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Abstract

Current health monitoring approaches for large structures mostly rely on a combination of distributed
sensor networks and in-situ inspection. This paper presents a novel online diagnostics and prognostics
framework for structures subject to multiple failure modes and demonstrates the proposed method
with a high-fidelity finite element model using multiple data sources (i.e., strain gauges and images).
The approach aims at an accurate simulation of the interaction between different failure features, and
subsequently at the effective estimation and prediction of the damage states based on the generated
structural physics. A dynamic Bayesian network is used which incorporates different data sources to
evaluate the structures under different kinds of deterioration mechanisms. In diagnosis, the dynamic
Bayesian network is used to approximate the damage-related parameters and estimate the time-
dependent variables. In prognosis, the dynamic Bayesian network gives a probabilistic prediction of the
remaining useful life of the structure based on the evolution of the failures. It is found that the proposed
framework is highly effective in performing online diagnosis and prognosis using combined data sources.

Keywords: Miter gates, Bayesian network, Digital twins, Surrogate models, Crack

1 Introduction

The United States inland waterway system con-
tributed $33.8 billion to GDP in 2014 (Pricewater-
houseCoopers 2017). Locks and navigation dams
play an important role in inland waterway systems

by providing a consistent navigable channel in a
series of pools along the entire waterway. Locks
open a gate to give boats entry and allow boats
to travel between pools. If a lock gate cannot per-
form this function, barge traffic shuts down in that
portion of the waterway. The most common type
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of lock gate within the United States Army Corps
of Engineers is the miter gate, more than half of
which have exceeded their economic design life of
50 years (Foltz 2017), increasing the risk of major
impacts to barge traffic.

The long life of many miter gates presents dif-
ficult life-cycle management decisions. To proac-
tively schedule the maintenance of structures and
thus reduce the overall life-cycle costs, numerous
structural health monitoring (SHM) and damage
prognosis (DP) strategies have been developed
(Leser et al. 2017, Sabatino and Frangopol 2017,
Su et al. 2021, Vega and Todd 2020, Yang et al.
2020). In SHM, damage diagnosis aims to detect
and quantify the potential damage, which provides
essential information about the current health
state. Failure prognosis, in the meanwhile, uses
the gathered damage information to simulate the
evolution of the damage, and further predicts the
remaining useful life (RUL) of the structures. In
recent years, the “digital twin” concept has drawn
intensive attention because of its ability to inform
damage diagnostic and failure prognostic strate-
gies by simulating life cycle scenarios (Li et al.
2017, Tuegel et al. 2011, Ye et al. 2019).

For the digital twin concept, one of the most
commonly used physics-based approaches in dig-
ital twin execution is high-fidelity finite element
(FE) analysis, which computationally reflects the
evolving physical system. For instance, Zhang
et al. (2019) presented a reliability estimation pro-
cedure for RC structures at different corrosion
levels which used X-ray and digital image process-
ing technique to infer the spatial variability of steel
corrosion. With a focus on the seismic cracking
identification, Pirboudaghi et al. (2018) developed
a damage detection procedure for concrete grav-
ity dam by integrating the FE numerical model
with the wavelet transform system identification.
Jiang et al. (2022) proposed a model correction
and updating scheme to improve the accuracy
of failure prognostics by recovering the missing
physics in the boundary condition degradation of
miter gates. Eick et al. (2021) suggested a fatigue
life updating method for embedded miter gate
anchorages. Commonly, in a digital twin frame-
work as shown in Fig. 1, a physical asset (i.e.
the miter gate) is connected to its digital counter-
part core (i.e., the FE model) through Bayesian
updating methods and real-time SHM monitoring

data. Bayesian updating methods infer the dam-
age state based on monitoring data and thereby
allow the digital twin to not only estimate the cur-
rent damage level but also to forecast potential
failure before it happens.

Fig. 1: Digital twin concept of miter gates.

Even though current efforts have shown the
promising potential of the digital twin in opti-
mizing the maintenance activity of large-scale
assets, they mainly focus on a single-mode fail-
ure scenario (e.g., boundary condition degrada-
tion of miter gates). For steel structures such
as miter gates, fatigue cracks are another very
common structural deterioration mechanism. As
fatigue cracks propagate, they may interact with
other failure modes. Cracks may be computa-
tionally modeled using XFEM/GFEM (Duarte
et al. 2001, Moës et al. 1999), which is much
more mesh independent than quarter node ele-
ment crack representation (Barsoum 1976, Hen-
shell and Shaw 1975). Therefore, practitioners
widely use XFEM/GFEM for crack modeling/-
analysis. Although FE analysis offers high inter-
pretability (Gravouil et al. 2002, Moës et al. 2002,
Shi et al. 2010, Xie et al. 2018), the separation
in length scales between structural scale (e.g., at
the scale of miter gates) and damage scale (e.g.
at the scale of cracks) may increase numerical
model discretization and add computational cost.
Moreover, the existing methods rely upon strain
measurements for model updating (Hoskere et al.
2020, Parno et al. 2018). With novel measurement
techniques, such as cameras, and drones, devel-
oped for the monitoring of miter gates in recent
years, there is an urgent need to develop an inte-
grated diagnostic/prognostic capability that uses
multiple data sources (including strain gauges) to
simultaneously account for multiple failure modes.

In this paper, we focus on two failure sce-
narios at different scales, including the boundary
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condition degradation at a global scale and the
crack growth of a cruciform at a very localized
scale. Two types of measurements are considered:
strain measurement data from strain gauges and
displacement observations extracted from digital
images. In order to develop the framework for mul-
tiple failure modes and data sources, two main
challenges need to be addressed, namely: (1) how
to properly model different failure modes of miter
gates; and (2) how to fuse multiple data sources
for the model updating of the digital model.

The iterative global-local (IGL) method is
employed to address the first challenge. Deal-
ing with separation of scales is a broad field of
research in crack modeling. Of particular inter-
est are methods bridging scales non-intrusively
with XFEM cracking represented in the local
domain (Fillmore and Duarte 2018, Gupta et al.
2012). The IGL method offers particularly good
non-intrusive characteristics (Allix and Gosselet
2020), requiring only the exchange of reaction and
displacement related quantities along the local
boundary. Despite the relatively simple coupling
of global and local models, the IGL method can
simulate nonlinearities in the local model with a
linear global model (Gendre et al. 2009). Within
the context of large structures modeled as shells,
such as a miter gate, the IGL method has been
successfully used to connect shell global domains
to solid local domains with welds (Li et al. 2021).

To address the second challenge of fusing
multiple data and uncertainty sources for model
updating of miter gates with multiple failure
modes, a dynamic Bayesian network (DBN) model
is developed in this paper. DBNs have been widely
used for studies where the topology structure
represents causal relationships, and for building
digital twins of complex engineering systems such
as aircraft structures (Li et al. 2017) and nuclear
power plants (Agarwal et al. 2017). For example,
Li et al. (2017) suggested a digital twin framework
for diagnosis and prognosis of an aircraft wing
using a DBN as a versatile probabilistic model.
A detailed discussion on using DBN as a unify-
ing mathematical tool for digital twins at scale is
available in Kapteyn et al. (2021). As a proba-
bilistic graphic model, DBN allows for information
fusion of various data and uncertainty sources
(both aleatory and epistemic uncertainty sources)
using Bayesian inference and conditional proba-
bilistic models. The recursive updating scheme

supports the digital twin’s need for real-time
updating and prediction over time, which plays
an essential role in fully realizing the promising
potential of digital twin of miter gates.

The main objective of this paper is to develop a
framework that utilizes image-based observations
and strain sensor data to diagnose and predict fail-
ure features in large-scale structures. The physics
of two types of failure modes is represented in
an FE model of the miter gate: the boundary
condition loss represents the large-scale damage;
the fatigue crack growth represents the small-
scale local damage. For illustration purposes, this
paper takes the crack growth on the bottom flange
edge of a horizontal girder on a miter gate as
an example. The underlying concepts, however,
can be extended and applied to other locations
and different types of structures. The proposed
framework includes two main steps, as shown in
Figure 2: (1) effective simulation of failure modes
in different length scales using a global-local mod-
eling method with surrogate modeling to increase
computational efficiency, and (2) online diagnos-
tics and prognostics based on the two types of
observations.

The rest of the paper is arranged as follows.
Section 2 presents the modeling of miter gate fail-
ure scenarios based on an FE model. The proposed
diagnostic and prognostic framework using multi-
ple data sources and a DBN is described in Sec.
3. Section 4 gives the key results and discussion,
followed by Sec. 5 which draws the conclusions.

2 Modeling of Miter Gate
Failures

2.1 Boundary condition degradation

Figure 3 shows the downstream side view of a
miter gate in a dewatered state. The gudgeon
and pintle function as pivots for the miter gate’s
rotation. Normally, the bottom of the miter gates
are submerged below water, resulting in hydro-
static pressure pushing the two leaves of the gate
together. Hydrostatic pressures are applied on the
upstream plate of the gate as shown in Fig. 4,
where the upstream water level is denoted hup
and the downstream water level is denoted hdown.
Since the hydrostatic pressures is considered to
be fully described by the water levels, the load-
ing condition resulted by hydrostatic pressure will
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Fig. 2: Overview of the proposed framework.

be symbolized by parameter h = [hup, hdown]
for the rest of the paper. When the gate holds
enough water in the lock chamber, the miter con-
tact block of both gate leaves come into contact
and a symmetric pin is assumed preventing trans-
lational movement. The two gate leaves act as an
arch, experiencing more axial compression under
more hydraulic head. This compression causes the
miter gate’s quoin contact block to thrust into the
lock wall contact block. The quoin often experi-
ences damage so that only part of it comes into
contact with the lock wall. When the miter gate is
open, boats can enter or leave the lock chamber.
When the miter gate is closed, the lock chamber
can be filled or emptied while the miter gate acts
as a damming surface. More detailed information
about miter gates may be found in (Daniel and
Paulus 2019, Eick et al. 2019, Fillmore and Smith
2021).

The aging of the gate is manifested by multiple
forms of damage. Often, the bottom portion of the
quoin becomes damaged so that it cannot properly
contact the wall. To account for the effects of quoin
block damage, a simplified gap degradation model
(Vega et al. 2021) is generalized below,

Fig. 3: Miter gate downstream side view. Photo-
graph courtesy of John Cheek, USACE.

dl

dt
= exp(σU(t))Q(l(t))w, (1)
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Fig. 4: Miter gate hydrostatic pressure from
upstream and downstream water levels.

where U(t) is a random variable with a standard
normal distribution; σ, Q, and w are empiri-
cal parameters based on previous research (Jiang
et al. 2022, Yang and Manning 1996).

The discrete-time form of Eq. (1) can be
written as

li = li−1 + exp(σUi)Q(li−1)w, (2)

where li and li−1 are the state variable (gap
length) at time steps ti and ti−1 respectively, and
Ui is a standard normal random variable at ti.

An FE model was generated using Abaqus
2021 as shown in Fig. 5. The model represents the
Greenup downstream miter gate, which has been
previously validated with the field data to provide
accurate physics (Eick et al. 2018). This model
is employed in this paper in order to capture the
global behavior and predict the strain responses of
the gate. The quoin block contact loss is modelled
by not applying the pinned boundary conditions
along a certain length. For a more detailed descrip-
tion on the quoin block mechanism, refer to Fig.
8.37b in Daniel and Paulus (2019). For the rest
of the paper, the length of the contact loss inter-
face is referred to as the gap length denoted li.
The lengthening of this gap leads to a global re-
distribution of the stress, which escalates crack
evolution of the miter gates at different local
regions. The gap damage state is connected with
the strain responses as follows

Fig. 5: Finite element model of Greenup miter
gate, showing global strain distribution.

State : li = li−1 + exp(σUi)Q(li−1)w,

Measurement : si = g(li, hi) + εi,
(3)

where h is the loading condition at a given time
step ti, g(li, hi) is the response of the FE
model, εi ∼ N(0, σ2

obsI) are the uncorrelated
measurement noise contributions characterized by
standard deviation σ2

obs, and I is an identity
matrix.

2.2 Crack growth modeling using an
iterative global-local algorithm

Besides the quoin block damage discussed above,
fatigue cracks are a common form of miter
gate damage due to the cyclic loads when the
lock chambers are filled and emptied. Since the
sparsely distributed strain gauge sensor network
is fairly insensitive to crack presence at an ini-
tial stage, conventional crack detection methods
are mostly operated by in-situ inspectors, which
makes the inspection somewhat subjective and
labor-dependent. Besides, much of the gate is
always submerged under water which increases
the difficulty and accessibility of in-situ inspec-
tions. Thus, an accurate crack analysis using the
miter gate FE model is necessary to understand
the behavior of such localized effect. First, Paris’
law–one of the most commonly used crack growth
models–is adopted to generate the physics of the
model, or
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da

dN
= c(∆K)m (4)

where a is the crack length and da/dN is the
fatigue crack growth for a load cycle N , c and m
are the empirical parameters of Paris’ law, and
∆K is maximum stress intensity factor (SIF) dif-
ference in a loading cycle at the crack front, as
shown in Fig. 6. The discrete-time form of Eq. (4)
can be written as

ai = ai−1 + c(∆Ki)
m, (5)

in which ∆Ki stands for the SIF range at time
step ti.

Fig. 6: FE representation of the simulated crack
front: (a) cruciform where crack initiates, and (b)
a close view of crack front

Three main assumptions are made here to the
FE model simplify the problem:

1. The crack can only propagate in one direction
with a fixed crack front shape;

2. The 13 nodes (12 elements) through the 0.625
in. thickness of the cracked plate (solid geom-
etry with linear hexahedral elements with
XFEM enrichment functions shown in Fig.
6(b)) are sufficient to represent the crack
physics, where only the first cracking mode of
the middle node, K1, is considered;

3. The geometry, boundary conditions, and dis-
cretization represent the Greenup gate leaf well
enough for the diagnosis and prognosis in this
research;

With all the above assumptions, the crack
geometry can be described by one single param-
eter, a. This paper aims to provide a general
framework for multi-mode failures of large-scale

structures, the explicit form of crack representa-
tion is beyond scope of this paper. Thus, the crack
problem is simplified in this study.

The maximum SIF difference in a loading
cycle, ∆K, is a variable that is affected by gap
length, crack length, and load conditions, where
gap length is a global-scale damage and crack is
a local-scale damage. The fatigue crack model-
ing requires the calculation of accurate SIF values
at each time step to indicate the crack growth
pattern. The SIF at ti is a function of multiple
factors,

∆Ki = g∆K(li, ai, ∆si), (6)

in which ∆si is the loading condition caused by
the cyclic fluctuation of the hydrostatic pressure
h, and g∆K(li, ai, ∆si) is an FE model to pre-
dict the SIF range ∆Ki for given gap length,
crack length, and loading cycle. Although the
built-in Abaqus technology calculates SIF values
through the contour integral method, crack anal-
ysis for the complicated and large-scale miter gate
model is computationally expensive due to the
fact that the crack can only be simulated with
finely-discretized solid elements in Abaqus. Given
that, a coupled global-local FE model was gener-
ated using Abaqus 2021 as shown in Fig. 7. The
IGL-based model is developed in order to address
the challenge in estimating SIF caused by the two
damage features in different length scales.

fG

Global displacement

Residual

Local reaction

Global reaction

Fig. 7: Illustrated IGL algorithm for miter gate
with global, and local mesh discretizations. The
global domain has parameters as l and h, with
boundary condition described by parameter fG.
The local domain has parameter a.
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All the elements of the global model are 3D
linear reduced-integration shell elements which
lowers the computational cost. The local model
is defined as a cruciform whose local boundary
is shared with the global model. The local model
takes the displacements from the global model
as its boundary condition. The local model is
divided into two parts: One is the crack affected
zone with Abaqus XFEM 3D solid geometry which
allows for crack analysis; the second part of the
local model is the rest of the cruciform which
uses the 3D linear reduced-integration shell ele-
ments. The feature of interest is the crack, which
is only explicitly represented in the solid area of
the local model. More detailed IGL implementa-
tion information may be found in Fillmore et al.
(2022). For any given li, ∆si, and ai, the SIF value
may be obtained. It is assumed that since a sur-
rogate model trained on an identical FE model
showed acceptable error (less than 10%), the sur-
rogate model in this research also has acceptable
accuracy.

3 Diagnosis and Prognosis of
Miter Gates Using Multiple
Data Sources and DBN

3.1 Structural health monitoring
(SHM) data sources

The physics of the miter gate in this study is
parameterized by three factors: the loading condi-
tion h, the quoin block damage li that is imposed
on the global domain, and the crack length ai
that is assigned to the local domain. Different
combinations of such parameters induce different
physical behaviors that are reflected in differ-
ent observations. Image-based observations enable
computer vision techniques to capture the cracks
in the early stage while the strain sensor network
detects the quoin block damage, resulting in load
re-distribution within the whole structure. In this
paper, two types of surrogate models are built in
order to efficiently perform probabilistic analysis
based on the different measurements.

3.1.1 Strain sensor network data

To generate synthetic strain measurements, four
sensor locations are selected in this paper, which
are close to the location that quoin block damage

most likely will happen, as shown in Fig. 8. The
sensors are located in compression regions, and
thus negative strain values are recorded.

Fig. 8: Sensor locations: (a) Individual sensor
location and corresponding value, and (b) loca-
tions of the selected four sensors.

At any time step ti, the strain measurements
from the four strain gauge sensors are related to
the FE model shown in Sec. 2.1 as follows

[si1, si2, si3, si4] = g(li, hi) + εi, (7)

where si1 represents the response of the first
selected strain gauge at time step ti, and g(li, hi)
is the strain output of the FE model for a given
gap length and loading cycle. The measurement
noise εi is considered statistically independent and
identical distributed Gaussian random variables.

Since the original FE model g(li, hi) is com-
putationally expensive for damage diagnostics and
failure prognostics, Gaussian process regression
(GPR)-based surrogate models are constructed to
replace the original model. Considering that there
are only four strain gauges, we construct a GPR
model for each sensor response separately. After
that, Eq. (7) is rewritten as

sij = Ĝj(li, hi) + εi, ∀j = 1, · · · , 4, (8)

where Ĝj(li, hi) is the GPR model for the FEA
response of the i-th strain gauge and is given by

Ĝj(li, hi) ∼ N(µij , σ
2
ij), (9)

in which N(·, ·) is Gaussian distribution, µij and
σij are respectively the mean and standard devia-
tion of the prediction of the j-th surrogate model
at time step ti.
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Based on Eq. (8), the likelihood of observing
si = [si1, si2, si3, si4] at ti for given li and hi is
then given by

f(si|li, hi) =

4∏
j=1

φ

 sij − µij√
σ2
ij + σ2

εi

 , (10)

where φ (·) is the PDF of a standard normal
random variable.

3.1.2 Image monitoring data

The digital image is the key data source for crack
detection. The evolution of the crack results in a
displacement redistribution of the surface which
may be captured by cameras or drones. Note
that the cruciform on which the crack initiates is
located at the center of the second-from-bottom
horizontal girder, which is always underwater dur-
ing lock chamber filling and emptying. In reality,
photos obtained underwater usually have lower
contrast and may be blurred out by the water
reflection. The optical flow method (Alvarez et al.
2000) and digital image correlation (DIC) (Pan
2011) methods can obtain the measured dense
displacement field assumed in this research. Cor-
respondingly, a simplified digital image model is
developed to represent the process of obtaining the
displacement measurements from images (a “mea-
surement model”) using the optical flow method.
Given the fact that Drews et al. (2014) found
turbidity increases the error of optical flow fields
and Madjidi and Negahdaripour (2006) proved
that the low-contrast photo underestimates the
magnitude of the optical flow field, the model
down-sizes the displacement measurements and
assigns a noise that represents the noise level of
photos taken underwater. This noise also accounts
for environmental factors such as camera vibration
and light source movement over a lock filling event.
The process of getting the displacement field can
be expressed as follows

[ux,uz] = GOP (li, ai,hi), (11)

where ux and uz are the localized displace-
ments related to h, li, and ai, and GOP (li, ai,hi)
is the displacement field prediction from optical
flow model. The transformation GOP depends on
camera location, focal length, and other camera
parameters. For simplicity here, the camera angle

is normal to the crack location on the gate and the
transformation from 3D to pixel coordinates is a
linear scaling. Since the IGL algorithm developed
in Sec. 2.2 offers an accurate way of measuring
loading condition and the two different-scale dam-
age states, the process of using optical flow model
to generate synthetic displacements is represented
by IGL model developed in Sec. 2.2.

[ux,uz] = GIGL(li, ai,hi) + εi, (12)

in which GIGL(li, ai,hi) is the IGL algorithm.
First, a surface of interest around the crack

in the cruciform Abaqus model is determined
with a dimension of 10 × 12 inches. The built-in
Abaqus post-processing provides the nodal dis-
placements of all the nodes within the area, shown
in Fig. 9. The irregular quadrilateral meshing ele-
ments generate nodal displacements at scattered
locations. To simulate the uniformly distributed
displacement field obtained from camera images,
the scattered nodal displacements are interpo-
lated onto a uniformly gridded surface as vectors
(x, z, v) using the “nearest” method, where the
point of interpolation specified by location (x, z) is
assigned by the value of closest nodal displacement
v.

Fig. 9: Area of Interest: a) Cruciform where the
crack is evolving, and b) the area in which all the
nodal displacements are extracted.

Fig. 10 shows an example of the displacements
in two directions obtained from IGL and linear
interpolation with a pixel length of 0.1 inches
when h = [hup, hdown] = [506.8, 339.8], l = 27.2,
and a = 2.16.

Since the IGL algorithm requires global-local
model analysis, which is computationally expen-
sive, we construct surrogate models for the
localized displacements, similar to the surrogate
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Fig. 10: Displacement-based observation: a) dis-
placement in x−direction, and b) displacement in
z−direction.

models for the strain response. Since the high-
dimensional displacement field is computationally
impractical for surrogate modeling, singular value
decomposition (SVD) is employed to construct the
GPR models by following the procedure suggested
in Vega et al. (2020). The surrogate modeling gives
ux and uz as

ux =

Nx∑
j=1

Ĝx,j(li, ai, hi)ηj + εx,i,

uz =

Nz∑
k=1

Ĝz,k(li, ai, hi)ηk + εz,i,

(13)

where Ĝx,j(li, ai, hi) ∼ N(µx,j , σ
2
x,j) is the j-

th GPR surrogate model in the latent space, η is
the vector that transforms the latent space pre-
diction back into full-dimensional displacement,
and εx,i is the corresponding noise assigned to the
observation model.

Based on the surrogate modeling and following
the derivations given in Eq. (13), the likelihood of
observing ux is computed by

f(ux|li, ai, hi) =

exp
(
−0.5(ux − µx)

T
Σ−1
x (ux − µx)

)
√

(2π)
NP |Σx|,

(14)

where µx and Σx are given by

µx =

Nx∑
j=1

µx,j(li, ai, hi)ηj , (15)

and Σx is a co-variance matrix with the (i, j)-th,
∀i, j = 1, · · · , NP element given by

Σq,r =

Nx∑
j=1

σ2
j,x(li, ai, hi)ηjqηjr, (16)

in which ηjq and ηjr are respectively the q-th
and r-th element of the j-th basis ηj . The likeli-
hood function f(uz|li, ai, hi) of observing uz is
computed similarly to ux,

f(uz|li, ai, hi) =

exp
(
−0.5(uz − µz)T

Σ−1
z (uz − µz)

)
√

(2π)
NP |Σz|

.
(17)

The focus of this research with regard to image
monitoring data is its utilization for diagnosis and
prognosis. Therefore, a simplified transformation
from 3D to image coordinates is presented and
synthetic camera measurements are generated.
The accurate collection of camera displacement
measurements to achieve the research’s diagnosis
and prognosis results is left to future work. In
particular, future work would define the correct
transformation from the FE displacement results
into image displacements. Then, a fatigue experi-
ment on a cruciform similar to Figure 9 here could
be observed using high resolution cameras. The
diagnosis and prognosis proposed in this research
could be applied to estimate the crack length and
parameters. Then this research could be validated
against other experimental techniques.

The two types of the observations based on
the miter gate physics are now fully described. We
next consider the integration of multi-mode dam-
age diagnosis and failure prognosis using a DBN
framework.

3.2 SHM Using DBN

3.2.1 DBN for miter gates with
multiple failure modes

We assume that there is uncertainty from noise in
the two data sources, i.e., sensor noise and camera
image quality; thus, a dynamic Bayesian network
(DBN) is constructed which accommodates mea-
surement uncertainty of observations along with
probabilistic transitions of damage modes over
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time. Fig. 11 shows the feature of interest rep-
resented by different types of DBN nodes and
their connections at two consecutive time steps
(ti−1 and ti). The continuous nodes represents
the two state variables that quantify the two fail-
ure modes of miter gate at time step ti, referred
to as li and ai. The observed nodes described
the measurements associated with the unknown
nodes. Besides the strain reading Sobs and dig-
ital images Iobs, the upstream and downstream
water levels can be also measured at any time
step. Thus, the hydrostatic pressure condition h is
assumed to be observable and static at each time
step without measuring error (The staff gauge
measurement error is so low that it is ignored in
this study). The arrows, meanwhile, indicate the
probabilistic connection and interaction between
different variables, i.e., the dashed lines represent
the connection between continuous nodes in two
consecutive time steps and the solid lines represent
the interaction between nodes in individual time
step. For example, the crack length ai is depen-
dent on not only the crack length at previous time
step, i.e., ai−1, but also the crack increment that
dominated by Paris’ law, i.e., c, m, ∆Ki. Table 1
summarizes the variables of the DBN.

Table 1: Nomenclature for the DBN.

Symbol Parameter explanation
ai Crack length at time step ti
li Gap length at time step ti
∆K Stress intensity factor range
hobs Load observation
c, m Paris’ law parameter
sobs Strain measurement
uobs
x Displacement measurement in x direction

uobs
z Displacement measurement in z direction
θ Interested parameters
y Jointed observations
α, β coefficients for the likelihood functions
Np Total number of particles
wj Weight of j-th particle

3.2.2 Surrogate-based IGL in DBN

As mentioned above, the physics of the crack
is simulated by the IGL algorithm, which pro-
vides the SIF value at any time step for the
Paris’ law. However, a single run of getting the
SIF result from the IGL global and local analysis
takes up to 10 minutes due to the complex local

XFEM model. Generally, probabilistic analysis for
damage diagnostics and failure prognostics, such
as Bayesian updating and uncertainty propaga-
tion, requires the model to be executed thousands
of times. Thus, for a fast yet accurate calcula-
tion of SIF given the parameters h, li and ai,
a surrogate-based IGL (SIGL) algorithm is used
for the purpose of computational efficiency. Algo-
rithm 1 presents a pseudocode of surrogate-based
IGL method. Details of the SIGL method are
available in Fillmore et al. (2022).

Algorithm 1 Surrogate-Based Iterative global-
local (SIGL) algorithm

1: procedure SIGL(tolerance,m,fG,fL) . fG

and fL are glob. and loc. load vectors
2: Arbitrary initialization p0

3: Arbitrary initialization ω0 ≈ 1.0
4: for j ∈ [0, ...,m] do
5: uGj = FastGlobal(pj ; fG)

6: λLj = SurrogateLocal(uGj ; fL)

7: λGj = FastGlobal(uGj ; fG)

8: rj = −
(
λLj + pj − λ

G
j

)
9: ej = rj∞

10: if ej < tolerance then
11: exit for loop
12: end if
13: pj+1 = pj + rj
14: end for
15: ∆K = SurrogateSIF(uGm; fL)
16: end procedure

As shown in Fig 12, the global FE analysis is
accelerated by using static condensation (denote
FastGlobal Algorithm 1) where the global dis-
placement along global-local boundary is obtained
directly from a static-condensed matrix; while the
local FE analysis is replaced by GP-based surro-
gate model (denote SurrogateLocal in Algorithm
1). Such setup shortens the computational time
for one global-local simulation from 10 minutes to
less than 0.1 seconds, enabling damage diagnostics
and failure prognostics.

∆Ki = GSIGL(li, ai, ∆si), (18)

where GSIGL(li, ai, ∆si) is the SIGL algorithm
that enables a fast calculation of SIF range ∆Ki.
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Fig. 11: Dynamic Bayesian network for miter gate with multi-failure modes.

Global displacement

Residual

Local reaction

Global reaction

Fig. 12: Surrogate-based IGL with global static
condensation.

With the capability of acquiring SIFs via SIGL
model in affordable amounts of time, the process
of using a dynamic Bayesian network (DBN) with
two synthetic observations is represented in the
following section.

3.2.3 Diagnostics and prognostics of
multiple failure modes with DBN
and maintenance optimization

Based on the surrogate modeling, functional rep-
resentation, and probabilistic modeling of different
nodes in the DBN, we now present the diagnos-
tics and prognostics of miter gates with multiple
failure modes using the DBN and multiple data
sources (i.e. strain measurements and image mon-
itoring data).
(a) Damage diagnostics with DBN

Under the Bayesian updating framework, the
damage states including gap degradation li and
crack length ai at ti are estimated along with
the uncertain crack growth model parameters as
follows

f(ci, mi, li, ai|yobs1:i , hobs1:i )

=
f(yobsi |hobsi , θi)f

′(θi)∫
· · ·
∫∫
f(yobsi |hobsi , θi)f ′(θi)dθi

∝ f(yobsi |hobsi , θi)f
′(θi),

(19)
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where

θi
.
= [ci, mi, li, ai]

yobs1:i
.
= [ sobs1:i , uobsx,1:i, uobsz,1:i]

yobsi
.
= [ sobsi , uobsx,i , uobsz,i ]

(20)

f(yobsi |hobsi , θi) is the likelihood function of
observing the two types of data sources (i.e.
strain measurements and displacement images),
and f ′(θi) is the prior distribution at time ti given
by

f ′(θi) = f(ci, mi, li, ai|yobs1:i−1, hobs1:i−1),

=

∫
· · ·
∫∫

f(θi|θi−1)f(θi−1|yobs1:i−1, hobs1:i−1)dθi−1,

(21)

in which f(θi|θi−1) represents the state transition
between two time steps.

Considering the two different types of data
sources and according to the graphic model given
in Fig. 11, the likelihood function f(yobsi |hobsi , θi)
is computed based on the chain rule of Bayesian
networks as follows

L(sobsi , uobsx,i , uobsz,i |hobsi , ci, mi, li, ai)

= f(sobsi |hobsi , li)f(ai|hobsi , li, ci, mi)

× f(uobsx,i |hobsi , li, ai)f(uobsz,i |hobsi , li, ai),

(22)

where f(sobsi |hobsi , li) is given in Eq. (10),
f(uobsx,i |hobsi , li, ai) and f(uobsz,i |hobsi , li, ai)

are given in Eq. (14), and f(ai|hobsi , li) is
obtained through uncertainty propagation using
the surrogate-based IGL method, which first prop-
agates the uncertainty of li to the uncertainty of
SIF range ∆Ki using Eq. (18) and then to crack
length ai using Eq. (5).

In this paper, the particle filter (PF) is used
as the Bayesian inference algorithm which enables
a quantitative way to track and evaluate the
evolution of the state variables in the DBN.
The PF is designed to achieve an optimum esti-
mate of the posterior probability density functions
f(li|Sobs1:i , hobs1:i ) and f(ai|Sobs1:i , I

obs
1:i , hobs1:i ) based

on observations Sobs1:i , Iobs1:i , and hobs1:i . It starts with
prior samples of state variables in the network. For
the first time step, the prior samples are generated
according to empirical research and prior knowl-
edge of the physics. For the other time steps, the

prior samples are obtained through uncertainty
propagation from the previous time step (i.e. Eq.
(21)).

Assuming that Np particles are generated at
each time step, we have the particles of the state
variables at ti as

θpi
.
= [lpi , api , cpi , mp

i ],

lpi
.
= [lpi1, · · · , l

p
iNp

]; api
.
= [api1, · · · , a

p
iNp

];

cpi
.
= [cpi1, · · · , c

p
iNp

]; mp
i
.
= [mp

i1, · · · , m
p
iNp

];

(23)

in which apij , a
p
ij , c

p
ij , andmp

ij ,∀j = 1, · · · , Np is the
j-th particle at ti.

The likelihood function of each particle is then
computed using Eq. (22) as

logL(sobsi , uobsx,i , uobsz,i |hobsi , θij)

= α · log(f(sobsi |hobsi , lij))

+ β · [log(f(uobsx,i |hobsi , θij))

+ log(f(uobsz,i |hobsi , θij))],

(24)

where α and β are the coefficients for two like-
lihood functions. When the importance of two
measurements are equally considered, α = 1 and
β = 1, respectively. When only image data is
considered, α = 0 and β = 1.

Based on the above likelihood function, the
weight of each particle is computed by

wj =
L(sobsi , uobsx,i , uobsz,i |hobsi , θij)

Np∑
j=1

L(sobsi , uobsx,i , uobsz,i |hobsi , θij)

,

∀j = 1, · · · , Np.

(25)

The joint posterior distribution given in Eq.
(19) is then approximated based on the particles
based on re-sampling using the weights given in
Eq. (25) as

f(ci, mi, li, ai|yobs1:i , hobs1:i ) ≈
Np∑
j=1

wjδθi , (26)

where δθi is a delta function at θi = [ci,mi, li, ai].
Let the posterior particles of l, a, c, and m

at ti after re-sampling be l′′i = [l′′i1, · · · , l′′iNp
],

a′′i = [a′′i1, · · · , a′′iNp
], c′′i = [c′′i1, · · · , c′′iNp

],
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and m′′i = [m′′i1, · · · , m′′iNp
]. These particles are

then used to obtain the prior samples for ti+1

based on state transition probability f(θi|θi−1).
For unknown constant parameter such as c and
m, a very small noise amount is added to prevent
particle degeneration during PF implementation.
The transition equations are defined as below:

cp(i+1)j = c′′ij + εc,i+1,

mp
(i+1)j = m′′ij + εm,i+1,

(27)

in which c(i+1)j and m(i+1)j are respectively the
j-th prior sample of c and m at ti+1, εc,i+1

and εm,i+1 are very small noises to avoid sample
degeneration as mentioned above.

For the gap length state variable, the posterior
samples of li is used to obtain the prior samples
at ti+1 as

lp(i+1)j = l′′ij + exp(σuj)Q(l′′ij)
w,

∀j = 1, · · · , Np
(28)

where uj is a random sample of a standard normal
random variable.

For state variable ai, as shown in Fig. 11,
the posterior samples are first passed through Eq.
(18) (i.e. a functional node) to obtain samples of
∆Ki. The prior samples ap(i+1)j are then obtained

through Eq. (5) given in Sec. 2. The above process
(i.e. Eqs. (19) through (28)) is implemented recur-
sively over time to perform damage diagnostics of
miter gate with multiple failure modes.
(b) Failure prognostics with DBN

Failure prognostics is a process of predict-
ing the remaining useful life (RUL) of structural
assets based on all the information available at
the current time step. The RUL information gives
the engineers insight into life-cycle maintenance.
Figure 13 shows an illustration of how to perform
RUL prediction based on failure prognostics.

Based on the state estimation from failure
diagnostics at time step ti, the end of life (EOL)
can be determined which is defined as the inter-
section point between feature limit state and
predicted curve of damage growth path.

Through particles obtained at time step ti, a
family of degradation curves can be obtained as
illustrated in Fig. 13. Based on that, a distribu-
tion of EOL of the structures can be approximated
by collecting all the intersection points. The RUL

Fig. 13: Illustration of EOL to obtain RUL
prediction based on failure prognostics

is determined as the difference between EOL and
the current time step. The probability that the
RUL at ti is less than p conditioned on current
observations is given by

Pr{RULl,i ≤ p|yobs1:i , hobs1:i }

=

∫
Pr{li+p ≥ le|li}f(li|yobs1:i , hobs1:i )dli,

(29)

where RULl,i is the RUL at time step ti for failure
mode of gap degradation, le is the failure threshold
of gap length and f(li|yobs1:i , hobs1:i ) is the posterior
distribution of gap length at time step ti.

Eq. (29) is approximated using the Monte
Carlo simulation method based on the posterior
particles from DBN as follows

Pr{RULl,i ≤ p|yobs1:i , hobs1:i }

≈ 1

Np

Np∑
k=1

Λ(l(i+p)k ≥ le|l′′ik),
(30)

in which Np is the number of particles in
the inference using DBN, l′′ik is the k-th
posterior particle of gap length at ti, and
Λ(l(i+p)k ≥ le|l′′ik) = 1 if l(i+p)k ≥ le|l′′ik is
true, otherwise Λ(l(i+p)k ≥ le|l′′ik) = 0, and
l(i+p)k ≥ le|l′′ik stands for a trajectory of random
gap growth curve conditioned on initial state l′′ik
as indicated in Fig. 13.
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Similarly, the RUL at ti corresponding to
failure mode of fatigue crack is estimated by

Pr{RULa,i ≤ p|yobs1:i , hobs1:i }

≈ 1

Np

Np∑
k=1

Λ(a(i+p)k ≥ ae|l′′ik, a′′ik, c′′ik, m′′ik),

(31)

where RULa,i is the RUL corresponding to crack
at ti, ae is the failure threshold for fatigue crack,
and a′′ik, c

′′
ik, m

′′
ik are the k-th posterior particle.

The overall system RUL is then obtained based
on Eq. (29) through (31) as

Pr{RUL ≤ p|yobs1:i , hobs1:i }

=

∫
Fi|yobs

1:i , h
obs
1:i

(p)]

≈ 1

Np

Np∑
k=1

Λ(l(i+p)k ≥ le|l′′ik

∪ a(i+p)k ≥ ae|l′′ik, a′′ik, c′′ik, m′′ik),

(32)

where Fi|yobs
1:i , h

obs
1:i

(p)] is the failure probability in
the future p time steps conditioned on observa-
tions yobs

1:i and hobs
1:i , and “∪” indicates “union”

of two events which means that the gate fails if
either one of the two failure modes occurs.
(c) Optimal maintenance planning based on
failure prognostics

The RUL estimation in failure prognostics pro-
vides an informative way of understanding how
damage progresses in time. Consequently, main-
tenance decisions may be optimized and updated
based on the structural condition assessment. In
this paper, the cost per unit of time (CPUT) is
employed for maintenance optimization based on
failure prognostics. CPUT is a cost function pro-
posed by Barlow and Hunter (1960), which defines
the cost of performing preventive maintenance at
time t as

CPUT (t) =
Cp[1− Fi(t)] + Cu[Fi(t)]

[
∫ t

0
[1− Fi(τ)] dτ ]

, (33)

where Cp is the preventative action cost, Cu is
the unplanned action cost, and Fi(t) is the failure
probability given in Eq. (32) (i.e., Fi|yobs

1:i , h
obs
1:i

(p)).

Note that Eq. (33) is meaningful only if the cost

ratio, Cu/Cp, is greater than 1, otherwise no main-
tenance operation is needed. It is suggested in
Vega et al. (2020) that the corresponding cost
ratio for some miter gates is close to 5. A larger
cost ratio would represent the case that unplanned
failure may have a much more severe consequence
cost compared to preventative action. The opti-
mal time for maintenance planning is then defined
as the time when CPUT is minimized, given the
different values of Cp and Cu. In addition, the opti-
mal maintenance time is decreasing over time as
suggested in Vega et al. (2020).

Next, we will use a case study to illustrate
the proposed framework for damage diagnostics
and failure prognostics of multi-mode failure using
multiple data sources.

4 Case Study

4.1 Prior Information and
Measurements

With the above formulated training process, the
test case is carried below. In this paper, the phys-
ical value of one time step is set to be one month.
The true values of parameters c and m are set
as c = 3 × 10−4 and m = 2.2, respectively. The
number of particles in the PF is set as Np =
50, 000. Based on our best engineering assump-
tions, the truncated uniform prior distributions of
c and m are set as c ∼ U [1 × 10−4, 1 × 10−3]
and m ∼ U [1, 3], where U [lb, ub] represents uni-
form distribution with lower bound lb and upper
bound ub. The initial gap length and crack length
are set as l0 = 50 inches and a0 = 1 inch, respec-
tively. Fig. 14 shows the gap and crack growth
curves used to generate synthetic data. The fail-
ure thresholds of gap length and crack length are
set to le = 100 inches and ae = 3 inches. Corre-
spondingly, the true EOLs are determined as 82.7
months and 87.7 months, respectively. Note that
the true EOLs for the two damage features are
selected on purpose to have similar values, in order
to show the performance of damage prognostics
using jointed observations.

The true states of the two failure modes are
assumed to be unknown during the diagnosis and
prognosis. To validate the proposed DBN frame-
work, two sets of synthetic measurements are
firstly generated based on the structure under
crack and quoin block degradation. Figure 15
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Fig. 14: True gap and crack growth curves for synthetic data generation.

presents 1000 readings of the four strain gauges
obtained based on the synthetic gap data given
in Fig. 14 and water level data where hup ∼
N(550, 20), hdown ∼ N(150, 20). Figure 16 depicts
the displacement measurements at each time step
with a pixel size of 0.5 inches where the crack
grows from 0.5 inches to 4 inches. As indicated
in this figure, the displacement in the z direction
increases with the growth of crack length, which
is manifested in the displacement images as more
red colors in the upper part and more blue colors
in the lower part (surface fractures into opposite
directions).

4.2 Results and Discussion

Based on the synthetic data presented in Sec.4.1,
the DBN model takes in the two measurements to
calculate corresponding likelihood functions base
on their weights of importance. By setting the
coefficients for the two likelihood functions, α
and β, the distributions of the state variables are
updated at each time step. Figure 17 presents the
diagnostic result of the two damage features, crack
length a and quoin damage length l, when dif-
ferent measurement inputs of DBN are defined.
In Fig. 17 a) and b), two types of observations
are used, i.e., α = 1 and β = 1. The mean predic-
tion and the 95% confidence intervals suggest that
both two variables a and l are estimated with high
accuracy. For the case when only displacement
data are available ( α = 1 and β = 1) as shown in

Fig. 15: Synthetic strain measurements from the
four sensor locations.

Fig. 17 c) and d), the proposed damage estima-
tion method is still able to accurately estimate the
crack length length. However, the accuracy of the
gap length estimation significantly drops, reflected
by the error of mean prediction and increased
confidence intervals. While the images taken far
from the bottom quoin are not sensitive enough to
detect the quoin block deterioration compared to
the strain measurements, incorporating multiple
data sources with different sensitivities to damages
features are essentially required to obtain accurate
prediction.
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Fig. 16: Displacement measurement with pixel
size 0.5 in. and Gaussian noise.

The failure prognosis depends upon the target
damage feature and the definition of failure. The
following prognostic results are carried out based
on considering crack and quoin block damage
individually and considering two damage features
jointly. Figure 18 shows the prognostic result when
considering the crack only. The true RUL of the
structure is 82.7 months. Four cases are shown
here which represent the four stages of the struc-
tural life cycle: Figure 18 a) is an early stage of
the crack initiation, where the prognostic result
overestimates the RUL of the structures by 10
months. The error between mean prediction and
true value is improved to around 1 month after
20 months, shown in 18 b). At the 60th month
and 80th month, the prediction becomes more and
more accurate.

The prognostic result when considering gap
length only is shown in Fig. 19. The true RUL
of the structure is 87.5 months based on quoin
block damage. In this case, the prediction is con-
sistently accurate, as the prediction of the gap
length follows the true RUL in all life stages.

Figure 20 shows the prognostic result when the
joint failure threshold is determined as the smaller

of the crack and gap length damage limits. The
predicted RUL outperformed both results of using
single failure threshold. In the first stage (before
35 months), the prediction slightly overestimates
the RUL of the structure; in the second state (after
35 months), the model tends to be more conserva-
tive about the prediction as the predicted RULs
are smaller than the true values. Such pattern will
lead to different risk-based life-cycle managements
during the optimal maintenance planning process,
considering the different combination of preventa-
tive action cost and unplanned action cost.

Figure 21 shows the overall RUL estimation
at each time step and its confidence limits when
considering the crack as the only damage feature.
Although the prediction of the crack is very inac-
curate in the early months, the model manages
to converge the prediction to the true value after
around 30 months with a high confidence level.

Figure 22 shows the RUL estimation at each
time step and its confidence limits when consid-
ering gap as the only damage feature. The gap
prediction fluctuates around the true gap RUL,
and both prediction error and confidence limit
converge to at the final time step.

Considering both the crack and the gap as
damage features, Fig. 23 shows the RUL estima-
tion at each time step and its confidence lim-
its. Similarly, the prediction outperformed both
results of using single failure threshold when the
EOL is jointly determined from the two damage
features.

The RUL prediction from failure prognostics
is actually related to the reliability. Based on the
reliability function obtained from predicted RULs
at each time step, the CPUT can be calculated
and updated as time evolves. Figure 24 shows
CPUT at time step 50th month with different cost
ratios. It can be seen that as the unplanned action
cost grows, i.e., Cu increases, the optimal main-
tenance time decreases, and the corresponding
CPUT becomes stable at a large value.

To understand the impact of different moni-
toring techniques (e.g., strain gauges and camera
images) on decisions related to maintenance plan-
ning, the optimal maintenance time and minimum
CPUT are calculated based on the prognostics
results using measurements from both monitoring
techniques and from camera images only. Figure
25 shows how the optimal maintenance time (i.e.,
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Fig. 17: Diagnostic results when using different measurement inputs: a) Posterior distribution of crack
length a using both Sobs and Iobs, b) posterior distribution of quoin block damage length l using both
Sobs and Iobs, c) posterior distribution of crack length a using Iobs only, and d) posterior distribution of
quoin block damage length l using Iobs only.

Fig. 18: RUL results based on crack prognostics
only.

the time when CPUT is minimized) are updated
from the measurements over time, when Cu = 1

Fig. 19: RUL results based on gap prognostics
only.

and Cp = 50. The vertical line in the figure rep-
resents the true end of life, which is the time
that one of the two competing damage features
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Fig. 20: RUL results based on jointed failure
threshold.

Fig. 21: RUL estimation at all time steps based
on crack prognostics only.

first reaches its failure threshold. As noted, the
two curves of optimal maintenance time are very
similar, which is due to the high accuracy of the
failure prognostics results. Figure 26 a) shows the
minimum CPUT when Cu = 1 and Cp = 50. By
zooming into the curve after 65 months, the result
clearly proves that the uncertainty in Fig. 17 d)
consequently leads to a higher minimum CPUT
compared to that of Fig. 17 b). It implies that
including multiple monitoring techniques can help
reduce the minimum CPUT, which will result
in a minimized overall maintenance cost. This

Fig. 22: RUL estimation at all time steps based
on gap prognostics only.

Fig. 23: RUL estimation at all time steps based
on jointed failure threshold.

demonstrates the value of adopting an additional
monitoring technique. It is worth noting that the
amount of cost savings by adding an additional
monitoring technique should be compared against
the cost of installing the system to justify the
adoption of the technique. It is an interesting topic
that worth investigating in future work, using a
value-of-information analysis.

5 Conclusions

In this paper, an online diagnostic and prognos-
tic framework that efficiently used multi-source
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Fig. 24: CPUT at 50 months corresponding to
different values of Cu and Cp.

Fig. 25: Optimal maintenance time correspond-
ing to Cu = 1 and Cp = 50.

data was proposed for structures with multi-
ple failure modes. A high-fidelity FE model was
used as a physics-based emulator of two differ-
ent kinds of deterioration mechanisms, the loss
of contact “gap” and fatigue crack growth. The
separation of damage scales has been carefully
studied through global-local analysis. Two surro-
gate models were created and trained to generate
synthetic observations (digital images and sen-
sor data), which replaced the time-consuming
FE model and enables the extensive model-based
analysis of miter gates. The multi-source obser-
vations were passed through a dynamic Bayesian
network for online diagnostics and prognostics.
In diagnostics, the framework successfully deter-
mined the damage-related parameters as well as
estimated damage conditions. In prognostics, the

RUL of both failure modes were accurately pre-
dicted as time evolved. Based on the RUL results,
the impact of the optimal maintenance planning
of the miter gate was studied. It is found that
including multiple monitoring techniques can help
reduce the maintenance cost. The contributions of
this paper can be summarized as: (1) Implementa-
tion of a digital twin concept for a practical engi-
neering problem with complicated degradation
behaviors, which requires extensive model-based
analysis to capture the interactions between multi-
ple damages; (2) The extension of the widely DBN
framework to fuse information from strain gauges
and camera for damage diagnostics and failure
prognostics of miter gates; and (3) The investi-
gation of the impact of using multiple structural
health monitoring data sources (i.e. strain sen-
sor and camera) on the final maintenance decision
making process.

To conclude, the proposed framework provides
a new approach of using DBN to incorporate mul-
tiple data sources for structures under different
scales of failure modes. Although the synthetic
failure mechanisms and measurement data were
simplified for illustration purposes, such DBN
framework can be extended to more complicated
structures for more informative life-cycle man-
agement and risk-based decision analysis. Future
research will look at a more thorough study at the
impact of digital image quality and more accurate
failure representation.
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Fig. 26: a) Minimum CPUT corresponding to Cu = 1 and Cp = 50, b) minimum CPUT approaching
end of life.
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is encouraged to contact the corresponding author
for further implementation details by e-mail.
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