (Figure 5C). Similarly, examination of downregulated genes overlapping among the
Blue and Midnightblue modules in data set A, the Darkgreen module in data set B, and MNs
highlighted genes previously implicated in ALS (Lederer et al., 2007; Saris et al., 2009;
Umabhara et al., 2016) (Figure 5D). The GO term regulation of neuronal projection
development was significantly represented among the overlapping, downregulated genes
(Figure 5D), consistent with recent models suggesting that deficiencies in maintaining
axonal projections may underlie ALS (Klim et al., 2019; Melamed et al., 2019).

Auditing the average expression as well as percent expression of these overlapping genes in
MNs demonstrated their dysregulation in ALS conditions (Figure 5E). Neuronatin (NMAAT),
which has been associated with neuronal development as well as degeneration (Joseph,
2014), was upregulated in ALS MNs in the greatest number of ALS to control comparisons
(Table S6A) while not observed as belonging to any modules significantly associated with
sporadic ALS in postmortem data sets. Auditing the expression of ten overlapping genes in
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LC MNs from data sets A and B demonstrated high correlation between their expression and
the first principal component that distinguishes sporadic ALS from control conditions
(Figures 5F and 5G), further supporting the efficacy and fidelity of our discovery approach.
A deeper investigation into the module genes disrupted in sporadic ALS conditions revealed
a significant enrichment of module genes previously associated with spinal MN maturation
and aging (Ho et al., 2016) (Figure 6). Genes involved with neurite growth, axon guidance,
and neurotransmitter release, which were classified into co-expression modules that
significantly correlated with spinal MN maturation and aging were also found to be
downregulated in postmortem, sporadic ALS conditions (Ho et al., 2016). Since these genes
were observed as downregulated in iPSC-MNs from ALS subjects, this suggests that
disruptions to homeostatic processes that occur after fetal developmental stages are already
occurring in MNs and thereby priming them for disease during later stages of life.
Altogether, these data indicate that sScRNA-seq analysis of iPSC-MNSs can detect early ALS-
signatures affecting important maturation and age-related gene expression networks whose
disruption can possibly lead to MN degeneration.

Predictive ALS markers are detectable in iPSC-MNs

While pooling of sparsely dysregulated genes in iPSC-MNs enriched for concordantly
dysregulated genes in postmortem MNSs, the average expression of these genes in each cell
and the percent of cells expressing each gene varied considerably across subject lines
(Figure 5E). This demonstrated a challenge in discovering consistently dysregulated genes
by applying a significance threshold on a sample to sample basis across many scRNA-seq
samples. We therefore took an alternative approach to discover genes that are consistently
altered in iPSC-MNs from ALS subjects. We considered a combined expression score that
reflected the average expression and percent expression for each gene in the MN populations
at day 18 per subject (n = 22) in the SCRNA-seq data set (see Methods). We then performed
t-tests comparing combined expression scores between all ALS and control and isogenic
samples and ranked them by increasing nominal p-values. Among the top 20 ranking genes,
we found six genes were concordantly downregulated in ALS conditions in data sets A and
B, and they exhibited more uniform downregulation in ALS iPSC-MNs compared to
controls (Figure 7A). We found no genes concordantly upregulated in all three data sets.
Observing expression kinetics of these genes over the course of embryonic, fetal, and adult
spinal cord tissues (Ho et al., 2016) showed that some positively correlated with spinal MN
maturation (ADCYAPI, ELAVL3, and NUAKI), DNMT3B anti-correlated with spinal MN
maturation, and NDUFAF5 as well as NNAT were upregulated during fetal spinal cord
stages (Figure 7B).

The classification accuracy of ALS cases versus controls, as measured by the area under the
curve (AUC), using PCA based on these six genes was significant in the MN population
(Figures 7C and S7A). However, classification accuracy of ALS cases versus controls was
not significant in V1 Renshaw, V2a, or by using bulk expression data (Figures 7C and S7A).
Classification of sporadic ALS cases versus control postmortem adult spinal MNs in data set
A (Rabin et al., 2010) and data set B (Krach et al., 2018) was also significant (Figure 7D and
S7B). These results were expected, because the classifier genes were defined by these data
sets. However, validating the accuracy of these six genes in classifying external test data sets
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would underscore their predictive power. In separate test data sets of postmortem adult
spinal MNs from familial and sporadic ALS cases, which include variants in C90rf72,
CHMPZB, and SOD1 (Cox et al., 2010; Highley et al., 2014; Kirby et al., 2011),
classification using these genes significantly distinguished ALS from control subjects
(Figures 7D and S7B). Additionally, in a disease progression study of SOD1G93A
transgenic mouse spinal MNs (Nardo et al., 2013), classification of ALS versus control
conditions based on these genes increased accuracy as mice progressed to disease endstage
(Figures 7E and S7C). We also focused analysis on these genes from the NeuroLINCS
Consortium bulk RNA-seq data set (Keenan et al., 2018), which analyzed undifferentiated
human iPSCs and iPSCs differentiated into MN cultures over 18 days. This demonstrated
that ALS could not accurately be distinguished from control conditions (Figure 7F and
S7D). However, using a longer iPSC-MN differentiation protocol (Sareen et al., 2013) where
cultures were extended up to 90 days and again profiled by bulk RNA-seq, analysis of these
six genes demonstrated a significant accuracy in classifying ALS cases from control as well
as from spinal muscular atrophy cases (Figures 7F and S7D). Additionally, these signature
genes could distinguish SOD1A4V ALS patient samples from zinc-finger nuclease corrected
isogenic samples in iPSC-derived, HB9-RFP positive MNs at 39 days of differentiation
(Kiskinis et al., 2014) (Figures 7F and S7D). Similarly, these genes also distinguished
C9orf72 ALS patient derived, HB9-RFP positive MNs from control samples, and further
distinguished isogenic control samples in which one or two copies of the C90rf72 HRE were
targeted into the genome with CRISPR-Cas9 (Shi et al., 2018) (Figure 7F). Finally, this
panel of genes distinguished control subject iPSC-MN cultures from sporadic and familial
ALS subjects, including those with variants in FUS, SOD1, and TARDBP (Fujimori et al.,
2018) (Figures 7F and S7B). Among the six genes quantifiable by RNA in all expression
data sets tested, ELAVL3was the only gene quantifiable as a protein when analyzing the
NeuroLINCS proteomics data sets at 18 and 90 days of differentiation. Classification of
iPSC-MN cultures based solely on ELAVL3 protein expression demonstrated that it was an
accurate classifier for ALS versus control only in extended cultures at 90 days, where it was
also decreased in ALS conditions (Figure 7G). However, analysis of ELAVL3RNA alone
showed less overall accuracy when compared to joint RNA analysis of all six genes (Figures
S7E-H). Lastly, decline in ELAVL3 protein per MN was also detectable in postmortem
spinal cords in both sporadic and C90rf72 ALS cases versus control (Figures 7H-7K).
Altogether, these data reveal that despite globally resembling /in vivo fetal tissue, single-cell
analysis of iPSC-MNs can model early, common signatures of familial and sporadic ALS
that persist into the endstage of disease.

Discussion

Recent scRNA-seq studies have characterized diverse neuronal populations in /n7 vivo mouse
spinal cords (Delile et al., 2019; Sathyamurthy et al., 2018). However, scRNA-seq has not
been used to rebuild the spinal cord from complex cell mixtures in cultures differentiated
from iPSCs. Our approach described here is ideally suited to achieve this goal and
demonstrates initial steps toward building a human iPSC-based cellular atlas of the
developing hindbrain and spinal cord to provide an anatomical context for human embryonic
development as well as disease modeling. This anatomical classification lays the foundation
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for future work with iPSC models to investigate instrinsically different physiologies across
regions of the hindbrain and spinal cord.

As variable molecular readouts caused by genetic background is becoming increasingly
acknowledged by experimentalist in human iPSC disease modeling, experimental design
must account for the genetic backgrounds of several individual subjects as well as isogenic
controls in order to isolate reproducible disease-related effects (Fujimori et al., 2018;
Kiskinis et al., 2014; Shi et al., 2018). In line with this outlook, we incorporated iPSC lines
from several ALS and control subjects and repeatedly assayed MN differentiations , aiming
to detect reproducible transcriptional signatures in distinct cellular subpopulations. However,
repeated experimental sampling presented the challenge of coping with batch effects, which
in the process of sSCRNA-seq analysis, severely affected global clustering approaches towards
cell type annotation such as Louvain community detection and tSNE dimensionality
reduction (Hicks et al., 2018; Luecken and Theis, 2019). We alleviated these effects through
MultiCCA (Butler et al., 2018) and other batch correction methods. This shows the
feasibility of integrating scRNA-seq data generated from iPSC models across several
experimental batches and platforms, demonstrating a suitable approach for consortia-driven
projects.

Recent iPSC-based transcriptomic reports performed RNA profiling at time points during
differentiation concomitant with various observed ALS phenotypes which include nuclear
RNA foci (Sareen et al., 2013), decreased neurite length (Fujimori et al., 2018), reduced
neurite repair after injury (Klim et al., 2019; Melamed et al., 2019), and MN death (Kiskinis
et al., 2014; Shi et al., 2018). Several of these protocols differentiated iPSCs for over 30
days, and many required a relatively prolonged maturation phase, the presence of glia, and
additional stressor conditions in order to provoke a disease phenotype. Thus, it is unclear
whether the transcriptional events observed precede the disease phenotypes, are
concomitant, or are immediate consequences of other prior events. We elected to profile
transcription in postmitotic MNs at an earlier point, day 18 at which their identity was
established and in the absence of glial cells. This event was demonstrated as early as day 14
of differentiation (Maury et al., 2015). Our approach satisfied two objectives. One was to
capture a transcriptional signature as early as possible, prior to the manifestation of disease
phenotypes ranging from neurite repair to overt cell death. The other was to reduce
heterogeneity across subject lines and experimental batches that could be augmented by a
longer time of differentiation in culture. Within this early developmental time point, we
detected common signatures across familial and sporadic ALS conditions prior to disease
phenotypes, suggesting that these transcriptomic events precede and are potentially causative
of later phenotypes. In light of our findings altogether, there may nevertheless be other
differentiation time points that can exhibit more prominent differentially expressed genes in
ALS.

Future iPSC-based studies that distinguish bulbar from spinal onset ALS patients can build
upon the data reported here to help correlate region of onset in the patient with the pathology
in specific MNs associated with those regions. Our anatomical assessment of iPSC-MN
models establishes a cellular and molecular framework to address how MN degeneration and
paralysis spreads throughout the body of ALS patients, mechanisms which are of great
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interest to develop accurate prognostic assessments or interventional therapies (Turner et al.,
2010). While the fidelity of our iPSC-MNs to /n vivo MNs was based on pooled LC MNSs,
recent advances in single nuclei RNA-seq of human postmortem tissues of the central
nervous system (Gaublomme et al., 2019; Mathys et al., 2019) will provide an expanded
resolution of cellular and disease signatures with which our data can be reconciled. This
comparison will enable better interpretation of molecular signatures and cellular
compositions as they arise in early stages of ALS and progress into the endstages of ALS,
thus enabling a better understanding of disease etiology. Finally, the analysis reported here
provides a methodological resource for iPSC-based disease models of not only ALS, but
also for several other late onset diseases standing to benefit from single-cell resolved
investigations.

STAR METHODS
RESOURCE AVAILABILITY

LEAD CONTACT—Further information and requests for resources and reagents should be
directed to and will be fulfilled by the Lead Contact, Clive N. Svendsen
(clive.svendsen@cshs.org).

MATERIALS AVAILABILITY

iPSC lines generated in this study are listed in Table S1 and are available through the
Cedars-Sinai Biomanufacturing Center.

DATA AND CODE AVAILABILITY

. The scRNA-seq source data have been deposited at Gene Expression Omnibus
and are publicly available under the accession number: GSE138121.

. The original codes used for the analyses reported in this study are publicly
available at https://github.com/ritchieho/2020_scRs_iPSC_ALS.

. The scripts used to generate the figures reported in this paper are available at
https://github.com/ritchieho/2020_scRs_iPSC_ALS.

. Any additional information required to reproduce this work is available from the
Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All human iPSC lines are banked and available through the Cedars-Sinai Biomanufacturing
Center. Cell lines were routinely characterized through mycoplasma testing, Alkaline
Phosphatase staining, immunostaining for pluripotency markers, karyotyping by G-banding,
PluriTest, Trilineage Differentiation Potential (assessed via TagMan hPSC Scorecard
Assay), and Cell Line Authentication (assessed via STR Analysis) to match primary donor
tissue. Relevant clinical and experimental data about iPSC donor subjects (e.g. age, sex,
tissue source) are presented in Table S1 and in the Key Resources Table. All protocols were
performed in accordance with the Institutional Review Board guidelines at Cedars-Sinai
Medical Center under the auspices of IRB-SCRO Protocol 21505.
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METHODS DETAILS

Culture of human iPSCs—All iPSC lines were maintained in complete mTeSR1 growth
medium on Growth Factor Reduced Matrigel and passaged every seven days using the
StemPro EZ Passaging Tool or Versene and typically split between 1:4 and 1:9 ratios.

Genome editing of C9orf72 repeats in iPSCs—CRISPR guides were designed to
target regions immediately 5’ and 3’ of the C90rf72 hexanucleotide repeat expansion using
the Zhang lab CRISPR design tool (Shi et al., 2018). Guides were cloned into
pSpCas9(BB)-2A-GFP (PX458) plasmids, (gifted from Feng Zhang, Addgene plasmid
#48138). Each iPSC line was transfected with both 5’ and 3’ targeting plasmids using the
Neon Electroporation System (Thermo Fisher). After 48 hours, iPSCs were dissociated and
flow sorted by GFP fluorescence to isolate successfully transfected cells. These cells were
plated, cultured for 1 week, passaged, and allowed to grow to confluency. Cells were then
subcloned as follows: iPSCs were Accutase-dissociated into single cells and replated
sparsely at 30,000 cells/10 cm dish. Rock inhibitor (Y-27632) was included for 24 hours
after plating to promote iPSC survival. Once individual cells formed small colonies, pipette
tips were used to manually transfer subclones from the 10 cm dish into individual wells of a
96 well plate. These subclones were passaged with Versene into two 96 well plates, one for
further propagation and one for gDNA extraction and sequencing. The C9orf72locus was
PCR-amplified using PrimeStar Polymerase with 1M betaine. To determine the sequence of
each allele, PCR products were cloned using the TOPO Cloning Kit for Sequencing
(Invitrogen). Plasmids were used to transform TOP10 competent bacteria, which were plated
on agar dishes containing ampicillin and incubated at 37°C overnight. Individual colonies
were transferred to a new agar dish containing ampicillin and an indexed grid with a clean
pipette tip and grown overnight, and these plates were sent to Genewiz to perform direct
colony sequencing through rolling circle amplification. Subclones lacking the C9orf72 HRE
sequence were expanded and characterized.

Repeat primed PCR assay for HRE—100 ng of genomic DNA template was amplified
using FastStart Master Mix (Roche), 1M betaine (Sigma), 7% DMSO (Sigma), 0.18 mM 7-
deaza-dGTP (New England Biolabs), 0.9 mM magnesium chloride (Sigma), 1.4 uM C9orf72
repeat primed PCR anchor (forward primer), 0.7 uM C9orf72 repeat primed PCR repeat-
plus-anchor (forward primer), and 1.4 uM C9orf72 repeat primed PCR rev-plus-6FAM
(reverse primer) using the following cycling conditions: 1x 95°C for 15 min, 2x 94°C for 1
min -> 70°C for 1 min -> 72°C for 3 min, 3x 94°C for 1 min -> 68°C for 1 min -> 72°C for
3 min, 4x 94°C for 1 min -> 66°C for 1 min -> 72°C for 3 min, 5x 94°C for 1 min -> 64°C
for 1 min -> 72°C for 3 min, 6x 94°C for 1 min -> 62°C for 1 min -> 72°C for 3 min, 7x
94°C for 1 min -> 60°C for 1 min -> 72°C for 3 min, 8x 94°C for 1 min -> 58°C for 1 min -
> 72°C for 3 min, 5x 94°C for 1 min -> 56°C for 1 min -> 72°C for 3 min, and 1x 72°C for
10 min. PCR products were then sent to Genewiz for fragment analysis.

Karyotype—All patient-derived and control iPSC lines are routinely authenticated for
cytogenetic integrity by G-band karyotype chromosomal analysis. For every iPSC line, we
store early passage seed banks, from which subsequent distribution banks of iPSC lines can
be generated. Analysis is performed to confirm a normal karyotype before a distribution
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bank is used. Specifically, the 0029 and 0052 gene-edited lines were confirmed to have
normal karyotype three separate times at different passages. G-band karyotyping is
performed by the Cedars-Sinai Clinical Cytogenetics Core for Cytogenetic analysis using G-
banding at the 425-475 band level of resolution on slides of cultured iPSCs. For each
karyotype per cell line, metaphase spreads of typically 20 cells are counted with their
chromosomal complement. The cytogeneticist reviews whether any consistent numerical or
structural abnormality is observed. A consistent numerical or structural abnormality that is
observed in greater than one cell is classified as an abnormal karyotype for the iPSC culture.

Differentiating iPSC-MN cultures—For Figures S2A-E, iPSC-MNs were differentiated
as previously described (Yang et al., 2013). In brief, iPSCs were dissociated into single cells,
cultured in Neural Induction Media (NIM) consisting of Neurobasal (Gibco), 1.1 uM
ascorbic acid (Sigma), 1% non-essential amino acids (NEAA) (Gibco), 1% GlutaMax
(Gibco), 2% B27 (Gibco), 0.16% D-glucose solution, and 1% Penicillin-Streptomycin-
Amphotericin (PSA) solution. 10 pM Y-27632 ROCK inhibitor (Sigma) was included in the
media or the first 48 hours to improve survival of iPSCs following dissociation. On days 1-4,
NIM was supplemented with 10 uM SB431542 (StemGent), 1uM Dorsomorphin (Sigma),
and 10 ng/mL bFGF (PeproTech). This media was changed every other day, and bFGF was
replenished daily. On day 5, cells were cultured in NIM supplemented with SB431542,
Dorsomorphin, 10 ng/mL BDNF (R&D), and 1 uM retinoic acid (Sigma). On days 7 and 9,
the media was changed to NIM with BDNF, retinoic acid, and 1 pM smoothened agonist
(Sigma). The cells were densely plated onto poly-ornithine/laminin coated dishes and
cultured in the same media on day 11. This media was further supplemented with 2 uM
DAPT (Cayman Chemicals) on days 13-20, with media changes every 2-3 days. On days
20-30, cells were fed every 2-3 days with NIM containing BDNF, smoothened agonist, 1 pM
retinoic acid, and 2 uM Ara-C (Sigma). Cells were then gently dissociated using papain
(Worthington), plated on poly-ornithine/laminin coated dishes, and cultured in NIM with the
addition of 1% N2 supplement (Gibco), 4 uM Ara-C, and 40 ng/mL each of growth factors
BDNF and GDNF (PeproTech). For Figures S2F and S2G, iPSC-MN cultures were
differentiated using the 18 day protocol as described below for polyGP ELISA.

For the 18 day iPSC-MN differentiation, mTeSR1 was removed from iPSCs at 30-40%
confluency and replaced with Stage 1 media (1:1 mixture of Iscove's Modified Dulbecco's
Medium (IMDM):F12 basal media supplemented with 1% NEAA, 2% B27, 1% N2, 1%
PSA, 0.2 uM LDN193189 (Selleck), 10 uM SB431542, and 3 pM CHIR99021 (Xcess
Biosciences)) for six days with daily media changes. The cells were then Accutase-treated to
single-cell suspension and centrifuged in 50 ml conical tubes, resuspended in Stage 2 media
(Stage 1 media further supplemented with 0.1 uM all-trans retinoic acid (Stemgent) and 1
UM Sonic hedgehog agonist (SAG) (Cayman Chemicals)), and plated onto Matrigel-coated
plates or coverslips. Stage 2 media was changed every two days until day 12, when Stage 3
media (1:1 mixture of IMDM:F12 basal media supplemented with 1% NEAA, 2% B27, 1%
N2, 1% PSA, 0.1 uM Compound E (Calbiochem), 2.5 uM DAPT, 0.1 uM dibutyryl cyclic
adenosine monophosphate (db-cAMP), 0.5 uM all-trans retinoic acid, 0.1 UM SAG, 200
ng/ml ascorbic acid, 10 ng/ml BDNF, and 10 ng/ml GDNF) was then used to feed cells every
two days until day 18, when cultures were analyzed.
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The 90 day iPSC-MN differentiation was performed as previously described (Ho et al.,
2016). In brief, 80% confluent iPSC cultures were Accutase-treated into single cells
suspension and centrifuged in 384-well Matrigel coated PCR plates. The cells were
maintained in Neural Differentiation Media (NDM): IMDM/F12 supplemented with 2%
B27-vitamin A, 1% N2, 1% NEAA, 0.2 uM LDN193189, and 10 uM SB431542. On day
two, neural aggregates were collected and transferred into Poly-Hema coated T75 flasks and
the aggregates were cultured for three more days in NDM. On day seven, aggregates were
collected and transferred onto poly-ornithine/laminin coated wells with fresh NDM. After
five days, cells were cultured in MN Specification Media: NDM supplemented with 0.25 uM
all-trans retinoic acid, 1 pM purmorphamine, 1 pM db-cAMP, 200 ng/mL ascorbic acid, 20
ng/mL BDNF, and 20 ng/mL GDNF. Once rosettes were observed, they were collected with
STEMdiff Neural Rosette Selection Reagent and cultured in MN Precursor Expansion
Media: NDM supplemented with 0.1 pM all-trans retinoic acid, 1 pM purmorphamine
(Millipore), 100 ng/mL EGF, and 100 ng/mL FGF2. After day 26, the iPSC-MN precursor
spheres (iMPS) are expanded by using a chopping method every seven to ten days. The
iMPS are matured into MNs for 21 days in MN Maturation Media: Neurobasal
supplemented with 1% NEAA, 0.5% Glutamax, 1% N2, 10 ng/ml BDNF, 10 ng/ml GDNF,
200 ng/ml ascorbic acid, 1 uM db-cAMP and 0.1 uM all-trans retinoic acid.

Immunofluorescent staining, imaging, and quantification of iPSC-MN cultures
—iPSC-MNs were fixed in 4% paraformaldehyde, rinsed with PBS, incubated in 0.5%
Triton-X in PBS, rinsed with 0.2% Tween-20 in PBS, incubated in blocking solution (5%
normal donkey serum and 0.2% Tween-20 in PBS). Primary antibody solution in blocking
solution containing various combinations of goat polyclonal 1gG anti-Human ISL1 (1:200)

( R&D Systems AF1837, RRID: AB_2126324), mouse monoclonal 1gG1 anti-NF-H
(SM1-32) (1:200) (BioLegend 801701, RRID: AB_2564642), goat polyclonal anti-ChAT
(1:200) (Millipore AB144P, RRID: AB_2079751), rabbit polyclonal IgG anti-PHOX2B
(1:200) (GeneTex GTX109677, RRID: AB_1951223), mouse monoclonal 1gG2b, rabbit
polyclonal 1gG anti-CHX10 (VSX2) (1:200) (Novus NBP1-84476, RRID: AB_11022841),
and rabbit polyclonal 1gG anti-SOX1 [EPR4766] 1:200) (GeneTex GTX62974) were
incubated, rinsed with 0.2% Tween-20 in PBS, and incubated in species-specific Alexa-fluor
secondary antibodies (1:2,000), and rinsed with 0.2% Tween-20 in PBS with DAPI staining.
Fluorescent images were acquired using ImageXpress Micro XLS system (Molecular
Devices) at 10X magnification. For a complete analysis, total 9 sites per well were captured.
The captured images were quantified for the cellular population using MetaXpress software
(Molecular Devices).

Quantification of C9orf72 transcript variants—RNA was extracted from iPSCs using
the PureLink RNA mini Kit (Invitrogen) and reverse-transcribed into cDNA using the
Promega Reverse Transcription System. Quantitative PCRs were conducted in triplicate
using SYBR Green and primers amplifying all C9orf72transcripts as well as specific
transcript variants. PCR cycles consisted of the following steps: [1x 95°C for 10 min, 40x
95°C for 30 seconds -> 58°C for 60s, and 1x 72°C for 5 min].
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FISH of C90rf72 sense and antisense RNA foci and imaging—RNA FISH was
performed as previously described in (Sareen et al., 2013). Briefly, cells were cultured on
chamber slides (Lab-Tek Il chamber slide system, Thermo Fischer Scientific, Cat #154917).
Cells were then fixed in 4% paraformaldehyde, permeabilized with diethylpyrocarbonate
(DEPC)-PBS/0.2% Triton X-100, and washed with (DEPC)-PBS. Cells were incubated with
hybridization buffer containing 50% formamide, DEPC-2xSSC (300 mM sodium chloride,
30 mM sodium citrate, pH 7.0), 10% wi/v dextran sulfate, and DEPC-50 mM sodium
phosphate, pH 7.0 for 30 min at 66°C. This was followed by hybridization with 40 nM of a
Locked Nucleic Acid probe for C90rf72HREs in hybridization buffer for 3 hours at 66°C.
Afterwards, the cells were rinsed once in DEPC-2xSSC/0.1% Tween-20 at room
temperature and three times in DEPC-0.1xSSC at 65°C. The cells were then stained with
DAPI, mounted using ProLong Gold antifade reagent, and analyzed with fluorescence
microscopy.

PolyGP Response—PolyGP in iPSC-MNs were measured blinded to C9orf72 HRE and
disease status using a previously described sandwich immunoassay that utilizes Meso Scale
Discovery electrochemiluminescence detection technology, and an affinity purified rabbit
polyclonal polyGP antibody (Rb9259) as both capture and detection antibody (Gendron et
al., 2015; Su et al., 2014).

Single-cell RNA-seq of MN cultures—iPSC and iPSC-MN differentiation cultures
were washed with PBS, incubated at 37°C with 0.25% Trypsin-EDTA between 5 and 20
minutes, and diluted with an equal volume of the complete culture media in which they were
grown. After pelleting cells at 200 x g for five minutes at 4°C, cells were resuspended in
PBS, observed for clumps, and further triturated with a fire polished glass pipet. The cell
suspension was filtered through a Miltenyi 30 um filter, counted on a hemocytometer, and
the concentration was adjusted prior to loading onto the Illumina Bio-Rad ddSEQ System or
10X Genomics Chromium scRNA-seq platforms in accordance with the respective
instructions for each kit for targeting approximately 1,000 cells per sample. Library
preparation kits used were 1llumina® Bio-Rad® SureCell™ WTA 3' Library Prep Kit for the
ddSEQ™ System and 10X Chromium Single-cell 3’ Library & Gel Bead Kit v2. Libraries
were sequenced on Illumina NextSeq500 targeting 100,000 reads per cell. Raw sequencing
reads were demultiplexed and processed to FASTQ using lllumina bcl2fastq. Sample reads
were aligned to the transcriptome and uniquely mapped reads were counted and assigned to
cell specific barcodes. For ddSEQ libraries, reads were aligned and demultiplexed to cell
barcodes using Illumina Single-Cell RNA Seq BaseSpace Workflow (v1.0.0) with STAR
Aligner (v2.5.2b) (Dobin et al., 2013) and hg19 reference genome. For 10X libraries, reads
were aligned and demultiplexed using 10X Genomics Cell Ranger (v2.1.0) with STAR
Aligner (v2.5.1) and GRCh38 reference genome. Ensembl gene 1Ds were annotated to
HGNC symbols. In instances of multiple ENSG 1Ds mapping to unique HGNC symbols, the
sum of unique molecular identifiers (UMIs) across ENSG IDs was calculated and used as
the UMI for the unique HGNC symbol. The summarized UMI count tables for each
experimental batch are deposited in GEO under accession number GSE138121.
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Immunohistochemistry and quantification of ELAVL3 in spinal cords—Human
tissues were obtained using a short-postmortem interval acquisition protocol that followed
HIPAA-compliant informed consent procedures and were approved by Institutional Review
Board (Benaroya Research Institute, Seattle, WA IRB# 10058 and University of California
San Diego, San Diego, CA IRB# 120056). For IHC, 8 sporadic ALS, 4 C9 ALS, and 5
control lumbar spinal cord sections were studied. Sections with 6 um thickness were
formalin-fixed and paraffin-embedded. On day one, sections were deparaffinized with
Citrisolv (Fisher Scientific #04-355-121) and hydrated with different dilutions of alcohol.
Endogenous peroxidase activity was quenched with 0.06% H»0O, for 15 min. Antigen
retrieval was performed in an Antigen Unmasking Solution (Vector Laboratories #H-3301)
in a pressure cooker for 20 min at a temperature of 120 °C. Following antigen retrieval,
sections were permeabilized with 1% FBS (Atlanta Biologicals #511150) and 0.2% Triton
X-100 in PBS for 15 min and then blocked with 2% FBS in PBS for 25 min. The sections
were incubated overnight with the primary antibody, rabbit polyclonal ELAVL3, 1:1000,
LSBio, Cat# LS-C408905. On the second day, after 60-min incubation with the secondary
antibody (Immpress reagent kit, anti-Rabbit, Vector Laboratories #MP-7401) in room
temperature, signals were detected using Immpact DAB (Vector Laboratories #SK-4105) for
5-10 min. Counterstaining was performed with hematoxylin (Fisher #HHS128). For IHC
visualization, slides were scanned with Hamamatsu Nanozoomer 2.0HT Slide Scanner at
40X magnification. At least 6 motor neurons per spinal cord were evaluated, and across all
samples totaled a combined number of 199 neurons from sporadic ALS subjects, 77 neurons
from C9 ALS subjects, and 313 neurons from control subjects. Images were deconvoluted
using Fiji ImageJ (Schindelin et al., 2012) and the optical density (OD) was measured for
each neuron, where OD = log (max intensity/1/Mean intensity), where max intensity = 255
for 8-bit images.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pseudotime analysis—Monocle version 2.12.0 (Qiu et al., 2017) was used to perform
pseudotime analysis of the 18 day differentiation time course. Genes with minimum average
expression of 0.1 and detectable in at least 10 cells were filtered. Cells were further filtered
for those whose total UMI count was within three standard deviations of the average logyg
UMI across all time points. Tests for differential expression of each gene as a function of the
time course was calculated using the full generalized linear model, and genes with a g-value
less than 0.1 from this test was filtered. These genes were used in dimensional reduction of
the time course samples onto two components through Discriminative Dimensionality
Reduction with Trees. All cells were ordered along this pseudotime trajectory, and
expression of select genes were plotted against the cells ordered along this pseudotime.

Seurat Version 2.3.0 was used to process, normalize, cluster, and analyze scRNA-seq data
for day 18 MN cultures. UMI count tables for each of the six experimental batches were
each loaded as Seurat objects as well as cell barcodes and sample covariates for meta data.
For downstream analysis, quality control filters for genes and cells were applied. Genes with
at least one UMI in at least one cell were kept. The percent of mitochondrial genes was
calculated for each cell and stored as meta data. Z-scores were calculated for three columns
in the meta data for each cell: nGene, nUMI, and percent mitochondrial genes. Cells were
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then filtered based on these z-scores; any cell that had a z-score greater than 3 or less than
-3 (greater than 3 standard deviations away from the mean of that meta data) in any of the
three columns were excluded from further analysis. Next, the global scaling normalization
method normalizes the gene expression measurement for each cell by the total expression,
multiplies this by a scale factor, and log transforms the result. The maximum UMI detected
in the experimental batch was used as the scaling factor. Next, highly variable genes (HVGS)
in the experimental batch were calculated. The mean expression for all detected ( i.e. non-
zero value) genes was calculated as well as the log transformed ratio of variance to mean
expression (regarded as the dispersion). Genes were then binned into 20 intervals, and within
each interval, the z-score for dispersion was calculated for each gene. This helps control for
the relationship between variability and average expression. Genes with z-score for
dispersion values greater than 2 were deemed to be HVGs. After all six experimental batches
were processed as Seurat objects, samples were subsetted out of each Seurat object, totaling
22 samples. 279 HVGs were calculated in at least 11 of the 22 samples, and these were kept
for subsequent dimensional reduction.

Data set normalization, identity assignment, and clustering—Multiple Canonical
Correlation Analysis (MultiCCA) was performed on the 22 samples to correct for
experimental batch and platform effects. Up to 20 dimensions were evaluated, and the first
18 dimensions were determined to be used for subspace alignment. Prior to subspace
alignment, cells whose expression profiles cannot be well-explained by low-dimensional
CCA compared to low-dimensional PCA (less than a two-fold ratio) were removed. 17,531
cells remained. Subsequently, samples were aligned using dynamic time warping along the
first 18 dimensions, and the resulting batch integrated Seurat object holding all 22 samples
was used for downstream analysis.

Alternative packages for batch correction were applied to the same Seurat object as
MultiCCA through the Seurat Wrapper package version 0.2.0. For batch correction through
Harmony, the RunHarmony command was applied to the Seurat object after running the raw
counts matrix through the following pipe: NormalizeData() %>% FindVariableFeatures()
%>% ScaleData() %>% RunPCA. For batch correction through Liger, the raw counts matrix
was run through the following pipe: NormalizeData() %>% FindVariableFeatures().
Subsequently, the ScaleData command was applied with the following parameters: split.by =
"EXP_BATCH" or “PLATFORM?”, do.center = FALSE. The RunOptimizeALS command
was applied with k = 20, lambda = 5, split.oy = "EXP_BATCH" or “PLATFORM?”. Finally,
the RunQuantileNorm command was applied with split.oy = "EXP_BATCH" or
“PLATFORM?”. For batch correction through FastMNN, the raw counts matrix was run
through the following pipe: NormalizeData() %>% FindVariableFeatures(). The Seurat
object was split by experimental batch or sScRNA-seq platform, and the RunFastMNN
command was applied to this split object list. KBET version 0.99.6 was used to calculate the
acceptance rate and average silhouette width for all batch correction methods along with
uncorrected data. The KBET command was applied to the cell embeddings within the
dimensionally reduced projections calculated by each method and considering either
experimental batch or ScRNA-seq platform with kO = 30 and do.PCA = TRUE; all other
parameters were kept at default. The prcomp command was applied to the cell embeddings
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within the dimensionally reduced projections calculated by each method, and the batch_sil
command was applied to the first three principal components to determine the average
silhouette width.

In scRNA-seq analysis, increasing attention is directed towards understanding how various
SscRNA-seq analysis programs, particularly using pre-defined yet tunable parameters can
influence the outcome of tasks such as cell clustering (Kiselev et al., 2019; Krzak et al.,
2019). To determine the optimal humber of communities to cluster, several resolution
settings were tested using the FindClusters command in Seurat. The first 18 dimensions
from the reduction through CCA were used, and 30 nearest neighbors were considered for
each resolution setting. All other parameters were kept at default values. The original
Louvain algorithm determined the modularity for each setting, and the maximum modularity
observed after 100 iterations was recorded for each number of communities. A polynomial
trendline was calculated, and the residuals for each setting greater than zero was considered
to determine the optimal number of communities. Based on the independently optimized
tSNE calculations and visualizations for 17,531 cells, a resolution setting of 0.125 yielding 4
communities was selected to proceed with downstream analysis. When projecting all cells
on two two dimensional tSNE plots using the RunTSNE command, the same 18 dimensions
were used as for the FindClusters command, and all other parameters were kept at default
values . A perplexity setting of 100 was selected based on the visual concordance with the 4
communities determined.

To analyze only the postmitotic, neuronal subtypes from these 17,531 cells, we repeated the
FindClusters command using a resolution parameter of 0.04, which detected 2 communities,
and the postmitotic community containing 11,120 cells was subsetted into a new Seurat
object. Once again, 22 samples were subsetted out of this Seurat object. HVGs were again
calculated in each of the 22 samples using the same parameters stated above. 158 HVGs
were calculated in at least 11 of the 22 samples, and these were kept for subsequent
dimensional reduction. MultiCCA using 22 dimensions was applied to this batch integrated
Seurat object, and the final data set comprised of 10,866 cells. The optimal parameters for
resolution set to 1 and perplexity set to 0.75 were selected for FindClusters and RunTSNE,
respectively, and this produced 18 communities, which were subsequently re-annotated
based on key marker gene expression.

To assign rostrocaudal segment or cell type identity considering the expression pattern of
HOX genes (Table S2A) or 105 developmental genes (Table S2B), respectively, all
expression values were log transformed after adding a pseudocount of 1. Pearson
correlations were performed using pairwise complete observations. Benjamini-Hochberg-
corrected p-values for each Pearson correlation were calculated using the corr.test function
in the psych 1.9.12.31 package, and the correlation with the lowest p-value, meeting the
specified threshold was used to assign the segment or cell type identity. Multiple identities
with the highest correlation were randomly selected for assignment.

Differential expression, gene set enrichment, and classifier accuracy analyses
—To perform differential gene expression analysis between any two populations, the
FindMarkers command in Seurat was applied with the bimodal expression likelihood test
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and the log fold change threshold was set to 0.1. Genes with Bonferroni adjusted P-values
less than 0.05 were called significantly changed. Additionally, differentially expressed genes
between ALS and control conditions were calculated in DESeq (Anders and Huber, 2010)
by summing all scRNA-seq UMI counts for each gene across the expression matrix for each
sample to simulate bulk RNA-seq expression.

Jaccard indices were calculated by tabulating genes called differentially upregulated or
downregulated in each ALS to control of isogenic comparison within each experimental
batch and intersecting each set of genes among all experimental batches. The Jaccard index
is the ratio of the number of intersecting genes divided by the sum of the union of all genes
across the two sets being compared. Gene Ontology (GO) analysis was performed on gene
lists using official gene symbols for homo sapiens through the DAVID functional annotation
chart. The following categories were tested: OMIM disease, GO Term BP direct, GO Term
CC direct, GO Term MF direct, BIOCARTA, KEGG, and REACTOME. Thresholds used
were minimum count of 2 and EASE score of 0.1, and GO and pathway sets with
Benjamini-Hochberg-corrected P-values of less than 0.05 were called significant and
reported. The Vennerable package was used to create Euler and Chow-Ruskey plots.
WGCNA and module preservation was performed as previously described in Ho et al., 2016.

Multiset enrichment analysis was performed using SuperExactTest (Wang et al., 2015). Lists
of gene sets to be intersected were input, the expected and observed number of overlaps
were calculated, and the P-value indicates the likelihood of overlap among all possible
comparisons.

To generate a combined expression score for each gene within a population of cells in each
sample, we calculated the average UMI counts using all cells within a specified population
with a non-zero UMI value. For each gene, the minimum average UMI count among all 22
samples was subtracted from the average UMI in each sample so that the minumum average
UMI count among all samples was transformed to zero, and the average UMI counts for all
other samples were linearly scaled. From this transformed set of values, the maximum
among all 22 samples was subsequently used as a divisor for each transformed value to
secondarily transform the maximum average UMI count to 1 and proportionally scale the
values of all other samples. This effectively bounded the set of transformed, average UMI
counts between zero and 1. For each gene in each population in each sample, the secondarily
transformed average expression was summed with the percent UMI counts for all cells
within the specific population, which includes zero UMI values, to generate a combined
expression score that equally weights average UMI expression with percent UMI expression.
This combined expression score was used to perform statistical test for changes in
distribution between all ALS samples and all control and isogenic samples across all
experimental batches.

To define MN-specific marker genes for ALS classification, a table of combined expression
scores were generated from iPSC-MN scRNA-seq data, which contained 1,281 genes. A t-
test was performed between all ALS and all control and isogenic samples; 39 genes obtained
nominal p-values less than 0.05, and none of these retained this status after Benjamini-
Hochberg correction. Therefore, the genes were ranked from lowest to highest nominal p-
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values, and the top 20 genes were selected to be intersected with the LCM MN
transcriptomic data from Rabin et al., 2010 as analyzed in Ho et al., 2016 as well as Krach et
al., 2018. Among these, six genes were concordantly changed between ALS and control
conditions in all three data sets; the combined expression score was lower in ALS compared
to control and isogenic iPSC-MNs, and the gene significance to the SALS component was
negative in LCM MNs.

To incorporate the six ALS marker genes into a single prediction metric, principal
component analysis (PCA) was applied to samples using the expression values of these six
genes, and sample coordinates along the first, second, or a sum of both principal components
was used as the prediction metric. For analyzing the sScRNA-seq samples, the combined
expression score for the six genes were used as input. For analyzing bulk RNA-seq data, the
log transformed expression values for the six genes were used as input. In some data sets,
five of the six genes were used; NDUFAF5 was not annotated in Highley et al., 2014;
CARSZwas not annotated in Cox et al., 2010, Kirby et al., 2011, and Kiskinis et al., 2014.
For Krach et al., 2018, Highley et al., 2014, and Shi et al., 2018, sample coordinates along
PC2 were used as the prediction metric. For Fujimori et al., 2018, the signed values for PC2
coordinates of samples were reversed to place control samples concordant with their
placement along PC1. Both PC1 and PC2 coordinates were floored to zero by subtracting
the minimum of each PC coordinate, and the sum of the floored PC1 and PC2 coordinates
were used as the prediction metric. Coordinates along PC1 were used as the prediction
metric for all other data sets. The ROCR package (Sing et al., 2005) was used to plot the
Receiver Operator Characteristics and calculate the Area Under the Curve (AUC). The ~
value of the Wilcox Rank Sum test was used to determine whether the AUC significantly
differs from 0.5, the AUC of an uninformative test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors gratefully acknowledge the following: Tania F. Gendron and Leonard Petrucelli for the polyGP
immunoassay data, Victoria Dardov and Jennifer Van Eyk for providing mass spectrometry data for ELAVLS3;
Kathleen Kurowski, Berhan Mandefro, and Dylan West for assistance with experiments and reagent organization;
Soshana Svendsen for critical reading and comments on the manuscript. This work was supported by the following
grants: ALS Association (J.R., C.N.S.), California Institute for Regenerative Medicine (RN3-06530, R.H.B.), NIA
(K99AG056678, R.H.), NINDS (RO1INS069669, R.H.B.), NINDS (U54NS091046, C.N.S.), Target ALS (J.R.).

References

Alaynick WA, Jessell TM, and Pfaff SL (2011). Snapshot: spinal cord development. Cell 146, 178—
178.e1. [PubMed: 21729788]

Anders S, and Huber W (2010). Differential expression analysis for sequence count data. Genome
Biol. 11, R106. [PubMed: 20979621]

Blondel VD, Guillaume J-L, Lambiotte R, and Lefebvre E (2008). Fast unfolding of communities in
large networks. J. Stat. Mech. Theory Exp 2008, P10008.

Butler A, Hoffman P, Smibert P, Papalexi E, and Satija R (2018). Integrating single-cell transcriptomic
data across different conditions, technologies, and species. Nat. Biotechnol 36, 411-420. [PubMed:
29608179]

Cell Syst. Author manuscript; available in PMC 2022 February 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ho et al.

Page 23

Buttner M, Miao Z, Wolf FA, Teichmann SA, and Theis FJ (2019). A test metric for assessing single-
cell RNA-seq batch correction. Nat. Methods 16, 43-49. [PubMed: 30573817]

Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H, Hollinger HC, Hartley
JA, Brockington A, Burness CE, et al. (2010). Mutations in CHMP2B in lower motor neuron
predominant amyotrophic lateral sclerosis (ALS). PloS One 5, €9872. [PubMed: 20352044]

Delile J, Rayon T, Melchionda M, Edwards A, Briscoe J, and Sagner A (2019). Single cell
transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse
spinal cord. Dev. Camb. Engl 146.

Deshaies J-E, Shkreta L, Moszczynski AJ, Sidibé H, Semmler S, Fouillen A, Bennett ER, Bekenstein
U, Destroismaisons L, Toutant J, et al. (2018). TDP-43 regulates the alternative splicing of hnRNP
Al to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain J. Neurol 141,
1320-1333.

Di Bonito M, Glover JC, and Studer M (2013). Hox genes and region-specific sensorimotor circuit
formation in the hindbrain and spinal cord. Dev. Dyn. Off. Publ. Am. Assoc. Anat 242, 1348-1368.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras
TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinforma. Oxf. Engl 29, 15-21.

Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S,
McKay RDG, Buetow KH, et al. (2008). Global transcription in pluripotent embryonic stem cells.
Cell Stem Cell 2, 437-447. [PubMed: 18462694]

Fujimori K, Ishikawa M, Otomo A, Atsuta N, Nakamura R, Akiyama T, Hadano S, Aoki M, Saya H,
Sobue G, et al. (2018). Modeling sporadic ALS in iPSC-derived motor neurons identifies a
potential therapeutic agent. Nat. Med 24, 1579-1589. [PubMed: 30127392]

Gaublomme JT, Li B, McCabe C, Knecht A, Yang Y, Drokhlyansky E, Van Wittenberghe N, Waldman
J, Dionne D, Nguyen L, et al. (2019). Nuclei multiplexing with barcoded antibodies for single-
nucleus genomics. Nat. Commun 10, 2907. [PubMed: 31266958]

Gendron TF, van Blitterswijk M, Bieniek KF, Daughrity LM, Jiang J, Rush BK, Pedraza O, Lucas JA,
Murray ME, Desaro P, et al. (2015). Cerebellar c9RAN proteins associate with clinical and
neuropathological characteristics of COORF72 repeat expansion carriers. Acta Neuropathol. (Berl.)
130, 559-573. [PubMed: 26350237]

Haghverdi L, Lun ATL, Morgan MD, and Marioni JC (2018). Batch effects in single-cell RNA-
sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol 36, 421—
427. [PubMed: 29608177]

Hicks SC, Townes FW, Teng M, and Irizarry RA (2018). Missing data and technical variability in
single-cell RNA-sequencing experiments. Biostat. Oxf. Engl 19, 562-578.

Highley JR, Kirby J, Jansweijer JA, Webb PS, Hewamadduma CA, Heath PR, Higginbottom A,
Raman R, Ferraiuolo L, Cooper-Knock J, et al. (2014). Loss of nuclear TDP-43 in amyotrophic
lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread
dysregulation of RNA splicing in motor neurones. Neuropathol. Appl. Neurobiol 40, 670-685.
[PubMed: 24750229]

Ho R, Sances S, Gowing G, Amoroso MW, O’Rourke JG, Sahabian A, Wichterle H, Baloh RH, Sareen
D, and Svendsen CN (2016). ALS disrupts spinal motor neuron maturation and aging pathways
within gene co-expression networks. Nat. Neurosci 19, 1256-1267. [PubMed: 27428653]

Joseph RM (2014). Neuronatin gene: Imprinted and misfolded: Studies in Lafora disease, diabetes and
cancer may implicate NNAT-aggregates as a common downstream participant in neuronal loss.
Genomics 103, 183-188. [PubMed: 24345642]

Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E, Torre D, Wang Z, Dohlman AB, Silverstein
MC, Lachmann A, et al. (2018). The Library of Integrated Network-Based Cellular Signatures
NIH Program: System-Level Cataloging of Human Cells Response to Perturbations. Cell Syst. 6,
13-24. [PubMed: 29199020]

Kim HJ, Kim NC, Wang Y-D, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S,
Molliex A, et al. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause
multisystem proteinopathy and ALS. Nature 495, 467-473. [PubMed: 23455423]

Kim T-Y, Kim E, Yoon SK, and Yoon J-B (2008). Herp enhances ER-associated protein degradation by
recruiting ubiquilins. Biochem. Biophys. Res. Commun 369, 741-746. [PubMed: 18307982]

Cell Syst. Author manuscript; available in PMC 2022 February 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ho et al.

Page 24

Kirby J, Ning K, Ferraiuolo L, Heath PR, Ismail A, Kuo S-W, Valori CF, Cox L, Sharrack B, Wharton
SB, et al. (2011). Phosphatase and tensin homologue/protein kinase B pathway linked to motor
neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain J.
Neurol 134, 506-517.

Kiselev VY, Andrews TS, and Hemberg M (2019). Challenges in unsupervised clustering of single-cell
RNA-seq data. Nat. Rev. Genet 20, 273-282. [PubMed: 30617341]

Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ, Han S, Peng T, Thams S,
Mikkilineni S, et al. (2014). Pathways disrupted in human ALS motor neurons identified through
genetic correction of mutant SOD1. Cell Stem Cell 14, 781-795. [PubMed: 24704492]

Klim JR, Williams LA, Limone F, Guerra San Juan |, Davis-Dusenbery BN, Mordes DA, Burberry A,
Steinbaugh MJ, Gamage KK, Kirchner R, et al. (2019). ALS-implicated protein TDP-43 sustains
levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci 22, 167-179.
[PubMed: 30643292]

Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh P-R,
and Raychaudhuri S (2019). Fast, sensitive and accurate integration of single-cell data with
Harmony. Nat. Methods 16, 1289-1296. [PubMed: 31740819]

de Kovel CGF, Lisgo S, Karlebach G, Ju J, Cheng G, Fisher SE, and Francks C (2017). Left-Right
Asymmetry of Maturation Rates in Human Embryonic Neural Development. Biol. Psychiatry 82,
204-212. [PubMed: 28267988]

Krach F, Batra R, Wheeler EC, Vu AQ, Wang R, Hutt K, Rabin SJ, Baughn MW, Libby RT, Diaz-
Garcia S, et al. (2018). Transcriptome-pathology correlation identifies interplay between TDP-43
and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathol. (Berl.) 136, 405-423.
[PubMed: 29881994]

Krzak M, Raykov Y, Boukouvalas A, Cutillo L, and Angelini C (2019). Benchmark and Parameter
Sensitivity Analysis of Single-Cell RNA Sequencing Clustering Methods. Front. Genet 10, 1253.
[PubMed: 31921297]

Langfelder P, Luo R, Oldham MC, and Horvath S (2011). Is my network module preserved and
reproducible? PLoS Comput. Biol 7, €1001057. [PubMed: 21283776]

Lederer CW, Torrisi A, Pantelidou M, Santama N, and Cavallaro S (2007). Pathways and genes
differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis.
BMC Genomics 8, 26. [PubMed: 17244347]

Liang X, Song M-R, Xu Z, Lanuza GM, Liu Y, Zhuang T, Chen Y, Pfaff SL, Evans SM, and Sun Y
(2011). Isl1 is required for multiple aspects of motor neuron development. Mol. Cell. Neurosci 47,
215-222. [PubMed: 21569850]

Lippmann ES, Williams CE, Ruhl DA, Estevez-Silva MC, Chapman ER, Coon JJ, and Ashton RS
(2015). Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm.
Stem Cell Rep. 4, 632-644.

Lu DC, Niu T, and Alaynick WA (2015). Molecular and cellular development of spinal cord locomotor
circuitry. Front. Mol. Neurosci 8, 25. [PubMed: 26136656]

Luecken MD, and Theis FJ (2019). Current best practices in single-cell RNA-seq analysis: a tutorial.
Mol. Syst. Biol 15.

Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob
F, Jiang X, et al. (2019). Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570,
332-337. [PubMed: 31042697]

Maury Y, Come J, Piskorowski RA, Salah-Mohellibi N, Chevaleyre V, Peschanski M, Martinat C, and
Nedelec S (2015). Combinatorial analysis of developmental cues efficiently converts human
pluripotent stem cells into multiple neuronal subtypes. Nat. Biotechnol. 33, 89-96. [PubMed:
25383599]

Melamed Z, Lépez-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, Freyermuth F, McMahon
MA, Beccari MS, Artates JW, et al. (2019). Premature polyadenylation-mediated loss of
stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci 22, 180-190.
[PubMed: 30643298]

Cell Syst. Author manuscript; available in PMC 2022 February 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ho et al.

Page 25

Metzis V, Steinhauser S, Pakanavicius E, Gouti M, Stamataki D, Ivanovitch K, Watson T, Rayon T,
Mousavy Gharavy SN, Lovell-Badge R, et al. (2018). Nervous System Regionalization Entails
Axial Allocation before Neural Differentiation. Cell 175, 1105-1118.e17. [PubMed: 30343898]

Montibeller L, and de Belleroche J (2018). Amyotrophic lateral sclerosis (ALS) and Alzheimer’s
disease (AD) are characterised by differential activation of ER stress pathways: focus on UPR
target genes. Cell Stress Chaperones 23, 897-912. [PubMed: 29725981]

Nardo G, lennaco R, Fusi N, Heath PR, Marino M, Trolese MC, Ferraiuolo L, Lawrence N, Shaw PJ,
and Bendotti C (2013). Transcriptomic indices of fast and slow disease progression in two mouse
models of amyotrophic lateral sclerosis. Brain J. Neurol 136, 3305-3332.

Philippidou P, and Dasen JS (2013). Hox genes: choreographers in neural development, architects of
circuit organization. Neuron 80, 12-34. [PubMed: 24094100]

Pla P, Hirsch M-R, Le Crom S, Reiprich S, Harley VR, and Goridis C (2008). Identification of
Phox2b-regulated genes by expression profiling of cranial motoneuron precursors. Neural
Develop. 3, 14.

Qiu X, Hill A, Packer J, Lin D, Ma Y-A, and Trapnell C (2017). Single-cell mRNA quantification and
differential analysis with Census. Nat. Methods 14, 309-315. [PubMed: 28114287]

Rabin SJ, Kim JMH, Baughn M, Libby RT, Kim YJ, Fan Y, Libby RT, La Spada A, Stone B, and
Ravits J (2010). Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-
matrix adhesion biology. Hum. Mol. Genet 19, 313-328. [PubMed: 19864493]

Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, and Atkin JD (2019). Motor Neuron Susceptibility in
ALS/FTD. Front. Neurosci 13, 532. [PubMed: 31316328]

Sareen D, O’Rourke JG, Meera P, Muhammad AKMG, Grant S, Simpkinson M, Bell S, Carmona S,
Ornelas L, Sahabian A, et al. (2013). Targeting RNA foci in iPSC-derived motor neurons from
ALS patients with a COORF72 repeat expansion. Sci. Transl. Med 5, 208ra149.

Saris CGJ, Horvath S, van Vught PWJ, van Es MA, Blauw HM, Fuller TF, Langfelder P, DeYoung J,
Wokke JHJ, Veldink JH, et al. (2009). Weighted gene co-expression network analysis of the
peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics 10, 405. [PubMed:
19712483]

Sathyamurthy A, Johnson KR, Matson KJE, Dobrott Cl, Li L, Ryba AR, Bergman TB, Kelly MC,
Kelley MW, and Levine AJ (2018). Massively Parallel Single Nucleus Transcriptional Profiling
Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Rep. 22, 2216-2225.
[PubMed: 29466745]

Schindelin J, Arganda-Carreras |, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis.
Nat. Methods 9, 676-682. [PubMed: 22743772]

Shi Y, Lin S, Staats KA, Li Y, Chang W-H, Hung S-T, Hendricks E, Linares GR, Wang Y, Son EY, et
al. (2018). Haploinsufficiency leads to neurodegeneration in COORF72 ALS/FTD human induced
motor neurons. Nat. Med 24, 313-325. [PubMed: 29400714]

Sing T, Sander O, Beerenwinkel N, and Lengauer T (2005). ROCR: visualizing classifier performance
in R. Bioinforma. Oxf. Engl 21, 3940-3941.

Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernandez IA, Marchetto MC, Baker DK, Lu D,
Hinman CR, Lowe JK, et al. (2014). A quantitative framework to evaluate modeling of cortical
development by neural stem cells. Neuron 83, 69-86. [PubMed: 24991955]

Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang W-Y, Fostvedt E, Jansen-West K, Belzil VV,
Desaro P, et al. (2014). Discovery of a biomarker and lead small molecules to target ((GGGGCC)-
associated defects in cOFTD/ALS. Neuron 83, 1043-1050. [PubMed: 25132468]

Swinnen B, and Robberecht W (2014). The phenotypic variability of amyotrophic lateral sclerosis.
Nat. Rev. Neurol 10, 661-670. [PubMed: 25311585]

Taylor JP, Brown RH, and Cleveland DW (2016). Decoding ALS: from genes to mechanism. Nature
539, 197-206. [PubMed: 27830784]

Turner MR, Brockington A, Scaber J, Hollinger H, Marsden R, Shaw PJ, and Talbot K (2010). Pattern
of spread and prognosis in lower limb-onset ALS. Amyotroph. Lateral Scler. Off. Publ. World Fed.
Neurol. Res. Group Mot. Neuron Dis 11, 369-373.

Cell Syst. Author manuscript; available in PMC 2022 February 17.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Ho et al.

Page 26

Umahara T, Uchihara T, Shibata N, Nakamura A, and Hanyu H (2016). 14-3-3 eta isoform colocalizes
TDP-43 on the coarse granules in the anterior horn cells of patients with sporadic amyotrophic
lateral sclerosis. Brain Res. 1646, 132-138. [PubMed: 27256400]

\olpato V, and Webber C (2020). Addressing variability in iPSC-derived models of human disease:
guidelines to promote reproducibility. Dis. Model. Mech 13.

Waltman L, and van Eck NJ (2013). A smart local moving algorithm for large-scale modularity-based
community detection. Eur. Phys. J. B 86, 471.

Wang M, Zhao Y, and Zhang B (2015). Efficient Test and Visualization of Multi-Set Intersections. Sci.
Rep 5, 16923. [PubMed: 26603754]

Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, and Macosko EZ (2019). Single-Cell
Multiomic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 177, 1873—
1887.e17. [PubMed: 31178122]

Yang YM, Gupta SK, Kim KJ, Powers BE, Cerqueira A, Wainger BJ, Ngo HD, Rosowski KA, Schein
PA, Ackeifi CA, et al. (2013). A small molecule screen in stem-cell-derived motor neurons
identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12, 713-726.
[PubMed: 23602540]

Zhang B, and Horvath S (2005). A general framework for weighted gene co-expression network
analysis. Stat. Appl. Genet. Mol. Biol 4, Articlel7.

Cell Syst. Author manuscript; available in PMC 2022 February 17.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Ho et al.

B +trophic
+caudalizing ~ factors
+ventralizing

+ neuralizing factors

factors [—b

do dé d12 d18

Page 27

Collect for
single cell
processing

iPSC-derived
spinal MN cultures

@ | Undifferentiated iPSCs

n=849 1332 942 1002

50000 8000 Pseudotime

P

=¥
-
p
-
8
3

\ ©d0 ed6 edi2 edi8

* 0204060

3 ~

£

. §
ed6 50

3 g

F edi2 E

. 0d18 3
ﬁ -

% 230-20 10 0 10 20 20 10 0 10 20 30 -20 -10 0 10 20 30
tSNE 1 Component 1

6000
=
2 4000
20000 /s
10000 " ) 2000
e 0 ®

&
& I Hindbrain Spinal cord
& Days human in vivo

nGene

6@6‘ development: 30 36 40 42 46 48 52 54 55 58 30 36 40 42 48 52 54 55 58

o & \90 \\d?f Carnegie stage: 13 15 16 17 18 19 20 21 22 23 13 15 16 17 19 20 21 22 23
& & & — - — — —_— —

do CTR 0083
dé CTR 0083
d12  CTR 0083
d18 CTR 0083
CTR 0083
CTR 0179
SPO 2XWC
SPO 8BRM
DDSEQ CTR 0025
C90 0028
C90 0029
C90 0052
CTR 0025
CTR 0179
D d18 | ISO 0029
C90 0029
SPO 2XwWC
CTR 0179
ISO 0029
C90 0029
SPO 2XwC
CTR 0465
ISO 0052
C90 0052
€90 621D )

| -

nm

BD 0
| Eﬂ"ﬁ

N i

—
S &
O
& ¢ Median Spearman correlation for d18
Cellprofiles 0

= =
|

O

10X

a||II'I|||||||||||'||'||||
=
el (H =

Spearman correlation  Rank of Spearman correlation

o60 (T o085  [Jist [J2nd [ |3rd

Figure 1. iPSC-MN cultures recapitulate developmental gene expression patterns.
A. Immunostaining day 18 cultures from three individual subject lines for expression of MN

markers ISL1 and SMI-32.

B. Experiment schematic for analyzing the 18 day time course of MN differentiation.

C - D. Violin plots indicate gene expression during MN differentiation. C depicts number of
unique molecular identifiers (nUMI), and D depicts number of detectable genes per time
point.

E. tSNE of MN differentiation time course samples.

F. Monocle analysis projects samples into a pseudo-time axis consistent with the order of
time points.

G. Histogram displays meta data for all samples profiled in this study. This data is also
presented in Figure S4.

H. UMI counts were summed for each gene across the expression matrix for each sample,
simulating bulk RNA-seq data. Simulated bulk gene expression profiles for each sample
were correlated to bulk RNA-seq gene expression profiles from fetal hindbrain and spinal
cord at various Carnegie stages analyzed in de Kovel et al., 2017. For each row of pairwise
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correlations, the top three ranked correlations are outlined, indicating which sample from de
Kovel et al., 2017 is most globally similar to each sample analyzed by single-cell RNA-seq.
For each column of pairwise correlations, the median Spearman correlation was calculated
and displayed along the bottom row. These data summarize for each sample from de Kovel
etal., 2017 what is the frequency of global gene expression correlations from iPSC-MN
cultures. The top three ranked correlations along the bottom row are outlined, indicating
which sample from de Kovel et al., 2017 are most globally similar to iPSC-MNs.

See also Figures S1, S2, S3, and S4, and Table S1.
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Figure 2. iPSC-MN cultures globally resemble rhombomere eight and cervical spinal cord.
A. Models of cell type organization along representative hindbrain and spinal cord segments.

Left, HOX gene expression patterns determine rostrocaudal axis identities, adapted and
simplified from Di Bonito et al., 2013; Lippmann et al., 2015; and Philippidou and Dasen,
2013. Center, a simplified, two-dimensional schematic of the dorsoventral and mediolateral
axes of a representative hemisection of a spinal cord segment adapted from Alaynick et al.,
2011 and Lu et al., 2015. Each subclass of progenitors in the ventricular zone (VZ) are
labeled along the dorsoventral axis, represented by the y-axis, are colored distinctly. As each
of these progenitors give rise to subclasses of postmitotic neurons, they migrate laterally into
distinct dorsoventral and mediolateral locations in the mantle zone (MZ), represented by the
x-axis. These progenies are labeled and colored similarly to their respective progenitors.
Descriptions of each cell type are indicated in Table S2B. Locations of each cell type are
approximately relative to each other and are not to scale. Right, three-dimensional model of
the center panel, including both hemispheres of the spinal cord. All cell types present within
the hindbrain and spinal cord are registered based on HOX and lineage-specific transcription
factor expression. This model is not to scale.

B. Left: Unit expression matrix of HOX genes that developmentally determine hindbrain and
spinal cord segment identity. R2-8: rhombomeres 2-8, Ce: cervical, Br: brachial, Th:
thoracic, Lu: lumbar, Sa: sacral, Ca: caudal. Right: Expression heatmap of HOX genes in
fetal hindbrain and spinal cord at various Carnegie stages analyzed in de Kovel et al., 2017.
Labels below each sample column indicate the segment that each sample most resembles,
based on the highest Spearman correlation to the expression patterns for each segment
shown in the unit expression matrix and with Benjamini-Hochberg adjusted P-values < 0.05.
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C. Histogram of segment identities assigned to fetal hindbrain samples, fetal spinal cord
samples, and individual cells analyzed from day 18 cultures based on the highest Spearman
correlation to the expression patterns for each segment shown in the unit expression matrix.
NA: not assigned. For assignment of fetal hindbrain and fetal spinal cord samples from de
Kovel et al., 2017, samples with Benjamini-Hochberg adjusted P-values less than 0.05 are
assigned to each class along the y-axis; all other other samples are assigned as NA. For
assignment of cells in day 18 cultures, cells with Benjamini-Hochberg adjusted P-values less
than 0.1 are assigned to each class along the y-axis; all other cells are assigned as NA.

See also Figure S5, and Table S2.
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Figure 3. Developmental gene expression profiles and global clustering classify VZ progenitor
and MZ postmitotic neuronal identities.

A. Based on the expression profile of 105 developmental genes (Table S2B), individual cells
from the time course of differentiation over 18 days were classified as identities belonging to
the VZ, MZ, astrocyte, or not assigned (NA).

B. tSNE showing global clustering of 17,531 cells from day 18 cultures across experimental
batches, which by Seurat determined four clusters indicated by four colors. Significantly
differentially expressed genes in each cluster relative to the other clusters were analyzed for
enriched GO terms, and these are displayed below the tSNE plot.

C. The same tSNE as in B with each cell colored by classification based on 105
developmental genes.

D. The same tSNE as in B with each cell colored by relative expression level of each
indicated gene, which were determined to be among the most significantly differentially
expressed genes in clusters 1 (SOX2, TOPZA), 2 (COL3A1, TAGLN), 3 (STMNZ,
ONECUT?2), and 4 (PHOXZ2A, PHOXZB). These data are also presented in Figure S3G.
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E. tSNE showing global clustering of 10,866 cells classified into clusters 3 and 4 in B.
Seurat analysis determined 18 clusters.

F. The same tSNE as in E with each cell colored red if they were classified as the indicated
cell type based on 105 developmental genes.

G. The same tSNE as in E with each cell colored by their reclassification into clusters
formed by merging the clusters identified in E based on overlap for identities shown in F.
This data is also presented in Figure 4.

H. The same tSNE as in E with each cell colored by relative expression level of each
indicated gene, which are regarded as distinct markers of each identity listed above each plot
inF.

I. Boxplots of Spearman correlation values between gene expression profiles of LC MNs
from Ho et al., 2016; summed gene expression profiles across all cells for each day 18
sample (Bulk); and summed gene expression profiles across cells classified as MN in G. A
value calculated from a paired, two-tailed t-test.

J. Bar graph of segment identities assigned to individual cells within each of the seven
clusters based on the highest Spearman correlation to the HOX expression patterns for each
segment shown in the unit expression matrix (Table S2A) and with Benjamini-Hochberg
adjusted AP-value < 0.1. R2-8: rhombomeres 2-8, Ce: cervical, Br: brachial, Th: thoracic, Lu:
lumbar, Sa: sacral, Ca: caudal, NA: not assigned.

See also Figures S4, S5, and S6, and Table S2.
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Figure 4. ALS enacts distinct gene expression changes in neuronal subtypes.
A. Left to right: same tSNE as in Figure 3G, with each cell colored by ALS or control

(CTR) condition, colored by experimental platform, and bar graph quantifying the number
of cells assigned to each class.

B. Jaccard indices of overlapping gene sets across ALS to CTR comparisons within the
neuronal subtypes MN, V1 Renshaw, and VV2a. Each pairwise ALS to CTR comparison is
shown along left and top axes, and heatmap indicates Jaccard index for each intersection of
gene sets. The number of upregulated genes in each ALS to CTR comparison is printed in
red along the right axis, and the number of downregulated genes in each ALS to CTR
comparison is printed in blue along the bottom axis. Upregulated gene sets were only
compared to other upregulated gene sets, and downregulated gene sets were only compared
to other downregulated gene sets. The red and blue heat maps represent the Jaccard indices
for intersections of upregulated and downregulated gene sets, respectively. When an ALS
cell line was compared to a CTR or isogenic HRE-corrected (ISO) cell line in more than one
experimental batch, the Jaccard indices of these gene sets (replicate comparisons) can be
compared to Jaccard indices of gene sets calculated for comparisons using the same ALS,
CTR, or I1SO cells lines within the same experimental batch that were not repeated in other
batches (non-replicate comparisons) in C. Panels with solid squares indicate replicate
comparisons (n = 7) and open squares indicate non-replicate comparisons (n = 41). These
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are only indicated for upregulated genes in MNs, but the same conditions were analyzed for
downregulated genes and V1 Renshaw and V2a in C.

C. Comparison of upregulated and downregulated genes sets among replicate comparisons
and non-replicate comparisons described in B. P-values were calculated using the Wilcox
test.

D. Left: Differentially expressed genes between ALS and control conditions for neuronal
subtypes MN, V1 Renshaw, V2a, and simulated bulk RNA-seq. Genes were categorized as
upregulated or downregulated by ALS, and Chow-Ruskey diagrams present the intersection
among each neuronal subtype as well as with bulk comparisons. Right: Euler diagrams
present the intersection of GO terms enriched among genes that are reproducibly
dysregulated by ALS uniquely within each neuronal subtype in the upregulated or
downregulated categories. Representative GO terms are displayed from each overlapping or
unique set. See Table S7TH-M for full set of uniquely enriched GO terms. No GO terms were
significantly enriched among genes upregulated or downregulated by ALS in bulk
comparisons, and no GO terms were enriched among genes uniquely downregulated by ALS
in VV2a interneurons. See Tables S3-7 and Methods for details on how differentially
expressed gene and GO lists were generated.

See also Figure S6 and Tables S3, S4, S5, S6, and S7.
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Figure 5. ALS iPSC-MN cultures exhibit transcriptional changes detectable in postmortem ALS

spinal MNs.
A. Hypergeometric test for each of 52 modules defined from

WGCNA on LC MNs (data set

A) from postmortem sporadic ALS (SALS) and non-ALS subjects (Ho et al., 2016) to detect
enrichment for ALS dysregulated genes from each of the neuronal subtype categories
identified in Figure 4D. Upper panel: WGCNA modules and the sample traits (SALS disease
status and PC1 sALS component) with which they are significantly associated outlined in
black rectangles (Pearson correlation between module eigengene and sample trait,
Bonferroni-adjusted P-value < 0.01). Z-summary value for each module measures the extent
of module preservation between data set A and B (Krach et al., 2018) (Figure 5B). Bar
graphs above and to the right indicate the number of genes represented in data set A and
SscRNA-seq data set, respectively. A matrix of P-values from hypergeometric tests performed
for each module to neuronal subtype category comparison were adjusted by the Benjamini—
Hochberg method, and subsequent A-values < 0.05 are marked as black squares in the

matrix.

B. Asin A, except for 32 modules define from data set B (Krach et al., 2018).

C. Euler diagram of intersecting gene sets among the Magenta module from data set A, the
Steelblue module from data set B, and the MN upregulated in ALS genes. P-values indicate
the likelihood of multi-set intersections using SuperExactTest (Wang et al., 2015). Genes are
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listed for overlapping sets, bolded genes are associated with the representative GO terms
listed below.

D. As in C, except among the Blue module from data set A (left), the Midnightblue module
from data set A (right), the Darkgreen module from data set B, and the MN downregulated
in ALS genes.

E. Split dot plots indicate percent of MNs within each sample that express a non-zero value
of each gene and also indicate the average gene expression among MNs within each sample
that express non-zero values of that gene.

F. Scatterplots depict gene expression in each LC MN sample from data set A (y-axis)
against the coordinate for that sample along the first principal component (PC1 SALS
component, x-axis). Prior to performing PCA on the expression data set, the ten genes
shown in this panel were removed from the expression matrix to eliminate autocorrelation.
SALS samples are colored red, and control samples are colored blue. The Spearman
correlation between expression and PC1 coordinate is indicated next to the gene symbol, and
the nominal P-value of the correlation is indicated below the gene symbol.

G. As in F, except applied to data set B.

See also Figure S6.
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Figure 6. ALS iPSC-MNs exhibit early transcriptional changes counteracting homeostatic

maturation and aging.

A. Euler diagram of intersecting gene sets among the Magenta, Blue, Midnightblue, or
Yellow modules from data set A, the MN dysregulated genes in ALS identified in Figure 4D,
and genes assigned to modules that significantly correlate with MN maturation and aging

(Ho et al., 2016). The number of genes within each set is indicated. ~values indicate the

2.50

-3.50

likelihood of multi-set intersections using SuperExactTest (Wang et al., 2015). Genes with
pathogenic variants in the ClinVar database are indicated on the right.
B. Heatmap of genes listed in A demonstrating expression kinetics as tissues progress from

embryonic, fetal, and adult spinal cord tissues (Ho et al., 2016). Pluripotent stem cells

(PSCs) include embryonic stem cells and iPSCs.
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Figure 7. Single-cell analysis of iPSC-MNs reveals predictive ALS marker genes.
A. Split dot plots indicate percent of MNs within each sample that express a hon-zero value

of each of six predictive marker genes. Plots also indicate the average gene expression
among MNs within each sample that express non-zero values of that gene.

B. Heatmap of five genes listed in A, along with NAVAT demonstrating expression Kinetics as
tissues progress from embryonic, fetal, and adult spinal cord tissues (Ho et al., 2016).
CARSZ2was not annotated in this data set. Pluripotent stem cells (PSCs) include embryonic
stem cells and iPSCs.

C - G. Receiver-operator characteristic (ROC) analysis performed on several data sets
classifying samples in each data set as ALS or non-ALS, based on sample coordinates along
the first, second, or both principal components using six predictive marker genes. See
methods for calculations. P-values for each area under the curve (AUC) are calculated using
the Mann-Whitney U test to determine whether the AUC differs significantly from 0.5
(diagonal grey line), which indicates an uninformative test. The number of samples for each
ALS and non-ALS case used in the analysis, along with their genotypes are indicated. The
number of genetically distinct subjects included in the analysis are indicated in parentheses.
Familial ALS subjects with pathogenic variants in C9orf72(C90), CHMPZB (CHM), FUS,
SOD1 (SOD), TARDBP (TDP). Sporadic ALS subjects with no known pathogenic variants
(SPO). Non-ALS control subjects (CTR). C9orf72 or SOD1 subject lines in which the
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pathogenic variant has been genome edited (ISO). Spinal muscular atrophy subjects
classified as non-ALS (SMA). C. ROC analysis performed on subpopulation data generated
from scRNA-seq data set based on a combined metric of average and percent expression for
the six predictive marker genes. D. ROC analysis performed on LC MN expression data sets
(Cox et al., 2010; Highley et al., 2014; Kirby et al., 2011; Krach et al., 2018; Rabin et al.,
2010). E. ROC analysis performed on mouse LCM MNs (Nardo et al., 2013). F. ROC
analysis performed on bulk RNA-seq data sets generated by the NeuroLINCS Consortium
for undifferentiated iPSCs (day 0), two MN differentiation protocols at days 18 and 90, and
iPSC-MNs from Fujimori et al., 2018; Kiskinis et al., and 2014; Shi et al., 2018. G. ROC
analysis performed on bulk proteomics data sets generated by the NeuroLINCS Consortium
for two MN differentiation protocols at days 18 and 90. ELAVL3 protein expression is used
as the prediction.

H - J. Representative images of lumbar spinal cord sections from control, sporadic, and
C9orf72 ALS subjects immunostained for ELAVL3 and counterstained with hematoxylin.
Scale bar, 2.5 mm for H, I, and J; 250 um for inset images H’, I’, and J’.

K. Comparative distributions of ELAVL3 optical densities.

See also Figure S7.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat polyclonal IgG anti-Human ISL1 R&D Systems AF1837; RRID:
AB_2126324

Mouse monoclonal IgG1 anti-NF-H (SMI-32) BioLegend 801701; RRID:
AB_2564642

Rabbit polyclonal 1gG anti-PHOX2B GeneTex GTX109677; RRID:
AB_1951223

Rabbit polyclonal 1gG anti-Human ELAVL3/HUC (for immunohistochemistry LSBio LS-C408905-50

staining)

Rabbit polyclonal IgG anti-CHX10 (VSX2) Novus NBP1-84476; RRID:
AB_11022841

Rabbit polyclonal IgG anti-SOX1 [EPR4766] GeneTex GTX62974

Goat polyclonal anti-ChAT Millipore AB144P; RRID:
AB_2079751

Rabbit polyclonal Poly(GP) N/A Rb9259

Biological Samples

Human lumbar spinal cord tissue sections UC San Diego N/A

Chemicals, Peptides, and Recombinant Proteins

mTeSR1 StemCell Technologies 85850

DMEM Thermo Fisher Scientific 11995081

IMDM Thermo Fisher Scientific 12440061

F12 Thermo Fisher Scientific 11765062

Neurobasal medium Thermo Fisher Scientific 21103049

B27 (+vitamin A) Thermo Fisher Scientific 17504044

N2 Thermo Fisher Scientific 1780240

NEAA Thermo Fisher Scientific 1114050

GlutaMax Life Tech 35050061

PSA Thermo Fisher Scientific 15240062

D-(+)-Glucose Sigma G7021

Y-27632 dihydrochloride Sigma Y0503

Y-27632 dihydrochloride Tocris 1254

CHIR99021 Xcess Biosciences M60002

LDN193189 Selleck S2618

SB431542 Stemgent 04-0010-10

SB431542 Cayman Chemicals 13031

Dorsomorphin Sigma P5499

SAG Sigma 566660

SAG Cayman Chemicals 11914

Retinoic acid Sigma R2625

All-trans retinoic acid Stemgent 040021
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REAGENT or RESOURCE SOURCE IDENTIFIER
BDNF R&D 248-BDB-005
BDNF Peprotech 45002

EGF Peprotech AF-100-15
FGF2 Peprotech 100-18B
GDNF Peprotech 45010
Ascorbic acid Millipore A4403
Compound E Calbiochem 565790
DAPT Cayman Chemicals 13917
Ara-C Sigma C1768
db-cAMP Millipore 28745
Purmorphamine Millipore 540220
Accutase Millipore SCR005
Versene Life Technologies 15040-066
Trypsin-EDTA solution Sigma T4049
Laminin (mouse) Millipore L2020
Poly-ornithine Sigma P4638
Matrigel (growth factor reduced) Corning 354230
Triton X-100 Sigma X100
Tween-20 Sigma P1379
Betaine hydrochloride Millipore B3501-100G
Diethyl pyrocarbonate Sigma D5758
ProLong™ Gold Antifade Mountant Thermo Fisher Scientific P36930
Citrisolv Thermo Fisher Scientific 04-355-121
Antigen Unmasking Solution, Tris-Based Vector Laboratories HH-3301
FBS Atlanta Biologicals 511150
Hematoxylin Thermo Fisher Scientific HHS128
Critical Commercial Assays

SureCell WTA 3’ Library Prep Kit for the ddSEQ System Illumina 20014280
Chromium Single Cell 3’ Library & Gel Bead Kit v2 10X Genomics PN-120237
Chromium Single Cell A Chip Kit 10X Genomics PN-120236
Chromium i7 Multiplex Kit 10X Genomics PN-120262
FastStart™ PCR Master Sigma 4710436001
TOPO™ TA Cloning™ Kit for Sequencing Sigma K457501
PrimeSTAR® HS DNA Polymerase (premix) Takara RO40A
Papain Dissociation System Worthington LK003150
PureLink RNA Mini Kit Thermo 12183018A
Promega Reverse Transcription System Promega A3500
IMMPRESS® HRP Horse Anti-Rabbit 1gG Polymer Detection Kit, Peroxidase Vector Laboratories MP-7401
ImmPACT® DAB Substrate, Peroxidase (HRP) Vector Laboratories SK-4105
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REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited Data
Single cell RNA sequencing data for iPSC-MN cultures This study, Gene GSE138121

Expression Omnibus

Experimental Models: Cell Lines

0083_CTR_CTR

Cedars-Sinai
Biomanufacturing Center

CS83iCTR-33nxx

0179_CTR_CTR

Cedars-Sinai
Biomanufacturing Center

CS0179iCTR-nxx

0025_CTR_CTR

Cedars-Sinai
Biomanufacturing Center

CS25iCTR-18nxx

0465_CTR_CTR

Cedars-Sinai
Biomanufacturing Center

EDi034-A

0028_C90_ALS

Cedars-Sinai
Biomanufacturing Center

CS28iALS-CInxx

0029_C90_ALS

Cedars-Sinai
Biomanufacturing Center

CS29iALS-CInxx

0029_ISO_CTR

Cedars-Sinai
Biomanufacturing Center

CS29iALS-
CInl.1ISOxx

0052_C90_ALS

Cedars-Sinai
Biomanufacturing Center

CS52iALS-C9nxx

0052_ISO_CTR

Cedars-Sinai
Biomanufacturing Center

CS52iALS-
CIn6.1SOxx

6ZLD_C90_ALS

Cedars-Sinai
Biomanufacturing Center

CS6ZLDIiALS-nxx

2XWC_SPO_ALS

Cedars-Sinai
Biomanufacturing Center

CS2XWCIALS-nxx

8BRM_SPO_ALS

Cedars-Sinai
Biomanufacturing Center

CS8BRMIALS-nxx

Oligonucleotides

C9orf72 Sanger sequencing primer forward: Sigma N/A
AAAGAACAGGACAAGTTGCCCCGCC
C9orf72 Sanger sequencing primer reverse: GCAGGCACCGCAACCGCAG Sigma N/A
C9orf72 repeat primed PCR anchor (forward): TACGCATCCCAGTTTGAGACG Sigma N/A
C90rf72 repeat primed PCR repeat-plus-anchor (forward) Sigma N/A
TACGCATCCCAGTTTGAGACGGGGGCCGGGGCCGGGGCCGGGG
C9orf72 repeat primed PCR rev-plus-6FAM (reverse) 6-FAM- Sigma N/A
AGTCGCTAGAGGCGAAAGC
C9orf72 total gPCR primer forward: CAGTGATGTCGACTCTTTG Sigma N/A
C9orf72 total gPCR primer reverse: AGTAGCTGCTAATAAAGGTGATTTG Sigma N/A
C90rf72 TV2 gPCR primer forward: CGGTGGCGAGTGGATATCTC Sigma N/A
C90rf72 TV2 qPCR primer reverse: TGGGCAAAGAGTCGACATCAC Sigma N/A
C90rf72 TV3 gPCR primer forward: GTGTGGGTTTAGGAGATATC Sigma N/A
C90rf72 TV3 gPCR primer reverse: TGGGCAAAGAGTCGACATCAC Sigma N/A
RPL13A gPCR primer forward: CCTGGAGGAGAAGAGGAAAGAGA Sigma N/A
RPL13A gPCR primer reverse: TTGAGGACCTCTGTGTATTTGTCAA Sigma N/A
C9orf72 sense FISH probe Product #500150, Exiqon | 5TYE563/
Inc. Woburn, MA, USA ggCCGGCCCCGGCC
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REAGENT or RESOURCE SOURCE IDENTIFIER
C9orf72 antisense FISH probe Product #500150, Exiqon | 5TYE563/
Inc. Woburn, MA, USA GGGGCCGGGGCCG
GGG

Recombinant DNA

pSpCas9(BB)-2A-GFP (PX458) plasmids Addgene plasmid # 48138;
RRID: Addgene_48138

Software and Algorithms

RStudio N/A https://rstudio.com

Seurat version 2.3.0

Butler, et al., 2018.
PMID: 29608179

https://github.com/
satijalab/seurat/
releases/tag/v2.3.0

Monocle 2.12.0

Qiuetal., 2017. PMID:
28114287

http://cole-trapnell-
lab.github.io/monocle-
release/docs

Illumina bcl2fastq

Illumina

https://
support.illumina.com/
sequencing/
sequencing_software/
bcl2fastg-conversion-
software.html

Illumina Single-Cell RNA Seq BaseSpace Workflow (v1.0.0)

Illumina

https://
basespace.illumina.com

STAR Aligner v2.5.1 and v2.5.2b

Dobin et al., 2013.
PMID: 23104886

https://github.com/
alexdobin/STAR

10X Genomics Cell Ranger (v2.1.0)

10X Genomics

https://
support.10xgenomics.c
om/single-cell-gene-

expression
Fiji ImageJ Schindelin, Arganda- https://fiji.sc
Carreras, and Frise et al.,
2012. PMID: 22743772
DESeq Anders and Huber, 2010. http://bioconductor.org/
PMID: 20979621 packages/release/bioc/
htmI/DESeq.html
\ennerable N/A https://github.com/
Js229/Vennerable
WGCNA Langfelder and Horvath, https://
2008. PMID: 19114008 horvath.genetics.ucla.ed
u/html/
CoexpressionNetwork/
Rpackages/WGCNA
SuperExactTest Wang, Zhou, and Zhang, https://github.com/
2015, PMID: 26603754 mw201608/
SuperExactTest
ROCR Sing et al., 2005. PMID: https://rocr.bioinf.mpi-

16096348

sh.mpg.de

psych 1.9.12.31 Revell, 2019. https://
www.rdocumentation.o
rg/packages/psych/
versions/1.9.12.31

Seurat Wrappers version 0.2.0 N/A https://github.com/

satijalab/seurat-
wrappers

Harmony

Korsunsky et al., 2019.
PMID: 31740819

https://github.com/
immunogenomics/
harmony
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

kBET version 0.99.6

Biittner et al., 2019.
PMID: 30573817

https://rdrr.io/github/
theislab/kBET

Custom R scripts

This study

https://github.com/
ritchieho/
2020_scRs_iPSC_ALS
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