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Summary

Induced pluripotent stem cell- (iPSC) derived neural cultures from amyotrophic lateral sclerosis 

(ALS) patients can model disease phenotypes. However, heterogeneity arising from genetic and 

experimental variability limits their utility, impacting reproducibility and the ability to track 

cellular origins of pathogenesis. Here, we present methodologies using single-cell RNA-
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sequencing (scRNA-seq) analysis to address these limitations. By repeatedly differentiating and 

applying scRNA-seq to motor neurons (MNs) from healthy, familial ALS, sporadic ALS, and 

genome-edited iPSC lines across multiple patients, batches, and platforms, we account for genetic 

and experimental variability towards identifying unified and reproducible ALS signatures. 

Combining HOX and developmental gene expression with global clustering, we anatomically 

classified cells into rostrocaudal, progenitor, and postmitotic identities. By relaxing statistical 

thresholds, we discovered genes in iPSC-MNs that were concordantly dysregulated in postmortem 

MNs and yielded predictive ALS markers in other human and mouse models. Our approach thus 

revealed early, convergent, and MN-resolved signatures of ALS.

Graphical Abstract

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by 

cortical and spinal motor neuron (MN) death resulting in weakness and paralysis of 

voluntary muscles (Ragagnin et al., 2019; Swinnen and Robberecht, 2014). While numerous 

molecular pathways and cell types associated with ALS have been described, definitive 

mechanisms responsible for MN degeneration remain elusive (Taylor et al., 2016). The vast 

majority of ALS cases are sporadic, with no known genetic link. In familial cases, ALS can 
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be traced to a set of genetic mutations, for instance GGGGCC hexanucleotide repeat 

expansions (HREs) in the intronic sequence between alternate 5' exons in C9orf72, a gene 

that regulates endosomal trafficking and autophagy. Furthermore, symptom onset for both 

familial and sporadic ALS varies across body regions, thereby compounding difficulty in 

discerning disease etiology. Despite this variation, common clinical presentations are 

observed across familial and sporadic cases, suggesting that molecular features may 

converge across ALS patients.

Induced pluripotent stem cells (iPSCs) derived from ALS patients carry great potential to 

experimentally model molecular events underlying ALS pathogenesis. However, identifying 

early, MN-resolved, and reproducible gene expression changes has posed challenges. First, 

iPSC-differentiated tissues do not recapitulate mature and adult-like states (Ho et al., 2016; 

Stein et al., 2014). This suggests that signals representing dysfunctional physiologies 

experienced by in vivo tissues in late onset diseases may not be recapitulated with high 

fidelity in in vitro disease models. Second, recent studies investigating transcriptomic ALS 

signatures in human iPSC models have profiled cultures in bulk (Fujimori et al., 2018) or 

transgenically labeled MNs (Kiskinis et al., 2014; Shi et al., 2018), all of which were 

performed at time points where overt disease phenotypes such as neurite degeneration of cell 

death have emerged. Bulk transcriptomic profiles cannot distinguish whether disease 

signatures originate from MNs or other cell types in culture, and sampling after prolonged 

differentiation times cannot distinguish early transcriptomics events from secondary 

transcriptomic events responding to the overt disease phenotypes observed at these times. 

Thirdly, studies using iPSC models have rarely addressed whether experimental variations in 

expression data arising from repeated differentiations or transcriptomic profiling platforms 

could impact the reproducible biology of disease signatures (Volpato and Webber, 2020).

Here, we overcome these challenges and present an approach for generating iPSC-based 

experimental models of ALS that exhibit early, MN-specific, and reproducible 

transcriptomic disease signatures. We differentiated MNs from iPSCs derived from patients 

with familial ALS, sporadic ALS, healthy controls, and CRISPR-Cas9-edited C9orf72 
HREs. These cultures were profiled using single-cell RNA-seq (scRNA-seq) at the earliest 

time when postmitotic neurons arise and exhibit no degeneration. We validated that iPSC-

derived MNs (iPSC-MNs) express appropriate fetal hindbrain and spinal cord development 

markers. Analyzing this data uncovered early transcriptional signatures of ALS in MNs, 

which were distinctive from interneuron subtypes that are concomitantly differentiated in 

culture. These were verified in gene expression data sets from other human iPSC-MN 

models, mouse models, and postmortem patient samples, demonstrating that these signatures 

persist from early to endstage disease in both familial and sporadic ALS. In total, our results 

highlight the utility of iPSC-based experimental models to capture early, dysregulated gene 

expression in MNs common across a wide range of ALS patients.

Results

Production of control, sporadic, C9orf72 ALS and isogenic iPSC derived MNs

MNs were differentiated from iPSCs reprogrammed from either fibroblasts or peripheral 

blood monocytes from four healthy subjects: 0083, 0179, 0025, and 0465, two sporadic ALS 
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subjects: 2XWC and 8BRM, and four familial ALS subjects with C9orf72 HRE: 0028, 

0029, 0052, and 6ZLD (Table S1 and Figure 1A). To isolate C9orf72 HRE effects from 

inherent genetic variability, isogenic patient lines were established from two C9orf72 ALS 

lines (0029 and 0052) using CRISPR-Cas9-mediated gene editing to remove the HREs 

(Table S1 and Figure S1A). Edited iPSC clones were kayotypically normal (Figure S1B-E), 

and retained the ability to differentiate into MNs over a 30 day in vitro differentiation 

protocol (Yang et al., 2013) at a comparable efficiency to parental C9orf72 ALS cell lines 

(Figure S2A). Removal of the HREs resulted in two-fold increased expression of all C9orf72 
transcript variants back to levels observed in normal controls (Figures S2B and S2C) and 

eliminated sense and antisense RNA foci (Figures S2D and S2E). Furthermore, polyGP 

dipeptide repeats, which accumulated in C9orf72 ALS MN cultures (Figure S2F), were 

reduced to control subject levels (Figure S2G). Isogenic MN cultures thus enabled direct 

attribution of molecular phenotypes to HREs in parental C9orf72 ALS lines.

iPSC-derived MN cultures recapitulate developmental gene expression patterns

Next, MN differentiations from iPSCs (iPSC-MNs) were characterized at the single-cell 

level with the Illumina® Bio-Rad® SureCell™ WTA 3' Library Prep Kit for the ddSEQ™ 

System for one control line (0083) using a more rapid 18 day differentiation protocol that 

produces cranial and spinal MNs and interneurons (Maury et al., 2015) (Figure 1B). 

Consistent with previous observations, pluripotent cells undergo a reduction in overall 

transcriptional activity upon differentiation, suggesting a refinement of transcriptional 

programs from the pluripotent to progenitor state (Efroni et al., 2008) (Figures 1C and 1D). 

Unique molecular identifiers (nUMIs) per cell increased between days 12 and 18, suggesting 

a state of specialized physiology and functions. Global clustering resolved each time point 

into distinct clusters, where day 12 and day 18 populations further resolved into 

subpopulations (Figure 1E). Pseudotime analysis of cells from all time points through 

Monocle (Qiu et al., 2017) arranged each time point in the expected order of progressively 

differentiating cell states (Figure 1F). 20 marker genes for spinal MN development and 

maturation (Ho et al., 2016) were expressed along the pseudotime axis in a pattern 

consistent with fetal-like tissues derived in vitro from iPSCs (Figure S3A).

iPSC-MN cultures globally resemble fetal hindbrain and spinal cord

We next performed scRNA-seq on MN cultures from several ALS and control subject lines 

at 18 days of differentiation in order to establish a pool of single cells we could use to 

determine regional specificity along the rostrocaudal axis of the neural tube as well as the 

presence of ALS signatures (Table S1 and Figure 1G). Because only a finite amount of 

samples could be captured and processed within each experiment, we collected samples 

across six batches of differentiation (A-F). We also aimed to establish the robustness of any 

signal across two different scRNA-seq platforms: the Illumina Bio-Rad Single-Cell 

Sequencing Solution (DDSEQ) and the 10X Genomics Chromium (10X) (Table S1 and 

Figure 1G). Immunostaining and quantification of day 18 cultures indicated no significant 

differences in ISL1 and SMI-32 positive MNs between ALS and control. This suggests that 

an overt disease phenotype such as cell death, as shown in previous studies (Fujimori et al., 

2018; Sareen et al., 2013), has not manifested at this relatively early differentiation time 

point (Figure S3B). In total, we analyzed 21,702 cells that passed quality control filters. 
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These filters required that A) genes not expressed in any cell in any sample were excluded, 

and B) cells with 1) percent mitochondrial genes, 2) total number of expressed genes, and 3) 

total number of UMIs that were greater or less than three standard deviations of the sample 

population were excluded (see Methods for details). To gauge the developmental and 

maturation states of these cultures, we correlated their expression profiles to spinal MN 

maturation gene expression (Ho et al., 2016) (Figures S4A and S4B) and to fetal hindbrain 

and spinal cord tissue ranging from Carnegie stages 13 to 23 (de Kovel et al., 2017) (Figure 

1H). By 18 days, iPSC-derived cells showed transcriptional states that most globally 

resemble fetal hindbrain and spinal cord tissue at Carnegie stage 17, or about 42 days of in 
vivo development.

In order to establish the rostrocaudal identity of individual cells, we focused on the family of 

homeobox (HOX) transcriptional regulators of morphological patterning. Based on previous 

genetic studies (Di Bonito et al., 2013; Lippmann et al., 2015; Philippidou and Dasen, 

2013), we composed a model for relative HOX gene expression along rhombomeres two to 

eight of the developing hindbrain and cervical to caudal segments of the spinal cord (Figures 

2A, 2B, and Table S2A). RNA expression levels of each HOX gene in the fetal hindbrain 

and spinal cord samples from de Kovel et al., 2017 were consistent with our model, and 

classification of segment identity based on the highest correlation for each sample resolves 

the sample types (Figures 2B and 2C). While correlation of bulk profiles from day 18 iPSC-

MN cultures suggested that cultures globally resembled hindbrain more than spinal cord, we 

hypothesized that some rare cells may have differentiated into more caudal identities. We 

therefore applied this classification approach for each cell in the day 18 cultures. These 

results indicated that while a majority of cells (33.19%) were not assigned (NA) categories, 

either due to a lack of any detectable HOX gene expression or failure to meet the correlation 

cutoff, the second majority of cells (25.75%) were classified as rhombomere eight, and a 

third majority of cells (10.78%) were classified as the cervical segment (Figure 2C and Table 

S2C). Notably, there were some cells classified as brachial (1.32%) and thoracic (1.40%) 

segments, suggesting that the 18 day protocol can achieve differentiation into cell types 

within the spinal cord that reflect upper limb sites of disease onset for most subjects 

represented in this study (Table S1). However, no cells classified as lumbar segment, 

possibly due to the early differentiation time point of these cultures.

Developmental gene expression profiles and global clustering classify ventricular zone 
(VZ) progenitor and mantle zone (MZ) postmitotic neuronal identities

The induction of neural differentiation occurs after embryonic regionalization of the 

anterioposterior axis (Metzis et al., 2018). The programmed expression of genes encodes a 

two-dimensional coordinate system of morphogen gradients regulating dorsoventral and 

mediolateral axes and progression of neural progenitors to postmitotic neurons in a 

representative spinal cord segment (Alaynick et al., 2011; Lu et al., 2015) (Figures 2A, S5A, 

and Table S2B). We resolved individual neural identities using 105 of these genes. By 

correlating each cell type in our model with one another based on these genes, these profiles 

can systematically distinguish each identity (Figure S5B). Assignment of individual cells 

along the 18 day differentiation to either VZ progenitors or MZ postmitotic neurons 

illustrated a cell fate progression consistent with the functions of morphogenic components 
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used during induction (Figures 1B, 3A, and Table S2C). Few astrocytes were seen (Figure 

3A) indicating the rapid 18 day differentiation did not promote a glial program.

Additionally, we used unsupervised global gene expression profiles to unbiasedly cluster 

distinct identities present in day 18 cultures. However, dimensional reduction and projection 

using principal component analysis (PCA) and t-distributed stochastic neighbor embedding 

(tSNE) of raw expression data primarily separated cells based on single-cell technology 

platform (Figure S3C). This was despite comparable UMIs and genes per cell, albeit 

DDSEQ had a higher fraction of reads aligning to intergenic regions (Figure S3D). 

Experimental batch effects were also evident for samples processed within the same 

platform (Figure S3C). This highlighted the need to correct the scRNA-seq expression data 

prior to discovering common variations between ALS and control conditions. To this end, 

we compared several approaches to correct for experimental batch and platform effects, 

including multi-canonical correlation analysis (MultiCCA) in Seurat (Butler et al., 2018), 

Harmony (Korsunsky et al., 2019), Liger (Welch et al., 2019), and FastMNN (Haghverdi et 

al., 2018) (Figure S3C). Evaluation of batch integration using either a Chi-squared test 

(kBET) or average silhouette width (Büttner et al., 2019) (Figure S3E), revealed that most 

methods improved batch correction over uncorrected data. Seurat 2 (MultiCCA) ranked as 

the 2nd best method assessed by kBET and the best performing method assessed by average 

silhouette width (Figure S3E). We therefore continued subsequent analyses on data corrected 

by MultiCCA, which also effectively integrated samples, case and controls, genotypes, and 

cell lines (Figure S5C). By optimizing clustering parameters after batch correction to yield a 

maximum modularity value of all communities (Blondel et al., 2008; Waltman and van Eck, 

2013), this analysis revealed four major populations of cells that distinctly expressed genes 

associated with a variety of gene ontology (GO) terms (Figures 3B-D, S3F, S5D, and Table 

S2C). Overlaying marker gene expression on tSNE plots further demonstrated that batch 

integration using MultiCCA generated tight clusters of neuronal cells (STMN2), neural 

progenitors (SOX2), and smooth muscle-like cells (TAGLN), suggesting that cluster 

generation is driven more by cell identity than by batch effects once data has been corrected 

(Figure S3G). Altogether, these analyses enable the resolution of major populations present 

in this rapid differentiation protocol, identifying not only postmitotic neurons generated 

from iPSCs, but also persistent progenitors and another population of non-neuronal cells.

In order to specifically detect neuronal subtype signatures in these cultures, we repeated 

subpopulation detection by removing non-neuronal cells and progenitors and then 

performing a new batch correction and global clustering. This analysis assigned 18 major 

populations of cells (Figures 3E, S5E, and Table S2C). Six of the VZ and MZ labels formed 

patterns in the tSNE that visually overlapped with globally defined clusters. We therefore 

renamed them based on these observations (Figure 3F-3H and Table S2C). For example, 

cells assigned as MNs of the lateral motor column (MN LMC) were enriched in clusters 0, 

4, 7, 11, 15, and 17, and these cells expressed MN markers PHOX2B (Pla et al., 2008) and 

ISL1 (Liang et al., 2011). We therefore renamed this group MN hereafter (Figure 3G). 

Immunostaining cultures confirmed protein co-expression of PHOX2B with ISL1, and 

distinct expression of V2a and V2c interneuron markers VSX2 and SOX1, respectively 

(Figure S6A). Overall, based on overlapping classifications and expression of key marker 

Ho et al. Page 6

Cell Syst. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes, subsets of the 18 populations were merged to assign seven major populations (Figure 

3G and Table S2C).

We then assessed whether cells classified as MN, when segregated from the rest of the 

culture, showed more of an adult MN expression profile than if all cells were analyzed in 

bulk. By correlating only pooled MN expression profiles to our previously characterized 

data set (Ho et al., 2016), MNs were significantly more correlated to in vivo adult MNs 

(Figures 3I, S4C-E). By subsetting cells into seven populations, reanalysis of rostrocaudal 

identity based on HOX gene expression demonstrated that distributions of hindbrain and 

spinal cord segments are largely consistent across all populations (Figure 3J). Cluster 1, V1 

Renshaw, V2a, and V2c populations contained a modest number of cells resembling brachial 

and thoracic identities. These results highlight the value of scRNA-seq in resolving cell 

types to enable more accurate measures of similarity between in vitro iPSC-derived models 

and in vivo cell types.

Pooling sparse transcriptional changes detected by scRNA-seq defines cell type-specific 
ALS responses

Having defined seven populations, we performed differential gene expression between ALS 

and control conditions. After dividing each population into ALS and control groups, 

comparable numbers of cells remained for each condition (Figure 4A), supporting results 

determined by protein immunostaining for MN markers at this time point (Figure S3B). 

Tracking scRNA-seq platforms also demonstrated equal representation of ALS and control 

groups assayed within each platform (Figure 4A). There were sufficient numbers of MNs, 

V1 Renshaw, and V2a interneurons from each experimental batch to perform differential 

gene expression analysis, and we focused on analyzing gene expression changes in these 

populations. The Pearson correlation profiles for these cell types based on 105 marker genes 

are reasonably distinct (MN LMC vs. V1 Renshaw: 0.38, MN LMC vs. V2a: 0.36, V1 

Renshaw vs. V2a: 0.40) (Figure S5B). Conducting comparisons between ALS and control 

conditions (which included isogenic C9orf72 HRE-corrected lines) yielded genes called 

significantly differentially expressed (data not shown). However, latent categorical variables 

such as experimental batch and scRNA-seq technology platform effects mainly drove these 

differences, illustrating the pitfalls of performing differential gene expression analysis 

without accounting for these properties. Thus, we next applied a meta-analysis approach by 

conducting comparisons between ALS and control or isogenic samples within each 

experimental batch and cataloged genes called significant (Figure 4B and Tables S3-7). For 

each ALS to control comparison (sporadic ALS samples presented in orange, C9orf72 ALS 

samples in magenta, control samples in black, and isogenically corrected HRE samples in 

green), the list of significantly upregulated genes (enumerated in red) were intersected with 

all other ALS to control comparisons, and the red heatmap indicates the Jaccard index, a 

measure of overlap between gene sets (Figure 4B). A similar analysis was performed on 

downregulated genes (enumerated in blue) and presented in the blue heatmap. The number 

and concordance of genes called significantly dysregulated were highly variable across 

several comparisons, including repeated comparisons performed between two subject lines 

across different experimental batches (Figure 4B, 4C, and Table S6). While there is a slight 

trend in increased Jaccard indices when replicate comparisons are analyzed (Figure 4C), this 
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indicated that despite assaying the same genetic comparisons, batch effects are evident, 

which may have arisen either by distinct biological responses to repeated differentiation 

experiments or by distinct technical effects across sample processing, both within and across 

commercial scRNA-seq platforms. Furthermore, there was low concordance of dysregulated 

genes when C9orf72 ALS lines were compared directly to their isogenically corrected lines. 

This observation highlights a challenge in detecting a reproducible gene expression 

signature of the C9orf72 HRE using scRNA-seq analysis of iPSC models, even when genetic 

variation is controlled.

Given the sparseness of genes that were reproducibly dysregulated across experimental 

batches, we next cataloged and pooled upregulated and downregulated genes called 

significant in at least two ALS to control or isogenic sample comparisons. This was done for 

C9orf72 ALS lines (12 comparisons) and sporadic ALS lines (9 comparisons) (Tables S3, 

S4, and S5). Since our goal was to find early, convergent signatures across familial and 

sporadic forms of ALS, we respectively compared the extent of overlap between upregulated 

and downregulated gene sets for each category between C9orf72 ALS and sporadic ALS 

conditions. Through hypergeometric testing, all comparisons indicated that gene sets 

cataloged for both ALS conditions overlapped significantly (Figure S6B). We therefore 

combined the sparse set of differentially expressed genes from C9orf72 ALS lines together 

with sporadic ALS lines to amass gene sets large enough to pursue subsequent enrichment 

analyses. To this end, we cataloged and pooled genes called significant in at least two of the 

21 ALS to control or isogenic sample comparisons drawn across all scRNA-seq 

experiments. With this approach, we generated a list of upregulated and downregulated 

genes for each of these three majority populations in our cultures (Tables S6 and S7A), and 

we compared these gene lists across all three populations (Figure 4D). Furthermore, we 

compared these gene lists to differentially expressed genes calculated by bulk analysis of all 

cells (Table S7A). This comparison demonstrated ALS can induce some overlapping but 

mostly distinct gene expression changes in each of the three iPSC-derived neuronal 

populations. Resolving cells into subpopulations was necessary to detect reproducibly 

disrupted genes, because analysis on the bulk expression profiles of the whole culture did 

not yield a high number of genes in either upregulated or downregulated categories (Figure 

4D and Table S7A).

GO analysis on the entire list of upregulated or downregulated genes from each cell type 

determined overlapping and distinct GO terms enriched among each list (Figure S6C and 

Table S7B-G). Analysis on the upregulated and downregulated genes that were unique to 

each cell type further refined GO terms (Figure 4D and Table S7H-M). Components 

involved with translation and ribosomal subunits were commonly enriched among 

upregulated genes in all three neuronal cell types, but functions in cholesterol and isoprenoid 

synthesis were enriched among genes uniquely upregulated in V1 Renshaw interneurons. 

While translational components were also enriched among genes downregulated in all three 

neuronal cell types, components of neuronal processes including dendrite and growth cone 

were enriched among genes uniquely downregulated in MNs.
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ALS iPSC-MN cultures exhibit transcriptional changes detectable in postmortem ALS 
spinal MNs

We next tested the pathological relevance of these iPSC-MN defined gene sets by examining 

postmortem, adult spinal MNs. In previous work, we defined 52 co-expression modules 

using Weighted Gene Co-expression Network Analysis (WGCNA) (Zhang and Horvath, 

2005) from laser capture micro-dissected MNs (LC MNs) from postmortem sporadic ALS 

and control subjects (Ho et al., 2016; Rabin et al., 2010), herein referred to as data set A. 

Some of these modules significantly correlated or anti-correlated to a principal component 

that distinguished sporadic ALS from control conditions. We systematically tested whether 

each list of upregulated or downregulated genes from MNs, V1 Renshaw, and V2a 

interneurons were enriched in each of the 52 modules (Figure 5A). Markedly, genes 

upregulated and downregulated by ALS in MNs were significantly enriched among modules 

that were respectively upregulated and downregulated by sporadic ALS in postmortem 

spinal MNs. This concordant response to ALS was not observed for V1 Renshaw and V2a 

interneurons. A repeated analysis between our scRNA-seq data set and an independent but 

similar postmortem study (Krach et al., 2018), herein referred to as data set B, demonstrated 

reproducibly concordant gene expression changes (Figure 5B). The robustness of networks 

defined in each of the postmortem data sets were also examined using module preservation 

z-statistics (Langfelder et al., 2011), which indicates the likelihood that the network 

structures of each module occurred by random chance. The most significantly overlapping 

modules, namely the Magenta, Midnightblue, Blue (Figure 5A), and Darkgreen modules 

(Figure 5B) possessed some of the most preserved network structures across data sets A and 

B (Figures S6D and S6E), suggesting they support critical functions in MNs. Dysregulation 

of these network genes in iPSC-MNs suggests that their disruption by ALS conditions 

occurs as early as embryonic development.

A closer examination of upregulated genes overlapping among the Magenta module in data 

set A, the Steelblue module in data set B, and MNs highlighted genes previously implicated 

in ALS and other motor neuropathies, and the overlapping genes and GO terms enriched 

among them are consistent with reports of disrupted mRNA and protein processing 

pathways (Deshaies et al., 2018; Kim et al., 2013, 2008; Montibeller and de Belleroche, 

2018) (Figure 5C). Similarly, examination of downregulated genes overlapping among the 

Blue and Midnightblue modules in data set A, the Darkgreen module in data set B, and MNs 

highlighted genes previously implicated in ALS (Lederer et al., 2007; Saris et al., 2009; 

Umahara et al., 2016) (Figure 5D). The GO term regulation of neuronal projection 

development was significantly represented among the overlapping, downregulated genes 

(Figure 5D), consistent with recent models suggesting that deficiencies in maintaining 

axonal projections may underlie ALS (Klim et al., 2019; Melamed et al., 2019).

Auditing the average expression as well as percent expression of these overlapping genes in 

MNs demonstrated their dysregulation in ALS conditions (Figure 5E). Neuronatin (NNAT), 

which has been associated with neuronal development as well as degeneration (Joseph, 

2014), was upregulated in ALS MNs in the greatest number of ALS to control comparisons 

(Table S6A) while not observed as belonging to any modules significantly associated with 

sporadic ALS in postmortem data sets. Auditing the expression of ten overlapping genes in 
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LC MNs from data sets A and B demonstrated high correlation between their expression and 

the first principal component that distinguishes sporadic ALS from control conditions 

(Figures 5F and 5G), further supporting the efficacy and fidelity of our discovery approach. 

A deeper investigation into the module genes disrupted in sporadic ALS conditions revealed 

a significant enrichment of module genes previously associated with spinal MN maturation 

and aging (Ho et al., 2016) (Figure 6). Genes involved with neurite growth, axon guidance, 

and neurotransmitter release, which were classified into co-expression modules that 

significantly correlated with spinal MN maturation and aging were also found to be 

downregulated in postmortem, sporadic ALS conditions (Ho et al., 2016). Since these genes 

were observed as downregulated in iPSC-MNs from ALS subjects, this suggests that 

disruptions to homeostatic processes that occur after fetal developmental stages are already 

occurring in MNs and thereby priming them for disease during later stages of life. 

Altogether, these data indicate that scRNA-seq analysis of iPSC-MNs can detect early ALS-

signatures affecting important maturation and age-related gene expression networks whose 

disruption can possibly lead to MN degeneration.

Predictive ALS markers are detectable in iPSC-MNs

While pooling of sparsely dysregulated genes in iPSC-MNs enriched for concordantly 

dysregulated genes in postmortem MNs, the average expression of these genes in each cell 

and the percent of cells expressing each gene varied considerably across subject lines 

(Figure 5E). This demonstrated a challenge in discovering consistently dysregulated genes 

by applying a significance threshold on a sample to sample basis across many scRNA-seq 

samples. We therefore took an alternative approach to discover genes that are consistently 

altered in iPSC-MNs from ALS subjects. We considered a combined expression score that 

reflected the average expression and percent expression for each gene in the MN populations 

at day 18 per subject (n = 22) in the scRNA-seq data set (see Methods). We then performed 

t-tests comparing combined expression scores between all ALS and control and isogenic 

samples and ranked them by increasing nominal p-values. Among the top 20 ranking genes, 

we found six genes were concordantly downregulated in ALS conditions in data sets A and 

B, and they exhibited more uniform downregulation in ALS iPSC-MNs compared to 

controls (Figure 7A). We found no genes concordantly upregulated in all three data sets. 

Observing expression kinetics of these genes over the course of embryonic, fetal, and adult 

spinal cord tissues (Ho et al., 2016) showed that some positively correlated with spinal MN 

maturation (ADCYAP1, ELAVL3, and NUAK1), DNMT3B anti-correlated with spinal MN 

maturation, and NDUFAF5 as well as NNAT were upregulated during fetal spinal cord 

stages (Figure 7B).

The classification accuracy of ALS cases versus controls, as measured by the area under the 

curve (AUC), using PCA based on these six genes was significant in the MN population 

(Figures 7C and S7A). However, classification accuracy of ALS cases versus controls was 

not significant in V1 Renshaw, V2a, or by using bulk expression data (Figures 7C and S7A). 

Classification of sporadic ALS cases versus control postmortem adult spinal MNs in data set 

A (Rabin et al., 2010) and data set B (Krach et al., 2018) was also significant (Figure 7D and 

S7B). These results were expected, because the classifier genes were defined by these data 

sets. However, validating the accuracy of these six genes in classifying external test data sets 
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would underscore their predictive power. In separate test data sets of postmortem adult 

spinal MNs from familial and sporadic ALS cases, which include variants in C9orf72, 
CHMP2B, and SOD1 (Cox et al., 2010; Highley et al., 2014; Kirby et al., 2011), 

classification using these genes significantly distinguished ALS from control subjects 

(Figures 7D and S7B). Additionally, in a disease progression study of SOD1G93A 

transgenic mouse spinal MNs (Nardo et al., 2013), classification of ALS versus control 

conditions based on these genes increased accuracy as mice progressed to disease endstage 

(Figures 7E and S7C). We also focused analysis on these genes from the NeuroLINCS 

Consortium bulk RNA-seq data set (Keenan et al., 2018), which analyzed undifferentiated 

human iPSCs and iPSCs differentiated into MN cultures over 18 days. This demonstrated 

that ALS could not accurately be distinguished from control conditions (Figure 7F and 

S7D). However, using a longer iPSC-MN differentiation protocol (Sareen et al., 2013) where 

cultures were extended up to 90 days and again profiled by bulk RNA-seq, analysis of these 

six genes demonstrated a significant accuracy in classifying ALS cases from control as well 

as from spinal muscular atrophy cases (Figures 7F and S7D). Additionally, these signature 

genes could distinguish SOD1A4V ALS patient samples from zinc-finger nuclease corrected 

isogenic samples in iPSC-derived, HB9-RFP positive MNs at 39 days of differentiation 

(Kiskinis et al., 2014) (Figures 7F and S7D). Similarly, these genes also distinguished 

C9orf72 ALS patient derived, HB9-RFP positive MNs from control samples, and further 

distinguished isogenic control samples in which one or two copies of the C9orf72 HRE were 

targeted into the genome with CRISPR-Cas9 (Shi et al., 2018) (Figure 7F). Finally, this 

panel of genes distinguished control subject iPSC-MN cultures from sporadic and familial 

ALS subjects, including those with variants in FUS, SOD1, and TARDBP (Fujimori et al., 

2018) (Figures 7F and S7B). Among the six genes quantifiable by RNA in all expression 

data sets tested, ELAVL3 was the only gene quantifiable as a protein when analyzing the 

NeuroLINCS proteomics data sets at 18 and 90 days of differentiation. Classification of 

iPSC-MN cultures based solely on ELAVL3 protein expression demonstrated that it was an 

accurate classifier for ALS versus control only in extended cultures at 90 days, where it was 

also decreased in ALS conditions (Figure 7G). However, analysis of ELAVL3 RNA alone 

showed less overall accuracy when compared to joint RNA analysis of all six genes (Figures 

S7E-H). Lastly, decline in ELAVL3 protein per MN was also detectable in postmortem 

spinal cords in both sporadic and C9orf72 ALS cases versus control (Figures 7H-7K). 

Altogether, these data reveal that despite globally resembling in vivo fetal tissue, single-cell 

analysis of iPSC-MNs can model early, common signatures of familial and sporadic ALS 

that persist into the endstage of disease.

Discussion

Recent scRNA-seq studies have characterized diverse neuronal populations in in vivo mouse 

spinal cords (Delile et al., 2019; Sathyamurthy et al., 2018). However, scRNA-seq has not 

been used to rebuild the spinal cord from complex cell mixtures in cultures differentiated 

from iPSCs. Our approach described here is ideally suited to achieve this goal and 

demonstrates initial steps toward building a human iPSC-based cellular atlas of the 

developing hindbrain and spinal cord to provide an anatomical context for human embryonic 

development as well as disease modeling. This anatomical classification lays the foundation 
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for future work with iPSC models to investigate instrinsically different physiologies across 

regions of the hindbrain and spinal cord.

As variable molecular readouts caused by genetic background is becoming increasingly 

acknowledged by experimentalist in human iPSC disease modeling, experimental design 

must account for the genetic backgrounds of several individual subjects as well as isogenic 

controls in order to isolate reproducible disease-related effects (Fujimori et al., 2018; 

Kiskinis et al., 2014; Shi et al., 2018). In line with this outlook, we incorporated iPSC lines 

from several ALS and control subjects and repeatedly assayed MN differentiations , aiming 

to detect reproducible transcriptional signatures in distinct cellular subpopulations. However, 

repeated experimental sampling presented the challenge of coping with batch effects, which 

in the process of scRNA-seq analysis, severely affected global clustering approaches towards 

cell type annotation such as Louvain community detection and tSNE dimensionality 

reduction (Hicks et al., 2018; Luecken and Theis, 2019). We alleviated these effects through 

MultiCCA (Butler et al., 2018) and other batch correction methods. This shows the 

feasibility of integrating scRNA-seq data generated from iPSC models across several 

experimental batches and platforms, demonstrating a suitable approach for consortia-driven 

projects.

Recent iPSC-based transcriptomic reports performed RNA profiling at time points during 

differentiation concomitant with various observed ALS phenotypes which include nuclear 

RNA foci (Sareen et al., 2013), decreased neurite length (Fujimori et al., 2018), reduced 

neurite repair after injury (Klim et al., 2019; Melamed et al., 2019), and MN death (Kiskinis 

et al., 2014; Shi et al., 2018). Several of these protocols differentiated iPSCs for over 30 

days, and many required a relatively prolonged maturation phase, the presence of glia, and 

additional stressor conditions in order to provoke a disease phenotype. Thus, it is unclear 

whether the transcriptional events observed precede the disease phenotypes, are 

concomitant, or are immediate consequences of other prior events. We elected to profile 

transcription in postmitotic MNs at an earlier point, day 18 at which their identity was 

established and in the absence of glial cells. This event was demonstrated as early as day 14 

of differentiation (Maury et al., 2015). Our approach satisfied two objectives. One was to 

capture a transcriptional signature as early as possible, prior to the manifestation of disease 

phenotypes ranging from neurite repair to overt cell death. The other was to reduce 

heterogeneity across subject lines and experimental batches that could be augmented by a 

longer time of differentiation in culture. Within this early developmental time point, we 

detected common signatures across familial and sporadic ALS conditions prior to disease 

phenotypes, suggesting that these transcriptomic events precede and are potentially causative 

of later phenotypes. In light of our findings altogether, there may nevertheless be other 

differentiation time points that can exhibit more prominent differentially expressed genes in 

ALS.

Future iPSC-based studies that distinguish bulbar from spinal onset ALS patients can build 

upon the data reported here to help correlate region of onset in the patient with the pathology 

in specific MNs associated with those regions. Our anatomical assessment of iPSC-MN 

models establishes a cellular and molecular framework to address how MN degeneration and 

paralysis spreads throughout the body of ALS patients, mechanisms which are of great 
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interest to develop accurate prognostic assessments or interventional therapies (Turner et al., 

2010). While the fidelity of our iPSC-MNs to in vivo MNs was based on pooled LC MNs, 

recent advances in single nuclei RNA-seq of human postmortem tissues of the central 

nervous system (Gaublomme et al., 2019; Mathys et al., 2019) will provide an expanded 

resolution of cellular and disease signatures with which our data can be reconciled. This 

comparison will enable better interpretation of molecular signatures and cellular 

compositions as they arise in early stages of ALS and progress into the endstages of ALS, 

thus enabling a better understanding of disease etiology. Finally, the analysis reported here 

provides a methodological resource for iPSC-based disease models of not only ALS, but 

also for several other late onset diseases standing to benefit from single-cell resolved 

investigations.

STAR METHODS

RESOURCE AVAILABILITY

LEAD CONTACT—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Clive N. Svendsen 

(clive.svendsen@cshs.org).

MATERIALS AVAILABILITY

iPSC lines generated in this study are listed in Table S1 and are available through the 

Cedars-Sinai Biomanufacturing Center.

DATA AND CODE AVAILABILITY

• The scRNA-seq source data have been deposited at Gene Expression Omnibus 

and are publicly available under the accession number: GSE138121.

• The original codes used for the analyses reported in this study are publicly 

available at https://github.com/ritchieho/2020_scRs_iPSC_ALS.

• The scripts used to generate the figures reported in this paper are available at 

https://github.com/ritchieho/2020_scRs_iPSC_ALS.

• Any additional information required to reproduce this work is available from the 

Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All human iPSC lines are banked and available through the Cedars-Sinai Biomanufacturing 

Center. Cell lines were routinely characterized through mycoplasma testing, Alkaline 

Phosphatase staining, immunostaining for pluripotency markers, karyotyping by G-banding, 

PluriTest, Trilineage Differentiation Potential (assessed via TaqMan hPSC Scorecard 

Assay), and Cell Line Authentication (assessed via STR Analysis) to match primary donor 

tissue. Relevant clinical and experimental data about iPSC donor subjects (e.g. age, sex, 

tissue source) are presented in Table S1 and in the Key Resources Table. All protocols were 

performed in accordance with the Institutional Review Board guidelines at Cedars-Sinai 

Medical Center under the auspices of IRB-SCRO Protocol 21505.
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METHODS DETAILS

Culture of human iPSCs—All iPSC lines were maintained in complete mTeSR1 growth 

medium on Growth Factor Reduced Matrigel and passaged every seven days using the 

StemPro EZ Passaging Tool or Versene and typically split between 1:4 and 1:9 ratios.

Genome editing of C9orf72 repeats in iPSCs—CRISPR guides were designed to 

target regions immediately 5’ and 3’ of the C9orf72 hexanucleotide repeat expansion using 

the Zhang lab CRISPR design tool (Shi et al., 2018). Guides were cloned into 

pSpCas9(BB)-2A-GFP (PX458) plasmids, (gifted from Feng Zhang, Addgene plasmid 

#48138). Each iPSC line was transfected with both 5’ and 3’ targeting plasmids using the 

Neon Electroporation System (Thermo Fisher). After 48 hours, iPSCs were dissociated and 

flow sorted by GFP fluorescence to isolate successfully transfected cells. These cells were 

plated, cultured for 1 week, passaged, and allowed to grow to confluency. Cells were then 

subcloned as follows: iPSCs were Accutase-dissociated into single cells and replated 

sparsely at 30,000 cells/10 cm dish. Rock inhibitor (Y-27632) was included for 24 hours 

after plating to promote iPSC survival. Once individual cells formed small colonies, pipette 

tips were used to manually transfer subclones from the 10 cm dish into individual wells of a 

96 well plate. These subclones were passaged with Versene into two 96 well plates, one for 

further propagation and one for gDNA extraction and sequencing. The C9orf72 locus was 

PCR-amplified using PrimeStar Polymerase with 1M betaine. To determine the sequence of 

each allele, PCR products were cloned using the TOPO Cloning Kit for Sequencing 

(Invitrogen). Plasmids were used to transform TOP10 competent bacteria, which were plated 

on agar dishes containing ampicillin and incubated at 37°C overnight. Individual colonies 

were transferred to a new agar dish containing ampicillin and an indexed grid with a clean 

pipette tip and grown overnight, and these plates were sent to Genewiz to perform direct 

colony sequencing through rolling circle amplification. Subclones lacking the C9orf72 HRE 

sequence were expanded and characterized.

Repeat primed PCR assay for HRE—100 ng of genomic DNA template was amplified 

using FastStart Master Mix (Roche), 1M betaine (Sigma), 7% DMSO (Sigma), 0.18 mM 7-

deaza-dGTP (New England Biolabs), 0.9 mM magnesium chloride (Sigma), 1.4 μM C9orf72 
repeat primed PCR anchor (forward primer), 0.7 μM C9orf72 repeat primed PCR repeat-

plus-anchor (forward primer), and 1.4 μM C9orf72 repeat primed PCR rev-plus-6FAM 

(reverse primer) using the following cycling conditions: 1x 95°C for 15 min, 2x 94°C for 1 

min -> 70°C for 1 min -> 72°C for 3 min, 3x 94°C for 1 min -> 68°C for 1 min -> 72°C for 

3 min, 4x 94°C for 1 min -> 66°C for 1 min -> 72°C for 3 min, 5x 94°C for 1 min -> 64°C 

for 1 min -> 72°C for 3 min, 6x 94°C for 1 min -> 62°C for 1 min -> 72°C for 3 min, 7x 

94°C for 1 min -> 60°C for 1 min -> 72°C for 3 min, 8x 94°C for 1 min -> 58°C for 1 min -

> 72°C for 3 min, 5x 94°C for 1 min -> 56°C for 1 min -> 72°C for 3 min, and 1x 72°C for 

10 min. PCR products were then sent to Genewiz for fragment analysis.

Karyotype—All patient-derived and control iPSC lines are routinely authenticated for 

cytogenetic integrity by G-band karyotype chromosomal analysis. For every iPSC line, we 

store early passage seed banks, from which subsequent distribution banks of iPSC lines can 

be generated. Analysis is performed to confirm a normal karyotype before a distribution 
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bank is used. Specifically, the 0029 and 0052 gene-edited lines were confirmed to have 

normal karyotype three separate times at different passages. G-band karyotyping is 

performed by the Cedars-Sinai Clinical Cytogenetics Core for Cytogenetic analysis using G-

banding at the 425-475 band level of resolution on slides of cultured iPSCs. For each 

karyotype per cell line, metaphase spreads of typically 20 cells are counted with their 

chromosomal complement. The cytogeneticist reviews whether any consistent numerical or 

structural abnormality is observed. A consistent numerical or structural abnormality that is 

observed in greater than one cell is classified as an abnormal karyotype for the iPSC culture.

Differentiating iPSC-MN cultures—For Figures S2A-E, iPSC-MNs were differentiated 

as previously described (Yang et al., 2013). In brief, iPSCs were dissociated into single cells, 

cultured in Neural Induction Media (NIM) consisting of Neurobasal (Gibco), 1.1 μM 

ascorbic acid (Sigma), 1% non-essential amino acids (NEAA) (Gibco), 1% GlutaMax 

(Gibco), 2% B27 (Gibco), 0.16% D-glucose solution, and 1% Penicillin-Streptomycin-

Amphotericin (PSA) solution. 10 μM Y-27632 ROCK inhibitor (Sigma) was included in the 

media or the first 48 hours to improve survival of iPSCs following dissociation. On days 1-4, 

NIM was supplemented with 10 μM SB431542 (StemGent), 1μM Dorsomorphin (Sigma), 

and 10 ng/mL bFGF (PeproTech). This media was changed every other day, and bFGF was 

replenished daily. On day 5, cells were cultured in NIM supplemented with SB431542, 

Dorsomorphin, 10 ng/mL BDNF (R&D), and 1 μM retinoic acid (Sigma). On days 7 and 9, 

the media was changed to NIM with BDNF, retinoic acid, and 1 μM smoothened agonist 

(Sigma). The cells were densely plated onto poly-ornithine/laminin coated dishes and 

cultured in the same media on day 11. This media was further supplemented with 2 μM 

DAPT (Cayman Chemicals) on days 13-20, with media changes every 2-3 days. On days 

20-30, cells were fed every 2-3 days with NIM containing BDNF, smoothened agonist, 1 μM 

retinoic acid, and 2 μM Ara-C (Sigma). Cells were then gently dissociated using papain 

(Worthington), plated on poly-ornithine/laminin coated dishes, and cultured in NIM with the 

addition of 1% N2 supplement (Gibco), 4 μM Ara-C, and 40 ng/mL each of growth factors 

BDNF and GDNF (PeproTech). For Figures S2F and S2G, iPSC-MN cultures were 

differentiated using the 18 day protocol as described below for polyGP ELISA.

For the 18 day iPSC-MN differentiation, mTeSR1 was removed from iPSCs at 30-40% 

confluency and replaced with Stage 1 media (1:1 mixture of Iscove's Modified Dulbecco's 

Medium (IMDM):F12 basal media supplemented with 1% NEAA, 2% B27, 1% N2, 1% 

PSA, 0.2 μM LDN193189 (Selleck), 10 μM SB431542, and 3 μM CHIR99021 (Xcess 

Biosciences)) for six days with daily media changes. The cells were then Accutase-treated to 

single-cell suspension and centrifuged in 50 ml conical tubes, resuspended in Stage 2 media 

(Stage 1 media further supplemented with 0.1 μM all-trans retinoic acid (Stemgent) and 1 

μM Sonic hedgehog agonist (SAG) (Cayman Chemicals)), and plated onto Matrigel-coated 

plates or coverslips. Stage 2 media was changed every two days until day 12, when Stage 3 

media (1:1 mixture of IMDM:F12 basal media supplemented with 1% NEAA, 2% B27, 1% 

N2, 1% PSA, 0.1 μM Compound E (Calbiochem), 2.5 μM DAPT, 0.1 μM dibutyryl cyclic 

adenosine monophosphate (db-cAMP), 0.5 μM all-trans retinoic acid, 0.1 μM SAG, 200 

ng/ml ascorbic acid, 10 ng/ml BDNF, and 10 ng/ml GDNF) was then used to feed cells every 

two days until day 18, when cultures were analyzed.
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The 90 day iPSC-MN differentiation was performed as previously described (Ho et al., 

2016). In brief, 80% confluent iPSC cultures were Accutase-treated into single cells 

suspension and centrifuged in 384-well Matrigel coated PCR plates. The cells were 

maintained in Neural Differentiation Media (NDM): IMDM/F12 supplemented with 2% 

B27-vitamin A , 1% N2, 1% NEAA, 0.2 μM LDN193189, and 10 μM SB431542. On day 

two, neural aggregates were collected and transferred into Poly-Hema coated T75 flasks and 

the aggregates were cultured for three more days in NDM. On day seven, aggregates were 

collected and transferred onto poly-ornithine/laminin coated wells with fresh NDM. After 

five days, cells were cultured in MN Specification Media: NDM supplemented with 0.25 μM 

all-trans retinoic acid, 1 μM purmorphamine, 1 μM db-cAMP, 200 ng/mL ascorbic acid, 20 

ng/mL BDNF, and 20 ng/mL GDNF. Once rosettes were observed, they were collected with 

STEMdiff Neural Rosette Selection Reagent and cultured in MN Precursor Expansion 

Media: NDM supplemented with 0.1 μM all-trans retinoic acid, 1 μM purmorphamine 

(Millipore), 100 ng/mL EGF, and 100 ng/mL FGF2. After day 26, the iPSC-MN precursor 

spheres (iMPS) are expanded by using a chopping method every seven to ten days. The 

iMPS are matured into MNs for 21 days in MN Maturation Media: Neurobasal 

supplemented with 1% NEAA, 0.5% Glutamax, 1% N2, 10 ng/ml BDNF, 10 ng/ml GDNF, 

200 ng/ml ascorbic acid, 1 μM db-cAMP and 0.1 μM all-trans retinoic acid.

Immunofluorescent staining, imaging, and quantification of iPSC-MN cultures
—iPSC-MNs were fixed in 4% paraformaldehyde, rinsed with PBS, incubated in 0.5% 

Triton-X in PBS, rinsed with 0.2% Tween-20 in PBS, incubated in blocking solution (5% 

normal donkey serum and 0.2% Tween-20 in PBS). Primary antibody solution in blocking 

solution containing various combinations of goat polyclonal IgG anti-Human ISL1 (1:200) 

( R&D Systems AF1837, RRID: AB_2126324), mouse monoclonal IgG1 anti-NF-H 

(SMI-32) (1:200) (BioLegend 801701, RRID: AB_2564642), goat polyclonal anti-ChAT 

(1:200) (Millipore AB144P, RRID: AB_2079751), rabbit polyclonal IgG anti-PHOX2B 

(1:200) (GeneTex GTX109677, RRID: AB_1951223), mouse monoclonal IgG2b, rabbit 

polyclonal IgG anti-CHX10 (VSX2) (1:200) (Novus NBP1-84476, RRID: AB_11022841), 

and rabbit polyclonal IgG anti-SOX1 [EPR4766] 1:200) (GeneTex GTX62974) were 

incubated, rinsed with 0.2% Tween-20 in PBS, and incubated in species-specific Alexa-fluor 

secondary antibodies (1:2,000), and rinsed with 0.2% Tween-20 in PBS with DAPI staining. 

Fluorescent images were acquired using ImageXpress Micro XLS system (Molecular 

Devices) at 10X magnification. For a complete analysis, total 9 sites per well were captured. 

The captured images were quantified for the cellular population using MetaXpress software 

(Molecular Devices).

Quantification of C9orf72 transcript variants—RNA was extracted from iPSCs using 

the PureLink RNA mini Kit (Invitrogen) and reverse-transcribed into cDNA using the 

Promega Reverse Transcription System. Quantitative PCRs were conducted in triplicate 

using SYBR Green and primers amplifying all C9orf72 transcripts as well as specific 

transcript variants. PCR cycles consisted of the following steps: [1x 95°C for 10 min, 40x 

95°C for 30 seconds -> 58°C for 60s, and 1x 72°C for 5 min].

Ho et al. Page 16

Cell Syst. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FISH of C9orf72 sense and antisense RNA foci and imaging—RNA FISH was 

performed as previously described in (Sareen et al., 2013). Briefly, cells were cultured on 

chamber slides (Lab-Tek II chamber slide system, Thermo Fischer Scientific, Cat #154917). 

Cells were then fixed in 4% paraformaldehyde, permeabilized with diethylpyrocarbonate 

(DEPC)-PBS/0.2% Triton X-100, and washed with (DEPC)-PBS. Cells were incubated with 

hybridization buffer containing 50% formamide, DEPC-2xSSC (300 mM sodium chloride, 

30 mM sodium citrate, pH 7.0), 10% w/v dextran sulfate, and DEPC-50 mM sodium 

phosphate, pH 7.0 for 30 min at 66°C. This was followed by hybridization with 40 nM of a 

Locked Nucleic Acid probe for C9orf72 HREs in hybridization buffer for 3 hours at 66°C. 

Afterwards, the cells were rinsed once in DEPC-2xSSC/0.1% Tween-20 at room 

temperature and three times in DEPC-0.1xSSC at 65°C. The cells were then stained with 

DAPI, mounted using ProLong Gold antifade reagent, and analyzed with fluorescence 

microscopy.

PolyGP Response—PolyGP in iPSC-MNs were measured blinded to C9orf72 HRE and 

disease status using a previously described sandwich immunoassay that utilizes Meso Scale 

Discovery electrochemiluminescence detection technology, and an affinity purified rabbit 

polyclonal polyGP antibody (Rb9259) as both capture and detection antibody (Gendron et 

al., 2015; Su et al., 2014).

Single-cell RNA-seq of MN cultures—iPSC and iPSC-MN differentiation cultures 

were washed with PBS, incubated at 37°C with 0.25% Trypsin-EDTA between 5 and 20 

minutes, and diluted with an equal volume of the complete culture media in which they were 

grown. After pelleting cells at 200 x g for five minutes at 4°C, cells were resuspended in 

PBS, observed for clumps, and further triturated with a fire polished glass pipet. The cell 

suspension was filtered through a Miltenyi 30 μm filter, counted on a hemocytometer, and 

the concentration was adjusted prior to loading onto the Illumina Bio-Rad ddSEQ System or 

10X Genomics Chromium scRNA-seq platforms in accordance with the respective 

instructions for each kit for targeting approximately 1,000 cells per sample. Library 

preparation kits used were Illumina® Bio-Rad® SureCell™ WTA 3' Library Prep Kit for the 

ddSEQ™ System and 10X Chromium Single-cell 3’ Library & Gel Bead Kit v2. Libraries 

were sequenced on Illumina NextSeq500 targeting 100,000 reads per cell. Raw sequencing 

reads were demultiplexed and processed to FASTQ using Illumina bcl2fastq. Sample reads 

were aligned to the transcriptome and uniquely mapped reads were counted and assigned to 

cell specific barcodes. For ddSEQ libraries, reads were aligned and demultiplexed to cell 

barcodes using Illumina Single-Cell RNA Seq BaseSpace Workflow (v1.0.0) with STAR 

Aligner (v2.5.2b) (Dobin et al., 2013) and hg19 reference genome. For 10X libraries, reads 

were aligned and demultiplexed using 10X Genomics Cell Ranger (v2.1.0) with STAR 

Aligner (v2.5.1) and GRCh38 reference genome. Ensembl gene IDs were annotated to 

HGNC symbols. In instances of multiple ENSG IDs mapping to unique HGNC symbols, the 

sum of unique molecular identifiers (UMIs) across ENSG IDs was calculated and used as 

the UMI for the unique HGNC symbol. The summarized UMI count tables for each 

experimental batch are deposited in GEO under accession number GSE138121.
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Immunohistochemistry and quantification of ELAVL3 in spinal cords—Human 

tissues were obtained using a short-postmortem interval acquisition protocol that followed 

HIPAA-compliant informed consent procedures and were approved by Institutional Review 

Board (Benaroya Research Institute, Seattle, WA IRB# 10058 and University of California 

San Diego, San Diego, CA IRB# 120056). For IHC, 8 sporadic ALS, 4 C9 ALS, and 5 

control lumbar spinal cord sections were studied. Sections with 6 μm thickness were 

formalin-fixed and paraffin-embedded. On day one, sections were deparaffinized with 

Citrisolv (Fisher Scientific #04-355-121) and hydrated with different dilutions of alcohol. 

Endogenous peroxidase activity was quenched with 0.06% H2O2 for 15 min. Antigen 

retrieval was performed in an Antigen Unmasking Solution (Vector Laboratories #H-3301) 

in a pressure cooker for 20 min at a temperature of 120 °C. Following antigen retrieval, 

sections were permeabilized with 1% FBS (Atlanta Biologicals #511150) and 0.2% Triton 

X-100 in PBS for 15 min and then blocked with 2% FBS in PBS for 25 min. The sections 

were incubated overnight with the primary antibody, rabbit polyclonal ELAVL3, 1:1000, 

LSBio, Cat# LS-C408905. On the second day, after 60-min incubation with the secondary 

antibody (Immpress reagent kit, anti-Rabbit, Vector Laboratories #MP-7401) in room 

temperature, signals were detected using Immpact DAB (Vector Laboratories #SK-4105) for 

5–10 min. Counterstaining was performed with hematoxylin (Fisher #HHS128). For IHC 

visualization, slides were scanned with Hamamatsu Nanozoomer 2.0HT Slide Scanner at 

40X magnification. At least 6 motor neurons per spinal cord were evaluated, and across all 

samples totaled a combined number of 199 neurons from sporadic ALS subjects, 77 neurons 

from C9 ALS subjects, and 313 neurons from control subjects. Images were deconvoluted 

using Fiji ImageJ (Schindelin et al., 2012) and the optical density (OD) was measured for 

each neuron, where OD = log (max intensity/1/Mean intensity), where max intensity = 255 

for 8-bit images.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pseudotime analysis—Monocle version 2.12.0 (Qiu et al., 2017) was used to perform 

pseudotime analysis of the 18 day differentiation time course. Genes with minimum average 

expression of 0.1 and detectable in at least 10 cells were filtered. Cells were further filtered 

for those whose total UMI count was within three standard deviations of the average log10 

UMI across all time points. Tests for differential expression of each gene as a function of the 

time course was calculated using the full generalized linear model, and genes with a q-value 

less than 0.1 from this test was filtered. These genes were used in dimensional reduction of 

the time course samples onto two components through Discriminative Dimensionality 

Reduction with Trees. All cells were ordered along this pseudotime trajectory, and 

expression of select genes were plotted against the cells ordered along this pseudotime.

Seurat Version 2.3.0 was used to process, normalize, cluster, and analyze scRNA-seq data 

for day 18 MN cultures. UMI count tables for each of the six experimental batches were 

each loaded as Seurat objects as well as cell barcodes and sample covariates for meta data. 

For downstream analysis, quality control filters for genes and cells were applied. Genes with 

at least one UMI in at least one cell were kept. The percent of mitochondrial genes was 

calculated for each cell and stored as meta data. Z-scores were calculated for three columns 

in the meta data for each cell: nGene, nUMI, and percent mitochondrial genes. Cells were 
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then filtered based on these z-scores; any cell that had a z-score greater than 3 or less than 

−3 (greater than 3 standard deviations away from the mean of that meta data) in any of the 

three columns were excluded from further analysis. Next, the global scaling normalization 

method normalizes the gene expression measurement for each cell by the total expression, 

multiplies this by a scale factor, and log transforms the result. The maximum UMI detected 

in the experimental batch was used as the scaling factor. Next, highly variable genes (HVGs) 

in the experimental batch were calculated. The mean expression for all detected ( i.e. non-

zero value) genes was calculated as well as the log transformed ratio of variance to mean 

expression (regarded as the dispersion). Genes were then binned into 20 intervals, and within 

each interval, the z-score for dispersion was calculated for each gene. This helps control for 

the relationship between variability and average expression. Genes with z-score for 

dispersion values greater than 2 were deemed to be HVGs. After all six experimental batches 

were processed as Seurat objects, samples were subsetted out of each Seurat object, totaling 

22 samples. 279 HVGs were calculated in at least 11 of the 22 samples, and these were kept 

for subsequent dimensional reduction.

Data set normalization, identity assignment, and clustering—Multiple Canonical 

Correlation Analysis (MultiCCA) was performed on the 22 samples to correct for 

experimental batch and platform effects. Up to 20 dimensions were evaluated, and the first 

18 dimensions were determined to be used for subspace alignment. Prior to subspace 

alignment, cells whose expression profiles cannot be well-explained by low-dimensional 

CCA compared to low-dimensional PCA (less than a two-fold ratio) were removed. 17,531 

cells remained. Subsequently, samples were aligned using dynamic time warping along the 

first 18 dimensions, and the resulting batch integrated Seurat object holding all 22 samples 

was used for downstream analysis.

Alternative packages for batch correction were applied to the same Seurat object as 

MultiCCA through the Seurat Wrapper package version 0.2.0. For batch correction through 

Harmony, the RunHarmony command was applied to the Seurat object after running the raw 

counts matrix through the following pipe: NormalizeData() %>% FindVariableFeatures() 

%>% ScaleData() %>% RunPCA. For batch correction through Liger, the raw counts matrix 

was run through the following pipe: NormalizeData() %>% FindVariableFeatures(). 

Subsequently, the ScaleData command was applied with the following parameters: split.by = 

"EXP_BATCH" or “PLATFORM”, do.center = FALSE. The RunOptimizeALS command 

was applied with k = 20, lambda = 5, split.by = "EXP_BATCH" or “PLATFORM”. Finally, 

the RunQuantileNorm command was applied with split.by = "EXP_BATCH" or 

“PLATFORM”. For batch correction through FastMNN, the raw counts matrix was run 

through the following pipe: NormalizeData() %>% FindVariableFeatures(). The Seurat 

object was split by experimental batch or scRNA-seq platform, and the RunFastMNN 

command was applied to this split object list. kBET version 0.99.6 was used to calculate the 

acceptance rate and average silhouette width for all batch correction methods along with 

uncorrected data. The kBET command was applied to the cell embeddings within the 

dimensionally reduced projections calculated by each method and considering either 

experimental batch or scRNA-seq platform with k0 = 30 and do.PCA = TRUE; all other 

parameters were kept at default. The prcomp command was applied to the cell embeddings 
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within the dimensionally reduced projections calculated by each method, and the batch_sil 

command was applied to the first three principal components to determine the average 

silhouette width.

In scRNA-seq analysis, increasing attention is directed towards understanding how various 

scRNA-seq analysis programs, particularly using pre-defined yet tunable parameters can 

influence the outcome of tasks such as cell clustering (Kiselev et al., 2019; Krzak et al., 

2019). To determine the optimal number of communities to cluster, several resolution 

settings were tested using the FindClusters command in Seurat. The first 18 dimensions 

from the reduction through CCA were used, and 30 nearest neighbors were considered for 

each resolution setting. All other parameters were kept at default values. The original 

Louvain algorithm determined the modularity for each setting, and the maximum modularity 

observed after 100 iterations was recorded for each number of communities. A polynomial 

trendline was calculated, and the residuals for each setting greater than zero was considered 

to determine the optimal number of communities. Based on the independently optimized 

tSNE calculations and visualizations for 17,531 cells, a resolution setting of 0.125 yielding 4 

communities was selected to proceed with downstream analysis. When projecting all cells 

on two two dimensional tSNE plots using the RunTSNE command, the same 18 dimensions 

were used as for the FindClusters command, and all other parameters were kept at default 

values . A perplexity setting of 100 was selected based on the visual concordance with the 4 

communities determined.

To analyze only the postmitotic, neuronal subtypes from these 17,531 cells, we repeated the 

FindClusters command using a resolution parameter of 0.04, which detected 2 communities, 

and the postmitotic community containing 11,120 cells was subsetted into a new Seurat 

object. Once again, 22 samples were subsetted out of this Seurat object. HVGs were again 

calculated in each of the 22 samples using the same parameters stated above. 158 HVGs 

were calculated in at least 11 of the 22 samples, and these were kept for subsequent 

dimensional reduction. MultiCCA using 22 dimensions was applied to this batch integrated 

Seurat object, and the final data set comprised of 10,866 cells. The optimal parameters for 

resolution set to 1 and perplexity set to 0.75 were selected for FindClusters and RunTSNE, 

respectively, and this produced 18 communities, which were subsequently re-annotated 

based on key marker gene expression.

To assign rostrocaudal segment or cell type identity considering the expression pattern of 

HOX genes (Table S2A) or 105 developmental genes (Table S2B), respectively, all 

expression values were log transformed after adding a pseudocount of 1. Pearson 

correlations were performed using pairwise complete observations. Benjamini-Hochberg-

corrected p-values for each Pearson correlation were calculated using the corr.test function 

in the psych 1.9.12.31 package, and the correlation with the lowest p-value, meeting the 

specified threshold was used to assign the segment or cell type identity. Multiple identities 

with the highest correlation were randomly selected for assignment.

Differential expression, gene set enrichment, and classifier accuracy analyses
—To perform differential gene expression analysis between any two populations, the 

FindMarkers command in Seurat was applied with the bimodal expression likelihood test 
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and the log fold change threshold was set to 0.1. Genes with Bonferroni adjusted P-values 

less than 0.05 were called significantly changed. Additionally, differentially expressed genes 

between ALS and control conditions were calculated in DESeq (Anders and Huber, 2010) 

by summing all scRNA-seq UMI counts for each gene across the expression matrix for each 

sample to simulate bulk RNA-seq expression.

Jaccard indices were calculated by tabulating genes called differentially upregulated or 

downregulated in each ALS to control of isogenic comparison within each experimental 

batch and intersecting each set of genes among all experimental batches. The Jaccard index 

is the ratio of the number of intersecting genes divided by the sum of the union of all genes 

across the two sets being compared. Gene Ontology (GO) analysis was performed on gene 

lists using official gene symbols for homo sapiens through the DAVID functional annotation 

chart. The following categories were tested: OMIM disease, GO Term BP direct, GO Term 

CC direct, GO Term MF direct, BIOCARTA, KEGG, and REACTOME. Thresholds used 

were minimum count of 2 and EASE score of 0.1, and GO and pathway sets with 

Benjamini-Hochberg-corrected P-values of less than 0.05 were called significant and 

reported. The Vennerable package was used to create Euler and Chow-Ruskey plots. 

WGCNA and module preservation was performed as previously described in Ho et al., 2016.

Multiset enrichment analysis was performed using SuperExactTest (Wang et al., 2015). Lists 

of gene sets to be intersected were input, the expected and observed number of overlaps 

were calculated, and the P-value indicates the likelihood of overlap among all possible 

comparisons.

To generate a combined expression score for each gene within a population of cells in each 

sample, we calculated the average UMI counts using all cells within a specified population 

with a non-zero UMI value. For each gene, the minimum average UMI count among all 22 

samples was subtracted from the average UMI in each sample so that the minumum average 

UMI count among all samples was transformed to zero, and the average UMI counts for all 

other samples were linearly scaled. From this transformed set of values, the maximum 

among all 22 samples was subsequently used as a divisor for each transformed value to 

secondarily transform the maximum average UMI count to 1 and proportionally scale the 

values of all other samples. This effectively bounded the set of transformed, average UMI 

counts between zero and 1. For each gene in each population in each sample, the secondarily 

transformed average expression was summed with the percent UMI counts for all cells 

within the specific population, which includes zero UMI values, to generate a combined 

expression score that equally weights average UMI expression with percent UMI expression. 

This combined expression score was used to perform statistical test for changes in 

distribution between all ALS samples and all control and isogenic samples across all 

experimental batches.

To define MN-specific marker genes for ALS classification, a table of combined expression 

scores were generated from iPSC-MN scRNA-seq data, which contained 1,281 genes. A t-

test was performed between all ALS and all control and isogenic samples; 39 genes obtained 

nominal p-values less than 0.05, and none of these retained this status after Benjamini-

Hochberg correction. Therefore, the genes were ranked from lowest to highest nominal p-
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values, and the top 20 genes were selected to be intersected with the LCM MN 

transcriptomic data from Rabin et al., 2010 as analyzed in Ho et al., 2016 as well as Krach et 

al., 2018. Among these, six genes were concordantly changed between ALS and control 

conditions in all three data sets; the combined expression score was lower in ALS compared 

to control and isogenic iPSC-MNs, and the gene significance to the sALS component was 

negative in LCM MNs.

To incorporate the six ALS marker genes into a single prediction metric, principal 

component analysis (PCA) was applied to samples using the expression values of these six 

genes, and sample coordinates along the first, second, or a sum of both principal components 

was used as the prediction metric. For analyzing the scRNA-seq samples, the combined 

expression score for the six genes were used as input. For analyzing bulk RNA-seq data, the 

log transformed expression values for the six genes were used as input. In some data sets, 

five of the six genes were used; NDUFAF5 was not annotated in Highley et al., 2014; 

CARS2 was not annotated in Cox et al., 2010, Kirby et al., 2011, and Kiskinis et al., 2014. 

For Krach et al., 2018, Highley et al., 2014, and Shi et al., 2018, sample coordinates along 

PC2 were used as the prediction metric. For Fujimori et al., 2018, the signed values for PC2 

coordinates of samples were reversed to place control samples concordant with their 

placement along PC1. Both PC1 and PC2 coordinates were floored to zero by subtracting 

the minimum of each PC coordinate, and the sum of the floored PC1 and PC2 coordinates 

were used as the prediction metric. Coordinates along PC1 were used as the prediction 

metric for all other data sets. The ROCR package (Sing et al., 2005) was used to plot the 

Receiver Operator Characteristics and calculate the Area Under the Curve (AUC). The P-

value of the Wilcox Rank Sum test was used to determine whether the AUC significantly 

differs from 0.5, the AUC of an uninformative test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. iPSC-MN cultures recapitulate developmental gene expression patterns.
A. Immunostaining day 18 cultures from three individual subject lines for expression of MN 

markers ISL1 and SMI-32.

B. Experiment schematic for analyzing the 18 day time course of MN differentiation.

C - D. Violin plots indicate gene expression during MN differentiation. C depicts number of 

unique molecular identifiers (nUMI), and D depicts number of detectable genes per time 

point.

E. tSNE of MN differentiation time course samples.

F. Monocle analysis projects samples into a pseudo-time axis consistent with the order of 

time points.

G. Histogram displays meta data for all samples profiled in this study. This data is also 

presented in Figure S4.

H. UMI counts were summed for each gene across the expression matrix for each sample, 

simulating bulk RNA-seq data. Simulated bulk gene expression profiles for each sample 

were correlated to bulk RNA-seq gene expression profiles from fetal hindbrain and spinal 

cord at various Carnegie stages analyzed in de Kovel et al., 2017. For each row of pairwise 

Ho et al. Page 27

Cell Syst. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlations, the top three ranked correlations are outlined, indicating which sample from de 

Kovel et al., 2017 is most globally similar to each sample analyzed by single-cell RNA-seq. 

For each column of pairwise correlations, the median Spearman correlation was calculated 

and displayed along the bottom row. These data summarize for each sample from de Kovel 

et al., 2017 what is the frequency of global gene expression correlations from iPSC-MN 

cultures. The top three ranked correlations along the bottom row are outlined, indicating 

which sample from de Kovel et al., 2017 are most globally similar to iPSC-MNs.

See also Figures S1, S2, S3, and S4, and Table S1.
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Figure 2. iPSC-MN cultures globally resemble rhombomere eight and cervical spinal cord.
A. Models of cell type organization along representative hindbrain and spinal cord segments. 

Left, HOX gene expression patterns determine rostrocaudal axis identities, adapted and 

simplified from Di Bonito et al., 2013; Lippmann et al., 2015; and Philippidou and Dasen, 

2013. Center, a simplified, two-dimensional schematic of the dorsoventral and mediolateral 

axes of a representative hemisection of a spinal cord segment adapted from Alaynick et al., 

2011 and Lu et al., 2015. Each subclass of progenitors in the ventricular zone (VZ) are 

labeled along the dorsoventral axis, represented by the y-axis, are colored distinctly. As each 

of these progenitors give rise to subclasses of postmitotic neurons, they migrate laterally into 

distinct dorsoventral and mediolateral locations in the mantle zone (MZ), represented by the 

x-axis. These progenies are labeled and colored similarly to their respective progenitors. 

Descriptions of each cell type are indicated in Table S2B. Locations of each cell type are 

approximately relative to each other and are not to scale. Right, three-dimensional model of 

the center panel, including both hemispheres of the spinal cord. All cell types present within 

the hindbrain and spinal cord are registered based on HOX and lineage-specific transcription 

factor expression. This model is not to scale.

B. Left: Unit expression matrix of HOX genes that developmentally determine hindbrain and 

spinal cord segment identity. R2-8: rhombomeres 2-8, Ce: cervical, Br: brachial, Th: 

thoracic, Lu: lumbar, Sa: sacral, Ca: caudal. Right: Expression heatmap of HOX genes in 

fetal hindbrain and spinal cord at various Carnegie stages analyzed in de Kovel et al., 2017. 

Labels below each sample column indicate the segment that each sample most resembles, 

based on the highest Spearman correlation to the expression patterns for each segment 

shown in the unit expression matrix and with Benjamini-Hochberg adjusted P-values < 0.05.
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C. Histogram of segment identities assigned to fetal hindbrain samples, fetal spinal cord 

samples, and individual cells analyzed from day 18 cultures based on the highest Spearman 

correlation to the expression patterns for each segment shown in the unit expression matrix. 

NA: not assigned. For assignment of fetal hindbrain and fetal spinal cord samples from de 

Kovel et al., 2017, samples with Benjamini-Hochberg adjusted P-values less than 0.05 are 

assigned to each class along the y-axis; all other other samples are assigned as NA. For 

assignment of cells in day 18 cultures, cells with Benjamini-Hochberg adjusted P-values less 

than 0.1 are assigned to each class along the y-axis; all other cells are assigned as NA.

See also Figure S5, and Table S2.
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Figure 3. Developmental gene expression profiles and global clustering classify VZ progenitor 
and MZ postmitotic neuronal identities.
A. Based on the expression profile of 105 developmental genes (Table S2B), individual cells 

from the time course of differentiation over 18 days were classified as identities belonging to 

the VZ, MZ, astrocyte, or not assigned (NA).

B. tSNE showing global clustering of 17,531 cells from day 18 cultures across experimental 

batches, which by Seurat determined four clusters indicated by four colors. Significantly 

differentially expressed genes in each cluster relative to the other clusters were analyzed for 

enriched GO terms, and these are displayed below the tSNE plot.

C. The same tSNE as in B with each cell colored by classification based on 105 

developmental genes.

D. The same tSNE as in B with each cell colored by relative expression level of each 

indicated gene, which were determined to be among the most significantly differentially 

expressed genes in clusters 1 (SOX2, TOP2A), 2 (COL3A1, TAGLN), 3 (STMN2, 
ONECUT2), and 4 (PHOX2A, PHOX2B). These data are also presented in Figure S3G.
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E. tSNE showing global clustering of 10,866 cells classified into clusters 3 and 4 in B. 

Seurat analysis determined 18 clusters.

F. The same tSNE as in E with each cell colored red if they were classified as the indicated 

cell type based on 105 developmental genes.

G. The same tSNE as in E with each cell colored by their reclassification into clusters 

formed by merging the clusters identified in E based on overlap for identities shown in F. 

This data is also presented in Figure 4.

H. The same tSNE as in E with each cell colored by relative expression level of each 

indicated gene, which are regarded as distinct markers of each identity listed above each plot 

in F.

I. Boxplots of Spearman correlation values between gene expression profiles of LC MNs 

from Ho et al., 2016; summed gene expression profiles across all cells for each day 18 

sample (Bulk); and summed gene expression profiles across cells classified as MN in G. P-

value calculated from a paired, two-tailed t-test.

J. Bar graph of segment identities assigned to individual cells within each of the seven 

clusters based on the highest Spearman correlation to the HOX expression patterns for each 

segment shown in the unit expression matrix (Table S2A) and with Benjamini-Hochberg 

adjusted P-value < 0.1. R2-8: rhombomeres 2-8, Ce: cervical, Br: brachial, Th: thoracic, Lu: 

lumbar, Sa: sacral, Ca: caudal, NA: not assigned.

See also Figures S4, S5, and S6, and Table S2.
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Figure 4. ALS enacts distinct gene expression changes in neuronal subtypes.
A. Left to right: same tSNE as in Figure 3G, with each cell colored by ALS or control 

(CTR) condition, colored by experimental platform, and bar graph quantifying the number 

of cells assigned to each class.

B. Jaccard indices of overlapping gene sets across ALS to CTR comparisons within the 

neuronal subtypes MN, V1 Renshaw, and V2a. Each pairwise ALS to CTR comparison is 

shown along left and top axes, and heatmap indicates Jaccard index for each intersection of 

gene sets. The number of upregulated genes in each ALS to CTR comparison is printed in 

red along the right axis, and the number of downregulated genes in each ALS to CTR 

comparison is printed in blue along the bottom axis. Upregulated gene sets were only 

compared to other upregulated gene sets, and downregulated gene sets were only compared 

to other downregulated gene sets. The red and blue heat maps represent the Jaccard indices 

for intersections of upregulated and downregulated gene sets, respectively. When an ALS 

cell line was compared to a CTR or isogenic HRE-corrected (ISO) cell line in more than one 

experimental batch, the Jaccard indices of these gene sets (replicate comparisons) can be 

compared to Jaccard indices of gene sets calculated for comparisons using the same ALS, 

CTR, or ISO cells lines within the same experimental batch that were not repeated in other 

batches (non-replicate comparisons) in C. Panels with solid squares indicate replicate 

comparisons (n = 7) and open squares indicate non-replicate comparisons (n = 41). These 
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are only indicated for upregulated genes in MNs, but the same conditions were analyzed for 

downregulated genes and V1 Renshaw and V2a in C.

C. Comparison of upregulated and downregulated genes sets among replicate comparisons 

and non-replicate comparisons described in B. P-values were calculated using the Wilcox 

test.

D. Left: Differentially expressed genes between ALS and control conditions for neuronal 

subtypes MN, V1 Renshaw, V2a, and simulated bulk RNA-seq. Genes were categorized as 

upregulated or downregulated by ALS, and Chow-Ruskey diagrams present the intersection 

among each neuronal subtype as well as with bulk comparisons. Right: Euler diagrams 

present the intersection of GO terms enriched among genes that are reproducibly 

dysregulated by ALS uniquely within each neuronal subtype in the upregulated or 

downregulated categories. Representative GO terms are displayed from each overlapping or 

unique set. See Table S7H-M for full set of uniquely enriched GO terms. No GO terms were 

significantly enriched among genes upregulated or downregulated by ALS in bulk 

comparisons, and no GO terms were enriched among genes uniquely downregulated by ALS 

in V2a interneurons. See Tables S3-7 and Methods for details on how differentially 

expressed gene and GO lists were generated.

See also Figure S6 and Tables S3, S4, S5, S6, and S7.
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Figure 5. ALS iPSC-MN cultures exhibit transcriptional changes detectable in postmortem ALS 
spinal MNs.
A. Hypergeometric test for each of 52 modules defined from WGCNA on LC MNs (data set 

A) from postmortem sporadic ALS (sALS) and non-ALS subjects (Ho et al., 2016) to detect 

enrichment for ALS dysregulated genes from each of the neuronal subtype categories 

identified in Figure 4D. Upper panel: WGCNA modules and the sample traits (sALS disease 

status and PC1 sALS component) with which they are significantly associated outlined in 

black rectangles (Pearson correlation between module eigengene and sample trait, 

Bonferroni-adjusted P-value < 0.01). Z-summary value for each module measures the extent 

of module preservation between data set A and B (Krach et al., 2018) (Figure 5B). Bar 

graphs above and to the right indicate the number of genes represented in data set A and 

scRNA-seq data set, respectively. A matrix of P-values from hypergeometric tests performed 

for each module to neuronal subtype category comparison were adjusted by the Benjamini–

Hochberg method, and subsequent P-values < 0.05 are marked as black squares in the 

matrix.

B. As in A, except for 32 modules define from data set B (Krach et al., 2018).

C. Euler diagram of intersecting gene sets among the Magenta module from data set A, the 

Steelblue module from data set B, and the MN upregulated in ALS genes. P-values indicate 

the likelihood of multi-set intersections using SuperExactTest (Wang et al., 2015). Genes are 
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listed for overlapping sets, bolded genes are associated with the representative GO terms 

listed below.

D. As in C, except among the Blue module from data set A (left), the Midnightblue module 

from data set A (right), the Darkgreen module from data set B, and the MN downregulated 

in ALS genes.

E. Split dot plots indicate percent of MNs within each sample that express a non-zero value 

of each gene and also indicate the average gene expression among MNs within each sample 

that express non-zero values of that gene.

F. Scatterplots depict gene expression in each LC MN sample from data set A (y-axis) 

against the coordinate for that sample along the first principal component (PC1 sALS 

component, x-axis). Prior to performing PCA on the expression data set, the ten genes 

shown in this panel were removed from the expression matrix to eliminate autocorrelation. 

sALS samples are colored red, and control samples are colored blue. The Spearman 

correlation between expression and PC1 coordinate is indicated next to the gene symbol, and 

the nominal P-value of the correlation is indicated below the gene symbol.

G. As in F, except applied to data set B.

See also Figure S6.
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Figure 6. ALS iPSC-MNs exhibit early transcriptional changes counteracting homeostatic 
maturation and aging.
A. Euler diagram of intersecting gene sets among the Magenta, Blue, Midnightblue, or 

Yellow modules from data set A, the MN dysregulated genes in ALS identified in Figure 4D, 

and genes assigned to modules that significantly correlate with MN maturation and aging 

(Ho et al., 2016). The number of genes within each set is indicated. P-values indicate the 

likelihood of multi-set intersections using SuperExactTest (Wang et al., 2015). Genes with 

pathogenic variants in the ClinVar database are indicated on the right.

B. Heatmap of genes listed in A demonstrating expression kinetics as tissues progress from 

embryonic, fetal, and adult spinal cord tissues (Ho et al., 2016). Pluripotent stem cells 

(PSCs) include embryonic stem cells and iPSCs.
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Figure 7. Single-cell analysis of iPSC-MNs reveals predictive ALS marker genes.
A. Split dot plots indicate percent of MNs within each sample that express a non-zero value 

of each of six predictive marker genes. Plots also indicate the average gene expression 

among MNs within each sample that express non-zero values of that gene.

B. Heatmap of five genes listed in A, along with NNAT demonstrating expression kinetics as 

tissues progress from embryonic, fetal, and adult spinal cord tissues (Ho et al., 2016). 

CARS2 was not annotated in this data set. Pluripotent stem cells (PSCs) include embryonic 

stem cells and iPSCs.

C - G. Receiver-operator characteristic (ROC) analysis performed on several data sets 

classifying samples in each data set as ALS or non-ALS, based on sample coordinates along 

the first, second, or both principal components using six predictive marker genes. See 

methods for calculations. P-values for each area under the curve (AUC) are calculated using 

the Mann-Whitney U test to determine whether the AUC differs significantly from 0.5 

(diagonal grey line), which indicates an uninformative test. The number of samples for each 

ALS and non-ALS case used in the analysis, along with their genotypes are indicated. The 

number of genetically distinct subjects included in the analysis are indicated in parentheses. 

Familial ALS subjects with pathogenic variants in C9orf72 (C9O), CHMP2B (CHM), FUS, 
SOD1 (SOD), TARDBP (TDP). Sporadic ALS subjects with no known pathogenic variants 

(SPO). Non-ALS control subjects (CTR). C9orf72 or SOD1 subject lines in which the 
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pathogenic variant has been genome edited (ISO). Spinal muscular atrophy subjects 

classified as non-ALS (SMA). C. ROC analysis performed on subpopulation data generated 

from scRNA-seq data set based on a combined metric of average and percent expression for 

the six predictive marker genes. D. ROC analysis performed on LC MN expression data sets 

(Cox et al., 2010; Highley et al., 2014; Kirby et al., 2011; Krach et al., 2018; Rabin et al., 

2010). E. ROC analysis performed on mouse LCM MNs (Nardo et al., 2013). F. ROC 

analysis performed on bulk RNA-seq data sets generated by the NeuroLINCS Consortium 

for undifferentiated iPSCs (day 0), two MN differentiation protocols at days 18 and 90, and 

iPSC-MNs from Fujimori et al., 2018; Kiskinis et al., and 2014; Shi et al., 2018. G. ROC 

analysis performed on bulk proteomics data sets generated by the NeuroLINCS Consortium 

for two MN differentiation protocols at days 18 and 90. ELAVL3 protein expression is used 

as the prediction.

H - J. Representative images of lumbar spinal cord sections from control, sporadic, and 

C9orf72 ALS subjects immunostained for ELAVL3 and counterstained with hematoxylin. 

Scale bar, 2.5 mm for H, I, and J; 250 μm for inset images H’, I’, and J’.

K. Comparative distributions of ELAVL3 optical densities.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat polyclonal IgG anti-Human ISL1 R&D Systems AF1837; RRID: 
AB_2126324

Mouse monoclonal IgG1 anti-NF-H (SMI-32) BioLegend 801701; RRID: 
AB_2564642

Rabbit polyclonal IgG anti-PHOX2B GeneTex GTX109677; RRID: 
AB_1951223

Rabbit polyclonal IgG anti-Human ELAVL3/HUC (for immunohistochemistry 
staining)

LSBio LS-C408905-50

Rabbit polyclonal IgG anti-CHX10 (VSX2) Novus NBP1-84476; RRID: 
AB_11022841

Rabbit polyclonal IgG anti-SOX1 [EPR4766] GeneTex GTX62974

Goat polyclonal anti-ChAT Millipore AB144P; RRID: 
AB_2079751

Rabbit polyclonal Poly(GP) N/A Rb9259

Biological Samples

Human lumbar spinal cord tissue sections UC San Diego N/A

Chemicals, Peptides, and Recombinant Proteins

mTeSR1 StemCell Technologies 85850

DMEM Thermo Fisher Scientific 11995081

IMDM Thermo Fisher Scientific 12440061

F12 Thermo Fisher Scientific 11765062

Neurobasal medium Thermo Fisher Scientific 21103049

B27 (+vitamin A) Thermo Fisher Scientific 17504044

N2 Thermo Fisher Scientific 1780240

NEAA Thermo Fisher Scientific 1114050

GlutaMax Life Tech 35050061

PSA Thermo Fisher Scientific 15240062

D-(+)-Glucose Sigma G7021

Y-27632 dihydrochloride Sigma Y0503

Y-27632 dihydrochloride Tocris 1254

CHIR99021 Xcess Biosciences M60002

LDN193189 Selleck S2618

SB431542 Stemgent 04-0010-10

SB431542 Cayman Chemicals 13031

Dorsomorphin Sigma P5499

SAG Sigma 566660

SAG Cayman Chemicals 11914

Retinoic acid Sigma R2625

All-trans retinoic acid Stemgent 040021
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REAGENT or RESOURCE SOURCE IDENTIFIER

BDNF R&D 248-BDB-005

BDNF Peprotech 45002

EGF Peprotech AF-100-15

FGF2 Peprotech 100-18B

GDNF Peprotech 45010

Ascorbic acid Millipore A4403

Compound E Calbiochem 565790

DAPT Cayman Chemicals 13917

Ara-C Sigma C1768

db-cAMP Millipore 28745

Purmorphamine Millipore 540220

Accutase Millipore SCR005

Versene Life Technologies 15040-066

Trypsin-EDTA solution Sigma T4049

Laminin (mouse) Millipore L2020

Poly-ornithine Sigma P4638

Matrigel (growth factor reduced) Corning 354230

Triton X-100 Sigma X100

Tween-20 Sigma P1379

Betaine hydrochloride Millipore B3501-100G

Diethyl pyrocarbonate Sigma D5758

ProLong™ Gold Antifade Mountant Thermo Fisher Scientific P36930

Citrisolv Thermo Fisher Scientific 04-355-121

Antigen Unmasking Solution, Tris-Based Vector Laboratories HH-3301

FBS Atlanta Biologicals 511150

Hematoxylin Thermo Fisher Scientific HHS128

Critical Commercial Assays

SureCell WTA 3’ Library Prep Kit for the ddSEQ System Illumina 20014280

Chromium Single Cell 3’ Library & Gel Bead Kit v2 10X Genomics PN-120237

Chromium Single Cell A Chip Kit 10X Genomics PN-120236

Chromium i7 Multiplex Kit 10X Genomics PN-120262

FastStart™ PCR Master Sigma 4710436001

TOPO™ TA Cloning™ Kit for Sequencing Sigma K457501

PrimeSTAR® HS DNA Polymerase (premix) Takara R040A

Papain Dissociation System Worthington LK003150

PureLink RNA Mini Kit Thermo 12183018A

Promega Reverse Transcription System Promega A3500

ImmPRESS® HRP Horse Anti-Rabbit IgG Polymer Detection Kit, Peroxidase Vector Laboratories MP-7401

ImmPACT® DAB Substrate, Peroxidase (HRP) Vector Laboratories SK-4105
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Single cell RNA sequencing data for iPSC-MN cultures This study, Gene 
Expression Omnibus

GSE138121

Experimental Models: Cell Lines

0083_CTR_CTR Cedars-Sinai 
Biomanufacturing Center

CS83iCTR-33nxx

0179_CTR_CTR Cedars-Sinai 
Biomanufacturing Center

CS0179iCTR-nxx

0025_CTR_CTR Cedars-Sinai 
Biomanufacturing Center

CS25iCTR-18nxx

0465_CTR_CTR Cedars-Sinai 
Biomanufacturing Center

EDi034-A

0028_C9O_ALS Cedars-Sinai 
Biomanufacturing Center

CS28iALS-C9nxx

0029_C9O_ALS Cedars-Sinai 
Biomanufacturing Center

CS29iALS-C9nxx

0029_ISO_CTR Cedars-Sinai 
Biomanufacturing Center

CS29iALS-
C9n1.ISOxx

0052_C9O_ALS Cedars-Sinai 
Biomanufacturing Center

CS52iALS-C9nxx

0052_ISO_CTR Cedars-Sinai 
Biomanufacturing Center

CS52iALS-
C9n6.ISOxx

6ZLD_C9O_ALS Cedars-Sinai 
Biomanufacturing Center

CS6ZLDiALS-nxx

2XWC_SPO_ALS Cedars-Sinai 
Biomanufacturing Center

CS2XWCiALS-nxx

8BRM_SPO_ALS Cedars-Sinai 
Biomanufacturing Center

CS8BRMiALS-nxx

Oligonucleotides

C9orf72 Sanger sequencing primer forward: 
AAAGAACAGGACAAGTTGCCCCGCC

Sigma N/A

C9orf72 Sanger sequencing primer reverse: GCAGGCACCGCAACCGCAG Sigma N/A

C9orf72 repeat primed PCR anchor (forward): TACGCATCCCAGTTTGAGACG Sigma N/A

C9orf72 repeat primed PCR repeat-plus-anchor (forward) 
TACGCATCCCAGTTTGAGACGGGGGCCGGGGCCGGGGCCGGGG

Sigma N/A

C9orf72 repeat primed PCR rev-plus-6FAM (reverse) 6-FAM-
AGTCGCTAGAGGCGAAAGC

Sigma N/A

C9orf72 total qPCR primer forward: CAGTGATGTCGACTCTTTG Sigma N/A

C9orf72 total qPCR primer reverse: AGTAGCTGCTAATAAAGGTGATTTG Sigma N/A

C9orf72 TV2 qPCR primer forward: CGGTGGCGAGTGGATATCTC Sigma N/A

C9orf72 TV2 qPCR primer reverse: TGGGCAAAGAGTCGACATCAC Sigma N/A

C9orf72 TV3 qPCR primer forward: GTGTGGGTTTAGGAGATATC Sigma N/A

C9orf72 TV3 qPCR primer reverse: TGGGCAAAGAGTCGACATCAC Sigma N/A

RPL13A qPCR primer forward: CCTGGAGGAGAAGAGGAAAGAGA Sigma N/A

RPL13A qPCR primer reverse: TTGAGGACCTCTGTGTATTTGTCAA Sigma N/A

C9orf72 sense FISH probe Product #500150, Exiqon 
Inc. Woburn, MA, USA

5TYE563/
CCCCGGCCCCGGCC
CC
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C9orf72 antisense FISH probe Product #500150, Exiqon 
Inc. Woburn, MA, USA

5TYE563/
GGGGCCGGGGCCG
GGG

Recombinant DNA

pSpCas9(BB)-2A-GFP (PX458) plasmids Addgene plasmid # 48138; 
RRID: Addgene_48138

Software and Algorithms

RStudio N/A https://rstudio.com

Seurat version 2.3.0 Butler, et al., 2018. 
PMID: 29608179

https://github.com/
satijalab/seurat/
releases/tag/v2.3.0

Monocle 2.12.0 Qiu et al., 2017. PMID: 
28114287

http://cole-trapnell-
lab.github.io/monocle-
release/docs

Illumina bcl2fastq Illumina https://
support.illumina.com/
sequencing/
sequencing_software/
bcl2fastq-conversion-
software.html

Illumina Single-Cell RNA Seq BaseSpace Workflow (v1.0.0) Illumina https://
basespace.illumina.com

STAR Aligner v2.5.1 and v2.5.2b Dobin et al., 2013. 
PMID: 23104886

https://github.com/
alexdobin/STAR

10X Genomics Cell Ranger (v2.1.0) 10X Genomics https://
support.10xgenomics.c
om/single-cell-gene-
expression

Fiji ImageJ Schindelin, Arganda-
Carreras, and Frise et al., 
2012. PMID: 22743772

https://fiji.sc

DESeq Anders and Huber, 2010. 
PMID: 20979621

http://bioconductor.org/
packages/release/bioc/
html/DESeq.html

Vennerable N/A https://github.com/
js229/Vennerable

WGCNA Langfelder and Horvath, 
2008. PMID: 19114008

https://
horvath.genetics.ucla.ed
u/html/
CoexpressionNetwork/
Rpackages/WGCNA

SuperExactTest Wang, Zhou, and Zhang, 
2015, PMID: 26603754

https://github.com/
mw201608/
SuperExactTest

ROCR Sing et al., 2005. PMID: 
16096348

https://rocr.bioinf.mpi-
sb.mpg.de

psych 1.9.12.31 Revell, 2019. https://
www.rdocumentation.o
rg/packages/psych/
versions/1.9.12.31

Seurat Wrappers version 0.2.0 N/A https://github.com/
satijalab/seurat-
wrappers

Harmony Korsunsky et al., 2019. 
PMID: 31740819

https://github.com/
immunogenomics/
harmony
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kBET version 0.99.6 Büttner et al., 2019. 
PMID: 30573817

https://rdrr.io/github/
theislab/kBET

Custom R scripts This study https://github.com/
ritchieho/
2020_scRs_iPSC_ALS
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